WO2011062286A1 - 堆積膜形成装置 - Google Patents

堆積膜形成装置 Download PDF

Info

Publication number
WO2011062286A1
WO2011062286A1 PCT/JP2010/070803 JP2010070803W WO2011062286A1 WO 2011062286 A1 WO2011062286 A1 WO 2011062286A1 JP 2010070803 W JP2010070803 W JP 2010070803W WO 2011062286 A1 WO2011062286 A1 WO 2011062286A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
gas
supply
deposited film
source gas
Prior art date
Application number
PCT/JP2010/070803
Other languages
English (en)
French (fr)
Inventor
伊藤 憲和
新楽 浩一郎
稲葉 真一郎
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN2010800519615A priority Critical patent/CN102668032A/zh
Priority to JP2011541988A priority patent/JP5570528B2/ja
Priority to US13/510,914 priority patent/US9206513B2/en
Publication of WO2011062286A1 publication Critical patent/WO2011062286A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45574Nozzles for more than one gas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/452Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by activating reactive gas streams before their introduction into the reaction chamber, e.g. by ionisation or addition of reactive species
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/182Special manufacturing methods for polycrystalline Si, e.g. Si ribbon, poly Si ingots, thin films of polycrystalline Si
    • H01L31/1824Special manufacturing methods for microcrystalline Si, uc-Si
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/545Microcrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a deposited film forming apparatus for forming a deposited film such as a Si (silicon) film on a substrate.
  • Methods of forming this Si-based thin film at a relatively low substrate temperature of 100 ° C. or higher and 400 ° C. or lower can be broadly divided into plasma CVD (Chemical Vapor Deposition) method and thermal catalytic CVD method (however, HW (Hot® Wire) ⁇ (Including methods of the same principle such as CVD method).
  • the plasma CVD method uses plasma, the deposited film is damaged by charged particles such as ions and electrons. For this reason, there exists a possibility that the film quality of a deposited film may fall.
  • the thermal catalytic CVD method since the thermal catalytic CVD method does not use plasma, the deposition film can be formed at high speed relatively easily without being damaged in principle by the charged particles.
  • the heating catalyst body heated to a high temperature causes excessive decomposition of the raw material gas (for example, SiH 4 gas), and generation of SiH 2 , SiH, and Si that cause deterioration in film quality proceeds. For this reason, the film quality by the thermal catalytic CVD method is inferior to the film quality by the plasma CVD method.
  • a low raw material gas decomposition probability such as H 2 gas through a gas supply path mechanism to enhance the decomposition probability typified are arranged in the heating catalyst body, decomposition activation of H 2 gas Can be introduced into the chamber.
  • H 2 gas can be contributed to the formation of the microcrystalline silicon film without increasing the number of charged particles that cause a decrease in film quality, which is a problem in the plasma CVD method.
  • a raw material gas having a high decomposition probability such as SiH 4 gas is introduced into the chamber through another gas supply path in which no heating catalyst body is provided.
  • SiH 4 gas can be contributed to the formation of the deposited film while suppressing the generation of SiH 2 , SiH and Si that cause the film quality to deteriorate in the thermal catalytic CVD method.
  • the gas-separated plasma CVD apparatus can form a high quality film at high speed.
  • the gas separation type plasma CVD apparatus is characterized in that the source gas is separated and supplied according to the gas decomposition probability, so that the required flow rate is small under the deposited film forming conditions, and sufficient source gas cannot be supplied uniformly. is there.
  • the flow rate of SiH 4 gas is as low as 1/10 or more and 1/200 or less than the flow rate of H 2 gas.
  • the SiH 4 gas is difficult to be uniformly supplied from a plurality of gas supply units.
  • deformation due to thermal expansion of the electrode plate tends to make the in-plane film thickness distribution of the deposited film non-uniform in a large deposited film forming apparatus having a deposition area exceeding 1 m 2 .
  • An object of the present invention is to provide a deposited film forming apparatus capable of forming a deposited film having a uniform film thickness distribution, and in particular, a deposited film capable of suitably forming a Si-based thin film used for a thin-film Si-based solar cell.
  • An object is to provide a forming apparatus.
  • a deposited film forming apparatus comprises: A deposited film forming apparatus comprising a chamber, a first electrode located in the chamber, and a second electrode located in the chamber at a predetermined interval from the first electrode,
  • the second electrode has an electrode base and a plurality of electrode plates disposed on the electrode base,
  • the electrode plate includes: a first supply unit that supplies a first source gas to a space between the first electrode and the second electrode; a second supply unit that supplies a second source gas to the space; A first supply path that is connected to a first supply section and into which the first source gas is introduced; and a second supply path that is connected to the second supply section and into which the second source gas is introduced.
  • the electrode substrate has a heating means for heating the first source gas, a first introduction path for introducing the first source gas into the first supply path, and the second source gas introduced into the second supply path. And a second introduction route to In the second supply path, the second raw material gas is introduced from the second introduction path, the main flow part not having the second supply part, and the second raw material gas is introduced from the main flow part, A plurality of tributaries having the second supply part; A connection portion between the second introduction path and the main flow portion is located in an adjacent portion of the electrode plates adjacent to each other.
  • the above-described deposited film forming apparatus it is possible to uniformly supply a raw material gas having a low flow rate into each chamber from each supply unit while suppressing deformation due to thermal expansion of the electrode plate. As a result, an excellent deposited film having a uniform film thickness distribution can be formed on the substrate.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. 1 and is a cross-sectional view schematically showing a structure of a second supply path.
  • FIG. 3 is a perspective view partially seen through in order to explain a state in the vicinity of a connection portion between a second introduction path and a main flow portion in FIG. 2.
  • It is a cross-sectional schematic diagram which shows one Embodiment of the heating catalyst body used for the deposited film formation apparatus which concerns on this invention.
  • the deposited film forming apparatus S1 is located in the chamber 1, the first electrode 7 located in the chamber 1, and the first electrode 7 in the chamber 1 with a predetermined interval. And a second electrode 2 functioning as a shower electrode.
  • the second electrode 2 is mainly composed of a plurality of electrode plates 2a and one or more electrode bases 2b on which these electrode plates 2a are arranged.
  • the second electrode 2 has four electrode plates 2a arranged on one electrode base 2b.
  • the base material 10 on which the deposited film is formed is disposed between the first electrode 7 and the second electrode 2. Note that the substrate 10 may be positioned between the first electrode 7 and the second electrode 2, and may not necessarily be held by the first electrode 7.
  • the chamber 1 is a reaction vessel having a vacuum-tight reaction space constituted by at least an upper wall, a peripheral wall, and a bottom wall.
  • the inside of the chamber 1 is evacuated by a vacuum pump 9 and the pressure in the chamber 1 is adjusted by a pressure regulator (not shown).
  • the chamber 1 is made of a metal member such as stainless steel or aluminum.
  • the first electrode 7 has a function of an anode electrode and incorporates a heater for adjusting the temperature of the substrate 10.
  • the 1st electrode 7 functions also as a temperature adjustment mechanism of the base material 10, and the temperature of the base material 10 is adjusted to 100 degreeC or more and 400 degrees C or less, for example, More preferably, 150 degreeC or more and 350 degrees C or less.
  • the first electrode 7 is made of a metal member such as stainless steel or aluminum.
  • the substrate 10 may be a flat plate made of glass or the like, or a film made of a metal material or a resin.
  • the high frequency power source 11 is connected to the second electrode 2 and a frequency of about 13.56 MHz to about 100 MHz is applied. When a film is formed in a large area of 1 m 2 or more, a frequency of about 60 MHz or less is preferably used. By applying electric power from the high frequency power supply 11 to the second electrode 2, plasma is formed in the space 8 between the second electrode 2 and the substrate 10.
  • the second electrode 2 is arranged to face the first electrode 7 and functions as a cathode electrode.
  • the electrode plate 2a constituting the second electrode 2 includes a first supply path 4 and a second supply path 5 connected to a plurality of introduction paths 3 (first introduction path 3a and second introduction path 3b), and these It has the 1st supply part 6a and the 2nd supply part 6b which are the supply parts 6 for supplying the gas introduce
  • the 1st supply part 6a is a site
  • the 2nd supply part 6b is 2nd. This is a part provided with a supply port for supplying the source gas to the space 8.
  • the electrode plate 2a and the electrode base 2b are electrically connected, and the electrode plate 2a and the electrode base 2b are made of a metal member such as stainless steel, aluminum alloy or nickel base alloy.
  • a plurality of gas cylinders (not shown) that store different gases are connected to the first supply path 4 and the second supply path 5 through the first introduction path 3a and the second introduction path 3b, which are a plurality of introduction paths.
  • the gas introduced from the first introduction path 3a and the second introduction path 3b is not basically mixed until reaching the space 8 through the first supply section 6a and the second supply section 6b, respectively.
  • the gas supplied to the plurality of supply units 6 includes a first source gas and a second source gas having a higher decomposition probability than the first source gas.
  • the total gas decomposition rate is defined as exp ( ⁇ Ea / kTe) ⁇ Ng ⁇ Ne ⁇ ve ⁇ ⁇ g.
  • ⁇ Ea is the excitation activation energy (dissociation energy) of the source gas
  • k is the Boltzmann constant
  • Te is the electron temperature
  • Ng is the source gas concentration
  • Ne is the electron concentration
  • ve the electron velocity
  • ⁇ g is the source gas collision cross section.
  • exp ( ⁇ Ea / kTe) means a decomposition probability.
  • exp ( ⁇ Ea / kTe) ⁇ ⁇ g may be the collision cross-sectional area, but the meaning is the same. Further, as will be described later, there is a case where the first source gas flowing through the first introduction path 3a is divided and partly flows into the second introduction path 3b (mixed with the second source gas).
  • the first source gas and the second source gas are appropriately selected depending on the type of the deposited film.
  • a Si-based thin film such as a-Si: H (hydrogenated amorphous silicon) or ⁇ c-Si: H (hydrogenated microcrystalline silicon)
  • a non-Si based gas is used as the first source gas.
  • Si-based gas can be used as the source gas.
  • hydrogen (H 2 ) gas or the like is used as the non-Si gas.
  • Si-based gas examples include SiH 4 (silane), Si 2 H 6 (disilane), SiF 4 (silicon tetrafluoride), Si 2 F 6 (silicon hexafluoride), or SiH 2 Cl 2 (dichlorosilane) gas. Used.
  • the introduction path of the doping gas either the first introduction path 3a or the second introduction path 3b can be selected as necessary.
  • heating means such as a heating catalyst body is provided in the first introduction path 3a.
  • the heating catalyst body 12 is provided as the heating means as shown in the figure, the doping gas is introduced through the second introduction path 3b. It is desirable to do.
  • a heating catalyst body 12 connected to a heating power source 13 can be provided as a heating means as shown in the figure. Accordingly, the first source gas is heated and activated by the heating catalyst body 12 heated to about 500 ° C. or more and 2000 ° C. or less, and is also activated in the space 8.
  • the heated catalyst body 12 functions as a thermal catalyst body that excites and activates (decomposes) the gas in contact with the medium by passing an electric current through the medium and increasing the temperature by heating.
  • At least the surface of the heating catalyst body 12 is made of a metal material.
  • the metal material is preferably made of a pure metal or alloy material containing at least one of Ta, W, Re, Os, Ir, Nb, Mo, Ru, and Pt, which are high melting point metal materials.
  • the shape of the heating catalyst body 12 is, for example, a metal material such as that described above formed into a wire shape, a plate shape, or a mesh shape.
  • the heating means is not particularly limited as long as the gas can be heated to a predetermined temperature. In the following description, the heating catalyst body 12 will be described as an example.
  • the heating catalyst body 12 is preheated for several minutes at a temperature higher than the heating temperature at the time of film formation before being used for film formation. Thereby, it can reduce that the impurity in the metal material of the heating catalyst body 12 is doped in the film at the time of film formation.
  • the gas can be uniformly brought into contact with the thermal catalyst body 12, and the gas can be activated efficiently.
  • decomposition of the first source gas can be promoted by heating the heating catalyst body 12. Furthermore, since the temperature of the first raw material gas that has not been decomposed or the first raw material gas that has been recombined after the decomposition is also rising, gas decomposition is further promoted in the space 8. In addition, since the second source gas is supplied from the second supply unit 6b without being brought into contact with the heating catalyst body 12 and excited and activated in the space 8, the second source gas is rapidly decomposed without being excessively decomposed. A high-quality thin film can be formed simultaneously with the film formation.
  • the hydrogen gas (first source gas) whose temperature has been raised by the heating catalyst body 12 is supplied to the space 8, the high-order silane formation reaction is suppressed in the space 8 due to the gas heating effect.
  • the higher-order silane formation reaction is 1) SiH 4 + SiH 2 ⁇ Si 2 H 6 2) Si 2 H 6 + SiH 2 ⁇ Si 3 H 8 ... Similar SiH 2 insertion reaction continues ... This is a reaction in which a high molecular polymer is generated by the SiH 2 insertion reaction.
  • SiH 2 is generated together with SiH 3 as a main component of film formation when SiH 4 collides with electrons in the plasma.
  • more high-order silane molecules are also generated.
  • first supply unit 6a and the second supply unit 6b may be arranged in various patterns such as a lattice pattern and a staggered pattern, respectively.
  • the number of the 1st supply part 6a and the 2nd supply part 6b may differ.
  • the first supply unit 6a is more than the second supply unit 6b.
  • first introduction path 3a and the second introduction path 3b may be directly connected to each cylinder, or may be connected to a gas adjusting unit that adjusts the gas flow rate, flow velocity, temperature, and the like.
  • the vacuum pump 9 it is desirable to use a dry vacuum pump such as a turbo molecular pump in order to suppress contamination of impurities into the film from the exhaust system.
  • the ultimate vacuum is at least 1 ⁇ 10 ⁇ 3 Pa or less, preferably 1 ⁇ 10 ⁇ 4 Pa or less, and the pressure during film formation is 50 Pa or more and 7000 Pa or less, although it depends on the type of film to be formed.
  • the second electrode 2 includes, for example, a plurality of electrode plates 2a that are rectangular and have the same shape in plan view (in this example, four substantially square electrode plates 2a are shown in plan view).
  • the electrode base 2b and the electrode plate 2a are connected by bolts and nuts via a gasket (not shown), the maintenance can be easily performed. For this reason, productivity can be improved by shortening the maintenance time.
  • Each electrode plate 2a serves as a second supply path 5 as a main flow portion 51 (a first main flow portion 51a extending in the vertical direction in the drawing and a second main flow portion extending in the horizontal direction in the drawing) provided around each electrode plate 2a. 52b) and a tributary portion 52 connected to the main flow portion 51 and extending in the vertical direction.
