WO2011062268A1 - 浄水装置及びその運転方法 - Google Patents

浄水装置及びその運転方法 Download PDF

Info

Publication number
WO2011062268A1
WO2011062268A1 PCT/JP2010/070720 JP2010070720W WO2011062268A1 WO 2011062268 A1 WO2011062268 A1 WO 2011062268A1 JP 2010070720 W JP2010070720 W JP 2010070720W WO 2011062268 A1 WO2011062268 A1 WO 2011062268A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
raw water
supply
valve
membrane module
Prior art date
Application number
PCT/JP2010/070720
Other languages
English (en)
French (fr)
Inventor
讃井 克弥
好倫 長坂
加藤 辰廣
Original Assignee
三菱レイヨン・クリンスイ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン・クリンスイ株式会社 filed Critical 三菱レイヨン・クリンスイ株式会社
Priority to JP2010547773A priority Critical patent/JP5437278B2/ja
Priority to CN201090001456.5U priority patent/CN202968209U/zh
Publication of WO2011062268A1 publication Critical patent/WO2011062268A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/22Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/02Membrane cleaning or sterilisation ; Membrane regeneration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/04Backflushing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/16Regeneration of sorbents, filters

Definitions

  • the present invention relates to a water purifier provided with a membrane module and an operation method thereof.
  • the water purifier provided with the membrane module is likely to be clogged due to the solid matter such as pollutants in the raw water adhering to the surface of the filtration membrane, and the filtration performance is likely to deteriorate with use.
  • the recovery of the filtration performance can be solved by making the filtration membrane disposable and replacing it as necessary.
  • the replacement takes time.
  • disposable is not always preferable in terms of environmental problems and resource saving.
  • Patent Literature 1 includes two filtration units (membrane modules) provided in parallel and a switchable three-way valve that supplies raw water to one of the filtration units, and the filtered water (permeated water) is supplied.
  • a filtration device that supplies water-absorbed buildings is disclosed. According to the said filtration apparatus, raw water is first supplied to one filtration unit A, it filters, and the obtained permeated water is supplied to a water supply building.
  • the filtration filter A provided in the filtration unit A is clogged with dirt or the like, the supply of the raw water to the filtration unit A is stopped and the three-way valve is switched so that the raw water is supplied to the other filtration unit B.
  • filtration is performed in the filtration unit B, and most of the obtained permeated water is supplied to the water-supplied building, and a part of the permeated water is sent to the filtration unit A, and the permeated water is caused to flow back to the filter A. Wash (backwash). And when the filter B of the filtration unit B is clogged, this time, the supply of raw water is switched from the filtration unit B to the filtration unit A by the three-way valve. Next, filtration is performed by the filtration unit A, and most of the obtained permeated water is supplied to the water supply building, and a part of the permeated water is sent to the filtration unit B to backwash the filter B.
  • the clogged filtration filter can be reused, and the use can be continued without replacing the filter over a long period of time.
  • the filtration device described in Patent Document 1 performs filtration alternately by two filtration units, the filtration capacity is low, and the amount of permeated water that can be supplied is small.
  • the other filtration unit is backwashed using a part of the obtained permeate, the amount of permeate that can be supplied is easily reduced.
  • a filtration unit having a large filtration filter or a plurality of filtration filters may be installed, but it is difficult to make the filter compact.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a water purifier and a method for operating the water purifier that are compact and have a high filtration capacity and can stably supply a certain amount of permeate.
  • the water purifier of the present invention includes a raw water supply line, a plurality of membrane modules provided in parallel for filtering the raw water, and a plurality of supply channels branched from the raw water supply line and connected to the raw water inlet of each membrane module And an on-off valve provided in each of the supply channels, a backwash water discharge line connected to the on-off valve, a permeate transfer line, and a permeate of each membrane module branched from the permeate transfer line. And a plurality of transfer channels connected to the outlet.
  • the operation method of the water purification apparatus of the present invention operates a water purification apparatus including a plurality of membrane modules provided in parallel for filtering raw water and a plurality of on-off valves for switching supply and stop of the raw water to the membrane modules.
  • the on-off valve is switched so as to supply raw water to all of the membrane modules, and the raw water is supplied to some of the membrane modules (A) of the membrane modules, the filtration step of filtering the raw water, and the remaining
  • the on-off valve is switched to stop the supply of raw water to the membrane module (B), all the permeated water that has passed through the membrane module (A) is sent to the membrane module (B), and the membrane module (B) is backwashed
  • the on-off valve is switched so as to stop the supply of raw water to all of the membrane modules, and air is taken into the membrane modules to supply raw water. It is preferable to perform a raw water discharging step of discharging and a raw water filling step of switching the on-off valve so as to supply raw water to all of the membrane modules and supplying and filling raw water to all of the membrane modules.
  • the present invention it is possible to provide a water purifier and a method for operating the water purifier that are compact, have a high filtration capacity, and can stably supply a certain amount of permeated water.
  • Drawing 1 is a schematic structure figure showing an example of a water purifier used for the present invention.
  • This water purifier 1 includes two membrane modules 10 and 10 provided in parallel for filtering raw water supplied from a tap water, a raw water supply line 20 for supplying raw water to the membrane modules 10 and 10, and a membrane module.
  • On-off valves 40, 40 for switching the supply and stop of the raw water to the membrane modules 10, 10 provided in the middle of the raw water supply line 20 and the permeated water transfer line 30 for transferring the permeated water that has passed through 10, 10; Via the backwash water discharge line 50 for discharging the backwash water used for backwashing the membrane modules 10, 10, the air supply / exhaust line 60 for supplying and exhausting air to the membrane modules 10, 10, and the membrane modules 10, 10 And a bypass line 70 that can transfer the raw water to the permeate transfer line 30 without being configured.
  • the membrane module 10 includes a filtration membrane 11.
  • a filtration membrane usually used in a water purifier such as a microfiltration membrane, an ultrafiltration membrane, and a nanofiltration membrane can be used. Of these, a microfiltration membrane is preferred.
  • the shape of the filtration membrane 11 include a hollow fiber membrane, a flat membrane, a tubular membrane, and a spiral membrane. These are suitable as filtration membranes because they can easily block the passage of solids and fungi of 0.1 ⁇ m or more.
  • hollow fiber membranes are preferred, for example, cellulose-based, polyolefin-based, polyvinyl alcohol-based, PMMA (polymethacrylic acid) It is preferable to use hollow fiber membranes made of various materials such as methyl) and polysulfone. In particular, it is preferable to use a hollow fiber membrane made of a material having high elongation such as polyethylene. Further, when a hollow fiber membrane is used as the filtration membrane 11, its pore diameter (filtration accuracy), filtration area, film thickness, outer diameter, etc. are not particularly limited. For example, the pore diameter is 0.01 to 2 ⁇ m, filtration The area is 0.2 to 10 m 2 , the film thickness is 5 to 300 ⁇ m, the outer diameter is 20 to 2000 ⁇ m, and the porosity is 20 to 90%.
  • the raw water supply line 20 is branched at a branch point 21 into a first supply channel 21A and a second supply channel 21B.
  • the first supply channel 21A and the second supply channel 21B are connected to the raw water inlets 12 and 12 of the membrane modules 10 and 10 via the on-off valves 40 and 40, respectively.
  • the raw water supply line 20 includes a valve 22 that adjusts the water pressure of the raw water upstream of the branch point 21.
  • the on-off valve, the membrane module, and the raw water inlet to which the first supply channel 21A is connected are referred to as the first on-off valve 40A, the first membrane module 10A, and the raw water inlet 12A, respectively.
  • the on-off valve, the membrane module, and the raw water inlet to which the second supply channel 21B is connected are referred to as a second on-off valve 40B, the second membrane module 10B, and the raw water inlet 12B, respectively.
  • the upstream channel 211A is from the branch point 21 to the first on-off valve 40A
  • the downstream channel 212A is from the first on-off valve 40A to the raw water inlet 12A.
  • the section from the branch point 21 to the second on-off valve 40B is the upstream flow path 211B
  • the section from the second on-off valve 40B to the raw water inlet 12B is the downstream flow path 212B.
  • the valve 22 is not particularly limited as long as the water pressure of the raw water can be adjusted, and a valve normally used in a water purifier such as a pressure reducing valve can be used.
