WO2011062007A1 - 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体 - Google Patents

繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体 Download PDF

Info

Publication number
WO2011062007A1
WO2011062007A1 PCT/JP2010/067578 JP2010067578W WO2011062007A1 WO 2011062007 A1 WO2011062007 A1 WO 2011062007A1 JP 2010067578 W JP2010067578 W JP 2010067578W WO 2011062007 A1 WO2011062007 A1 WO 2011062007A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
reinforced resin
spun yarn
yarn
natural plant
Prior art date
Application number
PCT/JP2010/067578
Other languages
English (en)
French (fr)
Inventor
中瀬一博
粕谷明
Original Assignee
倉敷紡績株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 倉敷紡績株式会社 filed Critical 倉敷紡績株式会社
Priority to CN2010800519780A priority Critical patent/CN102713036A/zh
Priority to JP2011541850A priority patent/JP5780968B2/ja
Priority to US13/504,000 priority patent/US20120220179A1/en
Priority to EP10831404.8A priority patent/EP2503036A4/en
Publication of WO2011062007A1 publication Critical patent/WO2011062007A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B11/00Making preforms
    • B29B11/14Making preforms characterised by structure or composition
    • B29B11/16Making preforms characterised by structure or composition comprising fillers or reinforcement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/10Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
    • B29C70/16Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
    • B29C70/20Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
    • B29C70/202Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres arranged in parallel planes or structures of fibres crossing at substantial angles, e.g. cross-moulding compound [XMC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/465Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating by melting a solid material, e.g. sheets, powders of fibres
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/04Blended or other yarns or threads containing components made from different materials
    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/22Yarns or threads characterised by constructional features, e.g. blending, filament/fibre
    • D02G3/40Yarns in which fibres are united by adhesives; Impregnated yarns or threads
    • D02G3/402Yarns in which fibres are united by adhesives; Impregnated yarns or threads the adhesive being one component of the yarn, i.e. thermoplastic yarn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2101/00Use of unspecified macromolecular compounds as moulding material
    • B29K2101/12Thermoplastic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2311/00Use of natural products or their composites, not provided for in groups B29K2201/00 - B29K2309/00, as reinforcement
    • B29K2311/10Natural fibres, e.g. wool or cotton
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2201/00Cellulose-based fibres, e.g. vegetable fibres
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/02Reinforcing materials; Prepregs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/30Woven fabric [i.e., woven strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/40Knit fabric [i.e., knit strand or strip material]
    • Y10T442/45Knit fabric is characterized by a particular or differential knit pattern other than open knit fabric or a fabric in which the strand denier is specified