  • the first supply path 4 and the first supply unit 6a are omitted.
  • the main flow part 51 is not provided with the second supply part 6b, and the second supply part 6b is provided only in the tributary part 52. Further, the second supply path 5 is provided in the main stream portion 51 by providing a connection port 53 which is a connection portion with the second introduction path 3b formed in the electrode base 2b in the adjacent portion between the electrode plates 2a. It becomes possible to supply the second source gas directly to the main flow part 51 located in the vicinity.
  • the second source gas is supplied equally from each second introduction path 3b. be able to.
  • a flow rate control mechanism it is preferable to adjust the conductance of the introduction path 3, and the cross-sectional area of the introduction path 3 may be adjusted by a valve or a mass flow meter.
  • the second introduction path 3b is also provided at both ends of the electrode plate, so that the second source gas can be supplied to the tributary section 52 almost evenly.
  • first main flow portion 51a connected to the second introduction path 3b and the second main flow portion 51b connected to the tributary portion 52 intersect substantially perpendicularly, whereby the second source gas is supplied to the tributary portion 52 more evenly. be able to.
  • FIG. 2 as shown in an enlarged view in FIG. 3, a plurality of connection ports 53 between the second introduction path 3 b and the first main flow portion 51 a are provided in adjacent portions between the electrode plates 2 a, and each first main flow is provided.
  • the part 51a is connected to the second main flow part 51b provided in each electrode plate 2a, and the second source gas is supplied to the branch part 52 provided in each electrode plate 2a individually.
  • the gas flow rate supplied to each electrode plate 2a can be individually controlled, so that it can be expected that the second source gas is supplied evenly.
  • the first supply path 4 and the first supply unit 6a are omitted.
  • route 3b and the 1st main flow part 51a should just be provided in the adjacent part of the electrode plate 2a adjacent to each other, for example, it connects only one place to the adjacent part of electrode plates 2a A mouth may be provided.
  • the second electrode 2 has the electrode base 2b and the plurality of electrode plates 2a arranged on the electrode base 2b.
  • the electrode plate 2 a includes a first supply unit 6 a that supplies the first source gas to the space 8 between the first electrode 7 and the second electrode 2, and a second supply that supplies the second source gas to the space 8.
  • Section 6b a first supply path 4 connected to the first supply section 6a to introduce the first source gas, and a second supply path 5 connected to the second supply section 6b to introduce the second source gas. And have.
  • the electrode base 2 b includes heating means (heating catalyst body 12) for heating the first source gas, a first introduction path 3 a for introducing the first source gas into the first supply path 4, and a second at the second supply path 5. And a second introduction path 3b for introducing the source gas.
  • the second supply path 5 includes a main flow part 51 having no second supply part 6b into which the second raw material gas is introduced from the second introduction path 3b and a second raw material gas introduced from the main flow part 51. And a plurality of tributaries 52 having two supply sections 6b. And the connection part (connection port 53) of the 2nd introduction path
  • a raw material gas having a small flow rate can be uniformly supplied into the chamber 1 from each supply unit while suppressing deformation due to thermal expansion of the electrode plate 2a.
  • an excellent deposited film having a uniform film thickness distribution can be formed on the substrate 10.
  • the installation area per unit (region) where the heating catalyst bodies 12 are provided can be reduced. For this reason, the elongation amount of the heating catalyst body 12 due to thermal expansion during heating can be reduced, and the problem that the heating catalyst body 12 contacts the side wall in the installation space of the heating catalyst body 12 can be reduced.
  • the heating catalyst body 12 when the heating catalyst body 12 is provided so as to be paired with each electrode plate 2a, when the heating catalyst body 12 is maintained by removing the electrode plate 2a, the heating catalyst 12 Only the electrode plate 2a corresponding to the medium 12 may be removed. Thereby, the time required for maintenance can be shortened.
  • the first introduction paths 3a By providing a plurality of first introduction paths 3a, it is possible to reduce variations in the supply amount of the first source gas supplied from each first supply unit 6a due to the increase in the area of the apparatus. Furthermore, the first source gas can be efficiently supplied to the heating catalyst bodies 12 provided in the first introduction paths 3a.
  • the number of first introduction paths 3a may be less than the number of electrode plates 2a, or may be the same as the number of electrode plates 2a. By doing in this way, it becomes easy to control the 1st source gas supplied from each electrode plate 2a. Further, by making the first introduction path 3a and the heating catalyst body 12 pair with each of the plurality of electrode plates 2a, the gas flow rate and the temperature of the heating catalyst body 12 are individually controlled by each electrode plate 2a. Therefore, a good film property distribution can be obtained.
  • a rod-shaped reinforcing rib 15 supported by the second electrode 2 is provided at the center of the deposited film forming apparatus S2, and each electrode plate 2a is provided on the reinforcing rib 15. May be fixed.
  • a plurality of electrode plates 2a can be attached to one first introduction path 3a.
  • the second introduction path 3b may be provided inside the reinforcing rib 15.
  • the second source gas can be supplied to the main flow part 51 from the vicinity of the center of the deposited film forming apparatus S2, and the second source gas can be supplied to the branch part 52 of each electrode plate 2a substantially evenly. .
  • the first source gas can be efficiently brought into contact with the heating catalyst bodies 12.
  • the heating temperature of each heating catalyst body 12 can be adjusted. Thereby, for example, the temperature of the heat catalyst body 12 provided in the outer peripheral portion is set to be higher because the temperature of the heat catalyst body is likely to be lowered at the outer peripheral portion of the first introduction path 3a due to heat exchange with the thermal catalyst space side wall. As a result, the temperature is equalized and the first source gas in the first introduction path can be heated uniformly.
  • the heating catalyst body 12 is made of a wire-like metal wire
  • the heating catalyst body 12 is seen in a plan view from the electrode plate 2a side and extends in a wave shape from one end of the electrode plate 2a toward the other end so as to overlap the electrode plate 2a.
  • the density of the metal wires may be appropriately changed. For example, as shown in FIG.
  • the metal wire is arranged on the electrode base 2b so that the area occupied by the metal wire in the electrode plate 2a is reduced at the central portion of the electrode plate 2a).
  • the first source gas in 3a can be heated uniformly. Further, a plurality of linear metal wires may be arranged in parallel without making the metal wires corrugated.
  • the reflective surface is mirror-finished or a deposited film forming process such as Ag, Al or Au is performed so that the reflectance is 80% or more, preferably 90% or more.
  • each electrode plate 2a is electrically connected and electric power is applied from one high-frequency power source 11 to a plurality of electrode plates 2a.
  • a high frequency power supply 11 may be provided corresponding to each second electrode 2 to insulate the second electrodes 2 from each other.
  • this deposited film forming apparatus S3 it is possible to finely adjust the high frequency power and the phase applied to each second electrode 2 from each high frequency power supply 11. Thereby, a deposited film can be formed on the substrate 10 with uniform film quality and film thickness.
  • the plurality of first introduction paths 3a may be combined into one space where the heating catalyst body 12 exists, and the plurality of electrode plates 2a may be attached. In this case, it is preferable to provide a plurality of heating catalyst bodies 12 to be paired with the electrode plate 2a. With this deposited film forming apparatus S4, it can be expected that the first source gas in the first introduction path 3a is heated uniformly.
  • the electrode base 2b may have a cooling mechanism 16 for cooling the electrode base 2b and / or the electrode plate 2a.
  • the cooling mechanism 16 may be provided with the cooling mechanism 16 for cooling the second electrode 2 in the vicinity of the first supply path 4 and the second supply path 5 in the electrode base 2b.
  • a refrigerant path or a heat pipe through which a cooling medium flows can be used.
  • the temperature increase of the second electrode 2 can be suppressed, an increase in the surface temperature of the substrate 10 is suppressed. As a result, a deposited film having good film quality can be formed.
  • the in-plane temperature distribution of the electrode plate 2a can be made uniform, the in-plane temperature distribution of the substrate 10 is improved, and further, the in-plane temperature distribution of the source gas supplied from the electrode plate 2a is improved. Improved. For this reason, a deposited film having good film quality can be formed uniformly.
  • the maintenance cycle of the apparatus can be lengthened and productivity can be improved.
  • the temperature of the 2nd electrode 2 can be finely adjusted by providing the some cooling mechanism 16 so that it may become a pair with each 2nd electrode 2. FIG. Thereby, a deposited film can be formed on the substrate 10 with uniform film quality and film thickness.
  • a cooling mechanism may be provided in a portion other than the second introduction path 3b between the plurality of first introduction paths 3a.
  • a reflection plate 17 that reflects infrared radiation radiated from the heating catalyst 11 may be provided, and the cooling mechanism 16 may have a function as a reflection plate.
  • the reflective surface is mirror-finished or a deposited film forming process such as Ag, Al or Au is performed so that the reflectance is 80% or more, preferably 90% or more.
  • a plurality of reflecting plates 17 may be provided so as to be paired with each electrode plate 2a, and the maintainability can be improved.
  • the outer peripheral portion of the deposited film forming apparatus has a communication portion 18 that can communicate with the outside, and in this communication portion 18, the heating catalyst body 12 in which the heating catalyst body 12 is disposed is replaced.
  • the unit 19 may be attached so as to be fitted from the outside.
  • the shape and size of the opening of the communication portion 18 are appropriately designed according to the size and shape of the heating catalyst body replacement unit 19 so that the vacuum in the film forming chamber can be maintained.
  • the inner wall of the communication part 19 may have a tapered shape having an inclination angle of about 1 to 5 °.
  • the heating catalyst body replacement unit 19 in which the heating catalyst body 12 is disposed is configured to be removable from the outside of the apparatus, it is possible to minimize the time required for replacing the heating catalyst body. And efficient production is possible. Furthermore, as compared with the conventional apparatus, the amount of moisture adhering to the atmosphere entering the thin film formation chamber is reduced, so that the vacuum baking time performed at the start of the film forming process performed after the heating catalyst body replacement can be shortened. Furthermore, since it is not necessary to remove the shower head (shower electrode) as compared with the conventional heating catalyst body replacement operation, variations in film quality due to the displacement of the shower head position after the heating catalyst body replacement is suppressed.
  • the heating catalyst body exchanging unit 19 is configured for the purpose of arranging the heating catalyst body 12 so as to be electrically conductive, and for easily removing the heating catalyst body 12 provided inside the apparatus to the outside of the apparatus.
  • the shape of the unit base 20 is not particularly limited as long as it is a shape that fits into the opening of the communication portion 18 formed in the apparatus.
  • the planar shape may be a rectangular shape, a circular shape, an elliptical shape, or the like.
  • the unit base 20 is made of a metal such as stainless steel. From the viewpoint of further strengthening the fitting with the opening of the communication portion 18, for example, an O-ring or the like is preferably disposed on the outer peripheral portion of the unit base 20, and the fitting portion of the outer peripheral portion has a step structure. It is preferable that In addition, since the unit base 20 is heated at the time of film formation, it is preferable to provide a cooling mechanism for the unit base 20 from the viewpoint of cooling at the time of removal.
  • a plurality of supports 21 are erected on the unit base 20, and the heating catalyst 12 is appropriately disposed between the supports 21.
  • the heating catalyst body 12 is disposed so as to reciprocate between the supports 21 erected on the unit base body 20. It is preferable that a groove or the like is formed at the tip of the support 21 so that the heating catalyst 12 can be easily disposed.
  • the arrangement method is not particularly limited, but in consideration of the thermal expansion of the heating catalyst body 12 during heating, for example, it is preferable to wind it around the groove at the tip of the support body 21 one or more times.
  • the support body 21 located at the end has an energization section 22 for electrically connecting the heating catalyst body 12.
  • the conductor is formed so as to penetrate through the support 21, and the screw structure of the conductor is exposed at the tip of the support 21.
  • the heating catalyst body 12 is connected to this conductor.
  • the energization part 22 it is preferable to use a metal material having a heat-resistant temperature of about 800 ° C. in a vacuum, and for example, a nickel base alloy or the like is used.
  • the current-carrying unit 22 and the unit base 20 are not in electrical contact with each other.
  • An insulating member 23 is disposed around the conductor and on the portion of the unit base 20 that can come into contact with the conductor.
  • the insulating member 23 for example, alumina, quartz, or the like is used.
  • the heating catalyst body replacement unit 19 is detachably fitted into the opening of the communication portion 18.
  • the number of heating catalyst body replacement units 19 to be fitted is not particularly limited. Although it may be only one or plural, it is desirable that it can be individually controlled so as to be paired with the electrode plate 2a. Moreover, it attaches with an attachment screw etc. from a viewpoint of making fitting more firm.
  • ⁇ Method for forming deposited film A method for forming a deposited film according to this embodiment will be described.
  • the step of holding the substrate 10 on the first electrode 7, the step of applying high-frequency power to the second electrode 2, and the first source gas activated in the heated catalyst body 12 The second source gas is supplied from the first supply unit 6a to the base material 10 from the second supply unit 6b, and the second source gas is activated in the space 8 generated between the first electrode 7 and the second electrode 2. And a step of converting.
  • the activated first source gas and second source gas are mixed in the space 8, and components in the source gas are deposited on the substrate 10, thereby forming a deposited film on the substrate 10. Is done.
  • the base material 10 is transported by a base material transport mechanism or the like (not shown) and held on the first electrode 7. Then, it is fixed on the first electrode 7.
  • the film thickness of the i-type amorphous silicon film may be 0.1 ⁇ m or more and 0.5 ⁇ m or less, preferably 0.15 ⁇ m or more and 0.3 ⁇ m or less.
  • H 2 gas is supplied to the first introduction path 3 a and SiH 4 gas is supplied to the second supply path 5.
  • the gas pressure is set to 100 Pa to 7000 Pa
  • the gas flow ratio of H 2 / SiH 4 is set to 10/1 to 200/1
  • the high frequency power density is set to 0.1 W / cm 2 to 1 W / cm 2. do it.
  • the thickness of the i-type microcrystalline silicon film is 1 ⁇ m to 4 ⁇ m, preferably 1.5 ⁇ m to 3 ⁇ m, and the crystallization rate is about 70%. What is necessary is just to form.
  • hydrogen gas first source gas
  • first source gas hydrogen gas whose temperature has been increased by the heating catalyst body 12 is supplied to the space 8.