  • the on-off valve 40 may be two two-way valves, but a three-way valve is preferable.
  • the on-off valve 40 is controlled to open and close based on a control command from a control unit (not shown), and switches between supply and stop of raw water to the membrane module 10.
  • the on-off valve 40 can be manually opened and closed to switch between supply and stop of raw water.
  • the permeated water transfer line 30 is branched at a branch point 31 into a first transfer channel 31A and a second transfer channel 31B.
  • the first transfer channel 31A and the second transfer channel 31B are connected to the permeate outlets 13 and 13 of the first membrane module 10A and the second membrane module 10B, respectively.
  • the backwash water discharge line 50 branches at a branch point 51 into a first discharge channel 51A and a second discharge channel 51B.
  • the first discharge channel 51A is connected to the downstream channel 212A via the first on-off valve 40A.
  • the second discharge channel 51B is connected to the downstream channel 212B via the second on-off valve 40B.
  • the air supply / exhaust line 60 branches off at a branch point 61 into a first supply / exhaust flow path 61A and a second supply / exhaust flow path 61B.
  • the first air supply / exhaust flow path 61A and the second air supply / exhaust flow path 61B are connected to the air supply / exhaust ports 14 and 14 of the first membrane module 10A and the second membrane module 10B, respectively.
  • the air supply / exhaust ports 14 and 14 are preferably provided in the vicinity of the permeate outlets 13 and 13.
  • the air supply / exhaust line 60 includes a valve 62 that controls supply / exhaust of air upstream from the branch point 61.
  • the valve 62 is not particularly limited as long as air supply / exhaust can be controlled, and a valve normally used in a water purifier such as an electromagnetic valve or an air vent can be used.
  • the valve 71 is not particularly limited as long as the flow direction of the raw water can be controlled, and a valve normally used in a water purifier such as a water stop valve can be used.
  • the water purifier used for this invention is not limited to what is shown in FIG. 1, For example, the number of membranes according to the required amount of water You may use the water purifier with which the module was provided in parallel.
  • the operation method of the water purifier of the present invention will be described according to the operation using the water purifier 1 shown in FIG.
  • the filtration step, the first backwashing step, and the second backwashing step are repeatedly performed.
  • the valve 22 is opened and the valve 62 is closed. Further, the valve 71 selects the raw water supply line 20, and the first on-off valve 40A selects the first supply channel 21A (that is, the upstream channel 211A and the downstream channel 212A communicate with each other). In addition, the second on-off valve 40B is opened so as to select the second supply channel 21B (that is, the upstream channel 211B and the downstream channel 212B communicate with each other).
  • raw water is supplied from the raw water supply line 20 to the first membrane module 10A and the second membrane module 10B via the first supply channel 21A and the second supply channel 21B. And filter the raw water.
  • the water pressure in the raw water supply line 20 is adjusted by the valve 22.
  • the water pressure is preferably about 0.1 to 0.3 MPa.
  • the raw water flows from the raw water inlet 12 of each membrane module, permeates through the filtration membrane 11 of the membrane module, becomes permeate, and is discharged from the permeate outlet 13.
  • the permeated water discharged from the first membrane module 10A passes through the first transfer channel 31A, while the permeated water discharged from the second membrane module 10B passes through the second transfer channel 31B and reaches the branch point.
  • the water is fed from the permeate transfer line 30 to a pipe (not shown) connected to each water tap.
  • natural water and permeated water is shown by the arrow.
  • each membrane module is back-washed as follows.
  • the flow of raw water or the like during backwashing is shown by arrows in FIGS.
  • the valve 22 is opened and the valve 62 is closed. Further, the valve 71 selects the raw water supply line 20, and the first on-off valve 40A selects the first supply channel 21A (that is, the upstream channel 211A and the downstream channel 212A communicate with each other). ) Each open. Then, the second on-off valve 40B switches so as to select the downstream flow path 212B and the second discharge flow path 51B (that is, the downstream flow path 212B and the second discharge flow path 51B communicate with each other).
  • the second on-off valve 40B is switched as described above, and the raw water is supplied from the raw water supply line 20 through the first supply passage 21A as shown in FIG. Supply only to 10A, and stop supply of raw water to the second membrane module 10B.
  • the water pressure in the raw water supply line 20 is adjusted by the valve 22.
  • the water pressure is preferably about 0.1 to 0.3 MPa.
  • the raw water flows from the raw water inlet 12A of the first membrane module 10A, passes through the filtration membrane 11 (11A) of the first membrane module 10A, becomes permeated water, and is discharged from the permeated water outlet 13 (13A). . All of the discharged permeated water is sent to the second membrane module 10B via the first transfer channel 31A and the second transfer channel 31B.
  • a valve (not shown) is installed in the permeated water transfer line 30 and the valve is closed.
  • the permeated water sent to the second membrane module 10B flows in from the permeated water outlet 13B of the second membrane module 10B and passes through the second membrane module 10B. At this time, dirt or the like accumulated in the filtration membrane 11 (11B) of the second membrane module 10B is washed away by the permeated water, and the second membrane module 10B is backwashed.
  • the permeated water containing dirt becomes backwash water and is discharged from the raw water inlet 12B.
  • the backwash water passes through the downstream flow path 212B and the second discharge flow path 51B, and is discharged from the backwash water discharge line 50 to the outside of the system.
  • the backwashing time in the first backwashing step is preferably 30 to 90 seconds. If the backwash time is 30 seconds or longer, the second membrane module 10B can be sufficiently backwashed. On the other hand, if the backwash time is 90 seconds or less, the supply stop time to the water supply building can be shortened, and the amount of water used for washing can be reduced.
  • the backwash time can be set by a rotary switch (not shown).
  • the second backwashing step is subsequently performed.
  • the valve 22 is opened and the valve 62 is closed. Further, the valve 71 is opened to select the raw water supply line 20.
  • the first on-off valve 40A selects the downstream flow path 212A and the first discharge flow path 51A (that is, the downstream flow path 212A and the first discharge flow path 51A communicate with each other).
  • the on / off valve 40B is switched so as to select the second supply flow path 21B (that is, the upstream flow path 211B and the downstream flow path 212B communicate with each other).
  • the first on-off valve 40A and the second on-off valve 40B are switched as described above, and the raw water is supplied from the raw water supply line 20 to the second supply passage 21B as shown in FIG. Then, only the second membrane module 10B is supplied, and the supply of raw water to the first membrane module 10A is stopped. At this time, the water pressure in the raw water supply line 20 is adjusted by the valve 22.
  • the water pressure is preferably about 0.1 to 0.3 MPa.
  • the raw water flows in from the raw water inlet 12B of the second membrane module 10B, passes through the filtration membrane 11B of the second membrane module 10B, becomes permeated water, and is discharged from the permeated water outlet 13 (13B). All of the discharged permeated water is sent to the first membrane module 10A via the second transfer channel 31B and the first transfer channel 31A. In order to send all of the permeated water to the first membrane module 10A, it may be performed in the same manner as in the first back washing step.
  • the permeate sent to the first membrane module 10A flows from the permeate outlet 13A of the first membrane module 10A and passes through the first membrane module 10A. At this time, dirt accumulated in the filtration membrane 11A of the first membrane module 10A is washed away by the permeated water, and the first membrane module 10A is backwashed.
  • the permeated water containing dirt becomes backwash water and is discharged from the raw water inlet 12A.
  • the backwash water passes through the downstream flow path 212A and the first discharge flow path 51A and is discharged from the backwash water discharge line 50 to the outside of the system.
  • the backwashing time in the second backwashing step is preferably 30 to 90 seconds. If the backwash time is 30 seconds or more, the first membrane module 10A can be sufficiently backwashed. On the other hand, if the backwash time is 90 seconds or less, the supply stop time to the water supply building can be shortened, and the amount of water used for washing can be reduced.
  • the backwash time can be set by a rotary switch (not shown).
  • the process may be directly transferred to the filtration process.
  • the first backwashing process and the second backwashing process are performed. It is preferable to repeat. The number of repetitions is preferably 2 to 10 sets, with the first backwashing step and the second backwashing step as one set.
