WO2011061919A1 - 高温組付体、高温組付体の製造方法、耐熱シール剤 - Google Patents

高温組付体、高温組付体の製造方法、耐熱シール剤 Download PDF

Info

Publication number
WO2011061919A1
WO2011061919A1 PCT/JP2010/006700 JP2010006700W WO2011061919A1 WO 2011061919 A1 WO2011061919 A1 WO 2011061919A1 JP 2010006700 W JP2010006700 W JP 2010006700W WO 2011061919 A1 WO2011061919 A1 WO 2011061919A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
refractory
resistant sealant
assembly
ceramic particles
Prior art date
Application number
PCT/JP2010/006700
Other languages
English (en)
French (fr)
Inventor
浩勝 八反田
智博 余多分
Original Assignee
東京窯業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2009262935A external-priority patent/JP5523067B2/ja
Priority claimed from JP2010132541A external-priority patent/JP2011256079A/ja
Priority claimed from JP2010203079A external-priority patent/JP5701548B2/ja
Application filed by 東京窯業株式会社 filed Critical 東京窯業株式会社
Priority to IN3922DEN2012 priority Critical patent/IN2012DN03922A/en
Priority to US13/509,586 priority patent/US20120276387A1/en
Priority to CN2010800524435A priority patent/CN102630191A/zh
Priority to CA2780625A priority patent/CA2780625C/en
Priority to KR1020117006490A priority patent/KR101232921B1/ko
Priority to BR112012010990A priority patent/BR112012010990A2/pt
Priority to KR1020127025885A priority patent/KR101230123B1/ko
Publication of WO2011061919A1 publication Critical patent/WO2011061919A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/58Pouring-nozzles with gas injecting means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/52Manufacturing or repairing thereof
    • B22D41/54Manufacturing or repairing thereof characterised by the materials used therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Definitions

  • the present invention relates to a high-temperature assembly such as a tundish upper nozzle, a method for producing the high-temperature assembly, and a heat-resistant sealant used in these.
  • a gas blowing nozzle that performs gas bubbling by blowing a gas into a molten metal such as a molten metal is used.
  • the gas blowing nozzle includes a refractory having a gas passage through which a gas flows and an iron skin surrounding the refractory (Patent Document 1).
  • Patent Document 1 a molten metal nozzle that allows molten metal such as molten steel to pass therethrough is also provided.
  • the molten metal nozzle has a refractory having a molten metal passage through which the molten metal passes and an iron skin surrounding the refractory. Even in this case, it is required to further improve the sealing performance in the boundary region between the refractory and the iron skin.
  • the present invention provides a high-temperature assembly that is advantageous for enhancing the sealing performance in the boundary region between the first member and the second member used in a heated high-temperature environment, a method for manufacturing the high-temperature assembly, and a heat-resistant sealant. In offer.
  • the high-temperature assembly includes at least a first member and a second member, and is used in a high-temperature region including a heat-resistant sealant disposed in a boundary region between the first member and the second member.
  • the heat-resistant sealant is characterized in that it contains first ceramic particles and second ceramic particles that form ceramics that expand in volume when synthesized as active ingredients.
  • To contain as an active ingredient means to contain as ceramic particles that form a ceramic that expands in volume when synthesized (fired).
  • the high temperature assembly is used in a high temperature region of 800 to 2000 ° C., for example.
  • the heat resistant sealant is heated to a high temperature region of, for example, 800 to 2000 ° C. for a long time.
  • a method for producing a high-temperature assembly includes a first heat-resistant sealant containing first ceramic particles and second ceramic particles, which form volume-expanded ceramics when synthesized, an active ingredient, a first member, A first step of preparing two members; and a first step of assembling at least the first member and the second member so as to interpose a heat-resistant sealant in a boundary region between the first member and the second member.
  • the first ceramic particles and the second ceramic particles are synthesized by heating and baking the heat-resistant sealant at at least one of the heating temperature of the assembly and the heating temperature of the assembly before carrying the assembly
  • the ceramic agent according to the present invention is a heat-resistant sealing agent disposed in a boundary region between the first member and the second member, and the first ceramic particles and the first ceramic particles that form ceramics that expand in volume when synthesized (fired). 2 Ceramic particles are contained as an active ingredient.
  • the heat-resistant sealant before synthesis (before firing) is interposed in the boundary region between the first member and the second member.