  • the high-order silane formation reaction in the space 8 is suppressed by the gas heating effect, crystallization of the microcrystalline silicon film can be promoted, and the film can be formed at high speed.
  • the formation of a hydrogenated microcrystalline silicon film has a much lower flow rate of SiH 4 gas than that of H 2 gas. For this reason, the gas pressure balance between the first and second supply units 6 is not achieved, and it becomes difficult to uniformly supply the SiH 4 gas from each of the second supply units 6b, and the film thickness distribution may be nonuniform.
  • this possibility can be reduced by performing deposition using the deposited film forming apparatus.
  • the gas pressure in the second supply path 5 is reduced by making the number of the second supply parts 6b smaller than that of the first supply parts 6a or by reducing the opening cross-sectional area of the second supply parts 6b.
  • the SiH 4 gas can be uniformly ejected from the plurality of second supply parts 6b by increasing the size. Further, a part of the H 2 gas (first source gas) supplied to the first introduction path 3a is dividedly supplied to the second introduction path 3b, so that the total amount of gas supplied from the second supply unit 6b is increased. The flow rate can be increased. Accordingly, the gas pressure in the second supply passage 5 (total pressure) is increased, can be uniformly ejected SiH 4 gas from the plurality of the second supply unit 6b.
  • step 1, step 2, and step 3 may be sequentially performed.
  • Step 1 A carrier gas is supplied from the first supply unit 6a into the chamber 1, and a cleaning gas having a molecular formula containing fluorine and / or a molecular formula containing chlorine is supplied from the second supply unit 6b to the chamber 1.
  • a cleaning gas having a molecular formula containing fluorine and / or a molecular formula containing chlorine is supplied from the second supply unit 6b to the chamber 1. The process of supplying inside.
  • Step 2 A step of activating the cleaning gas by plasma generated between the first electrode 7 and the second electrode 2.
  • Process 3 A process of stopping the supply of the cleaning gas and heating the heating means.
  • At least one of the step of applying high-frequency power to the second electrode 2 and, for example, hydrogen gas or inert gas from the first supply unit 6a through the first introduction path 3a including the heating catalyst body 12 is used. Is supplied into the chamber 1, and cleaning is performed including at least one of a gas containing F (fluorine) in the molecular formula or a gas containing Cl (chlorine) in the molecular formula from the second supply unit 6b.
  • a gas such as N 2 , Ar, or He can be used as an inert gas used for the carrier gas.
  • a cleaning gas containing fluorine F 2 , CHF 3 , SF 6 , NF 3 , CF 4 , C 2 F 6 , C 3 F 8 , C 5 F 8 , ClF 3 , or C 2 ClF 5, etc.
  • a gas such as Cl 2 , CCl 4 , ClF 3 , or C 2 ClF 5 can be used as a cleaning gas containing chlorine.
  • the contact between the heating catalyst body 12 and the cleaning gas can be reduced.
  • the chamber 1 can be cleaned while reducing the corrosion deterioration.
  • the high-frequency power density applied to the second electrode 2 at the time of cleaning may be 0.1 W / cm 2 or more and 3 W / cm 2 or less.
  • the heating means provided in the first introduction path 3a is heated.
  • the temperature of the constituent members in the chamber 1 is increased.
  • this heating means it may be provided separately in the chamber 1 or on the outer wall of the chamber 1, but by separately using the heating catalyst body 12 provided in the first introduction path 3 a for the thin film formation and the heating process, a separate heating means is not necessarily provided. There is no need to provide it. Therefore, suppression of deterioration in characteristics after cleaning by this method does not increase the cost of the apparatus.
  • the heating means including the heating catalyst body 12 is used as the heating means will be described as an example.
  • the heating of the constituent members in the chamber 1 by the heating catalyst body 12 is performed by heating the temperature of the heating catalyst body 12 to 300 ° C. or more and 2000 ° C. or less.
  • the residual gas is exhausted from the chamber 1 by evacuating the chamber 1 during and after the heating.
  • heating is performed while supplying any one of a hydrogen gas, an inert gas, or a thin film forming gas, or a mixed gas of these gases, so that the desorbed cleaning gas is again contained in the chamber 1. It can be pushed out of the chamber 1 before adhering to the components. For this reason, the residual ratio of the cleaning gas in the apparatus can be further reduced.
  • the cleaning gas is introduced in the cleaning process, so that the residual amount of the cleaning gas is large.
  • the effect of pushing out from the introduction path by the gas is added to the desorption of the cleaning gas residual component by heating, and the residual ratio of the cleaning gas in the second introduction path 3b is further increased.
  • the pressure in the chamber and the gas flow rate are determined so that the gas residence time ⁇ (seconds) defined by the following relational expression is 30 seconds or less, preferably 15 seconds or less. Good.
  • P the pressure in the chamber (Pa)
  • V the space volume in the chamber (m 3 )
  • Q the gas supply amount (Pa ⁇ m 3 / sec).
  • the pressure in the chamber is about 50 Pa to 300 Pa.
  • the heating process is performed while applying a high frequency power to the second electrode 2 and accompanied by glow discharge generated between the first electrode 7 and the second electrode 2.
  • cleaning gas that has been easily desorbed from members of the apparatus reacts with activated hydrogen by hydrogen plasma by supplying hydrogen gas, and the cleaning gas can be removed from the apparatus more efficiently.
  • desorption of the cleaning gas can be further promoted by the hydrogen gas whose temperature has increased.
  • a vacuum pump By supplying a thin film forming gas and adding a preliminary film formation, such as supplying a first source gas from the first introduction path 3a and supplying a second source gas from the second introduction path 3b, a vacuum pump The component of the cleaning gas that cannot be removed from the chamber by exhausting by the air 9 is taken into the film formed on the constituent member in the chamber 1 by the preliminary film formation, and the influence of the cleaning gas component at the time of forming the solar cell element is reduced. Can do. Further, by setting a base material during preliminary film formation, a film in which a cleaning gas component is taken in is formed on the base material, and then the base material is taken out of the chamber 1 to remove the base material from the chamber 1. The residual ratio of the cleaning gas can be further reduced.
  • the cleaning gas cannot be sufficiently removed only by the preliminary film formation. Therefore, after the heating process with hydrogen plasma is performed, the heating process with film formation is performed. By doing so, the cleaning gas can be more efficiently removed from the apparatus.
  • the residual rate of the cleaning gas in the apparatus can be further reduced by performing the heating process a plurality of times. Further, the supply gas is stopped during a plurality of heating steps, and the inside of the chamber 1 is once evacuated by the vacuum pump 9 to reduce the desorbed cleaning gas from adhering to the components in the chamber again. Can do.
  • the heating means is also heated in the cleaning process, so that the adhered film can be removed while reducing the adhesion of the cleaning gas to the constituent members in the chamber 1. Therefore, the residual ratio of the cleaning gas after the cleaning process Can be reduced, the time of the heating process performed next can be shortened, and productivity can be improved.
  • the thin film forming apparatus was cleaned by supplying Ar gas (carrier gas) from the first supply unit and NF 3 gas (cleaning gas) from the second supply unit into the chamber. .
  • Example 1 while heating the heating catalyst body to 1500 ° C. after the cleaning process, hydrogen gas is supplied into the chamber from the first supply unit and the second supply unit, and high frequency power is applied to the second electrode to generate hydrogen plasma. Treatment was carried out for 20 minutes.
  • Example 2 as in Example 1, while heating the heating catalyst body to 1500 ° C., hydrogen gas is supplied into the chamber from the first supply unit and the second supply unit, and high-frequency power is supplied to the second electrode. Is applied and hydrogen plasma treatment is performed for 20 minutes, heating of the heating catalyst body is stopped, the inside of the apparatus is evacuated, a glass substrate is installed in the apparatus, and hydrogen gas is supplied from the first supply unit to the second supply unit. Silane gas was supplied to preliminarily form a microcrystalline silicon film having a thickness of 1 ⁇ m on a glass substrate.
  • hydrogen gas treatment is performed for 20 minutes by supplying hydrogen gas from the first supply unit and the second supply unit into the chamber without heating the heating catalyst body, and applying high-frequency power to the second electrode.
  • a glass substrate is set in the apparatus, hydrogen gas is supplied from the first supply part, and silane gas is supplied from the second supply part, and the microcrystalline silicon having a thickness of 1 ⁇ m on the glass substrate The membrane was pre-deposited.
  • Example 2 a glass substrate having a transparent conductive film made of SnO 2 formed on the surface is placed in the apparatus.
  • the pre-formed glass substrate is taken out, and the glass substrate on which the transparent conductive film is formed is installed.
  • p-type hydrogenated amorphous silicon, i-type hydrogenated amorphous silicon, n-type hydrogenated amorphous silicon, p-type hydrogenated microcrystalline silicon, i-type hydrogenated microcrystalline silicon, n-type Hydrogenated amorphous silicon was deposited.
  • the heating catalyst body was heated to 1500 ° C. only when the i-type hydrogenated microcrystalline silicon film was formed, and the heating catalyst body was not heated in the other films.
  • a transparent conductive film made of ITO and a metal electrode made of silver were formed on the n-type hydrogenated amorphous silicon by sputtering to produce a solar cell element. And this solar cell element was produced twice more continuously.
  • the output characteristics (conversion efficiency and fill factor) of the solar cell element produced after the cleaning method under each condition were measured with a simulator.
  • the measurement conditions at this time were the surface temperature of the solar cell element: 25 ° C., the spectral distribution: AM1.5 global solar radiation standard sunlight, and the irradiance: 100 mW / cm 2 .
  • the results in each example are shown in Table 1.
  • Example 1 and Example 2 the conversion efficiency of the solar cell element produced for the first time was higher than that of the comparative example.
  • Example 2 in which preliminary film formation was performed, it was possible to sufficiently reduce the mixing of the cleaning gas component during the formation of the semiconductor film, compared with Example 1 in which only the heating process was performed, and thus higher conversion efficiency was obtained.
  • Example 1 and Example 2 it can confirm that the solar cell element produced at the 1st time is substantially equivalent to the conversion efficiency of the solar cell element produced at the 2nd time and the 3rd time, and has a stable output characteristic. It was possible to produce a solar cell element having the same.
  • the present invention is not limited to the above-described embodiments, and many modifications and changes can be made within the scope of the present invention.
  • the second supply part 6b may be provided more on the center side than the end part side of the tributary part, or the opening cross-sectional area of the second supply part 6b may be increased toward the center of the tributary part. Gas can be supplied.
  • the deposited film forming apparatus in which the electrodes and the base material are provided in the horizontal direction has been described as an example.
  • a deposited film forming apparatus in which the electrodes and the base material are provided in the vertical direction may be used.
  • a deposited film having a uniform film thickness distribution can be formed.
  • the plurality of supply units may include a first supply unit 6a having a space for generating a hollow cathode (Hollow Cathode) discharge so as not to generate a hollow cathode discharge.
  • the second supply unit 6b having a small degree of discharge may be provided. That is, as shown in FIG. 11, in the first supply unit 6a, the flow passage cross-sectional area is gradually increased toward the gas outlet on the gas outlet side of the first supply unit 6a so that the hollow cathode discharge 60 can be generated. You may make it become.
  • the hollow cathode discharge is a kind of glow discharge, in which electrons reciprocate due to electrostatic confinement, and the energy of the electrons is used for plasma generation, and the plasma density becomes extremely high.
  • the first supply portion 6a of the second electrode 2 has a cross-sectional area perpendicular to the axis in the depth direction as the depth increases, that is, as the distance from the first electrode 7 increases. For example, it is formed in a taper shape or a step shape so that the cross-sectional area becomes small. For this reason, a hollow cathode discharge is generated at a position at an arbitrary depth in the recess according to the atmospheric pressure in the discharge space. Further, the first source gas can further promote the decomposition of the first source gas by the high density plasma of the hollow cathode discharge in the first supply unit 6a.
  • the above-described action further promotes activation of the first source gas and reduces excessive decomposition of the second source gas.
  • the heating catalyst can be used even if there is little first source gas passing through the first introduction path 3a.
  • the decomposition of the first source gas can be further promoted by the heating by the medium 12 and the high density plasma of the hollow cathode discharge. Therefore, a high-quality deposited film can be formed on the substrate 10 at a sufficiently high speed.
  • a SiC-based wide gap film such as a-SiC (amorphous silicon carbide)
  • the first supply unit having a space for generating a hollow cathode discharge.
  • H 2 gas is supplied to the first introduction path 3a
  • SiH 4 (silane) gas and CH 4 gas are supplied to the second supply path 5.
  • the gas pressure may be set to 100 Pa or more and 700 Pa or less
  • the high frequency power density may be 0.01 W / cm 2 or more and 0.1 W / cm 2 or less.
  • the SiC-based wide gap film is used as a light incident side window layer of a solar cell.
  • the thickness of the p-type amorphous silicon carbide film is 0.005 ⁇ m or more and 0.03 ⁇ m or less, preferably 0.01 ⁇ m or more and 0.02 ⁇ m or less. What is necessary is just to form.
  • the SiC wide gap film can also be used as a photoactive layer (i-type layer).
  • the first supply section 6a having a space for generating a hollow cathode discharge is provided.
  • H 2 gas is supplied to the first introduction path 3a
  • Ge-based gas such as SiH 4 (silane) gas or GeH 4 (german) gas is supplied to the second supply path 5.
  • the gas pressure may be set to 100 Pa to 700 Pa and the high frequency power density may be set to 0.01 to 0.2 W / cm 2 .
  • the SiGe narrow gap film is used to absorb light having a long wavelength that cannot be absorbed by the Si film.
  • the film thickness of the i-type amorphous silicon germanium film is 0.1 ⁇ m to 0.5 ⁇ m, Preferably, it may be formed to be 0.15 ⁇ m or more and 0.3 ⁇ m or less.
  • the film thickness of the i-type microcrystalline silicon germanium film is 1 ⁇ m or more and 4 ⁇ m or less, preferably What is necessary is just to form in 1.5 to 3 micrometer.
  • the thin film solar cell formed using the above manufacturing method is formed from a high-quality film at a high speed, it is possible to produce a solar cell with high productivity and high conversion efficiency.
  • a thin film solar cell for example, a tandem structure in which a semiconductor made of an amorphous silicon film and a semiconductor made of a microcrystalline silicon film are laminated from the light receiving surface side, a semiconductor made of an amorphous silicon film and an amorphous silicon germanium film are used. And a triple structure in which a semiconductor made of a microcrystalline silicon film, a semiconductor made of an amorphous silicon film, a semiconductor made of a microcrystalline silicon film, and a semiconductor made of a microcrystalline silicon germanium film are stacked. In addition, it is only necessary that at least one of the semiconductors can be formed by the above manufacturing method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Analytical Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)