  • the first backwashing step and the second backwashing step may be performed in the reverse order.
  • the operating method of the water purifier of this invention performs the raw
  • FIG. 4 shows the flow of raw water and the like during the raw water discharging step by arrows
  • FIG. 5 shows the flow of raw water and the like during the raw water filling step by arrows.
  • the valve 62 is opened.
  • the valve 22 may be open or closed.
  • the valve 71 may be opened so as to select the raw water supply line 20 or may be opened so as to select the bypass line 70.
  • the first on-off valve 40A selects only the downstream flow path 212A and the first discharge flow path 51A (that is, the downstream flow path 212A and the first discharge flow path 51A communicate with each other).
  • the second on-off valve 40B is switched so that only the downstream flow path 212B and the second discharge flow path 51B are selected (that is, the downstream flow path 212B and the second discharge flow path 51B communicate with each other).
  • the first on-off valve 40A and the second on-off valve 40B are switched as described above, and the supply of raw water to each membrane module is stopped as shown in FIG. Then, air is taken in from the air supply / exhaust line 60, and air is taken into the first membrane module 10A and the second membrane module 10B via the first supply / exhaust channel 61A and the second supply / exhaust channel 61B.
  • the raw water staying in the membrane module is discharged from the raw water inlet 12.
  • the raw water discharged from the first membrane module 10A passes through the downstream flow channel 212A and the first discharge flow channel 51A, while the raw water discharged from the second membrane module 10B flows into the downstream flow channel 212B and the second discharge channel. It passes through the flow path 51B, merges at the branch point 51, and is discharged out of the system from the backwash water discharge line 50.
  • the discharge time in the raw water draining process is preferably 15 to 60 seconds. If the drainage time is within the above range, the raw water can be sufficiently discharged from each membrane module.
  • the drainage time can be set by a rotary switch (not shown).
  • the raw water filling process is subsequently performed.
  • the valves 22 and 62 are opened.
  • the valve 71 is opened to select the raw water supply line 20.
  • the first on-off valve 40A selects the first supply passage 21A (that is, the upstream passage 211A and the downstream passage 212A communicate), and the second on-off valve 40B Switching is performed so that the supply flow path 21B is selected (that is, the upstream flow path 211B and the downstream flow path 212B communicate with each other).
  • the first on-off valve 40A and the second on-off valve 40B are switched, and as shown in FIG.
  • Raw water is supplied (filled) to the first membrane module 10A and the second membrane module 10B via the supply flow path 21B.
  • the water pressure in the raw water supply line 20 is adjusted by the valve 22.
  • the water pressure is preferably about 0.1 to 0.3 MPa.
  • Raw water flows in from the raw water inlet 12 of each membrane module, fills each module with the raw water, and simultaneously discharges air in each module from the air supply / exhaust port 14.
  • Air exhausted from the first membrane module 10A passes through the first air supply / exhaust flow path 61A, while air exhausted from the second membrane module 10B passes through the second air supply / exhaust flow path 61B to branch off.
  • they are discharged from the air supply / exhaust line 60 to the outside of the system, and each module can be filled with raw water.
  • a valve (not shown) in the permeate transfer line 30 and closing the valve, the raw water passes through the filtration membrane 11 of each membrane module, and the permeate is discharged from the permeate outlet 13. Can be suppressed.
  • the discharge time in the raw water filling step is preferably 5 to 20 seconds. If the filling time is within the above range, each membrane module can be sufficiently filled with raw water.
  • the filling time can be set by a rotary switch (not shown).
  • a first backwash process and a second backwash process are performed. That is, it is preferable to repeat in order of the filtration step, the raw water discharging step, the raw water filling step, the first backwashing step, the raw water discharging step, the raw water filling step, and the second backwashing step.
  • a raw water discharge process and a raw water is preferably performed before each backwashing step.
  • the means for controlling switching from filtration to backwashing is not particularly limited, and may be switched manually, or an automatic control means is provided in the water purification apparatus, and automatic control is performed. You may switch.
  • the automatic control for example, the first backwashing process and the second backwashing process can be performed when the water purifier is activated or at midnight.
  • the valve 71 switches to the bypass line 70,
  • the raw water can be transferred to the permeate transfer line without going through the membrane module, and can be supplied to the pipe connected to each water tap.
  • it is set to switch from the raw water supply line 20 to the bypass line 70 at the time of a power failure or the like, normal water supply can be performed by automatic control.
  • a membrane module employing a so-called out-in system in which raw water permeates from the outside to the inside of the filtration membrane 11 and is filtered is used.
  • a membrane module employing a so-called in-out system in which raw water permeates from the inside to the outside of the filtration membrane and is filtered may be used.
  • the filtration is performed in all the membrane modules, so that the filtration capacity is high. Therefore, since a sufficient amount of permeated water can be supplied (water supply), the water purifier can be made compact. Furthermore, when the membrane module is backwashed, all of the permeated water obtained by the membrane module that is not backwashed is used for backwashing, that is, the permeated water supply by filtration and backwashing are not performed at the same time. An amount of permeated water can be stably supplied.
  • the water purifier of the present invention and the operation method thereof are useful when treating tap water having high turbidity, that is, tap water having a clogging degree in the range of 20 to 70, which is an index representing turbidity of tap water. It is. Among them, particularly remarkable effects are shown when processing tap water having higher turbidity, that is, tap water having a clogging degree in the range of 40 to 70.
  • the degree of clogging is obtained by the following method.
  • Clogging degree 100- (filtration flow rate after 10 minutes / initial filtration flow rate) ⁇ 100 (Filtration conditions) Pressurized pressure: 100 KPa Membrane area: 5.0 m 2 Flow rate: 5 mL / min
  • the present invention is particularly remarkable when treating tap water in which the content of organic components in the clogging material filtered on the surface of the hollow fiber membrane is in the range of 60% to 90%. Show the effect.
  • content of the said organic component is the value analyzed by 700 degreeC and the ashing method for 2 hours.
  • Example 1 The tap water was filtered using the water purifier shown in FIG.
  • a hollow fiber membrane (“MPOE050” manufactured by Mitsubishi Rayon Co., Ltd., filtration area: 5.0 m 2 , filtration accuracy as a filtration membrane) : 0.1 ⁇ m, film thickness: 55 ⁇ m, outer diameter: 380 ⁇ m).
  • a pressure reducing valve (size: 20A) was used, and the maximum value of the working pressure was set to 0.8 MPa, and the secondary pressure was set to 0.15 MPa.
  • an electric three-way valve (size: 20A, operating voltage: DC 24V) was used.
  • an electromagnetic valve (size: 8A, operating voltage: DC24V) was used.
  • a water stop valve (size: 20A) was used.
  • Each valve was switched by automatic control, and the conditions of each process were set as shown below.
  • the supply amount of the raw water (tap water) was set to 18 L / min, and the valve 22 was adjusted so that the water pressure of the raw water in the raw water supply line 20 was 0.15 MPa.
  • the backwashing time of the first backwashing process and the second backwashing process was set to 45 seconds, the discharging time of the raw water discharging process was set to 30 seconds, and the filling time of the raw water filling process was set to 10 seconds.
  • the raw water discharging step, the raw water filling step, the first back washing step, the raw water discharging step, the raw water filling step, and the second back washing step are repeated twice in this order, and then the filtration step It was moved to.
  • the cleaning time set by the timer by automatic control was reached, switching from filtration to backwashing was performed (that is, opening and closing of each valve was switched by automatic control).
  • Example 2 A water purification apparatus similar to that in Example 1 was installed, and the operation was performed in the same manner as in Example 1 except that the raw water discharging process and the raw water filling process were not performed. The tap water was filtered. As a result, a sufficient and constant amount of permeated water could be stably supplied (water supply). In addition, as a result of measuring the flow rate retention at the beginning and the end of the operation, it was 33%.
  • the present invention it is possible to provide a water purifier and a method for operating the water purifier that are compact, have a high filtration capacity, and can stably supply a certain amount of permeated water.