Definitions

  • the present invention relates to a spun yarn and intermediate for fiber reinforced resin containing natural plant fibers, and a fiber reinforced resin molded article using the same.
  • Plastic is used for the interior of automobiles, airplanes, vehicles, etc., and is lighter than metal. Since plastic alone is insufficient in strength, glass short fibers (cut to a certain length) are mixed in the plastic. However, when discarded, if it is burned in an incinerator, the plastic decomposes into CO 2 and water, but the glass melts and hardens and adheres to the inside of the incinerator. As a result, there is a concern that the life of the incinerator is significantly reduced. Carbon fiber is known as a material having high strength such as glass, but there is a problem that it is expensive and cannot be used for practical use.
  • FRTP thermoplastic resin molded body
  • Patent Documents 1 and 2 propose fiber reinforced resins using natural plant fibers as reinforcing fibers.
  • Patent Document 1 describes that short fibers of hemp fibers are processed into nonwoven fabrics, woven fabrics, and knitted fabrics to form fiber reinforced resins.
  • Patent Document 2 describes processing of short fibers of kenaf fibers into nonwoven fabrics and woven fabrics. It is described that a fiber reinforced resin is used.
  • the present inventors have proposed a fiber reinforced resin molded body obtained by melting and integrating a natural plant fiber yarn such as hemp and a synthetic resin film (Patent Document 3), and around the natural plant fiber yarn such as hemp. It has been proposed to use a covering yarn wound so as to cover a synthetic resin fiber yarn as a composite yarn for a fiber-reinforced resin molded article (Patent Document 4).
  • Patent Documents 1 and 2 are processed into non-woven fabrics, woven fabrics, and knitted fabrics using hemp fibers and kenaf fibers, and melt mixed with the resin or impregnated into fiber reinforced resin (FRP)
  • FRP fiber reinforced resin
  • the resin does not easily penetrate into the fiber, a large-scale apparatus is required, and molding is not easy.
  • natural plant fibers have a lower decomposition temperature than glass fibers and carbon fibers, and cannot be heated to a viscosity that facilitates the penetration of thermoplastic resins as matrix resins. Met.
  • Patent Document 3 the inventors of the present invention described in Patent Document 3 have difficulty in melting a synthetic resin film and uniformly impregnating natural plant fiber yarns. It has been found that the cost for manufacturing the yarn is high and the synthetic resin film used for the cover ring is easily caught on a pin tenter or the like when it is made into a multi-axis inserted warp knitted fabric.
  • the present invention provides a fiber reinforced resin spun yarn having good integrity between natural plant fibers and synthetic fibers, easily allowing the resin to uniformly penetrate into the natural plant fibers, and having good moldability. And an intermediate and a fiber-reinforced resin molded article using the same.
  • the spun yarn for fiber reinforced resin of the present invention is a spun yarn for fiber reinforced resin (FRP) containing natural plant fibers and synthetic fibers, wherein the natural plant fibers and the synthetic fibers are blended yarns, and the synthetic fibers are It is a thermoplastic synthetic fiber that becomes a matrix resin when FRP is used.
  • FRP spun yarn for fiber reinforced resin
  • the intermediate for fiber reinforced resin of the present invention is characterized in that the spun yarn for fiber reinforced resin is a woven fabric, a knitted fabric, a multi-axis inserted warp knitted fabric, or a braided fabric.
  • the fiber-reinforced resin molded article of the present invention is characterized in that the intermediate for fiber-reinforced resin is press-molded by heating to a mold temperature equal to or higher than the melting point of the synthetic fiber.
  • Another fiber-reinforced resin molded article of the present invention is characterized in that the spun yarn for fiber-reinforced resin is arranged in at least one direction and is press-molded by heating at a mold temperature equal to or higher than the melting point of the synthetic fiber. .
  • natural plant fiber and synthetic fiber are blended yarn, and the synthetic fiber is a thermoplastic synthetic fiber that becomes a matrix resin when it is made into FRP. Therefore, when heated above the melting point of the synthetic fiber, the synthetic fiber The molten thermoplastic synthetic resin rapidly and uniformly infiltrates between the natural plant fibers, and the composite integration of the natural plant fibers and the molten thermoplastic synthetic resin is efficiently performed. That is, since the synthetic fiber is uniformly mixed with the natural plant fiber, the resin easily penetrates between the natural plant fibers when melted. As a result, a fiber-reinforced resin having good moldability and uniform physical properties can be obtained.
  • natural plant fibers and synthetic fibers are uniformly mixed, the integrity is good, the handleability is good, and the productivity can be improved.
  • the mixing ratio can be easily changed, and uniform mixing is also possible.
  • the method using is particularly useful. The same applies when at least two types of synthetic fibers are used.
  • natural plant fibers are used, environmental problems during disposal can be solved. Furthermore, by blending natural plant fiber with synthetic fiber to make spun yarn, it can be handled as continuous fiber, and the volume content (Vf) of natural plant fiber in the molded body can be improved. is there. Moreover, even if there are individual differences peculiar to natural plant fibers or differences in harvested places, stable physical properties can be obtained by mixing in the spinning process.
  • FIG. 1A and 1B are side views of a spun yarn for fiber reinforced resin using a single yarn according to an embodiment of the present invention.
  • 2A and 2B are side views of a spun yarn for fiber reinforced resin according to another embodiment of the present invention.
  • FIG. 3A is a perspective view showing a method of forming a molded body by a pressing method using the spun yarn for fiber reinforced resin in one embodiment of the present invention
  • FIG. 3B is a perspective view of the molding method
  • FIG. FIG. FIG. 4 is a conceptual perspective view of a multi-axis inserted warp knitted fabric showing an application example of the present invention.
  • 5A is a plan view of the sheet molded product according to Example 1 of the present invention
  • FIG. 5B is a tensile test piece of the sheet molded product
  • FIG. 5C is a cross-sectional view taken along the line II of FIG. 5B.
  • FIG. 6 is a graph showing the relationship between the molding temperature and the tensile strength in Example 3.
  • FIG. 7 is a graph showing the relationship between molding time and tensile strength in Example 3.
  • FIG. 8 is a graph showing the relationship between molding pressure and tensile strength in Example 3.
  • a spun yarn obtained by blending natural plant fibers and thermoplastic synthetic fibers is used.
  • the synthetic fiber is melted and becomes an FRP matrix resin as it is.
  • the molten thermoplastic synthetic resin penetrates quickly and uniformly between the natural plant fibers, and the composite integration of the natural plant fibers and the molten thermoplastic synthetic resin is efficiently performed.
  • the spun yarn for fiber-reinforced resin of the present invention is obtained by blending natural plant fibers and synthetic fibers in the spinning process.
  • blend spinning is performed in at least one process selected from a blended cotton process, a card process, a sliver wrap process, a ribbon wrap process, a drawing process and a roving process in the spinning process.
  • the spun yarn is manufactured by applying a predetermined twist in ring spinning. There are open-end spinning and bundling spinning as methods for preventing twisting.
  • the blended spun yarn of the present invention may be produced by any method.
  • natural plant fibers examples include cotton fibers, flax (linen), hemp fibers such as ramie, kenaf or jute, bamboo fibers, kapok and the like.
  • Cotton is preferable because it can be obtained at low cost because it is mass-produced. Linen or ramie linen fibers are preferred. This is because hemp fibers are suitable as reinforcing fibers because of their excellent mechanical properties, and the raw material supply is also stable.
  • the hemp fibers are preferably dried and then molded, but can be used even in a state having an equilibrium moisture content without drying. This is because the strength can be kept high with an equilibrium moisture content.
  • the preferred fiber length of natural plant fibers is 20 to 400 mm.
  • the fiber length is preferably 20 to 50 mm as cotton fiber (cotton), and 20 to 300 mm as hemp fiber (ramie). If the fineness and fiber length are in this range, it is easy to handle as a fiber for FRP, and blending becomes easy.
  • the resin constituting the thermoplastic synthetic fiber that can be used in the present invention is preferably a resin that is usually used as a matrix resin for FRP and has a melting point lower than the decomposition temperature of natural plant fibers.
  • a resin having a melting point of 90 ° C. or higher and 200 ° C. or lower is preferable.
  • examples of such resins include polypropylene (PP), polyethylene (PE), and copolymers thereof, copolymerized polyesters, copolymerized polyamides, polyvinyl chloride, copolymerized polyacetals, polylactic acid, and polybutyl succinate. .
  • thermoplastic synthetic fiber having a fineness and a fiber length in the same range as that of natural plant fiber.
  • the fiber lengths of natural fibers and thermoplastic synthetic resins are preferably within a range of about ⁇ 20 mm.