Abstract

 チャンバーと、該チャンバー内に位置している第1電極と、チャンバー内に第1電極と所定間隔を隔てて位置している第2電極とを備えた堆積膜形成装置であって、第2電極は、電極基体と、該電極基体の上に配置された複数の電極板とを有しており、該電極板は、第1電極と第2電極との間の空間に第1原料ガスを供給する第1供給部と、空間に第2原料ガスを供給する第2供給部と、第1供給部に接続されて第1原料ガスが導入される第1供給経路と、第2供給部に接続されて第2原料ガスが導入される第2供給経路とを有しており、電極基体は、第1原料ガスを加熱する加熱手段と、第1供給経路に第1原料ガスを導入する第1導入経路と、第2供給経路に第2原料ガスを導入する第2導入経路とを有しており、第2供給経路は、第2導入経路から第2原料ガスが導入される、第2供給部を有さない本流部と、該本流部から第2原料ガスが導入される、第2供給部を有する複数の支流部とを有しており、互いに隣り合う電極板の隣接部に、第2導入経路と本流部との接続部が位置している。

Description

堆積膜形成装置
 本発明は、基材上に例えばSi(シリコン)系膜等の堆積膜を形成する堆積膜形成装置に関する。
 例えば、薄膜Si系太陽電池を製造する際に、Si系薄膜を高速でかつ高品質に形成することが製造コストを低減する上で重要である。このSi系薄膜を、100℃以上400℃以下の比較的低い基材温度で形成する方法を大別すると、プラズマCVD(Chemical Vapor Deposition)法と熱触媒CVD法(ただし、HW(Hot Wire)-CVD法等の同一原理の方法も含む)とがある。
 プラズマCVD法は、プラズマを用いるので、イオンおよび電子等の荷電粒子によって堆積膜にダメージを与える。このため、堆積膜の膜品質が低下するおそれがある。
 一方、熱触媒CVD法は、プラズマを用いないので、荷電粒子による堆積膜へのダメージを原理的に受けずに、堆積膜の高速形成を比較的容易に実現することができる。しかしながら、高温に加熱された加熱触媒体によって、原料ガス(例えばSiHガス)の過剰な分解が起こり、膜品質低下の原因となるSiH、SiHおよびSiの生成が進む。このため、熱触媒CVD法による膜品質は、プラズマCVD法による膜品質と比較して劣る。
 上記課題に対して、出願人はプラズマCVD法と熱触媒CVD法のそれぞれの長所を融合した、ガス分離型プラズマCVD装置を提案した(例えば、下記の特許文献1を参照)。
 この装置によると、例えばHガスのような分解確率の低い原料ガスは、加熱触媒体に代表される分解確率を向上させる機構が配設されたガス供給経路を通して、Hガスを分解活性化させつつチャンバー内に導入できる。
 このため、プラズマCVD法で問題となった膜品質の低下をもたらす荷電粒子を増大させることなくHガスを微結晶シリコン膜の形成に寄与させることができる。そのうえ、例えばSiHガスのような分解確率の高い原料ガスは、加熱触媒体の配設されない、別のガス供給経路を通してチャンバー内に導入される。このため、熱触媒CVD法において膜品質の低下をもたらすSiH、SiHおよびSiの生成を抑制させつつ、SiHガスを堆積膜形成に寄与させることができる。その結果として、前記ガス分離型プラズマCVD装置は高品質膜の高速形成が可能となる。
特開2003-173980号公報
 ガス分離型プラズマCVD装置は、ガス分解確率に応じて原料ガスを分離供給するという特質上、堆積膜形成条件において、その必要流量が小流量であり、十分な原料ガスを均一に供給できないことがある。例えば、微結晶シリコン膜の形成においては、SiHガスの流量はHガスの流量に比べ1/10以上1/200以下と少ない。このため、SiHガスは複数のガス供給部から均一に供給されにくい。さらに、電極板の熱膨張による変形が加わることによって、堆積面積が1mを超えるような大型の堆積膜形成装置においては、堆積膜の面内膜厚分布が不均一となりやすい。
 本発明は、均一な膜厚分布を有する堆積膜を形成可能な堆積膜形成装置を提供することを目的とし、特に、薄膜Si系太陽電池に用いられるSi系薄膜を好適に形成可能な堆積膜形成装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る堆積膜形成装置は、
チャンバーと、該チャンバー内に位置している第1電極と、前記チャンバー内に前記第1電極と所定間隔を隔てて位置している第2電極とを備えた堆積膜形成装置であって、
前記第2電極は、電極基体と、該電極基体の上に配置された複数の電極板とを有しており、
該電極板は、前記第1電極と前記第2電極との間の空間に第1原料ガスを供給する第1供給部と、前記空間に第2原料ガスを供給する第2供給部と、前記第1供給部に接続されて前記第1原料ガスが導入される第1供給経路と、前記第2供給部に接続されて前記第2原料ガスが導入される第2供給経路とを有しており、
前記電極基体は、前記第1原料ガスを加熱する加熱手段と、前記第1供給経路に前記第1原料ガスを導入する第1導入経路と、前記第2供給経路に前記第2原料ガスを導入する第2導入経路とを有しており、
前記第2供給経路は、前記第2導入経路から前記第2原料ガスが導入される、前記第2供給部を有さない本流部と、該本流部から前記第2原料ガスが導入される、前記第2供給部を有する複数の支流部とを有しており、
互いに隣り合う前記電極板の隣接部に、前記第2導入経路と前記本流部との接続部が位置していることを特徴とする。
 上記の堆積膜形成装置によれば、電極板の熱膨張による変形を抑えつつ、流量の少ない原料ガスを各供給部からチャンバー内に均一に供給することができる。これにより、基材に均一な膜厚分布を有し優れた堆積膜を形成させることができる。
本発明に係る堆積膜形成装置の一実施形態を示す断面模式図である。 図1のA-A線断面図であり、第2供給経路の構造を模式的に示す断面図である。 図2における第2導入経路と本流部との接続部付近の様子を説明するために部分的に透視して示す斜視図である。 本発明に係る堆積膜形成装置に用いられる加熱触媒体の一実施形態を示す断面模式図である。 本発明に係る堆積膜形成装置の一実施形態を示す断面模式図である。 本発明に係る堆積膜形成装置に用いられる加熱触媒体の一実施形態を示す断面模式図である。 本発明に係る堆積膜形成装置の一実施形態を示す断面模式図である。 本発明に係る堆積膜形成装置の一実施形態を示す断面模式図である。 本発明に係る堆積膜形成装置の一実施形態を示す断面模式図である。 (a)は本発明に係る堆積膜形成装置の加熱触媒体交換ユニットの一実施形態を示す断面模式図であり、(b)は平面図である。 第1供給部の出口における一実施形態を示す断面模式図である。
 以下、本発明に係る堆積膜形成装置の実施の形態について図面を参照しながら説明する。
 <堆積膜形成装置>
 図1に示すように、堆積膜形成装置S1は、チャンバー1と、チャンバー1内に位置している第1電極7と、チャンバー1内に第1電極7と所定間隔を隔てて位置しており、シャワー電極として機能する第2電極2とを有する。ここで、第2電極2は主に複数の電極板2aおよびこれらの電極板2aが配置されている1以上の電極基体2bで構成されている。堆積膜形成装置S1においては、第2電極2は1つの電極基体2bの上に4つの電極板2aが配置されている。また、堆積膜が形成される基材10が第1電極7と第2電極2との間に配置されている。なお、基材10は、第1電極7と第2電極2との間に位置させるようにすればよく、必ずしも第1電極7で保持しなくともよい。
 チャンバー1は、少なくとも上壁、周囲壁および底壁によって構成される真空気密可能な反応空間を有する反応容器である。このようなチャンバー1の内部は、真空ポンプ9により真空排気され、図示しない圧力調整器によりチャンバー1内の圧力が調整される。チャンバー1はステンレスまたはアルミニウム等の金属部材から構成される。
 第1電極7は、アノード電極の機能を有しており、基材10の温度を調整するヒーターを内蔵する。このように、第1電極7は基材10の温度調整機構としても機能し、基材10の温度は、例えば100℃以上400℃以下、より好ましくは150℃以上350℃以下に調整される。第1電極7はステンレスまたはアルミニウム等の金属部材から構成される。
 基材10は、ガラス等からなる平板状のもの、または金属材料もしくは樹脂等からなるフィルム状のものを用いることができる。
 高周波電源11は第2電極2に接続され、13.56MHz以上100MHz以下程度までの周波数が印加される。1m以上の大面積に製膜する場合には60MHz程度以下の周波数が好適に用いられる。高周波電源11から第2電極2に電力を印加することにより、第2電極2と基材10の間の空間8においてプラズマが形成される。
 第2電極2は、第1電極7と対向して配置されており、カソード電極として機能する。第2電極2を構成する電極板2aには、複数の導入経路3(第1導入経路3a,第2導入経路3b)に接続される第1供給経路4および第2供給経路5と、これらの供給経路から導入されたガスをチャンバー1内に供給するための供給部6である第1供給部6aおよび第2供給部6bを有する。これら供給部6は基材10に向かって開口している。ここで、第1供給部6aは第1電極7と第2電極2とに挟まれた空間8に第1原料ガスを供給する供給口を備えた部位であり、第2供給部6bは第2原料ガスを空間8に供給する供給口を備えた部位である。電極板2aと電極基体2bとは電気的に接続されており、電極板2aおよび電極基体2bはステンレス、アルミニウム合金またはニッケル基合金等の金属部材から構成される。
 第1供給経路4および第2供給経路5には、複数の導入経路である第1導入経路3aおよび第2導入経路3bを通じて、それぞれ異なるガスを貯留する複数の図示しないガスボンベが連結されている。第1導入経路3aおよび第2導入経路3bから導入されたガスは、それぞれ第1供給部6aおよび第2供給部6bを通して空間8に達するまで基本的に混合しない。
 複数の供給部6に供給されるガスは、第1原料ガスと、第1原料ガスより分解確率が高い第2原料ガスとを含む。ガスの総分解速度はexp(-ΔEa/kTe)×Ng×Ne×ve×σgで定義される。なお、ΔEaは原料ガスの励起活性化エネルギー(解離エネルギー)、kはボルツマン定数、Teは電子温度、Ngは原料ガス濃度、Neは電子濃度、veは電子速度、σgは原料ガスの衝突断面積をそれぞれ示す。また、exp(-ΔEa/kTe)は分解確率を意味する。なお、exp(-ΔEa/kTe)×σgを衝突断面積とする場合もあるが意味するところは同じである。また、後述するように、第1導入経路3aを流れる第1原料ガスを分割して一部を第2導入経路3bに流す(第2原料ガスと混合させる)場合もある。
 第1原料ガスおよび第2原料ガスは堆積膜の種類によって適宜選択される。例えば、a-Si:H(水素化アモルファスシリコン)またはμc-Si:H(水素化微結晶シリコン)等のSi系薄膜を形成する場合、第1原料ガスとしては非Si系ガスを、第2原料ガスとしてはSi系ガスをそれぞれ用いることができる。非Si系ガスとしては水素(H)ガス等が用いられる。Si系ガスとしてはSiH(シラン)、Si(ジシラン)、SiF(四フッ化ケイ素)、Si(六フッ化ケイ素)またはSiHCl(ジクロロシラン)ガス等が用いられる。なお、ドーピングガスを導入する場合は、p型ドーピングガスにはB(ジボラン)ガス等を用い、n型ドーピングガスにはPH(ホスフィン)ガス等を用いる。ドーピングガスの導入経路としては、第1導入経路3aまたは第2導入経路3bのいずれかを必要に応じて選択することができる。ただし、後述するように、第1導入経路3a内に加熱触媒体等の加熱手段を設けるが、図示のように加熱手段として加熱触媒体12を設ける場合、ドーピングガスは第2導入経路3bを通して導入することが望ましい。
 第1導入経路3a内には、図示のように加熱手段として例えば加熱用電源13に接続された加熱触媒体12を設けることができる。これにより、第1原料ガスは、500℃以上2000℃以下程度に加熱された加熱触媒体12によって加熱され活性化されるとともに、空間8においても活性化される。
 加熱触媒体(heated catalyzer)12は、媒体に電流を流して加熱高温化することで接触するガスを励起活性化(分解)させる熱触媒体として機能するものである。加熱触媒体12は、少なくともその表面が金属材料からなる。この金属材料は好ましくは高融点金属材料であるTa、W、Re、Os、Ir、Nb、Mo、RuおよびPtの金属元素うちの少なくとも1種を含む純金属または合金材料からなることが望ましい。また、加熱触媒体12の形状は、例えば、上記のような金属材料をワイヤ状にしたもの、板状またはメッシュ状にしたものである。なお、上記加熱手段はガスを所定温度に加熱できるものであれば特に限定されないが、以下の説明においては加熱触媒体12を例に挙げて説明する。
 また、加熱触媒体12は、膜形成に使用される前に、予め膜形成時の加熱温度以上の温度で数分間以上予備加熱される。これにより、膜形成の際に、膜中に加熱触媒体12の金属材料中の不純物がドープされるのを低減できる。