  • at least one of the operating temperature of the assembly when using the assembly, the heating temperature of the assembly before using the assembly, and the heating temperature of the assembly before loading the assembly is heated and fired.
  • the first ceramic particles and the second ceramic particles constituting the heat-resistant sealant are synthesized (fired) to form ceramics, and the boundary region between the first member and the second member of the assembly is sealed.
  • the heat resistant sealant expands to form a seal layer. Expansion of the seal layer remains.
  • the sealing property in the boundary region between the first member and the second member can be enhanced by the residual expansion of the seal layer.
  • the heating temperature (use temperature) of the assembly is, for example, a high temperature range of 800 to 2000 ° C. Therefore, since the heat-resistant sealant before synthesis interposed in the boundary region between the first member and the second member is also heated to a high temperature, the first ceramic particles and the second ceramic particles contained in the heat-resistant sealant are not reacted. Ceramics (for example, mullite, spinel, etc.) that expand more than the volume are formed.
  • the first and second members of the assembly are formed by synthesizing (firing) the first ceramic particles and the second ceramic particles constituting the heat-resistant sealing agent to form ceramics. Seal the border area.
  • the sealing performance in the boundary region between the first member and the second member can be improved. Since it is a heat-resistant sealant before synthesis, it can be directly applied to a member requiring sealability before synthesis. When the heat-resistant sealant is baked, it expands to form a seal layer having residual expansion. Expansion (residual expansion) can improve the sealing performance in the gap.
  • sticker part you may bake by heating at the temperature at the time of use of a high temperature assembly.
  • it may be separately heated and fired before the high temperature assembly is used, or before the high temperature assembly is brought into the factory.
  • it heats and bakes at the temperature at the time of use of a high temperature assembly, it does not require a separate baking step for heating and baking the heat-resistant seal portion, and thus is simple.
  • FIG. 2 is a cross-sectional view of a tundish upper nozzle according to Embodiment 1.
  • FIG. It is sectional drawing of the tundish upper nozzle which concerns on Embodiment 2.
  • FIG. It is sectional drawing of the blowing plug which concerns on Embodiment 5.
  • FIG. FIG. 6 is a cross-sectional view of a blow plug according to Embodiment 5 and is a cross-sectional view taken along line IV-IV in FIG. 3.
  • FIG. 7 shows the microscope picture of the structure
  • FIG. 10 is a cross-sectional view of a main part of Embodiment 8. It is sectional drawing of the tundish upper nozzle which concerns on Embodiment 9. FIG. It is sectional drawing of the tundish upper nozzle which concerns on Embodiment 10.
  • FIG. 10 is a cross-sectional view of a main part of Embodiment 8. It is sectional drawing of the tundish upper nozzle which concerns on Embodiment 9.
  • FIG. It is sectional drawing of the tundish upper nozzle which concerns on Embodiment 10.
  • 1 is upper porous refractory
  • 2 is lower porous refractory
  • 3 is dense refractory
  • 3a is upper dense refractory
  • 3b is lower dense refractory
  • 4 is upper gas introduction passage
  • 5 is lower gas introduction passage
  • 6 is an outer skin
  • 7 is a passage
  • 8 is a sealing layer
  • 9 is a skin.
  • the ceramic that undergoes volume expansion when synthesized is preferably mullite.
  • the first ceramic particles are preferably formed of silica and the second ceramic particles are preferably formed of alumina.
  • mullite is synthesized (fired) as in the following formula (1). 2SiO 2 + 3Al 2 O 3 ⁇ 3Al 2 O 3 ⁇ 2SiO 2 (Mullite) (1)
  • the synthesized mullite (3Al 2 O 3 .2SiO 2 ) expands in volume from before the reaction. In this case, the pores in the heat resistant sealant are easily closed.
  • a heat-resistant sealant can be formed by kneading a material containing silica (SiO 2 ) and more alumina (Al 2 O 3 ) than SiO 2 with a dispersion medium such as water.
  • combines is a spinel.
  • the first ceramic particles are formed of magnesia and the second ceramic particles are formed of alumina.
  • spinel is synthesized (fired) as shown in the following equation (2). MgO + Al 2 O 3 ⁇ MgO ⁇ Al 2 O 3 (Spinel) (2) The volume of the synthesized spinel (MgO.Al 2 O 3 ) expands from before the reaction.