Abstract

本発明の浄水装置は、原水供給ラインと、原水を濾過する並列に設けられた複数の膜モジュールと、原水供給ラインから分岐して各膜モジュールの原水入口に接続される複数本の供給流路と、前記各供給流路に設けられた開閉弁と、前記開閉弁に接続される逆洗水排出ラインと、透過水移送ラインと、前記透過水移送ラインから分岐して各膜モジュールの透過水出口に接続される複数本の移送流路と、を有することを特徴とする。 本発明によれば、コンパクトで濾過の処理能力が高く、かつ一定量の透過水を安定して供給できる浄水装置及びその運転方法を提供することができる。

Description

浄水装置及びその運転方法
 本発明は、膜モジュールを備えた浄水装置及びその運転方法に関する。
本願は、2009年11月20日に、日本に出願された特願2009-265363号に基づき優先権を主張し、その内容をここに援用する。
 従来、水道水などの原水に含まれる汚濁物質や菌類を除去する方法として、膜モジュールを用いた浄水方法が知られており、膜モジュールを備えた浄水装置が家庭などで広く用いられている。
 しかし、膜モジュールを備えた浄水装置は、原水中の汚濁物質などの固形物が濾過膜の表面に付着することによる目詰まりが起こりやすく、使用するに連れて濾過性能が低下しやすかった。
 濾過性能の回復には濾過膜を使い捨てとし、必要に応じて交換すれば解決できるが、交換に手間がかかるという問題があった。また、環境問題や省資源の面で使い捨ては必ずしも好ましいものではない。
 そこで、膜モジュールを洗浄することで濾過性能を回復する方法が提案されている。例えば特許文献1には、並列に設けられた2つの濾過ユニット(膜モジュール)と、濾過ユニットのいずれか一方に原水を供給する切替可能な三方弁を備え、濾過された水(透過水)を被吸水建築物へ供給する濾過装置が開示されている。前記濾過装置によれば、まず一方の濾過ユニットAに原水を供給して濾過を行い、得られた透過水を被給水建築物に供給する。そして、前記濾過ユニットAに備わる濾過フィルタAが汚れ等で目詰まると、濾過ユニットAへの原水の供給を停止し、他の濾過ユニットBへ原水が供給されるように三方弁で切り替える。ついで、濾過ユニットBにて濾過を行い、得られた透過水の大部分を被給水建築物に供給すると共に、透過水の一部を濾過ユニットAに送り、透過水を逆流させて濾過フィルタAを洗浄(逆洗)する。そして、濾過ユニットBの濾過フィルタBが目詰まると、今度は三方弁により原水の供給を濾過ユニットBから濾過ユニットAに切り替える。
 ついで、濾過ユニットAにて濾過を行い、得られた透過水の大部分を被給水建築物に供給すると共に、透過水の一部を濾過ユニットBに送り濾過フィルタBを逆洗する。
 このように、特許文献1に記載の濾過装置によれば、目詰まりした濾過フィルタを再使用でき、長期間に亘ってフィルタを交換することなく使用を継続できる。
特開平11-137976号公報
 しかしながら、特許文献1に記載の濾過装置は、濾過を2つの濾過ユニットで交互に行うので濾過の処理能力が低く、供給できる透過水の量が少なかった。また、一方の濾過ユニットで濾過を行うと同時に、得られた透過水の一部を用いて他方の濾過ユニットの逆洗を行うので、供給できる透過水の量がさらに低減されやすかった。十分な量の透過水を確保するためには、濾過フィルタを大きくしたり、濾過フィルタを複数備えたりした濾過ユニットを設置すればよいが、コンパクトに構成することが困難となる。
 また、逆洗の進み具合によって逆洗に用いられる透過水の量が変わるため、濾過と逆洗を同時に行うと供給できる透過水の量も変わりやすく、一定量の透過水を安定して供給することは必ずしも容易ではなかった。
 本発明は上記事情に鑑みてなされたもので、コンパクトで濾過の処理能力が高く、かつ一定量の透過水を安定して供給できる浄水装置及びその運転方法を提供することを目的とする。
本発明の浄水装置は、原水供給ラインと、原水を濾過する並列に設けられた複数の膜モジュールと、原水供給ラインから分岐して各膜モジュールの原水入口に接続される複数本の供給流路と、前記各供給流路に設けられた開閉弁と、前記開閉弁に接続される逆洗水排出ラインと、透過水移送ラインと、前記透過水移送ラインから分岐して各膜モジュールの透過水出口に接続される複数本の移送流路と、を有することを特徴とする。
 本発明の浄水装置の運転方法は、原水を濾過する並列に設けられた複数の膜モジュールと、前記膜モジュールへの原水の供給および停止を切り替える複数の開閉弁とを備えた浄水装置を運転する方法において、前記膜モジュールの全てに原水を供給するように開閉弁を切り替え、原水を濾過する濾過工程と、前記膜モジュールのうち、一部の膜モジュール(A)へ原水を供給し、残りの膜モジュール(B)への原水の供給を停止するように開閉弁を切り替え、膜モジュール(A)を透過した透過水の全てを膜モジュール(B)に送り、前記膜モジュール(B)を逆洗する第一の逆洗工程と、膜モジュール(A)への原水の供給を停止し、膜モジュール(B)へ原水を供給するように開閉弁を切り替え、膜モジュール(B)を透過した透過水の全てを膜モジュール(A)に送り、前記膜モジュール(A)を逆洗する第二の逆洗工程と、を繰り返すことを特徴とする。
 また、前記第一の逆洗工程および第二の逆洗工程の直前に、前記膜モジュールの全てへの原水の供給を停止するように開閉弁を切り替え、膜モジュール内に空気を取り込んで原水を排出する原水排出工程と、膜モジュールの全てに原水を供給するように開閉弁を切り替え、膜モジュールの全てに原水を供給し充填する原水充填工程とを行うことが好ましい。
 本発明によれば、コンパクトで濾過の処理能力が高く、かつ一定量の透過水を安定して供給できる浄水装置及びその運転方法を提供できる。
本発明に用いる浄水装置の一例を示す概略構成図である。 第一の逆洗工程時の原水等の流れを示す図である。 第二の逆洗工程時の原水等の流れを示す図である。 原水排出工程時の原水等の流れを示す図である。 原水充填工程時の原水等の流れを示す図である。
 以下、本発明について詳細に説明する。
[浄水装置]
 図1は、本発明に用いる浄水装置の一例を示す概略構成図である。この浄水装置1は、水道などから供給される原水を濾過する、並列に設けられた2つの膜モジュール10、10と、前記膜モジュール10、10に原水を供給する原水供給ライン20と、膜モジュール10、10を透過した透過水を移送する透過水移送ライン30と、原水供給ライン20の途中に設けられた、膜モジュール10、10への原水の供給および停止を切り替える開閉弁40、40と、膜モジュール10、10の逆洗に用いた逆洗水を排出する逆洗水排出ライン50と、膜モジュール10、10に空気を給排気する空気給排気ライン60と、膜モジュール10、10を経由せずに原水を透過水移送ライン30へ移送できるバイパスライン70とを具備して概略構成されている。
 膜モジュール10は、濾過膜11を備える。
 濾過膜11としては、精密濾過膜、限外濾過膜、ナノ濾過膜など、浄水装置で通常使用される濾過膜を使用できる。中でも精密濾過膜が好ましい。