 また、図示のように加熱触媒体12の上流側に分散板14を設けることにより、熱触媒体12にガスを均一に接触させることができ、効率よくガスを活性化させることができる。
 上述の構成により、加熱触媒体12の加熱により第1原料ガスの分解を促進させることができる。さらに、分解しなかった第1原料ガスあるいは、分解後、再度結合した第1原料ガスも温度上昇をしているため、空間8にてガス分解がより促進される。加えて、第2原料ガスを加熱触媒体12に接触させずに第2供給部6bより供給し、空間8にて励起活性化させることから、第2原料ガスを過剰に分解することなく、高速に製膜すると同時に高品質な薄膜を形成することができる。
 特に、加熱触媒体12によって温度上昇した水素ガス(第1原料ガス)が空間8に供給されるため、ガスヒーティング効果によって空間8で高次シラン生成反応が抑制される。
 ここで、高次シラン生成反応とは、
1) SiH+SiH→Si
2) Si+SiH→Si
・・・ 以下、同様なSiH挿入反応が続く・・・
といったSiH挿入反応によって高分子重合体が生成していく反応である。
 SiHはSiHがプラズマ中の電子と衝突することで製膜主成分となるSiHとともに生成される。SiHは特に製膜速度を上げるためにプラズマ励起電力を高めるほどより多く生成するようになり、その結果、高次シラン分子もより多く生成するようになる。
 以上によって生じた高次シラン分子は、製膜表面に付着すると製膜表面での堆積反応(膜成長反応)を乱して膜質を悪化させ、また膜中に取り込まれることでも膜構造を乱して膜質を悪化させる。この高次シラン生成反応は発熱反応であることが既に知られている。すなわち反応によって生じる熱を空間に排出することで進む反応である。
 ところが、上記ガスヒーティング効果によって、熱が排出されるべき空間(具体的には水素ガスが主成分の空間)が既にあたためられていると、空間に反応熱が排出されにくくなる。すなわち発熱反応たる高次シラン生成反応が進みにくくなる。以上によって、プラズマ励起電力が大きい高速製膜条件下でも高品質のシリコン膜を製膜することができる。
 また、第1供給部6aおよび第2供給部6bは、それぞれ例えば格子状パターン、千鳥状パターン等、種々のパターンで配列してもよい。また第1供給部6aと第2供給部6bの数が異なっていてもよい。第1原料ガスのガス流量と第2原料ガスのガス流量が異なる場合、例えば、第2原料ガスより第1原料ガスのガス流量が多い場合には、第2供給部6bより第1供給部6aの数を多くすることによって、供給バランスが保たれ均一な膜厚・膜質分布を有する堆積膜を形成することができる。
 また、第1導入経路3aおよび第2導入経路3bは各ボンベに直接接続されていてもよく、また、ガスの流量、流速、および温度などを調整するガス調整部と連結されていてもよい。
 真空ポンプ9は排気系からの膜中への不純物混入を抑制するために、ターボ分子ポンプ等のドライ系の真空ポンプを用いることが望ましい。到達真空度は少なくとも1×10-3Pa以下、好適には1×10-4Pa以下とし、製膜する膜種によって異なるが製膜時の圧力は50Pa以上7000Pa以下とする。
 図2に示すように、第2電極2は例えば平面視して矩形状で同一形状の複数の電極板2aを備える(この例では、平面視して略正方形の電極板2aが4つ図示の上下左右において互いに隣接した状態で対称に配置されている)ことにより、電極板2aの熱膨張による変形を抑えることができ、メンテナンスにおいては劣化の進んだ電極板2aのみを交換することができる。なお、電極基体2bと電極板2aは不図示のガスケットを介してボルトおよびナット等によって連結されているので、上記メンテナンスは容易に行なうことができる。このため、メンテナンス時間の短縮による生産性向上が可能である。各電極板2aは第2供給経路5として、各電極板2aの周囲に設けられた本流部51(図示の上下方向にのびる第1本流部51a、および、図示の左右方向にのびる第2本流部52bから構成される)と、本流部51に接続され縦方向にのびる支流部52とで構成されている。なお、図2において第1供給経路4と第1供給部6aは省略している。
 本流部51には第2供給部6bは設けられず、支流部52にのみ第2供給部6bが設けられる構造とする。また、第2供給経路5は本流部51において、電極基体2bに形成された第2導入経路3bとの接続部である接続口53を電極板2a同士の隣接部に設けることによって、装置の中央近傍に位置する本流部51に直接、第2原料ガスを供給することが可能となる。
 また、第2導入経路3bより本流部51に導入される第2原料ガスの流量を制御する流量制御機構が設けられることにより、各第2導入経路3bからそれぞれ均等に第2原料ガスを供給することができる。流量制御機構としては、導入経路3のコンダクタンスを調節することが好ましく、バルブまたはマスフローメーターにより導入経路3の断面積を調節すればよい。また、第2導入経路3bは電極板の両端にも設けることにより、支流部52へ第2原料ガスをほぼ均等に供給することができる。
 また、第2導入経路3bに接続する第1本流部51aと支流部52に接続する第2本流部51bとが略垂直に交わることにより、支流部52へさらに均等に第2原料ガスを供給することができる。
 図2においては、図3に拡大して示すように、電極板2a同士の隣接部には第2導入経路3bと第1本流部51aとの接続口53が複数設けられ、それぞれの第1本流部51aが各電極板2aに設けられた第2本流部51bに接続し、それぞれ個別に各電極板2aに設けられた支流部52に第2原料ガスを供給するようにしている。このような構成により、それぞれの電極板2aに供給するガス流量を個別に制御できるため、さらに第2原料ガスを均等に供給することを期待することができる。なお、図3において第1供給経路4と第1供給部6aは省略している。
 なお、第2導入経路3bと第1本流部51aとの接続部は互いに隣り合う電極板2aの隣接部に設けられていればよいので、例えば、電極板2a同士の隣接部に1箇所だけ接続口を設けるようにしてもよい。
 以上説明したように、堆積膜形成装置S1において、第2電極2は、電極基体2bと、電極基体2bの上に配置された複数の電極板2aとを有している。また、電極板2aは、第1電極7と第2電極2との間の空間8に第1原料ガスを供給する第1供給部6aと、空間8に第2原料ガスを供給する第2供給部6bと、第1供給部6aに接続されて第1原料ガスが導入される第1供給経路4と、第2供給部6bに接続されて第2原料ガスが導入される第2供給経路5とを有している。電極基体2bは、第1原料ガスを加熱する加熱手段(加熱触媒体12)と、第1供給経路4に第1原料ガスを導入する第1導入経路3aと、第2供給経路5に第2原料ガスを導入する第2導入経路3bとを有している。第2供給経路5は、第2導入経路3bから第2原料ガスが導入される、第2供給部6bを有さない本流部51と、本流部51から第2原料ガスが導入される、第2供給部6bを有する複数の支流部52とを有している。そして、互いに隣り合う電極板2aの隣接部に、第2導入経路3bと本流部51との接続部(接続口53)が位置している。
 上記構成により、電極板2aの熱膨張による変形を抑えつつ、流量の少ない原料ガスを各供給部からチャンバー1内に均一に供給することができる。これにより、基材10に均一な膜厚分布を有し優れた堆積膜を形成させることができる。
 また、図5に示すように、堆積膜形成装置S2内に加熱触媒体12を複数設けることにより、加熱触媒体12が設けられる箇所の1ユニット(領域)あたりの設置面積を小さくするができる。このため、加熱時の熱膨張による加熱触媒体12の伸び量を少なくすることができ、加熱触媒体12が加熱触媒体12の設置空間における側壁に接触する問題を低減することができる。また、図4に示すように、各電極板2aと対になるように加熱触媒体12を設けることにより、電極板2aを取り外して任意の加熱触媒体12をメンテナンスする場合には、当該加熱触媒体12に対応する電極板2aのみを取り外せばよい。これにより、メンテナンスに要する時間を短縮することができる。
 また、第1導入経路3aを複数設けることにより、装置の大面積化に起因する各第1供給部6aから供給される第1原料ガスの供給量のばらつきを低減することができる。さらに、それぞれの第1導入経路3aに設けられた加熱触媒体12に効率よく第1原料ガスを供給することができる。この場合、第1導入経路3aは電極板2aの数より少なくてもよく、電極板2aの数と同一でもよい。このようにすることにより、各電極板2aから供給される第1原料ガスを制御することが容易となる。さらに、第1導入経路3aと加熱触媒体12とが複数の電極板2aのそれぞれと対になるようにすることで、各電極板2aにてガス流量と加熱触媒体12の温度を個別に制御できるため、良好な膜特性分布を得ることができる。
 図5に示す堆積膜形成装置S2のように、堆積膜形成装置S2内の中央部に、第2電極2に支持された棒状の補強リブ15を設けて、この補強リブ15に各電極板2aを固定するようにしてもよい。上記構成により、1つの第1導入経路3aに対して複数の電極板2aを取り付けることができる。さらに、補強リブ15の内部に第2導入経路3bを設けるようにしてもよい。これによって、堆積膜形成装置S2の中央部近傍から本流部51に第2原料ガスを供給することができ、各電極板2aの支流部52に第2原料ガスをほぼ均等に供給することができる。
 また、1つの第1導入経路3aの内部に複数の加熱触媒体12を設けることにより、効率よく第1原料ガスを加熱触媒体12に接触させることができる。また、それぞれの加熱触媒体12の加熱温度を調節することが可能となる。これにより、例えば、第1導入経路3aの外周部は熱触媒体空間側壁との熱交換により熱触媒体温度が低下し易いため、外周部に設けられた加熱触媒体12の温度を高めに設定することにより均熱化され、第1導入経路内の第1原料ガスの均一加熱が可能となる。
 また、加熱触媒体12がワイヤ状の金属線からなる場合、電極板2a側から平面透視して、電極板2aに重なるように、電極板2aの一端から他端に向かって波型にのびるように配置されており、金属線の密度(重なった電極板2aにおける金属線の占有面積)を適宜変更してもよい。例えば、図6に示すように、第1導入経路3aの外周部は冷えやすいため、第1導入経路3aの中央部に比べ端部において金属線の占有が密になるようにすることにより(すなわち、電極板2aを平面透視した際に、電極板2aにおける金属線の占有面積が電極板2aの中央部で小さくなるように、金属線を電極基体2bに配置することにより)、第1導入経路3a内の第1原料ガスを均一に加熱することができる。また、金属線を波型にせず、直線形状の金属線を複数平行に並べてもよい。
 また、第1導入経路3aの加熱触媒体12と面する側の反射率を高くすることにより、第2電極2の温度上昇の抑制および加熱触媒体温度の低下抑制に効果がある。その方法として、例えば反射率を80%以上、好適には90%以上となるように、反射面の鏡面加工、またはAg、AlまたはAu等の蒸着膜形成処理を施す。
 また、図2では、各電極板2aを電気的に接続し、1つの高周波電源11から複数の電極板2aに電力を印加する例を示したが、図7に示す堆積膜形成装置S3のように、各第2電極2に対応して高周波電源11を設け、第2電極2間を絶縁するようにしてもよい。この堆積膜形成装置S3によれば、それぞれの高周波電源11から各第2電極2に印加される高周波電力および位相を細かく調整ができる。これにより、基材10上に均一な膜質および膜厚で堆積膜を形成することができる。
 また、図8に示す堆積膜形成装置S4のように、複数の第1導入経路3aを加熱触媒体12が存在する1つの空間にまとめ、複数の電極板2aを取り付けてもよい。この場合、電極板2aと対となるように加熱触媒体12を複数設けることが好ましい。この堆積膜形成装置S4により、第1導入経路3a内の第1原料ガスを均一に加熱することを期待することができる。
 また、図9に示す堆積膜形成装置S5のように、電極基体2bは、電極基体2bおよびまたは電極板2aを冷却する冷却機構16を有するようにしてもよい。例えば、冷却機構16を電極基体2bにおける第1供給経路4および第2供給経路5の近傍に、第2電極2を冷却する冷却機構16を備えるようにしてもよい。冷却機構16としては、冷却媒体が流れる冷媒経路やヒートパイプを用いることができる。
 上記構成により、第2電極2の温度上昇を抑制することができるため、基材10の表面温度の上昇が抑制される。その結果として、良好な膜品質を有する堆積膜を形成することができる。加えて、電極板2aの面内温度分布を均一にすることができるため、基材10の面内温度分布が改善され、さらには、電極板2aから供給される原料ガスの面内温度分布が改善される。このため、良好な膜品質を有する堆積膜が均一に形成することができる。また、電極板2aの温度上昇による変形が生じにくくなるため、良好な膜特性分布を得ることができ、さらには装置のメンテナンスサイクルが長くなり、生産性を向上させることが可能となる。そして、各第2電極2と対となるように複数の冷却機構16を設けることにより、第2電極2の温度を細かく調整ができる。これにより、基材10上に均一な膜質および膜厚で堆積膜を形成することができる。