  • the blended yarn is preferably subjected to an actual twist having a twist coefficient K of 2 to 7 shown below.
  • K t / S 1/2
  • t the number of twists per unit length of 25.4 mm
  • S the cotton count
  • S 1/2 That is.
  • the fineness of the spun yarn of the present invention is preferably in the range of 4 to 100 (50 to 1,500 dtex) in cotton count. Within this range, the production cost can be reduced, the yarn strength is high, and the workability and handleability are also good.
  • the blended yarn may be used as a single yarn, a plurality of yarns may be aligned, or a plurality of yarns may be twisted together.
  • a plurality of yarns may be aligned, or a plurality of yarns may be twisted together.
  • the yarn for fiber reinforced resin of the present invention can be made into FRP by aligning the yarn itself by a roving method or the like.
  • a woven fabric, a knitted fabric, a multi-axis inserted warp knitted fabric, or a braided product may be used as an intermediate for fiber reinforced resin. These intermediates can also be prepregs for use in the final molded body.
  • Woven fabrics, knitted fabrics, and multi-axis inserted warp knitted fabrics can be used after being formed into a sheet shape, and assemblies can be used after being formed into a pipe shape.
  • the fabric and knitted fabric can be any known tissue.
  • the mold temperature is heated to a temperature not lower than the melting point of the resin constituting the thermoplastic synthetic fiber and not higher than the decomposition temperature of the natural plant fiber, followed by pressure molding. Further, the fiber reinforced resin yarn is arranged in at least one direction, and the mold temperature is heated by pressing to a temperature higher than the melting point of the resin constituting the thermoplastic synthetic fiber and lower than the decomposition temperature of the natural plant fiber to form a fiber.
  • a reinforced resin molded product can also be obtained.
  • hemp fibers are used as natural plant fibers
  • a temperature that does not exceed about 200 ° C. as the mold temperature is preferable.
  • the melting point of the resin constituting the thermoplastic synthetic fiber is lower than the decomposition temperature of the hemp fiber, such as about 120 ° C.
  • the resin may be molded at a temperature higher by about 0 ° C. to 50 ° C. than the melting point temperature. Good.
  • the fiber-reinforced thermoplastic resin molded body can use a conventional known molding method, and examples thereof include a hot stamping method, a prepreg molding method, and a press molding method.
  • the spun yarns for fiber-reinforced resin of the present invention are arranged so that a plurality of the spun yarns are aligned to form a sheet, or one is folded back to form a sheet.
  • One sheet of spun yarn may be used, or a plurality of sheets may be used.
  • the arrangement direction of the spun yarns may be changed.
  • the arrangement direction of the spun yarns may be changed in the direction of 30 °, 45 °, 60 °, 90 ° for the second and subsequent sheets with respect to the arrangement of the spun yarns of the first sheet.
  • the sheet-like material thus arranged is heated at a mold temperature equal to or higher than the melting point of the synthetic fiber and press-molded to obtain a fiber-reinforced resin molded body.
  • FIG. 1A and 1B are side views of a spun yarn for fiber reinforced resin using a single yarn according to an embodiment of the present invention.
  • the spun yarn 10 for fiber reinforced resin in FIG. 1A is a blended yarn (Z twist) of natural plant fibers and thermoplastic synthetic fibers.
  • the spun yarn 11 for fiber reinforced resin in FIG. 1B is a blended yarn (S twisted) of natural plant fibers and thermoplastic synthetic fibers.
  • the twisting direction may be either.
  • FIG. 2A and 2B are side views of the spun yarn for fiber reinforced resin in another embodiment of the present invention.
  • the spun yarn 12 for fiber reinforced resin in FIG. 2A is a blended yarn (primary twist S, upper twist S) of natural plant fibers and thermoplastic synthetic fibers.
  • the spun yarn 13 for fiber-reinforced resin in FIG. 2B is a blended yarn (primary twist S, upper twist Z) of natural plant fibers and thermoplastic synthetic fibers.
  • FIG. 3A is a perspective view showing a method of forming a molded body by a pressing method using the spun yarn for fiber reinforced resin in one embodiment of the present invention
  • FIG. 3B is a perspective view of the molding method
  • the mixed spun yarn 3a, 3b made of natural plant fiber and thermoplastic synthetic fiber is wound around the metal frame 2 in one direction.
  • the number of windings is, for example, 220 for a width of 20 mm and a winding weight of about 7 g. Two places were wound around the metal frame 2 at regular intervals.
  • the wound spun yarns 3a and 3b are heated and pressed by hot press dies 4 and 5 to be fused and integrated.
  • the melting point is about 170 ° C.
  • cotton fiber is used as the natural plant fiber yarn
  • its decomposition temperature is about 235 ° C.
  • the mold temperature is 180 to 220 ° C.
  • the pressure is 1 to 20 MPa
  • the thermoforming time is about 0.5 to 20 minutes.
  • the mold temperature is 180 to 210 ° C.
  • the pressure is 2 to 8 MPa
  • the heat molding time is preferably about 2 to 10 minutes.
  • FIG. 4 is a conceptual perspective view of a multi-axis inserted warp knitted fabric.
  • the fiber-reinforced resin spun yarns 1a to 1f arranged in a plurality of directions are stitched (bundled) in the thickness direction by stitching yarns 7 and 8 hung on the knitting needle 6 and integrated.
  • Such a multi-axis inserted warp knitted fabric can be used as a fiber reinforced intermediate and hot press-molded.
  • This multiaxial laminated sheet can obtain a fiber-reinforced plastic having an excellent reinforcing effect in multiple directions.
  • a binder may be used instead of or in combination with the stitching yarn.
  • Example 1 Production of blended spun yarn
  • a blended spun yarn 10 having a structure as shown in Fig. 1 was produced.
  • US cotton fibers (average fiber length 28 mm) are used as natural plant fibers, and polypropylene (made by Daiwabo Polytech Co., Ltd., trade name “PN-17038”, single fiber fineness 1.6 dtex, average fiber length is used as thermoplastic synthetic fibers.
  • 38 mm) fiber (PP fiber) was used.
  • the sliver was mixed and fed in a predetermined ratio in the drawing step to perform blending. The spinning was ring spinning, and the blended yarn was manufactured so that the target count was 7 (cotton count).
  • a molded body was produced by the pressing method shown in FIGS. 3A to 3C.
  • the spun yarns 3a and 3b were wound around the metal frame 2 in one direction as shown in FIG. 3A.
  • the length of the metal frame was 380 mm
  • the width was 260 mm
  • the height was 2 mm.
  • the number of spun yarns 3a was 110 for each of the upper and lower sides with respect to a width of 20 mm, for a total of 220.
  • the total number of spun yarns 3b was 220.
  • the metal frame 2 was wound at two locations at regular intervals. As shown in FIGS.
  • FIG. 5A shows a plan view of the obtained sheet molded product. The center is the sheet forming part 20, and both ends are fiber remaining parts 21a.
  • the obtained sheet molded product was cut to a length of 200 mm to produce a tensile test piece (length 200 mm, width 20 mm, thickness about 0.8 mm) of the sheet molded portion 20 shown in FIG. 5B.
  • 5C is a cross-sectional view taken along the line II of FIG.
  • 5B, and 21b is a spun yarn embedded in the resin.
  • the number of windings was doubled (up and down, respectively, 220, a total of 440), and molding was performed in the same manner.
  • the sample was cut to a length of 50 mm to obtain a bending test piece (length 50 mm, width 20 mm, thickness about 1.5 m).
  • test piece formed by sheet stacking by a film stack method using a spun yarn of 100 wt% cotton and a PP film having a thickness of 200 ⁇ m in a ratio of 50:50 is also shown.
  • the example product of the present invention had higher bending elastic modulus and bending strength than the comparative example product. It was also confirmed that the blended spun yarn of the example product of the present invention had good handleability and good moldability.
  • Example 2 Production of blended spun yarn
  • a blended spun yarn 10 having a structure as shown in Fig. 1 was produced.
  • US cotton fibers (average fiber length 28 mm) and Chinese hemp fibers (ramie, average fiber length 38 mm) are used as natural plant fibers, and polypropylene (made by Daiwabo Polytech Co., Ltd., trade name " PN-17038 ′′, single fiber fineness 1.6 dtex, average fiber length 38 mm) fiber (PP fiber) was used.
  • the sliver was mixed and fed in a predetermined ratio in the drawing step to perform blending.
  • the spinning was ring spinning, and the blended yarn was manufactured so that the target count was 7 (cotton count).
  • the examples of the present invention had high tensile elastic modulus, flexural modulus, and bending strength. It was also confirmed that the blended spun yarn of the example product of the present invention had good handleability and good moldability.
  • Example 3 Using the blended spun yarn of Experiment No. 1-1 of Example 1, the conditions of molding temperature, molding time, and molding pressure were examined.
  • FIG. 6 is a graph showing the relationship between molding temperature and tensile strength
  • FIG. 7 is a graph showing the relationship between molding time and tensile strength
  • FIG. 8 is a graph showing the relationship between molding pressure and tensile strength.
  • the molding temperature was preferably 180 to 200 ° C. Further, as apparent from FIG. 7, there was no problem if the molding time was 2 to 10 minutes. Further, as apparent from FIG. 8, there was no problem if the molding pressure was in the range of 2 to 8 MPa.