 濾過膜11の形状としては、中空糸膜、平膜、チューブラー膜、スパイラル膜などが挙げられる。これらは0.1μm以上の固形物および菌類の通過を容易に阻止できるので濾過膜として好適であるが、中でも中空糸膜が好ましく、例えばセルロース系、ポリオレフィン系、ポリビニルアルコール系、PMMA(ポリメタクリル酸メチル)系、ポリスルフォン系など、各種材科からなる中空糸膜を使用するのが好ましい。特に、ポリエチレン等の強伸度の高い材質からなる中空糸膜を使用することが好ましい。
 また、濾過膜11として中空糸膜を用いる場合、その孔径(濾過精度)、濾過面積、膜厚、外径等は特に限定されるものではないが、例えばその孔径は0.01~2μm、濾過面積は0.2~10m、膜厚は5~300μm、外径は20~2000μm、空孔率は20~90%とされる。
 原水供給ライン20は、第一の供給流路21Aと第二の供給流路21Bとに分岐点21で分岐している。そして、第一の供給流路21Aと第二の供給流路21Bは、開閉弁40、40を経て膜モジュール10、10の原水入口12、12にそれぞれ接続している。また、原水供給ライン20は、分岐点21よりも上流側に原水の水圧を調節する弁22を備える。
 ここで、第一の供給流路21Aが接続する開閉弁、および膜モジュールとその原水入口をそれぞれ第一の開閉弁40A、および第一の膜モジュール10Aとその原水入口12Aとする。
 一方、第二の供給流路21Bが接続する開閉弁、および膜モジュールとその原水入口をそれぞれ第二の開閉弁40B、および第二の膜モジュール10Bとその原水入口12Bとする。
 また、第一の供給流路21Aのうち、分岐点21から第一の開閉弁40Aまでを上流流路211Aとし、第一の開閉弁40Aから原水入口12Aまでを下流流路212Aとする。
 一方、第二の供給流路21Bのうち、分岐点21から第二の開閉弁40Bまでを上流流路211Bとし、第二の開閉弁40Bから原水入口12Bまでを下流流路212Bとする。
 弁22としては、原水の水圧を調節できるものであれば特に限定されるものではなく、減圧弁など、浄水装置で通常使用される弁を使用できる。
 開閉弁40としては、2方弁2個でもよいが、三方弁が好ましい。開閉弁40は制御部(図示略)からの制御指令に基づいて開閉が制御され、膜モジュール10への原水の供給および停止を切り替える。なお、開閉弁40は手動で開閉して、原水の供給および停止を切り替えることもできる。
 透過水移送ライン30は、第一の移送流路31Aと第二の移送流路31Bとに分岐点31で分岐している。そして、第一の移送流路31Aと第二の移送流路31Bは、第一の膜モジュール10Aと第二の膜モジュール10Bの透過水出口13、13にそれぞれ接続している。
 逆洗水排出ライン50は、第一の排出流路51Aと第二の排出流路51Bとに分岐点51で分岐している。そして、第一の排出流路51Aは、第一の開閉弁40Aを介して下流流路212Aに接続している。一方、第二の排出流路51Bは、第二の開閉弁40Bを介して下流流路212Bに接続している。
 空気給排気ライン60は、第一の給排気流路61Aと第二の給排気流路61Bとに分岐点61で分岐している。そして、第一の給排気流路61Aと第二の給排気流路61Bは、第一の膜モジュール10Aと第二の膜モジュール10Bの空気給排気口14、14にそれぞれ接続している。前記空気給排気口14、14は、透過水出口13、13の近傍に設けられるのが好ましい。また、空気給排気ライン60は、分岐点61よりも上流側に空気の給排気を制御する弁62を備える。
 弁62としては、空気の給排気を制御できるものであれば特に限定されるものではなく、電磁弁、エアーベントなど、浄水装置で通常使用される弁を使用できる。
 バイパスライン70は、一端が弁71を介して原水供給ライン20に接続され、他端が分岐点31よりも下流側で透過水移送ライン30に合流している。
 弁71としては、原水の流れ方向を制御できるものであれば特に限定されるものではなく、止水弁など、浄水装置で通常使用される弁を使用できる。
 なお、図1に示す浄水装置1では2つの膜モジュールが並列に設けられているが、本発明に用いる浄水装置は図1に示すものに限定されず、例えば必要な水量に応じた数の膜モジュールが並列に設けられた浄水装置を用いてもよい。
[運転方法]
 以下、本発明の浄水装置の運転方法を、図1に示す浄水装置1を用いて操作に従って説明する。
 本発明の洗浄装置の運転方法では、濾過工程と第一の逆洗工程と第二の逆洗工程とを繰り返し行う。
 濾過工程では、弁22を開、弁62を閉とする。また、弁71は原水供給ライン20を選択するように、第一の開閉弁40Aは第一の供給流路21Aを選択するように(すなわち、上流流路211Aと下流流路212Aが連通するように)、第二の開閉弁40Bは第二の供給流路21Bを選択するように(すなわち、上流流路211Bと下流流路212Bが連通するように)、それぞれ開かれている。
 濾過工程は、原水供給ライン20から第一の供給流路21Aおよび第二の供給流路21Bを経て、第一の膜モジュール10Aおよび第二の膜モジュール10Bに原水を供給し、各膜モジュールにて原水を濾過する。このとき、原水供給ライン20内の原水の水圧は、弁22により調節される。水圧は0.1~0.3MPa程度が好ましい。
 原水は各膜モジュールの原水入口12から流入し、膜モジュールの濾過膜11を透過して、透過水となって透過水出口13から排出される。第一の膜モジュール10Aから排出される透過水は第一の移送流路31Aを通り、一方、第二の膜モジュール10Bから排出される透過水は第二の移送流路31Bを通り、分岐点31にて合流し透過水移送ライン30から各給水栓につながる配管(図示略)へと給水される。
 なお、図1において、原水および透過水の流れを矢印で示す。
 ついで、所定時間濾過工程を行った後、または所定量の原水を濾過した後、以下のようにして各膜モジュールを逆洗する。
 ここで、図2、3に逆洗時の原水等の流れを矢印で示す。
 第一の逆洗工程では、弁22を開、弁62を閉とする。また、弁71は原水供給ライン20を選択するように、第一の開閉弁40Aは第一の供給流路21Aを選択するように(すなわち、上流流路211Aと下流流路212Aが連通するように)、それぞれ開かれている。そして、第二の開閉弁40Bは下流流路212Bと第二の排出流路51Bを選択するように(すなわち、下流流路212Bと第二の排出流路51Bが連通するように)切り替える。
 第一の逆洗工程では、上述したように第二の開閉弁40Bを切り替えて、図2に示すように原水を原水供給ライン20から第一の供給流路21Aを経て、第一の膜モジュール10Aのみに供給し、第二の膜モジュール10Bへの原水の供給を停止する。このとき、原水供給ライン20内の原水の水圧は、弁22により調節される。水圧は0.1~0.3MPa程度が好ましい。
 原水は第一の膜モジュール10Aの原水入口12Aから流入し、第一の膜モジュール10Aの濾過膜11(11A)を透過して、透過水となって透過水出口13(13A)から排出される。排出された透過水は、その全てが第一の移送流路31Aおよび第二の移送流路31Bを経て、第二の膜モジュール10Bに送られる。