 さらに、複数の第1導入経路3aの間の第2導入経路3b以外の部分に冷却機構を設けてもよい。これにより、電極基体2bの温度上昇による変形が生じにくくなり、機械的強度の低下を低減できるため、装置のメンテナンスサイクルが長くなり、生産性を向上させることを期待することができる。
 また、加熱触媒体11から照射される赤外波長の輻射熱を反射させる反射板17を設けてもよく、上記冷却機構16に反射板としての機能を備えてもよい。上記構成により、さらに第2電極2の温度上昇の抑制および加熱触媒体温度の低下抑制に効果がある。その方法として、例えば反射率を80%以上、好適には90%以上となるように、反射面の鏡面加工、またはAg、AlまたはAu等の蒸着膜形成処理を施す。そして、各電極板2aと対となるように複数の反射板17を設けてもよく、メンテナンス性を向上させることができる。
 また、図10に示すように、堆積膜形成装置の外周部に外部と連通可能な連通部18を有しており、この連通部18には、加熱触媒体12を配設する加熱触媒体交換ユニット19が外部から嵌合可能に取り付けられるようにしてもよい。連通部18の開口部の形状および大きさは、膜形成室内の真空が保持できるように、加熱触媒体交換ユニット19の大きさおよび形状に応じて適宜設計される。なお、連通部19の内壁は、1~5゜程度の傾斜角を有するテーパー状であってもよい。このような構成により、加熱触媒体12を配設する加熱触媒体交換ユニット19が、装置外部から取り外し可能に構成されているため、加熱触媒体の交換作業にともなう時間を最小限にすることができ、効率的な生産が可能である。さらに、従来の装置に比べて、薄膜形成室に侵入する大気による水分付着量が低減される結果、加熱触媒体交換後に行う成膜プロセス開始の際に行う真空ベーク時間を短縮することができる。さらに、従来の加熱触媒体交換作業に比べて、シャワーヘッド(シャワー電極)を取り外す必要がないため、加熱触媒体交換後に生じるシャワーヘッドの位置ずれなどによる膜品質のばらつきが抑制される。
 加熱触媒体交換ユニット19は、加熱触媒体12を電気的に導通するように配設させること、および装置内部に備えられる加熱触媒体12を装置外部に容易に取り出せることを目的として構成される。
 ユニット基体20の形状は、装置に形成される連通部18の開口部に嵌合するような形状であればよく、特に制限されない。例えば、平面形状が矩形状であってもよく、円形状、楕円形状などであってもよい。ユニット基体20は、ステンレス鋼などの金属が用いられる。連通部18の開口部との嵌合をより強固にする観点から、ユニット基体20の外周部には、例えば、Oリングなどが配置されることが好ましく、また外周部の嵌合部分を段差構造とすることが好ましい。また、ユニット基体20は成膜時に高温となるため、取り外し時に冷却する観点から、ユニット基体20に冷却機構を設けることが好ましい。
 支持体21は、ユニット基体20上に複数立設され、これらの支持体21間に加熱触媒体12が適宜配設される。加熱触媒体12が、ユニット基体20に立設される支持体21間を往復するように配設されている。加熱触媒体12を配設し易いように、支持体21の先端部に溝などが形成されていることが好ましい。配設方法については特に制限されないが、加熱時に加熱触媒体12の熱膨張を考慮すると、例えば、支持体21の先端部の溝に一周以上巻き付けることが好ましい。
 末端に位置する支持体21は、加熱触媒体12を電気的に導通させるための通電部22を有している。支持体21の内部に導電体が貫通して存在し、支持体21の先端部に導電体のネジ構造が露出するように形成されている。そしてこの導電体に加熱触媒体12が接続されている。通電部22としては、真空中において800℃程度の耐熱温度を有する金属材料を使用することが好ましく、例えば、ニッケル基合金などが用いられる。なお、プラズマ生成電極(シャワーヘッド)に接続される高周波電源からの電力との絶縁性を確保する観点から、通電部22とユニット基体20が電気的に接触しないような構造にすることが好ましく、導電体の周囲および導電体と接触し得るユニット基体20の部分に、絶縁部材23が配置されている。絶縁部材23としては、例えば、アルミナ、石英などが用いられる。
 上記加熱触媒体交換ユニット19は、連通部18の開口部に取り外し可能に嵌合される。嵌合される加熱触媒体交換ユニット19の数は特に制限されない。1個のみでもよいし、複数であってもよいが電極板2aと対となるように設置することが個別に制御できる点で望ましい。また嵌合をより強固にする観点から、取付ネジなどによって取り付けられる。
 <堆積膜の形成方法>
 本実施形態の堆積膜の形成方法について説明する。堆積膜を形成するには、第1電極7に基材10を保持させる工程と、第2電極2に高周波電力を印加する工程と、第1原料ガスを加熱触媒体12により活性化した状態で第1供給部6aから、また、第2原料ガスを第2供給部6bから基材10に向かって供給し、第2原料ガスを第1電極7と第2電極2間に生じる空間8において活性化する工程と、を有する。これら工程によって、活性化された第1原料ガスと第2原料ガスとは、空間8で混ざり、原料ガス中の成分が基材10上に堆積することで、堆積膜が基材10上に形成される。
 上述の工程において、基材10は、図示しない基材搬送機構等により搬送され、第1電極7上に保持される。そして、第1電極7上に固定される。
 第1原料ガスを第1導入経路3a内の加熱触媒体12で加熱し、第1供給部6aのみから供給することにより、加熱触媒体12によって温度の上昇した第1原料ガスが空間8に供給される。このため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制される。
 また、水素化アモルファスシリコン膜を形成する場合は、Hガスを第1導入経路3aに、SiHガスを第2供給経路5にそれぞれ供給する。また、ガス圧力を50Pa以上700Pa以下に設定し、H/SiHのガス流量比を2/1以上40/1以下とし、高周波電力密度を0.02W/cm以上0.2W/cm以下とすればよい。i型アモルファスシリコン膜を有するpin接合の薄膜太陽電池においては、i型アモルファスシリコン膜の膜厚を0.1μm以上0.5μm以下、好ましくは0.15μm以上0.3μm以下に形成すればよい。
 また、水素化微結晶シリコン膜を形成する場合は、Hガスを第1導入経路3aに、SiHガスを第2供給経路5にそれぞれ供給する。また、ガス圧力を100Pa以上7000Pa以下に設定し、H/SiHのガス流量比を10/1以上200/1以下とし、高周波電力密度を0.1W/cm以上1W/cm以下とすればよい。i型微結晶シリコン膜を有するpin接合の薄膜太陽電池においては、i型微結晶シリコン膜の膜厚を1μm以上4μm以下、好ましくは1.5μm以上3μm以下に、結晶化率を70%前後に形成すればよい。
 本実施形態の形成方法では、加熱触媒体12によって温度の上昇した水素ガス(第1原料ガス)が空間8に供給される。このため、ガスヒーティング効果によって空間8での高次シラン生成反応が抑制され、微結晶シリコン膜の結晶化を促進することができ、高速に製膜することができる。
 水素化アモルファスシリコン膜に比べ水素化微結晶シリコン膜の形成は、SiHガスの流量がHガスに比べ非常に少ない。このため、第1および第2供給部6間でのガス圧バランスが取れずに、SiHガスを第2供給部6bそれぞれから均一に供給しにくくなり、膜厚分布が不均一となるおそれがあるが、上記堆積膜形成装置を用いて堆積させることによりこのおそれを低減することができる。また、それに加えて、第2供給部6bの数を第1供給部6aより少なくする、または、第2供給部6bの開口断面積を小さくすることにより、第2供給経路5内のガス圧力を大きくして、SiHガスを複数の第2供給部6bから均一に噴出できる。さらには、第1導入経路3aに供給していたHガス(第1原料ガス)の一部を第2導入経路3bに分割供給することにより、第2供給部6bから供給されるガスの総流量を大きくすることもできる。これにより、第2供給経路5内のガス圧力(全圧)が大きくなるので、SiHガスを複数の第2供給部6bから均一に噴出できる。
 <クリーニング方法を含む薄膜形成方法>
 次に、上述した薄膜形成の前に行うクリーニング方法を含めた薄膜形成方法の例について、堆積膜形成装置S1を例にとり説明する。
 第1電極7と第2電極2との間に発生させたプラズマにより薄膜を形成させる前に、下記の工程1、工程2、工程3を順次行うとよい。
 工程1:第1供給部6aからキャリアガスをチャンバー1内に供給し、第2供給部6bから分子式にフッ素を含んだガス、および/または分子式に塩素を含んだガスを有するクリーニングガスをチャンバー1内に供給する工程。
 工程2:クリーニングガスを第1電極7と第2電極2との間に発生させたプラズマにより活性化する工程。
 工程3:クリーニングガスの供給を止め、加熱手段を加熱する工程。
 具体的には、第2電極2に高周波電力を印加する工程と、例えば加熱触媒体12を備えた第1導入経路3aを通じて第1供給部6aから水素ガスあるいは不活性ガスのうち、少なくともいずれかを含んだキャリアガスをチャンバー1内に供給し、第2供給部6bから分子式にF(フッ素)を含んだガスあるいは分子式にCl(塩素)を含んだガスのうち、少なくともいずれかを含んだクリーニングガスをチャンバー1内に供給する工程1と、クリーニングガスを第1電極7と第2電極2間にプラズマが生じる空間8において活性化する工程2のドライクリーニング工程とを有し、さらにドライクリーニング工程の後に、クリーニングガスの供給を止め、堆積膜形成装置S1内に設けた加熱手段を加熱する工程3の加熱工程とを有する。
 ドライクリーニング工程において、キャリアガスに用いられる不活性ガスとして、N、ArまたはHe等のガスを用いることができる。また、フッ素を含んだクリーニングガスとして、F、CHF、SF、NF、CF、C、C、C、ClF、またはCClF等のガスを用いることができ、塩素を含んだクリーニングガスとして、Cl、CCl、ClF、またはCClF等のガスを用いることができる。
 これらのクリーニングガスは、空間8において励起・活性化される。これにより、アモルファスシリコン膜等の半導体膜を形成した際に、チャンバー1内の構成部材に堆積したシリコン膜や粉体等の付着物と前記活性化されたクリーニングガスが反応して、付着物は気化し、真空ポンプ9により排気除去される。
 また、キャリアガスを第1供給部6aから供給し、クリーニングガスを第2供給部6bから供給することにより、加熱触媒体12とクリーニングガスとの接触を低減することができ、加熱触媒体12の腐食劣化を低減しつつ、チャンバー1内のクリーニングを行うことができる。
 なお、クリーニングの際に第2電極2に印加される高周波電力密度は、0.1W/cm以上3W/cm以下とすればよい。
 次に、チャンバー1内に残留するクリーニングガスを取り除くために、クリーニングガスの供給を止め、チャンバー1内を真空ポンプ9で真空排気した後に、第1導入経路3a内に設けた加熱手段を加熱し、チャンバー1内の構成部材の温度を上昇させる。この加熱手段として、別途チャンバー1内やチャンバー1の外壁に設けてもよいが、第1導入経路3aに設けた加熱触媒体12を薄膜形成と加熱工程に併用することにより、必ずしも別途加熱手段を設ける必要はない。したがって、本手法によるクリーニング後の特性低下抑制は、特に装置コストの増大はない。以下、加熱手段として加熱触媒体12からなる加熱手段を用いた場合を例にとり説明を行う。
 加熱触媒体12によるチャンバー1内の構成部材の加熱は、加熱触媒体12の温度を300℃以上2000℃以下に加熱して行われる。チャンバー1内の構成部材を温度上昇させることにより、真空排気やプラズマ処理では除去しきれないクリーニング残留ガスをチャンバー1内の構成部材から積極的に脱離させることができる。なお、加熱中および加熱後にチャンバー1内を真空排気することで残留ガスはチャンバー1内から排気される。これにより、チャンバー1内へのクリーニングガスの残留率を低減できるため、太陽電池素子の半導体膜形成時にクリーニングガス成分が混入することを低減できる。そして、クリーニング後に形成された太陽電池素子についても、出力を高くすることができ、連続して安定した出力特性を有する太陽電池素子を形成することができる。
 これは、上記加熱手段を有する堆積膜形成装置で太陽電池素子を形成した場合、加熱触媒体12とプラズマを併用して薄膜形成を行なうため、薄膜形成中に加熱触媒体12の熱によりチャンバー内構成部材の温度が上昇し、部材に残留したクリーニングガスが容易に脱離する。そのため、太陽電池素子にクリーニングガス残留成分が混入し、特性の低下をもたらすものである。しかし、上記薄膜形成方法により、チャンバー1内におけるクリーニングガスの残留率をより低くすることができるため、安定した出力特性を有する太陽電池素子が形成できる。