Abstract

 本発明の繊維強化樹脂用紡績糸は、天然植物繊維と合成繊維との混紡糸(3a,3b)であり、前記合成繊維はFRPにしたときにマトリックス樹脂となる熱可塑性合成繊維である。本発明の繊維強化樹脂用中間体は、前記の繊維強化樹脂用紡績糸を、織物、編物、多軸挿入たて編物、又は組み物とする。 本発明の繊維強化樹脂成形体は、前記の繊維強化樹脂用中間体を、前記合成繊維の融点以上の金型温度に加熱してプレス成形するか又は前記の繊維強化樹脂用紡績糸を少なくとも一方向に配列し、前記合成繊維の融点以上の金型温度で加熱してプレス成形する。これにより天然植物繊維と合成繊維との一体性がよく、成形性がよい繊維強化樹脂用紡績糸をコスト安く得ること、並びに中間体及びこれを用いた繊維強化樹脂成形体を提供する。

Description

繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体
 本発明は、天然植物繊維を含む繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体に関する。
 自動車や飛行機、車両などの内装にはプラスチックが使用され、金属に比較して軽量化されている。プラスチックだけでは強度が不足するため、プラスチックにガラスの短繊維(一定の長さにカットしたもの)を混入している。しかし廃棄したときに、焼却炉で燃焼させると、プラスチックは分解してCO2と水になるが、ガラスは溶融して固まり、焼却炉内部に付着する。これにより焼却炉の寿命が著しく低下するといった問題が懸念されている。ガラスのような高い強度を持つ材料として、炭素繊維が知られているが、高価で実用的用途には使用できない問題がある。
 そこで、近年天然植物繊維による繊維強化熱可塑性樹脂成形体(FRTP)は社会的に関心が高まっている。これは、リサイクル可能であり、その中でマテリアルリサイクルとして繰り返し使用可能であること、サーマルリサイクルとして燃焼時に有毒ガスがでないこと、エネルギー問題による移動体の軽量化が可能であり、軽量化することで燃費を向上できること、天然植物繊維は光合成時に二酸化炭素をその内部に吸収し、燃焼させても排出される二酸化炭素は元と変わらないことから、環境問題を起こさないことが挙げられる。
 補強繊維に天然植物繊維を用いた繊維強化樹脂は、特許文献1~2に提案されている。特許文献1には、麻繊維の短繊維を不織布、織物、編物に加工して繊維補強樹脂にすることが記載され、特許文献2には、ケナフ繊維の短繊維を不織布、織物に加工して繊維補強樹脂にすることが記載されている。
 さらに本発明者らは、麻などの天然植物繊維糸と合成樹脂フィルムとを溶融一体化した繊維強化樹脂成形体を提案し(特許文献3)、また、麻などの天然植物繊維糸の周囲に合成樹脂繊維糸を被覆するように巻きつけたカバーリング糸を繊維強化樹脂成形体用複合糸にすることを提案した(特許文献4)。
 しかし、特許文献1~2に記載の発明は、麻繊維やケナフ繊維の短繊維を用いて不織布、織物、編物に加工し、樹脂と溶融混合するか含浸して繊維強化樹脂(FRP)にするため、繊維内部に樹脂が浸透しにくく、大掛かりな装置が必要であり、成形も容易でないという問題があった。特に、天然植物繊維は、ガラス繊維や炭素繊維に比べて分解温度が低く、マトリックス樹脂となる熱可塑性樹脂を浸透容易となる粘度にまで加熱することができず、浸透性の問題が非常に重要であった。
 また、本発明者らは、特許文献3に記載の発明においては合成樹脂フィルムを溶融させて天然植物繊維糸内に均一に含浸させることが困難であり、特許文献4に記載の発明はカバーリング糸を製造するためのコストが高いうえ、多軸挿入たて編物にする際に、カバーリングに使う合成樹脂フィルムがピンテンターなどに引っ掛かりやすく、生産性低下の問題があることを見出している。
特開2004-143401号公報 特開2004-149930号公報 特開2007-138361号公報 特開2008-240193号公報
 本発明は、前記問題を解決するため、天然植物繊維と合成繊維との一体性がよく、天然植物繊維内部に樹脂が均一に浸透し易く、成形性がよい繊維強化樹脂用紡績糸をコスト安く得ること、並びに中間体及びこれを用いた繊維強化樹脂成形体を提供する。
 本発明の繊維強化樹脂用紡績糸は、天然植物繊維と合成繊維を含む繊維強化樹脂(FRP)用紡績糸であって、前記天然植物繊維と前記合成繊維は混紡糸であり、前記合成繊維はFRPにしたときにマトリックス樹脂となる熱可塑性合成繊維であることを特徴とする。
 本発明の繊維強化樹脂用中間体は、前記の繊維強化樹脂用紡績糸を、織物、編物、多軸挿入たて編物、又は組み物としたことを特徴とする。
 本発明の繊維強化樹脂成形体は、前記の繊維強化樹脂用中間体を、前記合成繊維の融点以上の金型温度に加熱してプレス成形したことを特徴とする。
 本発明の別の繊維強化樹脂成形体は、前記の繊維強化樹脂用紡績糸を少なくとも一方向に配列し、前記合成繊維の融点以上の金型温度で加熱してプレス成形したことを特徴とする。
 本発明は、天然植物繊維と合成繊維は混紡糸であり、合成繊維はFRPにしたときにマトリックス樹脂となる熱可塑性合成繊維であることにより、合成繊維の融点以上に加熱したときに、合成繊維は溶融され、この溶融した熱可塑性合成樹脂が迅速かつ均一に天然植物繊維間に浸入し、天然植物繊維と溶融熱可塑性合成樹脂の複合一体化が効率的に行われる。すなわち、合成繊維は天然植物繊維と均一混合しているので、溶融した際に、天然植物繊維間に樹脂が浸透し易い。この結果、成形性がよく、均一な物性の繊維強化樹脂が得られる。また、天然植物繊維と合成繊維とは均一混合されているため一体性がよく、取り扱い性もよく、さらに生産性も向上できる。なお、天然植物繊維として木綿繊維と麻繊維を併用する場合など、少なくとも2種類以上の天然植物繊維を用いる場合、その混合比率が容易に変更できると共に、均一混合も可能となることから、混紡糸を用いる方法は、特に有用である。また、合成繊維を少なくとも2種類以上使用する場合も同様である。
 また、天然植物繊維を用いることから、廃棄の際の環境問題を解消することができる。さらに、天然植物繊維を合成繊維と混紡して紡績糸とすることで、連続繊維として扱うことが可能になり、成形体中の天然植物繊維の体積含有率(Vf)を向上させることが可能である。また、天然植物繊維特有の個体差や収穫された場所での差異などがあっても、紡績工程で混合されることにより安定した物性を得ることができる。