  • the particle size of one of the first ceramic particles and the second ceramic particles constituting the heat-resistant sealant before synthesis is preferably 30 micrometers or less. In this case, it is preferable that one particle diameter is 30 micrometers or less, 20 micrometers or less, 10 micrometers or less, and 5 micrometers or less. When the particle size is small, the reactivity can be increased.
  • the other particle size of the first ceramic particles and the second ceramic particles is preferably 200 micrometers or less, 100 micrometers or less, 50 micrometers or less, 30 micrometers or less, or 20 micrometers or less.
  • the thickness of the sealing layer formed with a heat-resistant sealant before and after synthesis varies depending on the use, size, and type of the high-temperature assembly, but examples are 0.2 to 20 mm and 0.2 to 10 mm.
  • the high-temperature assembly includes a first member, a second member, and a heat-resistant sealant disposed in a boundary region between the first member and the second member, and is used in a high-temperature region.
  • the heat resistant sealant before synthesis contains, as active ingredients, first ceramic particles and second ceramic particles that form ceramics that expand in volume when synthesized. Since the volume expands, the sealing performance in the boundary region between the first member and the second member is enhanced.
  • Examples of the combination of the first member and the second member include a combination of a refractory and a metal, a combination of a refractory and a refractory, and a combination of a metal and a metal.
  • Examples of the metal include carbon steel, alloy steel, cast iron, cast steel, titanium, titanium alloy, aluminum, and aluminum alloy. If a metal exists in the combination of the first member and the second member, the heat conduction to the heat-resistant sealant can be enhanced.
  • Examples of the refractory include at least one of a porous refractory and a dense refractory. Examples of the metal include at least one of a cylindrical shape, a box shape, a wall shape, and a plate shape.
  • kyanite and andalusite are sillimitite minerals.
  • the ceramic in the heat-resistant sealant before synthesis is 100%, it is possible to adopt a form in which at least one of kyanite and andalusite is contained by 0.01 to 40% by mass ratio.
  • Sillimanite group minerals are believed to decompose by heating to mullite and silica. Since mullite has a lower specific gravity than sillimanite group minerals, it causes volume change (expansion). The larger the kyanite and andalusite particle size, the larger the residual expansion. When the particle size is small, the effect on the residual expansion is hardly obtained.
  • the blowing nozzle is a tundish upper nozzle (high temperature assembly).
  • This nozzle is an upper nozzle of a tundish sliding nozzle device mounted on the bottom of a tundish that stores molten metal used in a continuous casting machine.
  • the tundish upper nozzle is disposed on the lower side relative to the upper porous refractory 1 and the upper porous refractory 1 in the form of a cylinder having pores 1m that exhibit gas permeability disposed relatively on the upper side.
  • a cylindrical lower refractory 2 having pores 2m exhibiting gas permeability, and a cylindrical dense refractory 3 interposed between an upper porous refractory 1 and a lower porous refractory 2;
  • An upper gas introduction pipe 4 as an upper gas introduction passage for supplying blowing gas to the upper porous refractory 1, a lower gas introduction pipe 5 as a lower gas introduction passage for supplying blowing gas to the lower porous refractory 2, and an upper stage
  • An outer iron skin 6 having a cylindrical shape that functions as an iron skin as a metal skin that surrounds and holds the outer peripheral surfaces of the porous refractory 1, the dense refractory 3 and the lower porous refractory 2; Thereby, the passage 7 for the molten metal passage extending in the vertical direction is formed.
  • Reference numeral 16 denotes an auxiliary dense refractory laminated above the upper porous refractory 1.
  • the dense refractory 3 is divided into an upper dense refractory 3a and a lower dense refractory 3b.
  • the denseness means that it is denser than the porous refractory and has lower gas permeability than the porous refractory at the same thickness.
  • a heat-resistant sealant is filled to form a seal layer 8.
  • the outer dense surfaces of the upper dense refractory 3a, the lower dense refractory 3b, and the lower porous refractory 2 are provided with an iron skin (inner metal skin) 9 attached by shrink fitting or the like.
  • the iron skin 9 is located on the inner peripheral side of the outer iron skin 6. This part is a double iron skin.
  • a seal layer 17 is interposed between the iron skin 6 (first member) and the iron skin 9 (first member).
  • the upper gas introduction pipe 4 is introduced so that the front end 4 a faces upward along the outer periphery of the dense refractory 3.
  • the tip portion 4a of the upper gas introduction pipe 4 communicates with the outer peripheral portion 1p of the upper porous refractory 1 through a ring-shaped or cylindrical gas pool 18.