 また、加熱工程において、水素ガス、不活性ガスまたは薄膜形成ガスのうちいずれか1つのガス、またはこれらガスの混合ガスを供給しながら加熱することにより、脱離したクリーニングガスが再度、チャンバー1内の構成部材に付着する前に、チャンバー1の外へ押し出すことができる。このため、装置内におけるクリーニングガスの残留率をより低くすることができる。特に、第2導入経路3bにおいてはクリーニング工程においてクリーニングガスを導入しているため、クリーニングガスの残留量が多い。しかしながら第2導入経路3bに上記ガスを供給することにより、加熱によるクリーニングガス残留成分の脱離にガスによる導入経路からの押し出し効果が加わり、第2導入経路3b内のクリーニングガスの残留率をより低くすることができる。また、加えて第1導入経路3aからも上記ガスを供給することにより、脱離したクリーニングガスが第1導入経路3a内に逆流するのを抑制し、クリーニングガスとの接触に伴う加熱触媒体12の劣化を低減することができる。さらに、チャンバー1内に上記ガスが供給されていない場合、チャンバー1内の構成部材の温度上昇は加熱触媒体12からの輻射によりなされる。このため、チャンバ1内構成部材の加熱効率が悪く、その結果として、クリーニングガスの除去効率は低くなる。したがってクリーニングガス除去効率を高めるためには加熱触媒体12の温度を2000℃程度の高温にまで加熱する必要がある。しかしながら、上記ガスが供給されている場合、ガスによる熱伝導が加わるため、チャンバー1内の構成部材の温度を上昇させるために必要な加熱触媒体12の温度を低くしつつ、クリーニングガスの除去効率を高めることができる。これにより、加熱触媒体12の寿命が向上し、生産性が向上する。
 上記ガスの供給を伴う加熱工程においては、以下の関係式で定義されるガス滞留時間τ(秒)を30秒以下、好適には15秒以下とするようにチャンバー内圧力、ガス流量を決めればよい。
 τ=P×V/Q
 ここで、Pはチャンバー内圧力(Pa)、Vはチャンバー内空間容積(m)、Qはガス供給量(Pa・m/sec)である。例えば、チャンバー内圧力としては、50Pa以上300Pa以下程度で行われる。
 また、加熱工程において、第2電極2に高周波電力を印加して第1電極7と第2電極2間に生じるグロー放電を伴いながら行われることが好ましい。特に、水素ガスを供給することによる水素プラズマによって、装置の部材から脱離しやすくなったクリーニングガスと活性化した水素が反応し、より効率よくクリーニングガスを装置内から除去することができる。さらに、第1導入経路3aより水素ガスを供給し、加熱触媒体12を加熱することにより、温度上昇した水素ガスによりさらにクリーニングガスの脱離を促進させることができる。また、例えば、第1導入経路3aから第1原料ガスを供給し、第2導入経路3bから第2原料ガスを供給する等、薄膜形成ガスを供給して予備製膜を加えることにより、真空ポンプ9による排気ではチャンバー内から除去しきれないクリーニングガスの成分を予備製膜によりチャンバー1内の構成部材に形成された膜中に取り込み、太陽電池素子形成時のクリーニングガス成分の影響を低くすることができる。また、予備製膜時に基材を設置しておくことにより、前記基材上にクリーニングガス成分の取りこまれた膜が形成され、その後、前記基材をチャンバー1内から取り出すことによって、チャンバー1内のクリーニングガスの残留率をより低くすることができる。なお、チャンバー1内のクリーニングガスの残留率が高いと、予備製膜だけでは十分にクリーニングガスを除去することができないため、水素プラズマを伴う加熱工程を行った後に、製膜を伴う加熱工程を行うことにより、より効率よくクリーニングガスを装置内から除去することができる。
 また、加熱工程を複数回行うことにより、さらに装置内のクリーニングガスの残留率を低くすることができる。また、複数回の加熱工程間に供給ガスを停止し、一旦チャンバー1内を真空ポンプ9で真空排気することによって、脱離したクリーニングガスが再度、チャンバー内構成部材に付着することを低減することができる。
 また、クリーニング工程においても加熱手段を加熱して行うことにより、チャンバー1内の構成部材にクリーニングガスが付着するのを低減しつつ付着膜の除去ができるため、クリーニング工程後におけるクリーニングガスの残留率を低くすることができ、次に行われる加熱工程の時間を短縮することができ、生産性を向上させることができる。
 <実施例>
 図1の堆積膜形成装置を用いてArガス(キャリアガス)を第1供給部、NFガス(クリーニングガス)を第2供給部からチャンバー内に供給して、薄膜形成装置のクリーニングを行った。
 実施例1において、クリーニング工程後に加熱触媒体を1500℃に加熱しながら、第1供給部および第2供給部から水素ガスをチャンバー内に供給し、第2電極に高周波電力を印加して水素プラズマ処理を20分間行った。
 また、実施例2においては、実施例1と同様に加熱触媒体を1500℃に加熱しながら、第1供給部および第2供給部から水素ガスをチャンバー内に供給し、第2電極に高周波電力を印加して水素プラズマ処理を20分間行い、加熱触媒体の加熱を止め、装置内を真空排気した後、装置内にガラス基板を設置し、第1供給部から水素ガスを第2供給部からシランガスを供給して、ガラス基板上に1μmの厚みを有する微結晶シリコン膜を予備製膜した。
 また、比較例として、加熱触媒体の加熱を行わずに第1供給部および第2供給部から水素ガスをチャンバー内に供給し、第2電極に高周波電力を印加して水素プラズマ処理を20分間行い、装置内を真空排気した後、装置内にガラス基板を設置し、第1供給部から水素ガスを第2供給部からシランガスを供給して、ガラス基板上に1μmの厚みを有する微結晶シリコン膜を予備製膜した。
 次に、表面にSnOからなる透明導電膜が形成されたガラス基板を装置内に設置する。なお、実施例2、比較例においては予備製膜したガラス基板を取出し、上記透明導電膜が形成されたガラス基板を設置する。このガラス基板側から順に、p型の水素化アモルファスシリコン、i型水素化アモルファスシリコン、n型の水素化アモルファスシリコン、p型の水素化微結晶シリコン、i型水素化微結晶シリコン、n型の水素化アモルファスシリコンを製膜した。なお、i型水素化微結晶シリコン膜を製膜する際にのみ、加熱触媒体を1500℃に加熱し、それ以外の膜においては加熱触媒体の加熱は行わなかった。そして、n型の水素化アモルファスシリコンの上にITOからなる透明導電膜、銀からなる金属電極をスパッタにより製膜して太陽電池素子を作製した。そして、この太陽電池素子の作製をさらに2回続けて行った。
 各条件におけるクリーニング方法の後に作製した太陽電池素子の出力特性(変換効率および曲線因子)をシュミレーターにより測定した。この際の測定条件は、太陽電池素子の表面温度:25℃、分光分布:AM1.5全天日射基準太陽光、および、放射照度:100mW/cmとした。各例における結果を表1に表す。
Figure JPOXMLDOC01-appb-T000001
 実施例1および実施例2では、1回目に作製した太陽電池素子は比較例に比べ、高い変換効率が得られた。特に、予備製膜を行った実施例2は加熱工程のみの実施例1よりも、半導体膜形成時にクリーニングガス成分が混入することを十分に低減できたため、より高い変換効率が得られた。また、実施例1および実施例2においては1回目に作製した太陽電池素子が、2回目および3回目に作製した太陽電池素子の変換効率とほぼ同等であることが確認でき、安定した出力特性を有する太陽電池素子を作製することができた。
 <他の変形例>
 本発明は上述した実施形態に限定されるものではなく、本発明の範囲内で多くの修正および変更を加えることができる。例えば、第2供給部6bを支流部の端部側よりも中央側に多く設けたり、第2供給部6bの開口断面積が支流部の中央に向かうに従って大きくしてもよく、これにより均一にガスを供給することができる。
 また、水平方向に電極と基材を設けた堆積膜形成装置を例に説明したが、垂直方向に電極と基材を設けた堆積膜形成装置を用いてもよく、このような堆積膜形成装置により均一な膜厚分布を有する堆積膜を形成することができる。
 また、第2電極2に設けられた供給部6において、複数の供給部はホローカソード(Hollow Cathode)放電を生じる空間を有する第1供給部6aを備えるようにして、ホローカソード放電を生じないか、またはその放電の発生の程度が小さい第2供給部6bとを備えるようにしてもよい。すなわち、図11に示すように、第1供給部6aはホローカソード放電60が生じうるように、第1供給部6aのガスの出口側において、流路断面積がガスの出口に向かって次第に広くなっているようにしてもよい。ここで、ホローカソード放電とは、グロー放電の一種であり、静電的な閉じ込めにより電子が往復運動し、このときの電子のエネルギーがプラズマ生成に使われ、プラズマ密度が極めて高くなる放電をいう。このような第2電極2の第1供給部6aは、深さが深くなるにつれて深さ方向の軸に対して垂直な面の断面積が小さくなるように、つまり、第1電極7から遠ざかるにつれて断面積が小さくなるように、例えばテーパー状または階段状に形成されている。このため、放電空間の雰囲気圧力の大きさに従って、当該凹部内の任意の深さの位置でホローカソード放電が生じる。また、第1原料ガスは、第1供給部6aにおけるホローカソード放電の高密度プラズマによって第1原料ガスの分解をより促進させることができる。
 上述の作用により、第1原料ガスの活性化がより促進されるとともに、第2原料ガスの過剰な分解が低減される。また、第1導入経路3aに供給していた第1原料ガスの一部を第2導入経路3bに分割供給する場合、第1導入経路3aを通過する第1原料ガスが少なくても、加熱触媒体12による加熱と、ホローカソード放電の高密度プラズマによって第1原料ガスの分解をさらに促進させることができる。したがって、十分高速に高品質な堆積膜を基材10上に形成することができる。
 また、a-SiC(アモルファスシリコンカーバイト)等のSiC系ワイドギャップ膜の形成において、第1導入経路3aに加熱触媒体12を設ける場合には、ホローカソード放電を生じる空間を有する第1供給部6aの有無に関わらず、Hガスを第1導入経路3aに、SiH(シラン)ガス、CHガスを第2供給経路5に供給する。堆積膜形成条件としては、ガス圧力を100Pa以上700Pa以下に設定し、高周波電力密度を0.01W/cm以上0.1W/cm以下とすればよい。なお、SiC系ワイドギャップ膜は太陽電池の光入射側窓層として利用される。例えば、p型アモルファスシリコンカーバイト膜を有するpin接合の薄膜太陽電池においては、p型アモルファスシリコンカーバイト膜の膜厚を0.005μm以上0.03μm以下、好ましくは0.01μm以上0.02μm以下に形成すればよい。なお、SiC系ワイドギャップ膜は光活性層(i型層)として利用することも可能である。
 また、a-SiGe(アモルファスシリコンゲルマニウム)等のSiGe系ナローギャップ膜を形成において、第1導入経路3aに加熱触媒体12を設ける場合には、ホローカソード放電を生じる空間を有する第1供給部6aの有無に関わらず、Hガスを第1導入経路3aに、SiH(シラン)ガス、GeH(ゲルマン)ガス等のGe系ガスを第2供給経路5に供給する。堆積膜形成条件としては、ガス圧力を100Pa以上700Pa以下に設定し、高周波電力密度を0.01~0.2W/cmとすればよい。なお、SiGe系ナローギャップ膜はSi膜では吸収できない長波長の光を吸収するのに利用される。i型アモルファスシリコンゲルマニウム膜を有する[a-Si/a-SiGe/μc-Si]型のトリプル接合薄膜太陽電池においては、i型アモルファスシリコンゲルマニウム膜の膜厚を0.1μm以上0.5μm以下、好ましくは0.15μm以上0.3μm以下に形成すればよい。i型微結晶シリコンゲルマニウム膜を有する[a-Si/μc-Si/μc-SiGe]型のトリプル接合薄膜太陽電池においては、i型微結晶シリコンゲルマニウム膜の膜厚を1μm以上4μm以下、好ましくは1.5μm以上3μm以下に形成すればよい。
 上記製法を用いて形成される薄膜太陽電池は、高速に高品質な膜より形成されるため、生産性を高め変換効率の高い太陽電池を作製することができる。このような薄膜太陽電池としては、例えば、受光面側からアモルファスシリコン膜からなる半導体と微結晶シリコン膜からなる半導体とが積層されてなるタンデム構造、アモルファスシリコン膜からなる半導体とアモルファスシリコンゲルマニウム膜からなる半導体と微結晶シリコン膜からなる半導体、またはアモルファスシリコン膜からなる半導体と微結晶シリコン膜からなる半導体と微結晶シリコンゲルマニウム膜からなる半導体とが積層されてなるトリプル構造等が挙げられる。また、上記半導体のうち少なくとも一つの半導体を上記製法にて形成できればよい。
1  :チャンバー
2  :第2電極
2a :電極板
2b :電極基体
3a :第1導入経路
3b :第2導入経路
4  :第1供給経路
5  :第2供給経路
51 :本流部
52 :支流部
53 :接続口(接続部)
6a :第1供給部
6b :第2供給部
7  :第1電極
8  :空間
10 :基材
12 :加熱触媒体(加熱手段)
16 :冷却機構