図1A-Bは本発明の一実施形態における単糸使いの繊維強化樹脂用紡績糸の側面図である。 図2A-Bは本発明の別の実施形態における繊維強化樹脂用紡績糸の側面図である。 図3Aは、本発明の一実施形態における繊維強化樹脂用紡績糸を用いて、プレス法により成形体を成形する方法を示す斜視図、図3Bは同成形方法の斜視図、図3Cは同断面図である。 図4は本発明の応用例を示す多軸挿入たて編物の概念斜視図である。 図5Aは本発明の実施例1におけるシート成形品の平面図、図5Bは同、シート成形品の引張試験片であり、図5Cは図5BのI-I断面図である。 図6は、実施例3における成形温度と引張強度の関係を示すグラフである。 図7は、実施例3における成形時間と引張強度の関係を示すグラフである。 図8は、実施例3における成形圧力と引張強度の関係を示すグラフである。
 本発明においては、天然植物繊維と熱可塑性合成繊維とを混紡した紡績糸を使用する。この紡績糸を所定の方向に揃えて加熱プレス成形することにより、合成繊維は溶融してそのままFRPのマトリックス樹脂となる。溶融した熱可塑性合成樹脂は迅速かつ均一に天然植物繊維間に浸入し、天然植物繊維と溶融熱可塑性合成樹脂の複合一体化が効率的に行われる。
 本発明の繊維強化樹脂用紡績糸は、天然植物繊維と合成繊維を紡績工程で混紡して得る。一例として、紡績工程中の混打綿工程、カード工程、スライバーラップ工程、リボンラップ工程、練条工程及び粗紡工程から選ばれる少なくとも一つの工程で混紡する。紡績糸は、リング精紡においては所定の撚りを掛けて製造される。撚りを掛けない方法としては、オープンエンド紡績、結束紡績がある。本発明の混紡紡績糸は、どの方法によって製造したものであっても良い。
 本発明で使用できる天然植物繊維は、一例として木綿繊維、亜麻(リネン)、ラミー、ケナフ又はジュート等の麻繊維、竹繊維、カポック等が挙げられる。木綿(コットン)は大量生産されていることからコスト安く入手できることから好ましい。リネン又はラミー等の麻繊維が好ましい。麻繊維は力学的性質が優れているため強化繊維として適しているとともに、原料供給も安定しているからである。前記麻繊維は乾燥してから成形するのが好ましいが、乾燥しないで平衡水分率を有する状態でも使用できる。平衡水分率であれば、強度を高く維持できるからである。天然植物繊維の好ましい繊維長は20~400mmである。具体的には、木綿繊維(コットン)として繊維長20~50mmが好ましく、麻繊維(ラミー)として、20~300mmが好ましい。この範囲の繊度及び繊維長であれば、FRP用繊維として取り扱いやすく、混紡が容易となる。
 本発明で使用できる熱可塑性合成繊維を構成する樹脂は、通常FRPのマトリックス樹脂として使用されている樹脂であって、かつ天然植物繊維の分解温度より低い融点を有する樹脂が好ましい。例えば天然植物繊維として木綿(コットン)又は麻繊維を使用する場合は、90℃以上200℃以下の融点を有する樹脂が好ましい。このような樹脂としては、例えばポリプロピレン(PP)、ポリエチレン(PE)、及びこれらの共重合体、共重合ポリエステル、共重合ポリアミド、ポリ塩化ビニル、共重合ポリアセタール、ポリ乳酸、ポリコハク酸ブチルなどがある。熱可塑性合成繊維の繊度及び繊維長は、天然植物繊維とほぼ同一の範囲のものを使用するのが好ましい。特に、天然繊維及び熱可塑性合成樹脂の繊維長を±20mm程度の範囲内にするのが好ましい。
 天然植物繊維と熱可塑性合成繊維の配合割合は、重量比で天然植物繊維:熱可塑性合成繊維=80:20~30:70の範囲が好ましい。この範囲であれば、天然植物繊維と、熱可塑性合成繊維が溶融した樹脂の複合一体化を効率よく行える。
 前記混紡糸は、下記で示される撚り係数Kが2~7の実撚りが掛けられていることが好ましい。
K=t/S1/2
但し、tは単位長さ25.4mm当たりの撚り数、Sは綿番手、S1/2
Figure JPOXMLDOC01-appb-M000001
のことである。
 撚り係数が前記の範囲であると、製造コストは安くでき、糸強力も高く、加工性や取り扱い性も良好である。
 本発明の紡績糸の繊度は、綿番手で4~100番(50~1,500dtex)の範囲が好ましい。この範囲であると製造コストは安くでき、糸強力も高く、加工性や取り扱い性も良好である。
 本発明は、混紡糸を単糸で使ってもよいし、複数本を引き揃えるか、又は複数本を撚り合わせて使用してもよい。このうち、単糸使い、又は複数本を引き揃えて使うのがコスト的には有利である。
 本発明の繊維強化樹脂用糸は、糸そのものをロービング法などにより引き揃えてFRPにすることができる。その他、織物、編物、多軸挿入たて編物、又は組み物とし、繊維強化樹脂用中間体とすることもできる。これらの中間体は、最終成形体に使用するためのプリプレグとすることもできる。織物、編物、多軸挿入たて編物は、シート状に成形して使用でき、組み物はパイプ状に成形して使用できる。織物及び編物の組織は、公知のいかなる組織でも使用できる。
 このような成形体を製造するには、金型温度を、熱可塑性合成繊維を構成する樹脂の融点以上、前記天然植物繊維の分解温度以下に加熱して加圧成形する。また、繊維強化樹脂用糸を少なくとも一方向に配列し、金型温度を、熱可塑性合成繊維を構成する樹脂の融点以上、前記天然植物繊維の分解温度以下に加熱して加圧成形して繊維強化樹脂成形体を得ることもできる。特に、上記温度範囲であって、天然植物繊維中への熱可塑性樹脂の含浸性を考慮したうえで、なるべく高い温度で成形するのが好ましい。天然植物繊維として麻繊維を使用する場合は、金型温度として200℃程度を越えない温度が好ましい。なお、熱可塑性合成繊維を構成する樹脂の融点が120℃程度のように、麻繊維の分解温度に比べ低い温度の場合には、融点温度から0℃~50℃程度高い温度で成形してもよい。
 前記繊維強化熱可塑性樹脂成形体は、従来の公知の成形方法の使用が可能であり、ホットスタンピング法、プリプレグ成形法、プレス成形法等が挙げられる。
 本発明の繊維強化樹脂用紡績糸は、複数本を引き揃えてシート状となるように配列するか、あるいは1本を折り返してシート状となるように配列する。紡績糸のシート状物は1枚でも良いし、複数枚でもよい。複数枚重ねる場合は、紡績糸の配列方向を変えてもよい。例えば、1枚目のシート状物の紡績糸の配列に対して、2枚目以降を30°、45°、60°、90°といった方向に紡績糸の配列方向を変えてもよい。このようにして配列したシート状物を、前記合成繊維の融点以上の金型温度で加熱してプレス成形して繊維強化樹脂成形体を得る。
 次に図面を用いて説明する。図1A-Bは本発明の一実施形態における単糸使いの繊維強化樹脂用紡績糸の側面図である。図1Aの繊維強化樹脂用紡績糸10は、天然植物繊維と熱可塑性合成繊維との混紡糸(Z撚り)である。図1Bの繊維強化樹脂用紡績糸11は、天然植物繊維と熱可塑性合成繊維との混紡糸(S撚り)である。本発明においては、撚り方向はどちらでもよい。
 図2A-Bは本発明の別の実施形態における繊維強化樹脂用紡績糸の側面図である。図2Aの繊維強化樹脂用紡績糸12は、天然植物繊維と熱可塑性合成繊維との混紡糸(下撚りS、上撚りS)である。図2Bの繊維強化樹脂用紡績糸13は、天然植物繊維と熱可塑性合成繊維との混紡糸(下撚りS、上撚りZ)である。なお、下撚り及び上撚りの撚り方の組合せは、特に制限はなく、いずれを用いても良い。