  • the boundary region between the inner peripheral portion of the iron skin 9 and the outer peripheral portion of the dense refractory 3 is filled with the same heat-resistant sealant as the seal layer 8 to form the seal layer 8c, and gas can leak out. There is no such thing.
  • the lower gas introduction pipe 5 is introduced so that the front end portion 5 a is in the horizontal direction, and communicates with the outer peripheral portion 2 p of the lower porous refractory 2 through the ring-shaped gas pool 19.
  • the upper porous refractory 1 and the lower porous refractory 2 preferably have a large number of communicating pores through which gas can permeate and are formed of the same material or a similar material.
  • the material include alumina, magnesia, and zirconia.
  • the dense refractory 3 and the auxiliary dense refractory 16 are formed of a refractory fired so as to be dense. Unlike a non-fired castable layer, the porosity is extremely low and the gas permeability is low. Small, high density and high strength. That is, the dense refractory 3 has smaller gas permeability than the upper porous refractory 1 and the lower porous refractory 2 and has a denseness. “Small gas permeability” means that the gas permeability in the thickness direction is small at the same thickness.
  • the heat-resistant sealant before synthesis for forming the seal layers 8, 8c, 17 contains alumina (Al 2 O 3 ) and silica (SiO 2 ) as main components (active components).
  • the composition of the heat-resistant sealant preferably contains more alumina (Al 2 O 3 ) than silica (SiO 2 ) in terms of mass ratio (molar ratio).
  • silica and (SiO 2), silica (SiO 2) material is used a heat-sealing agent which is kneaded with water containing more alumina (Al 2 O 3).
  • the heat-resistant sealant before synthesis is applied to a boundary region between the lower surface 3d of the upper dense refractory 3a (first member) and the upper surface 3u of the lower dense refractory 3b (second member). deep.
  • the sealant before synthesis is applied to the boundary region.
  • the blowing nozzle in this state the blowing nozzle is maintained in a high temperature region.
  • a high-temperature molten metal of about 1400 to 1600 ° C. flows through the passage 7 in the direction of the arrow A1.
  • a reaction such as the formula (1) occurs in the sealant by receiving heat from the high-temperature molten metal.
  • mullite 3Al 2 O 3 .2SiO 2
  • SiO 2 having a molar ratio of 2
  • Al 2 O 3 having a molar ratio of 3.
  • the synthesized 3Al 2 O 3 .2SiO 2 (mullite) expands in volume from before the reaction. Further, when the sealing layers 8, 8c, 17 that have generated mullite are observed with a microscope, the pores in the sealing layers 8, 8c, 17 are closed.
  • mullite (3Al 2 O 3 ⁇ 2SiO 2 ) is synthesized by the heat when using the gas blowing nozzle, which is a high-temperature assembly, and the volume expands from before the reaction. It is not necessary to carry out.
  • the smaller the particle size of the silica particles (SiO 2 ) and the alumina particles (Al 2 O 3 ) the easier the synthesis reaction of the formula (1) occurs. For this reason, it is better that the particle diameters of the silica particles (SiO 2 ) and the alumina particles (Al 2 O 3 ) are small.
  • the particle size of the silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ) is preferably 100 micrometers or less, more preferably 30 micrometers or less, 10 micrometers or less, and 3 micrometers or less, and more preferably 1 micrometer.
  • the particle diameter of the silica particles (SiO 2 ) is 3 micrometers or less or 1 micrometers or less, and the particle diameter of the alumina particles (Al 2 O 3 ) is In consideration of filling 8c and 17 with high density, it is preferably 75 to 1 micrometer.
  • the composition of the heat-resistant sealant before synthesis is preferably 5 to 50% by mass of silica (SiO 2 ) and the balance of alumina (Al 2 O 3 ) from the viewpoint of volume expansion. Further, it is more preferable that silica (SiO 2 ) is 10 to 20% by mass and the remainder is alumina (Al 2 O 3 ).
  • the ceramics of the sealant before synthesis is substantially 95% or more, 98% or more, and 100% of alumina and silica in mass ratio. Therefore, it is considered that the heat-resistant sealant before firing (before the synthesis reaction) should not contain other components such as magnesia and zirconia.
  • the ceramic composition of the heat-resistant sealant before synthesis can be exemplified as follows (a) to (e). However, it is not limited to this.