 透過水の全てを第二の膜モジュール10Bに送るには、例えば透過水移送ライン30に弁(図示略)を設置し、前記弁を閉じることで実施できる。
 第二の膜モジュール10Bに送られた透過水は、第二の膜モジュール10Bの透過水出口13Bから流入し、第二の膜モジュール10B内を通過する。この際、第二の膜モジュール10Bの濾過膜11(11B)に蓄積した汚れ等が透過水によって洗い流され、第二の膜モジュール10Bが逆洗される。
 汚れを含んだ透過水は、逆洗水となって原水入口12Bから排出される。逆洗水は下流流路212Bおよび第二の排出流路51Bを通り、逆洗水排出ライン50から系外に排出される。
 第一の逆洗工程における逆洗時間は30~90秒が好ましい。逆洗時間が30秒以上であれば、第二の膜モジュール10Bを十分に逆洗できる。一方、逆洗時間が90秒以下であれば、被給水建築物への供給停止時間が短縮できると共に、洗浄時の水の使用量を低減できる。
 逆洗時間はロータリースイッチ(図示略)等により設定できる。
 上述した第一の逆洗工程が終了した後、続けて第二の逆洗工程を行う。
 第二の逆洗工程では、弁22を開、弁62を閉とする。また、弁71は原水供給ライン20を選択するように開かれている。そして、第一の開閉弁40Aは下流流路212Aと第一の排出流路51Aを選択するように(すなわち、下流流路212Aと第一の排出流路51Aが連通するように)、第二の開閉弁40Bは第二の供給流路21Bを選択するように(すなわち、上流流路211Bと下流流路212Bが連通するように)、それぞれ切り替える。
 第二の逆洗工程では、上述したように第一の開閉弁40Aおよび第二の開閉弁40Bを切り替えて、図3に示すように原水を原水供給ライン20から第二の供給流路21Bを経て、第二の膜モジュール10Bのみに供給し、第一の膜モジュール10Aへの原水の供給を停止する。このとき、原水供給ライン20内の原水の水圧は、弁22により調節される。水圧は0.1~0.3MPa程度が好ましい。
 原水は第二の膜モジュール10Bの原水入口12Bから流入し、第二の膜モジュール10Bの濾過膜11Bを透過して、透過水となって透過水出口13(13B)から排出される。排出された透過水は、その全てが第二の移送流路31Bおよび第一の移送流路31Aを経て、第一の膜モジュール10Aに送られる。
 透過水の全てを第一の膜モジュール10Aに送るには、第一の逆洗工程と同様にすればよい。
 第一の膜モジュール10Aに送られた透過水は、第一の膜モジュール10Aの透過水出口13Aから流入し、第一の膜モジュール10A内を通過する。この際、第一の膜モジュール10Aの濾過膜11Aに蓄積した汚れ等が透過水によって洗い流され、第一の膜モジュール10Aが逆洗される。
 汚れを含んだ透過水は、逆洗水となって原水入口12Aから排出される。逆洗水は、下流流路212Aおよび第一の排出流路51Aを通り、逆洗水排出ライン50から系外に排出される。
 第二の逆洗工程における逆洗時間は30~90秒が好ましい。逆洗時間が30秒以上であれば、第一の膜モジュール10Aを十分に逆洗できる。一方、逆洗時間が90秒以下であれば、被給水建築物への供給停止時間が短縮できると共に、洗浄時の水の使用量を低減できる。
 逆洗時間はロータリースイッチ(図示略)等により設定できる。
 第二の逆洗工程が終了した後は、そのまま濾過工程に移ってもよいが、各膜モジュールをより効果的に逆洗するには、第一の逆洗工程と第二の逆洗工程を繰り返すことが好ましい。
 繰り返し回数は、第一の逆洗工程と第二の逆洗工程を1セットとし、2~10セット繰り返すのが好ましい。
 なお、第一の逆洗工程と第二の逆洗工程は、順序を逆にして行ってもよい。
 また、本発明の浄水装置の運転方法は、第一の逆洗工程および第二の逆洗工程の直前に、以下に示す原水排出工程と原水充填工程とを行うのが好ましい。
 ここで、図4に原水排出工程時の原水等の流れを矢印で示し、図5に原水充填工程時の原水等の流れを矢印で示す。
 原水排出工程では、弁62を開とする。弁22は開でも閉でもよい。また、弁71は原水供給ライン20を選択するように開かれていてもよいし、バイパスライン70を選択するように開かれていてもよい。そして、第一の開閉弁40Aは下流流路212Aと第一の排出流路51Aのみを選択するように(すなわち、下流流路212Aと第一の排出流路51Aが連通するように)、第二の開閉弁40Bは下流流路212Bと第二の排出流路51Bのみを選択するように(すなわち、下流流路212Bと第二の排出流路51Bが連通するように)、それぞれ切り替える。
 原水排出工程では、上述したように第一の開閉弁40Aおよび第二の開閉弁40Bを切り替えて、図4に示すように各膜モジュールへの原水の供給を停止する。
 そして、空気給排気ライン60から空気を取り入れ、第一の給排気流路61Aおよび第二の給排気流路61Bを経て、第一の膜モジュール10Aおよび第二の膜モジュール10Bに空気を取り込む。
 各膜モジュール内に空気を取り込むことで、膜モジュール内に滞留している原水が原水入口12から排出される。第一の膜モジュール10Aから排出される原水は下流流路212Aおよび第一の排出流路51Aを通り、一方、第二の膜モジュール10Bから排出される原水は下流流路212Bおよび第二の排出流路51Bを通り、分岐点51にて合流し、逆洗水排出ライン50から系外に排出される。
 原水排水工程における排出時間は15~60秒が好ましい。排水時間が上記範囲内であれば、各膜モジュールから原水を十分に排出できる。
 排水時間はロータリースイッチ(図示略)等により設定できる。
 上述した原水排出工程が終了した後、続けて原水充填工程を行う。
 原水充填工程では、弁22、弁62を開とする。また、弁71は原水供給ライン20を選択するように開かれている。そして、第一の開閉弁40Aは第一の供給流路21Aを選択するように(すなわち、上流流路211Aと下流流路212Aが連通するように)、第二の開閉弁40Bは第二の供給流路21Bを選択するように(すなわち、上流流路211Bと下流流路212Bが連通するように)、それぞれ切り替える。
 原水充填工程では、上述したように第一の開閉弁40Aと第二の開閉弁40Bとを切り替えて、図5に示すように、原水供給ライン20から第一の供給流路21Aおよび第二の供給流路21Bを経て、第一の膜モジュール10Aおよび第二の膜モジュール10Bに原水を供給(充填)する。このとき、原水供給ライン20内の原水の水圧は、弁22により調節される。水圧は0.1~0.3MPa程度が好ましい。
 原水は、各膜モジュールの原水入口12から流入し、各モジュール内に原水を充填すると同時に、空気給排気口14から各モジュール内の空気が排出される。第一の膜モジュール10Aから排出される空気は第一の給排気流路61Aを通り、一方、第二の膜モジュール10Bから排出される空気は第二の給排気流路61Bを通り、分岐点61にて合流し、空気給排気ライン60から系外へ排出され、各モジュール内に原水を充填することができる。この際、例えば透過水移送ライン30に弁(図示略)を設置し、前記弁を閉じることで、原水が各膜モジュールの濾過膜11を透過し、透過水出口13から透過水が排出されるのを抑制できる。