 図3Aは、本発明の一実施形態における繊維強化樹脂用紡績糸を用いて、プレス法により成形体を成形する方法を示す斜視図、図3Bは同成形方法の斜視図、図3Cは同断面図である。天然植物繊維と熱可塑性合成繊維からなる混紡紡績糸3a,3bをメタルフレーム2に一方向に巻き付ける。巻きつけ本数は、例えば幅20mmに対し220本、巻きつけ重量約7gとする。メタルフレーム2に一定間隔を置いて2箇所巻き付けた。この巻きつけた紡績糸3a,3bに、図4Bに示すように、熱プレス金型4,5によって加熱加圧し、溶融一体化させる。熱可塑性合成繊維としてポリプロピレン(PP)短繊維(38mm長)を用いる場合、その融点は約170℃である。天然植物繊維糸として木綿繊維を用いる場合、その分解温度は約235℃である。このような場合、金型温度は180~220℃、圧力は1~20MPa、加熱成形時間は0.5~20分程度であり、特に金型温度は180~210℃、圧力は2~8MPa、加熱成形時間は2~10分程度が好ましい。
 図4は、多軸挿入たて編物の概念斜視図である。複数の方向に各々配列された繊維強化樹脂用紡績糸1a~1fは、編針6に掛けられたステッチング糸7,8によって厚さ方向にステッチング(結束)され、一体化されている。このような多軸挿入たて編物を繊維補強中間体とし、加熱プレス成形することもできる。この多軸状の積層シートは、多方向に補強効果の優れた繊維強化プラスチックを得ることが可能となる。ステッチング糸の代わりに、又は併用してバインダーを用いても良い。
 以下実施例を用いて本発明を具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
 (実施例1)
 (1)混紡紡績糸の作製
 本実施例においては、図1に示すような構造の混紡紡績糸10を作製した。天然植物繊維として、米国産の木綿繊維(平均繊維長28mm)を使用し、熱可塑性合成繊維としてポリプロピレン(ダイワボウポリテック社製、商品名“PN-17038”、単繊維繊度1.6dtex,平均繊維長38mm)繊維(PP繊維)を使用した。混紡方法は、練条工程において、各スライバーを所定の割合になるように混合して供給することにより混紡した。精紡はリング精紡とし、目標番手7番(綿番手)となるように混紡糸を製造した。
 (2)シート成形
 得られた混紡紡績糸を用いて図3A~Cに示すプレス法により成形体を作製した。まず、メタルフレーム2に、紡績糸3a、3bを図3Aのように一方向に巻きつけた。メタルフレームの長さは380mm、幅260mm、高さ2mmであった。紡績糸3aの本数は幅20mmに対し、上下それぞれ110本であり、合計220本とした。また、紡績糸3bも同様に合計220本とした。図3Aに示すとおり、メタルフレーム2に一定間隔に2箇所巻き付けた。この巻きつけた糸に、図3B~Cに示すように、熱プレス金型4,5によって巻き付け糸を加熱加圧し、溶融一体化させた。PP繊維の融点が170℃であったので、金型温度は200℃に設定した。圧力は4MPa、成型時間を5分とした。得られたシート成形品の平面図を図5Aに示す。中央はシート成形部20、両端は繊維残部21aである。得られたシート成形品を長さ200mmにカットし、図5Bに示すシート成形部20の引張試験片(長さ200mm、幅20mm、厚み約0.8mm)を作製した。図5Cは、図5BのI-I断面図であり、21bは、樹脂中に埋め込まれた紡績糸である。なお、曲げ試験用試験片については、厚みを厚くする必要があるため、巻き付け本数を2倍(上下それぞれ220本、合計440本)にして同様に成形を行い、得られたシート成形品を、長さ50mmにカットし、曲げ試験片(長さ50mm、幅20mm、厚み約1.5m)を得た。
 (3)物性の測定
 糸物性と引張弾性率、引張強度、曲げ弾性率、曲げ強度を測定した。糸物性はJISL1095:1999に従って測定し、引張試験は、JIS K 7054:1995に準じ、オートグラフ(島津製作所製:AG-IS)を用いて、つかみ具間距離100mm、試験速度1mm/minで行った。曲げ試験は、JISK7017:1999(3点曲げ試験)に準じ、支点間距離24mm、試験速度1mm/minで行った。この実験の条件と結果を表1に示す。比較例として木綿100wt%の紡績糸と、厚み200μmのPPフィルムを50:50の割合で使用し、フィルムスタック法によってシート成形した試験片の結果も示す。
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなとおり、本発明の実施例品は比較例品に比べて曲げ弾性率、曲げ強度がいずれも高かった。また、本発明の実施例品の混紡紡績糸は、取り扱い性がよく、成形性が良好であることも確認できた。
 (実施例2)
 (1)混紡紡績糸の作製
 本実施例においては、図1に示すような構造の混紡紡績糸10を作製した。天然植物繊維として、米国産の木綿繊維(平均繊維長28mm)、及び中国産の麻繊維(ラミー、平均繊維長38mm)を使用し、熱可塑性合成繊維としてポリプロピレン(ダイワボウポリテック社製、商品名“PN-17038”、単繊維繊度1.6dtex,平均繊維長38mm)繊維(PP繊維)を使用した。混紡方法は、練条工程において、各スライバーを所定の割合になるように混合して供給することにより混紡した。精紡はリング精紡とし、目標番手7番(綿番手)となるように混紡糸を製造した。
 (2)シート成形
 成形時間を2分間として以外は、実施例1と同様の方法にてシート成形を行った。なお、曲げ試験片については、実施例1と同様に巻き付け本数を2倍にして作成した。
 (3)物性の測定
 実施例1と同様の方法にて糸物性と引張弾性率、引張強度、曲げ弾性率、曲げ強度を測定した。この実験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000003
 表2から明らかなとおり、本発明の実施例品は、引張弾性率、曲げ弾性率、曲げ強度がいずれも高かった。また、本発明の実施例品の混紡紡績糸は、取り扱い性がよく、成形性が良好であることも確認できた。
 (実施例3)
 実施例1の実験番号1-1の混紡紡績糸を用いて、成形温度、成形時間、成形圧力の各条件の検討をした。図6に成形温度と引張強度の関係を示すグラフ、図7に成形時間と引張強度の関係を示すグラフ、図8に成形圧力と引張強度の関係を示すグラフを各々示す。
 図6から明らかなとおり成形温度(金型温度)は180~200℃が好ましかった。また、図7から明らかなとおり成形時間は2~10分であれば問題はなかった。また、図8から明らかなとおり成形圧力は2~8MPaの範囲であれば問題はなかった。
1a~1f,3a~3b,10~13、21a 繊維強化樹脂用紡績糸
2 メタルフレーム
4,5 熱プレス金型
6 編針
7,8 ステッチング糸
21b 樹脂中に埋め込まれた紡績糸