  • (C) 70% of alumina particles (Al 2 O 3 ) of 100 ⁇ m or less, 10% of alumina particles (Al 2 O 3 ) of 10 ⁇ m or less, and 20 of silica particles (SiO 2 ) of 3 ⁇ m or less %. However, it is not limited to this.
  • (D) 60% of alumina particles (Al 2 O 3 ) of 50 ⁇ m or less, 20% of alumina particles (Al 2 O 3 ) of 10 ⁇ m or less, and 20 of silica particles (SiO 2 ) of 1 ⁇ m or less. %.
  • % Means mass%.
  • Alumina that has not been synthesized into mullite remains as alumina.
  • Alumina in the seal layer can contribute to improving the heat resistance of the seal layer.
  • gas for example, inert gas such as argon gas
  • gas is supplied from the gas source to the upper gas introduction pipe 4 and the lower gas introduction pipe 5.
  • the gas supplied to the upper gas introduction pipe 4 is supplied to the porous portion of the upper porous refractory 1 through the gas pool 18, and is directed from the inner peripheral surface 1i of the upper porous refractory 1 into the passage 7 (arrow B1). Blown in the direction).
  • the gas supplied to the lower gas supply pipe 5 is supplied to the porous portion of the lower porous refractory 2 via the gas pool 19, and is directed from the inner peripheral surface 2i of the lower porous refractory 2 into the passage 7 (arrow C1). Blown in the direction). This suppresses the adhesion of alumina to the sliding plate, collector nozzle, and immersion nozzle of the tundish sliding nozzle device.
  • the dense refractory 3 is formed of a baked dense fired refractory, and thus has a lower porosity and gas permeability than the porous refractories 1 and 2.
  • gas may permeate. That is, a part of the gas supplied to the upper porous refractory 1 may permeate through the upper dense refractory 3a to leak into the lower dense refractory 3b.
  • part of the gas supplied to the lower porous refractory 2 may permeate through the lower dense refractory 3b and try to leak into the upper dense refractory 3a.
  • FIG. 1 As shown in FIG.
  • the combined seal layer 8 is interposed in the boundary region between the lower surface 3d of the upper dense refractory 3a and the upper surface 3u of the lower dense refractory 3b. ing. For this reason, the leakage from the upper dense refractory 3a to the lower dense refractory 3b is blocked. In addition, leakage from the lower dense refractory 3b to the upper dense refractory 3a is blocked. Therefore, gas supply to the upper porous refractory 1 and the lower porous refractory 2 can be performed independently.
  • the heat-resistant sealant that forms the seal layer 8 has a composition in which the volume is increased by firing (synthesis) and a gap is hardly generated in the boundary region between the upper dense refractory 3a and the lower dense refractory 3b. ing. For this reason, even if the temperature becomes high during use, it becomes difficult for the gas to leak from the seal layer 8. Further, an iron skin 9 is provided as a metal skin surrounding the outer peripheral surfaces of the upper dense refractory 3a, the lower dense refractory 3b, and the lower porous refractory 2.
  • the heat-resistant sealant is filled between the upper dense refractory 3a and the lower dense refractory 3b to form the seal layer 8
  • the upper porous refractory 1 and the upper dense refractory 3b are formed.
  • a set of upper tiers made of refractory 3a and a set of lower tiers made of lower porous refractory 2 and lower dense refractory 3b can be assembled by bonding with a heat-resistant sealant that forms seal layer 8. .
  • a seal layer 17 formed of a heat-resistant seal is interposed. Silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ), which are contained as active ingredients, are blended in the heat-resistant sealant that forms the seal layer 17.
  • the heat-resistant sealant A sealing layer 20 is formed by coating the film. Furthermore, in the boundary region between the inner peripheral portion of the upper portion 6u of the outer iron shell 6 (first member) and the outer peripheral portion of the upper porous refractory 1 (second member), the outer iron shell 6 (first member) Also in the boundary region between the inner peripheral portion of the upper portion 6u and the outer peripheral portion of the auxiliary dense chamber refractory 16 (second member), a seal layer 25 formed by applying a heat-resistant sealant is formed.