 原水充填工程における排出時間は5~20秒が好ましい。充填時間が上記範囲内であれば、各膜モジュールに原水を十分に充填できる。
 充填時間はロータリースイッチ(図示略)等により設定できる。
 原水充填工程が終了した後に、第一の逆洗工程および第二の逆洗工程を行う。すなわち、濾過工程、原水排出工程、原水充填工程、第一の逆洗工程、原水排出工程、原水充填工程、第二の逆洗工程の順で繰り返すのが好ましい。
 なお、上述したように第二の逆洗工程から濾過工程に移行する前に、第一の逆洗工程および第二の逆洗工程を繰り返す場合は、その繰り返し回数に応じて原水排出工程および原水充填工程を各逆洗工程の前に行うのが好ましい。
 このように第一の逆洗工程および第二の逆洗工程の直前に原水排出工程を行うことで、膜モジュールの底に溜まったゴミ等を取除くことができる。さらに、原水充填工程を行うことで、膜モジュールの濾過膜に均一に圧がかかるようになる。この状態で逆洗を行うと、濾過膜に蓄積した汚れ等をより効果的に洗い流すことができる。
 本発明の浄水装置の運転方法においては、濾過から逆洗への切り替えを制御する手段は特に制限されず、手動にて切り替えてもよいし、浄水装置に自動制御手段を設け、自動制御にて切り替えてもよい。自動制御により、例えば浄水装置の起動時や深夜定刻時に第一の逆洗工程および第二の逆洗工程を行うことができる。
 また、図1に示すように浄水装置にバイパスライン70を設けておき、原水給水ライン20からバイパスライン70に切り替えられるようにすれば、濾過が必要でないときには弁71によりバイパスライン70に切り替えて、膜モジュールを経由せずに原水を透過水移送ラインへ移送し、各給水栓につながる配管へと給水することができる。さらに、停電時等に原水給水ライン20からバイパスライン70に切り替えるように設定しておけば、自動制御にて通常の給水も可能となる。
 なお、図1に示す浄水装置1においては、原水が濾過膜11の外側から内側に透過して濾過される、いわゆるアウト-イン方式を採用した膜モジュールを用いているが、本発明はこれに限定されず、例えば原水が濾過膜の内側から外側に透過して濾過される、いわゆるイン-アウト方式を採用した膜モジュールを用いてもよい。
 以上説明したように本発明によれば、原水を濾過する際は全ての膜モジュールにて濾過を行うので、濾過の処理能力が高い。従って、十分な量の透過水を供給(給水)できるので、浄水装置をコンパクトにできる。さらに、膜モジュールを逆洗する際は、逆洗しない膜モジュールにより得た透過水の全てを逆洗に用いるので、すなわち、濾過による透過水の供給と、逆洗とは同時に行わないので、一定量の透過水を安定して供給できる。
 本発明の浄水装置及びその運転方法は、濁度の高い水道水、すなわち、水道水の濁度を表す指標である目詰まり度が20から70の範囲内にある水道水を処理するときに有用である。なかでも、さらに濁度の高い水道水、すなわち、目詰まり度が40から70の範囲内にある水道水の処理を処理するときに特に顕著な効果を示す。ここで、目詰まり度は以下の方法により求める。
   目詰まり度 : 100-(10分後の濾過流量/初期濾過流量)×100
(濾過条件)
      加圧圧力 : 100KPa
     膜面積  : 5.0m
     流量   : 5mL/分
本発明は、中空糸膜の表面で濾過された目詰まり物質中の有機成分の含有量が、60%から90%の範囲内にある水道水を処理するときに特に顕著な効果を示す。なお、前記有機成分の含有量は、700℃、2時間の灰化法で分析した値である。
 以下、本発明を実施例により具体的に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 図1に示す浄水装置を用い、水道水の濾過を行った。
 第一の膜モジュール10Aおよび第二の膜モジュール10Bとしては、濾過膜として精密濾過膜の一種である中空糸膜(三菱レイヨン株式会社製、「MPOE050」、濾過面積:5.0m、濾過精度:0.1μm、膜厚:55μm、外径:380μm)を備える膜モジュールを用いた。
 弁22としては、減圧弁(サイズ:20A)を用い、使用圧力の最大値を0.8MPa、二次圧力を0.15MPaに設定した。
 第一の開閉弁40Aおよび第二の開閉弁40Bとしては、電動三方弁(サイズ:20A、作動電圧:DC24V)を用いた。
 弁62としては、電磁弁(サイズ:8A、作動電圧:DC24V)を用いた。
 弁71としては、止水弁(サイズ:20A)を用いた。
 また、透過水移送ライン30およびバイパスライン70には、逆止弁(図示略)およびバイパス弁(図示略)をそれぞれ設置した。
 各弁を自動制御により切り替え、各工程の条件を以下に示すように設定した。
 原水(水道水)の供給量を18L/分に設定し、原水供給ライン20内の原水の水圧が0.15MPaになるように、弁22にて調節した。
 第一の逆洗工程および第二の逆洗工程の逆洗時間をそれぞれ45秒に、原水排出工程の排出時間を30秒に、原水充填工程の充填時間を10秒に設定した。
 そして、浄水装置の運転を開始し、原水排出工程、原水充填工程、第一の逆洗工程、原水排出工程、原水充填工程、第二の逆洗工程の順で2回繰り返した後、濾過工程に移行させた。そして、自動制御によりタイマーにて設定した洗浄時間となった時点で、濾過から逆洗へ切り替えた(すなわち、各弁の開閉を自動制御により切り替えた)。そして、原水排出工程、原水充填工程、第一の逆洗工程、原水排出工程、原水充填工程、第二の逆洗工程の順で2回繰り返した後、濾過工程に移行させた。この操作を2ヶ月繰り返し行い、水道水を濾過した。
その結果、十分かつ一定量の透過水を安定して供給(給水)できた。尚、原水(水道水)の目詰まり度を測定した結果、40から60の範囲内であった。
さらに、前記運転終了後、中空糸膜表面の目詰まり物質を採取し、700℃、2時間の灰化法にて有機成分の分析を実施した結果、目詰まり物質の60%が有機成分であった。
 前期浄水装置を設置し、前記浄水装置の運転を実施した後、運転初期と終了時の流量保持率を測定した結果、92%であった。但し、流量保持率は次の式で定義される。
      流量保持率 : (終了時流量/初期流量)×100
[実施例2]
 実施例1と同様の浄水装置を設置し、運転工程中の原水排出工程及び原水充填工程を行わなかったこと以外は、実施例1と同様に運転を実施し、水道水を濾過した。その結果、十分かつ一定量の透過水を安定して供給(給水)できた。尚、運転初期と終了時の流量保持率を測定した結果、33%であった。
 本発明によれば、コンパクトで濾過の処理能力が高く、かつ一定量の透過水を安定して供給できる浄水装置及びその運転方法を提供できる。
 1:浄水装置、10:膜モジュール、20:原水供給ライン、30:透過水移送ライン、40:開閉弁、50:逆洗水排出ライン、60:空気給排気ライン、70:バイパスライン。