Claims (8)

  1.  天然植物繊維と合成繊維を含む繊維強化樹脂(FRP)用紡績糸であって、
     前記天然植物繊維と前記合成繊維は混紡糸であり、
     前記合成繊維はFRPにしたときにマトリックス樹脂となる熱可塑性合成繊維であることを特徴とする繊維強化樹脂用紡績糸。
  2.  前記天然植物繊維は、木綿、麻、カポック及び竹から選ばれる少なくとも一つの繊維である請求項1に記載の繊維強化樹脂用紡績糸。
  3.  前記熱可塑性合成繊維を構成する樹脂の融点は、90℃以上200℃以下である請求項1に記載の繊維強化樹脂用紡績糸。
  4.  前記熱可塑性合成繊維は、ポリプロピレン(PP)、ポリエチレン(PE)、及びこれらの共重合体、共重合ポリエステル、共重合ポリアミド、ポリ塩化ビニル、共重合ポリアセタール、ポリ乳酸又はポリコハク酸ブチルの繊維である請求項1又は3に記載の繊維強化樹脂用紡績糸。
  5.  前記天然植物繊維と、前記合成繊維の配合割合は、重量比で天然植物繊維糸:合成繊維=80:20~30:70の範囲である請求項1~4のいずれかに記載の繊維強化樹脂用紡績糸。
  6.  請求項1~5のいずれか1項に記載の繊維強化樹脂用紡績糸を、織物、編物、多軸挿入たて編物、又は組み物とした繊維強化樹脂用中間体。
  7.  請求項6に記載の繊維強化樹脂用中間体を、前記合成繊維の融点以上の金型温度に加熱してプレス成形した繊維強化樹脂成形体。
  8.  請求項1~5のいずれか1項に記載の繊維強化樹脂用紡績糸を少なくとも一方向に配列し、前記合成繊維の融点以上の金型温度で加熱してプレス成形した繊維強化樹脂成形体。
PCT/JP2010/067578 2009-11-17 2010-10-06 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体 WO2011062007A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2010800519780A CN102713036A (zh) 2009-11-17 2010-10-06 纤维强化树脂用纺纱和中间体以及使用其的纤维强化树脂成型体
JP2011541850A JP5780968B2 (ja) 2009-11-17 2010-10-06 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体
US13/504,000 US20120220179A1 (en) 2009-11-17 2010-10-06 Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using the same
EP10831404.8A EP2503036A4 (en) 2009-11-17 2010-10-06 GUNPUNED YARN AND INTERMEDIATE PRODUCT FOR A FIBER-REINFORCED RESIN OF ART AND FORMING OF FIBER-REINFORCED RESIN WITH THIS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-261529 2009-11-17
JP2009261529 2009-11-17

Publications (1)

Publication Number Publication Date
WO2011062007A1 true WO2011062007A1 (ja) 2011-05-26

Family

ID=44059491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067578 WO2011062007A1 (ja) 2009-11-17 2010-10-06 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体

Country Status (5)

Country Link
US (1) US20120220179A1 (ja)
EP (1) EP2503036A4 (ja)
JP (1) JP5780968B2 (ja)
CN (1) CN102713036A (ja)
WO (1) WO2011062007A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492808B (en) * 2011-07-13 2013-11-20 Global Composites Group Ltd High speed composite manufacture
JP2013245328A (ja) * 2012-05-29 2013-12-09 Kurabo Ind Ltd 繊維強化樹脂ペレット、その製造方法及び繊維強化樹脂成形体
JP2014095049A (ja) * 2012-11-12 2014-05-22 Polymer Associates Kk セルロース系繊維強化熱可塑性樹脂複合成形体
JP2015151475A (ja) * 2014-02-14 2015-08-24 ユニチカトレーディング株式会社 繊維強化プラスチック
WO2020170469A1 (ja) * 2019-02-19 2020-08-27 ダイワボウホールディングス株式会社 紡績糸、その製造方法及びそれを含む布帛

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103243428A (zh) * 2013-05-21 2013-08-14 海安县鑫荣纺织有限责任公司 一种棉纤维、竹纤维和木棉纤维的混纺纱
US10053801B2 (en) 2014-01-28 2018-08-21 Inman Mills Sheath and core yarn for thermoplastic composite
US9410270B2 (en) 2014-08-22 2016-08-09 Nike, Inc. Thread structure composition and method of making
US20160201231A1 (en) * 2015-01-09 2016-07-14 Dennis Lenz Renewably sourced yarn and method of manufacturing same
US20180355523A1 (en) * 2015-01-09 2018-12-13 Mill Direct, Inc. Renewably Sourced Yarn and Method of Manufacturing Same
CN105755619A (zh) * 2016-05-15 2016-07-13 孙宁 一种棉麻混纺纤维丝
JP6310608B1 (ja) * 2017-06-30 2018-04-11 古河電気工業株式会社 電線用外装体及び外装体付きワイヤーハーネス
CN107326496A (zh) * 2017-08-29 2017-11-07 如皋市达瑞织造有限公司 一种棉、金属、竹纤维的混纺纱
EP3850132A1 (en) * 2018-09-12 2021-07-21 Inman Mills Woven fabric with hollow channel for prevention of structural damage to functional yarn, monofilament yarn, or wire contained therein
US11359309B2 (en) 2018-12-21 2022-06-14 Target Brands, Inc. Ring spun yarn and method
CN112277338B (zh) * 2020-09-30 2022-04-26 陕西科技大学 高效任意角度连续纤维增强复合材料的装置和方法
FR3125542A1 (fr) * 2021-07-23 2023-01-27 Pda Ecolab Hybridation de renforcement par fibres naturelles pour des matériaux composites et des tissus constitués de celle-ci