Claims (10)

  1.  チャンバーと、該チャンバー内に位置している第1電極と、前記チャンバー内に前記第1電極と所定間隔を隔てて位置している第2電極とを備えた堆積膜形成装置であって、
    前記第2電極は、電極基体と、該電極基体の上に配置された複数の電極板とを有しており、
    該電極板は、前記第1電極と前記第2電極との間の空間に第1原料ガスを供給する第1供給部と、前記空間に第2原料ガスを供給する第2供給部と、前記第1供給部に接続されて前記第1原料ガスが導入される第1供給経路と、前記第2供給部に接続されて前記第2原料ガスが導入される第2供給経路とを有しており、
    前記電極基体は、前記第1原料ガスを加熱する加熱手段と、前記第1供給経路に前記第1原料ガスを導入する第1導入経路と、前記第2供給経路に前記第2原料ガスを導入する第2導入経路とを有しており、
    前記第2供給経路は、前記第2導入経路から前記第2原料ガスが導入される、前記第2供給部を有さない本流部と、該本流部から前記第2原料ガスが導入される、前記第2供給部を有する複数の支流部とを有しており、
    互いに隣り合う前記電極板の隣接部に、前記第2導入経路と前記本流部との接続部が位置していることを特徴とする堆積膜形成装置。
  2.  複数の前記電極板のそれぞれに、前記第2導入経路と前記本流部との接続部が位置していることを特徴とする請求項1に記載の堆積膜形成装置。
  3.  複数の前記電極板のそれぞれは、前記第1導入経路を有していることを特徴とする請求項1または請求項2に記載の堆積膜形成装置。
  4.  前記電極基体は、該電極基体または前記電極板を冷却する冷却機構を有していることを特徴とする請求項3に記載の堆積膜形成装置。
  5.  前記電極基体は、前記加熱手段を複数有していることを特徴とする請求項1乃至4のいずれかに記載の堆積膜形成装置。
  6.  前記加熱手段の個数は、前記電極板の個数と同じであることを特徴とする請求項1乃至5のいずれかに記載の堆積膜形成装置。
  7.  前記電極基体は、補強リブを有しており、該補強リブに複数の前記電極板が固定されていることを特徴とする請求項1乃至6のいずれかに記載の堆積膜形成装置。
  8.  前記補強リブの内部に前記第2導入経路があることを特徴とする請求項7に記載の堆積膜形成装置。
  9.  前記加熱手段は、電流を流す金属線を有しており、前記電極板を平面透視した際に、該電極板における前記金属線の占有面積が前記電極板の中央部で小さくなるように、前記金属線が前記電極基体に配置されていることを特徴とする請求項1乃至9のいずれかに記載の堆積膜形成装置。
  10.  前記第1供給部は、ホローカソード放電が生じうるように、前記第1供給部の出口側において、流路断面積が出口に向かって次第に広くなっていることを特徴とする請求項1乃至9のいずれかに記載の堆積膜形成装置。
PCT/JP2010/070803 2009-11-20 2010-11-22 堆積膜形成装置 WO2011062286A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800519615A CN102668032A (zh) 2009-11-20 2010-11-22 沉积膜形成装置
JP2011541988A JP5570528B2 (ja) 2009-11-20 2010-11-22 堆積膜形成装置
US13/510,914 US9206513B2 (en) 2009-11-20 2010-11-22 Apparatus for forming deposited film

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-264673 2009-11-20
JP2009264673 2009-11-20
JP2010-017648 2010-01-29
JP2010017648 2010-01-29

Publications (1)

Publication Number Publication Date
WO2011062286A1 true WO2011062286A1 (ja) 2011-05-26

Family

ID=44059757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070803 WO2011062286A1 (ja) 2009-11-20 2010-11-22 堆積膜形成装置

Country Status (4)

Country Link
US (1) US9206513B2 (ja)
JP (1) JP5570528B2 (ja)
CN (1) CN102668032A (ja)
WO (1) WO2011062286A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021309A (ja) * 2011-06-14 2013-01-31 Semiconductor Energy Lab Co Ltd 光電変換装置
US10269593B2 (en) * 2013-03-14 2019-04-23 Applied Materials, Inc. Apparatus for coupling a hot wire source to a process chamber
US20190211450A1 (en) * 2018-01-10 2019-07-11 Asm Ip Holding B.V. Shower plate structure for supplying carrier and dry gas
CN113130293A (zh) * 2020-01-15 2021-07-16 株式会社国际电气 半导体装置的制造方法、基板处理装置和记录介质

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110135843A1 (en) * 2008-07-30 2011-06-09 Kyocera Corporation Deposited Film Forming Device and Deposited Film Forming Method
CN102471886A (zh) * 2009-08-28 2012-05-23 京瓷株式会社 沉积膜形成装置及沉积膜形成方法
CN104380435B (zh) * 2012-05-29 2018-04-06 周星工程股份有限公司 基板加工装置及基板加工方法
JP6126475B2 (ja) * 2013-07-02 2017-05-10 東京エレクトロン株式会社 基板処理装置
JP6349234B2 (ja) * 2014-02-19 2018-06-27 東京エレクトロン株式会社 シリコン酸化膜の形成方法、及び、シリコン酸化膜の形成装置
TWI733712B (zh) * 2015-12-18 2021-07-21 美商應用材料股份有限公司 用於沉積腔室的擴散器及用於沉積腔室的電極
JP6966499B2 (ja) * 2019-03-06 2021-11-17 Ckd株式会社 ガス供給ユニット及びガス供給方法
CN110016656B (zh) * 2019-05-23 2020-11-24 深圳市华星光电技术有限公司 化学气相沉积腔室
CN110106481B (zh) * 2019-06-06 2021-01-26 京东方科技集团股份有限公司 镀膜装置及物理气相沉积设备
US20210395883A1 (en) * 2020-06-22 2021-12-23 Tokyo Electron Limited System and Method for Thermally Cracking Ammonia
CN113913790A (zh) * 2020-07-08 2022-01-11 湖南红太阳光电科技有限公司 一种平板式pecvd设备用多段式电极板辉光放电装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003273023A (ja) * 2002-03-12 2003-09-26 Kyocera Corp Cat−PECVD法、その方法の実施に用いる装置、その方法を用いて形成した膜、およびその膜を用いて形成したデバイス

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6161500A (en) * 1997-09-30 2000-12-19 Tokyo Electron Limited Apparatus and method for preventing the premature mixture of reactant gases in CVD and PECVD reactions
JP2001345280A (ja) * 2000-03-28 2001-12-14 Hideki Matsumura 化学蒸着方法及び化学蒸着装置
JP2002280377A (ja) * 2001-03-19 2002-09-27 Hitachi Kokusai Electric Inc 基板処理装置
US20030047282A1 (en) * 2001-09-10 2003-03-13 Yasumi Sago Surface processing apparatus
JP3872357B2 (ja) 2001-09-26 2007-01-24 京セラ株式会社 熱触媒体内蔵カソード型pecvd装置、熱触媒体内蔵カソード型pecvd法およびそれを用いるcvd装置
CN1278393C (zh) * 2003-04-14 2006-10-04 华邦电子股份有限公司 半导体机台气体反应室的气体配送系统及方法
JP2007525822A (ja) * 2003-05-30 2007-09-06 アヴィザ テクノロジー インコーポレイテッド ガス分配システム
JP2005260186A (ja) * 2004-03-15 2005-09-22 Sharp Corp プラズマプロセス装置
US20090133631A1 (en) * 2007-11-23 2009-05-28 Applied Materials Inc. Coating device and method of producing an electrode assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359232A (ja) * 2001-05-31 2002-12-13 Tokyo Electron Ltd プラズマ処理装置
JP2003273023A (ja) * 2002-03-12 2003-09-26 Kyocera Corp Cat−PECVD法、その方法の実施に用いる装置、その方法を用いて形成した膜、およびその膜を用いて形成したデバイス

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021309A (ja) * 2011-06-14 2013-01-31 Semiconductor Energy Lab Co Ltd 光電変換装置
JP2017005270A (ja) * 2011-06-14 2017-01-05 株式会社半導体エネルギー研究所 光電変換装置の作製方法
US10269593B2 (en) * 2013-03-14 2019-04-23 Applied Materials, Inc. Apparatus for coupling a hot wire source to a process chamber
US20190211450A1 (en) * 2018-01-10 2019-07-11 Asm Ip Holding B.V. Shower plate structure for supplying carrier and dry gas
US11149350B2 (en) * 2018-01-10 2021-10-19 Asm Ip Holding B.V. Shower plate structure for supplying carrier and dry gas
CN113130293A (zh) * 2020-01-15 2021-07-16 株式会社国际电气 半导体装置的制造方法、基板处理装置和记录介质
JP2021111760A (ja) * 2020-01-15 2021-08-02 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
JP7118099B2 (ja) 2020-01-15 2022-08-15 株式会社Kokusai Electric 半導体装置の製造方法、基板処理装置およびプログラム
CN113130293B (zh) * 2020-01-15 2023-10-24 株式会社国际电气 半导体装置的制造方法、基板处理装置和记录介质

Also Published As

Publication number Publication date
JPWO2011062286A1 (ja) 2013-04-11
US20120228129A1 (en) 2012-09-13
US9206513B2 (en) 2015-12-08
JP5570528B2 (ja) 2014-08-13
CN102668032A (zh) 2012-09-12

Similar Documents

Publication Publication Date Title
JP5570528B2 (ja) 堆積膜形成装置
JP4727000B2 (ja) 堆積膜形成装置および堆積膜形成方法
US7648892B2 (en) Methods and apparatus for depositing a microcrystalline silicon film for photovoltaic device
US20130012030A1 (en) Method and apparatus for remote plasma source assisted silicon-containing film deposition
JP5566389B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP5562413B2 (ja) 薄膜太陽電池の製造方法
JP2001332749A (ja) 半導体薄膜の形成方法およびアモルファスシリコン太陽電池素子
JP2007266094A (ja) プラズマcvd装置及びプラズマcvdによる半導体薄膜の成膜方法
JP2006216921A (ja) 光電変換装置の製造方法および光電変換装置
JP5430662B2 (ja) 堆積膜形成装置および堆積膜形成方法
JP2002170973A (ja) 半導体素子の形成方法及び半導体素子
JP3513505B2 (ja) プラズマcvd装置、光電変換素子および光電変換素子の製造方法
JP5460080B2 (ja) 薄膜形成装置のクリーニング方法
JP2004259853A (ja) 結晶質シリコン系薄膜光電変換装置の製造装置及び製造方法
JP2000273643A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JP2001196310A (ja) プラズマcvd装置およびシリコン系薄膜光電変換装置の製造方法
JPH0463537B2 (ja)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051961.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831677

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011541988

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510914

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831677

Country of ref document: EP

Kind code of ref document: A1