Claims (3)

  1.  原水供給ラインと、
     原水を濾過する並列に設けられた複数の膜モジュールと、
     原水供給ラインから分岐して各膜モジュールの原水入口に接続される複数本の供給流路と、
     前記各供給流路に設けられた開閉弁と、
     前記開閉弁に接続される逆洗水排出ラインと、
     透過水移送ラインと、
     前記透過水移送ラインから分岐して各膜モジュールの透過水出口に接続される複数本の移送流路と、
    を有する浄水装置。
  2.  原水を濾過する並列に設けられた複数の膜モジュールと、前記膜モジュールへの原水の供給および停止を切り替える複数の開閉弁とを備えた浄水装置を運転する方法であって、
     前記膜モジュールの全てに原水を供給するように開閉弁を切り替え、原水を濾過する濾過工程と、
     前記膜モジュールのうち、一部の膜モジュール(A)へ原水を供給し、残りの膜モジュール(B)への原水の供給を停止するように開閉弁を切り替え、膜モジュール(A)を透過した透過水の全てを膜モジュール(B)に送り、前記膜モジュール(B)を逆洗する第一の逆洗工程と、
     膜モジュール(A)への原水の供給を停止し、膜モジュール(B)へ原水を供給するように開閉弁を切り替え、膜モジュール(B)を透過した透過水の全てを膜モジュール(A)に送り、前記膜モジュール(A)を逆洗する第二の逆洗工程と、
     を繰り返す浄水装置の運転方法。
  3.  前記第一の逆洗工程および第二の逆洗工程の直前に、前記膜モジュールの全てへの原水の供給を停止するように開閉弁を切り替え、膜モジュール内に空気を取り込んで原水を排出する原水排出工程と、膜モジュールの全てに原水を供給するように開閉弁を切り替え、膜モジュールの全てに原水を供給し充填する原水充填工程とを行う請求項2に記載の浄水装置の運転方法。
PCT/JP2010/070720 2009-11-20 2010-11-19 浄水装置及びその運転方法 WO2011062268A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010547773A JP5437278B2 (ja) 2009-11-20 2010-11-19 浄水装置及びその運転方法
CN201090001456.5U CN202968209U (zh) 2009-11-20 2010-11-19 净水装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009265363 2009-11-20
JP2009-265363 2009-11-20

Publications (1)

Publication Number Publication Date
WO2011062268A1 true WO2011062268A1 (ja) 2011-05-26

Family

ID=44059740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/070720 WO2011062268A1 (ja) 2009-11-20 2010-11-19 浄水装置及びその運転方法

Country Status (3)

Country Link
JP (1) JP5437278B2 (ja)
CN (1) CN202968209U (ja)
WO (1) WO2011062268A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075291A (ja) * 2011-09-16 2013-04-25 Metawater Co Ltd 膜ろ過システムおよびその運転制御方法
CN103265095A (zh) * 2013-05-16 2013-08-28 淮南矿业(集团)有限责任公司 用于水处理的自清洗膜处理装置
CN104436827A (zh) * 2013-11-11 2015-03-25 高桥金属制品(苏州)有限公司 一种清洗机的过滤器压力自动报警装置以及一种清洗机
WO2021045437A1 (en) 2019-09-02 2021-03-11 Samsung Electronics Co., Ltd. Water purifier and filter for the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752080B (zh) * 2013-12-31 2016-05-04 李�杰 一种陶瓷废水处理方法及装置
CN114588783B (zh) * 2022-03-21 2023-08-01 山东水利建设集团有限公司 一种泵房多级反冲洗系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028460A (ja) * 2000-07-13 2002-01-29 Kurita Water Ind Ltd 膜分離装置の運転方法
JP2002346348A (ja) * 2001-05-28 2002-12-03 Kurita Water Ind Ltd 膜濾過装置
JP2006255708A (ja) * 2006-07-05 2006-09-28 Mitsubishi Heavy Ind Ltd 中空糸膜の逆洗方法及び中空糸膜水処理装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002028460A (ja) * 2000-07-13 2002-01-29 Kurita Water Ind Ltd 膜分離装置の運転方法
JP2002346348A (ja) * 2001-05-28 2002-12-03 Kurita Water Ind Ltd 膜濾過装置
JP2006255708A (ja) * 2006-07-05 2006-09-28 Mitsubishi Heavy Ind Ltd 中空糸膜の逆洗方法及び中空糸膜水処理装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013075291A (ja) * 2011-09-16 2013-04-25 Metawater Co Ltd 膜ろ過システムおよびその運転制御方法
CN103265095A (zh) * 2013-05-16 2013-08-28 淮南矿业(集团)有限责任公司 用于水处理的自清洗膜处理装置
CN103265095B (zh) * 2013-05-16 2014-10-08 淮南矿业(集团)有限责任公司 用于水处理的自清洗膜处理装置
CN104436827A (zh) * 2013-11-11 2015-03-25 高桥金属制品(苏州)有限公司 一种清洗机的过滤器压力自动报警装置以及一种清洗机
WO2021045437A1 (en) 2019-09-02 2021-03-11 Samsung Electronics Co., Ltd. Water purifier and filter for the same
EP3976220A4 (en) * 2019-09-02 2022-07-20 Samsung Electronics Co., Ltd. WATER PURIFIERS AND FILTERS THEREOF

Also Published As

Publication number Publication date
JP5437278B2 (ja) 2014-03-12
CN202968209U (zh) 2013-06-05
JPWO2011062268A1 (ja) 2013-04-11

Similar Documents

Publication Publication Date Title
JP6020168B2 (ja) 膜ろ過方法および膜ろ過装置
JP5437278B2 (ja) 浄水装置及びその運転方法
JP2003266072A (ja) 膜ろ過方法
JPH06277664A (ja) 表流水の膜浄化方法およびそのための装置
CN102123784A (zh) 改进的膜系统反洗能效
DK2292562T3 (da) Fremgangsmåde og anlæg til filtrering af vand, især ultrafiltreringsfremgangsmåde
CN101143303B (zh) 一种家用全自动双膜自冲洗净水装置
US20080257824A1 (en) Method and Apparatus for Water Purification and Regeneration of Micro-filtration Tubules
JP4882164B2 (ja) 膜濾過装置
KR101508763B1 (ko) 가압식 중공사막 모듈 및 이를 이용한 역세척 방법
KR101264321B1 (ko) 여과수 압력제어형 막여과장치 및 그의 막세척방법
JP2017113735A (ja) 分離膜ろ過装置および浄水装置の運転方法
KR101609416B1 (ko) 분리막 세정 시스템 및 이를 이용한 분리막 세정 방법
CN107686210A (zh) 水处理系统及该水处理系统的冲洗方法
JP2018158297A (ja) 膜濾過装置の運転方法及び膜濾過装置
JP2008183513A (ja) 浄水装置
JP2009183920A (ja) 液体浄化装置
JP4454922B2 (ja) 中空糸型分離膜を用いた濾過装置の制御方法
WO2017046214A1 (en) Filtration system and method for backwashing a filtration system
JP2014188469A (ja) ろ過方法、ならびに、ろ過装置およびこれを備えた水処理システム
JP3358300B2 (ja) ろ過方法およびろ過装置
JP5968592B2 (ja) 浄水システムおよびその運転方法
KR20140128841A (ko) 막모듈의 교차 정수 및 세정 장치와 이의 운전방법
CN215886571U (zh) 一种反渗透净水器用前置滤芯的反冲洗装置以及净水器
JP4678757B2 (ja) 水処理装置およびその運転方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201090001456.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010547773

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831660

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10831660

Country of ref document: EP

Kind code of ref document: A1