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710307B1 (ja) * 1969-02-27 1972-03-28
JP3193920B2 (ja) * 1990-08-31 2001-07-30 松下電器産業株式会社 スピーカ用ダンパー
JP2004143401A (ja) 2002-08-27 2004-05-20 Matsushita Electric Works Ltd 植物繊維を用いた繊維強化プラスチック
JP2004149930A (ja) 2002-10-28 2004-05-27 Matsushita Electric Works Ltd 植物繊維シート、その製造方法及びこれを用いた繊維強化プラスチック
JP2007138361A (ja) 2005-11-22 2007-06-07 Kurabo Ind Ltd 繊維強化熱可塑性樹脂成形体
JP2008240193A (ja) 2007-03-27 2008-10-09 Kurabo Ind Ltd 繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体
JP2009067879A (ja) * 2007-09-13 2009-04-02 Kurabo Ind Ltd 繊維強化熱硬化性樹脂成形体

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU680839B2 (en) * 1992-10-14 1997-08-14 Shaw Industries Group, Inc. Synthetic yarn with heat-activated binder fiber
US5698480A (en) * 1994-08-09 1997-12-16 Hercules Incorporated Textile structures containing linear low density polyethylene binder fibers
DE19613965A1 (de) * 1996-04-09 1997-10-16 Hoechst Trevira Gmbh & Co Kg Schrumpfarme Hybridgarne, Verfahren zu deren Herstellung und deren Verwendung
US6820406B2 (en) * 2001-05-14 2004-11-23 Cargill, Incorporated Hybrid yarns which include plant bast fiber and thermoplastic fiber, reinforcement fabrics made with such yarns and thermoformable composites made with such yarns and reinforcement fabrics
US20030157323A1 (en) * 2001-05-14 2003-08-21 Mikhail Khavkine Hybrid yarns which include oil seed flax plant bast fiber and other fibers and fabrics made with such yarns
CN1215209C (zh) * 2001-10-16 2005-08-17 泰山玻璃纤维股份有限公司 一种由玻璃纤维和聚丙烯纤维组成的复合纤维的制造方法
US7825050B2 (en) * 2006-12-22 2010-11-02 Milliken & Company VOC-absorbing nonwoven composites
IL184285A0 (en) * 2007-06-28 2007-10-31 Wangenheim Keren Elen Hardened fabric product and production process therefor
JP5053141B2 (ja) * 2008-03-25 2012-10-17 ユニチカトレーディング株式会社 紡績糸及びその製造方法
WO2009131149A1 (ja) * 2008-04-24 2009-10-29 倉敷紡績株式会社 繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710307B1 (ja) * 1969-02-27 1972-03-28
JP3193920B2 (ja) * 1990-08-31 2001-07-30 松下電器産業株式会社 スピーカ用ダンパー
JP2004143401A (ja) 2002-08-27 2004-05-20 Matsushita Electric Works Ltd 植物繊維を用いた繊維強化プラスチック
JP2004149930A (ja) 2002-10-28 2004-05-27 Matsushita Electric Works Ltd 植物繊維シート、その製造方法及びこれを用いた繊維強化プラスチック
JP2007138361A (ja) 2005-11-22 2007-06-07 Kurabo Ind Ltd 繊維強化熱可塑性樹脂成形体
JP2008240193A (ja) 2007-03-27 2008-10-09 Kurabo Ind Ltd 繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体
JP2009067879A (ja) * 2007-09-13 2009-04-02 Kurabo Ind Ltd 繊維強化熱硬化性樹脂成形体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2503036A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2492808B (en) * 2011-07-13 2013-11-20 Global Composites Group Ltd High speed composite manufacture
JP2013245328A (ja) * 2012-05-29 2013-12-09 Kurabo Ind Ltd 繊維強化樹脂ペレット、その製造方法及び繊維強化樹脂成形体
JP2014095049A (ja) * 2012-11-12 2014-05-22 Polymer Associates Kk セルロース系繊維強化熱可塑性樹脂複合成形体
JP2015151475A (ja) * 2014-02-14 2015-08-24 ユニチカトレーディング株式会社 繊維強化プラスチック
WO2020170469A1 (ja) * 2019-02-19 2020-08-27 ダイワボウホールディングス株式会社 紡績糸、その製造方法及びそれを含む布帛

Also Published As

Publication number Publication date
EP2503036A1 (en) 2012-09-26
EP2503036A4 (en) 2015-09-30
JPWO2011062007A1 (ja) 2013-04-04
JP5780968B2 (ja) 2015-09-16
US20120220179A1 (en) 2012-08-30
CN102713036A (zh) 2012-10-03

Similar Documents

Publication Publication Date Title
JP5780968B2 (ja) 繊維強化樹脂用紡績糸と中間体及びこれを用いた繊維強化樹脂成形体
WO2009131149A1 (ja) 繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体
JP4748717B2 (ja) 繊維強化熱可塑性樹脂成形体
JP4810481B2 (ja) 繊維強化樹脂用複合糸と中間体及びこれを用いた繊維強化樹脂成形体
ES2716977T3 (es) Método para producir un agregado de fibra de carbono y método para producir plástico reforzado con fibra de carbono
KR102023790B1 (ko) 탄소 섬유 복합 재료
JP2018080442A (ja) 平面状複合材料
JP5911755B2 (ja) 繊維強化樹脂ペレットの製造方法及び繊維強化樹脂成形体の製造方法
CN104853893B (zh) 制备半成品的方法和用于制备复合模塑件、尤其是纤维复合模塑件的半成品以及复合模塑件、尤其是纤维复合模塑件
JP5919755B2 (ja) 繊維材料の製造方法
TW201231257A (en) Article of carbon fiber strengthened plastic
US20180071957A1 (en) Fiber-reinforced composite material molded article and method for manufacturing same
KR101439150B1 (ko) 탄소연속섬유/열가소성수지섬유 복합사 및 이의 제조방법
JP6142737B2 (ja) 熱可塑性プリプレグ及び熱可塑性プリプレグの製造方法
JP6083239B2 (ja) 繊維強化プラスチックおよびその製造方法
JP2014234427A (ja) 繊維強化樹脂用繊維集合体、繊維強化樹脂シート及び繊維強化樹脂成形体
US20170259459A1 (en) Production method for fiber-reinforced thermoplastic resin composite material, production method for fiber-reinforced thermoplastic resin tape, production method for press-molding material, production method for molded article, unidirectional prepreg, and molded article
EP3837109B1 (en) Semi -finished composite materials containing natural fibers and production thereof
WO2009130495A3 (en) Producing yarn
JP6912044B2 (ja) 耐熱性多軸ステッチ基材
JP2013091252A (ja) 炭素繊維強化樹脂成形品及びその製造方法
JP2004034592A (ja) 繊維強化複合材の製造方法及び繊維構造体
JP6458589B2 (ja) シート材料、一体化成形品および一体化成形品の製造方法
JP2581073B2 (ja) 複合成形用シ−ト及びその製造方法
Asghar An experimental study of the mechanical properties of jute/polypropylene composites manufactured by the commingled yarn and thermoforming

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051978.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831404

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011541850

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13504000

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 4784/CHENP/2012

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2010831404

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010831404

Country of ref document: EP