  • the sealing agent which comprises the sealing layers 8, 8c, 17, 20, and 25 is formed with the above-mentioned heat resistant sealing agent. For this reason, when the blowing nozzle is used, since the molten metal such as high-temperature molten steel passes through the passage 7, the seal layers 8, 8c, 17, 20, and 25 are heated to a high temperature by heat transfer from the molten metal or the like. Is done. Therefore, silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ) constituting the sealing agent synthesize mullite and expand in the thickness direction of the seal layer. For this reason, the sealing performance in the sealing layers 8, 8c, 17, 20, and 25 described above can be improved.
  • the seal layers 8, 8 c, 17, 20, and 25 are formed of the heat-resistant sealant according to the present embodiment, but the present invention is not limited to this, and the seal layers 8, 8 c, 17, 20, and 25 are formed. At least one of them is formed with the heat-resistant sealant according to the present embodiment, and the rest may be formed with a known sealant (such as mortar).
  • FIG. 2 shows a second embodiment.
  • This embodiment has basically the same configuration and the same function and effect as the first embodiment. However, the following points are different.
  • the dense refractory 3 is divided into an upper dense refractory 3a and a lower dense refractory 3b. And between the upper dense refractory 3a and the lower dense refractory 3b, a heat-resistant sealant that synthesizes mullite is filled to form a seal layer 8 when fired as described above.
  • the dense refractory 3 has a shape in which the upper dense refractory 3a and the lower dense refractory 3b according to Embodiment 1 are integrated.
  • the seal layer 8 of the first embodiment is not formed. Also in this embodiment, the seal layers 8c, 17, 20, and 25 are formed of the heat-resistant sealant according to this embodiment. Not limited to this, at least one of the seal layers 8c, 17, 20, 25 is formed of the heat-resistant sealant according to the present embodiment, and the rest is formed of a known sealant (such as mortar). You may decide to do it.
  • the third embodiment has basically the same configuration and the same function and effect as the first and second embodiments.
  • the silica particles (SiO 2 ) are 0.1 to 30%
  • the alumina particles (Al 2 O 3 ) are 50 to 70%
  • andalusite and One or both of the kyanite particles are contained in an amount of 0.1 to 20% (0.1 to 10%, 0.1 to 50%).
  • heated, andalusite and kyanite are aluminum silicates (Al 2 SiO 5 ), and when heated, they expand and thus expand during use, further improving sealability. be able to.
  • the particle size of the particles of andalusite or kyanite can be selected as necessary, and examples thereof include 1 to 1000 micrometers, 1 to 100 micrometers, and 5 to 50 micrometers, but are not limited thereto.
  • the larger the kyanite and andalusite particle size the larger the residual expansion. When the particle size is small, the effect on the residual expansion is hardly obtained.
  • the mixing ratio of the andalusite and / or kyanite particles may be 1 to 30% by mass ratio. If the particles of andalusite or kyanite are excessive, it is difficult to obtain a homogeneous structure.
  • FIGS. 1 and 2 are applied mutatis mutandis.
  • the ceramic that expands in volume when synthesized with a heat-resistant sealant is spinel. Therefore, in the heat resistant sealant, the first ceramic particles are formed of magnesia, and the second ceramic particles are formed of alumina.
  • the heat-resistant sealant for forming the seal layers 8, 8c, 17, 20, and 25 described above contains alumina (Al 2 O 3 ) and magnesia (MgO) as main components (active ingredients).
  • the ceramic composition of the heat-resistant sealant preferably contains more alumina (Al 2 O 3 ) than magnesia (MgO) by mass ratio.
  • a heat-resistant sealant obtained by kneading a material containing magnesia (MgO) and more alumina (Al 2 O 3 ) than silica (SiO 2 ) with water. Then, such a heat-resistant sealing agent is applied to a boundary region between the lower surface 3d of the upper dense refractory 3a (first member) and the upper surface 3u of the lower dense refractory 3b (second member). In this way, the sealant before synthesis is applied to the boundary region.
  • the blowing nozzle in this state When the blowing nozzle in this state is used, the blowing nozzle is maintained in a high temperature region.
  • a high-temperature molten metal of about 1400 to 1600 ° C. flows in the direction of arrow A1 through the passage 7.
  • Reaction as shown in the formula (2) occurs in the sealant by receiving heat from the molten metal.
  • Spinel is synthesized with MgO at a molar ratio of 1 and Al 2 O 3 at a molar ratio of 1.
  • Spinel (MgO.Al 2 O 3 ) expands in volume from before the reaction.
  • the spinel is synthesized (baked) during use due to the heat during use of the gas blowing nozzle, which is a high-temperature assembly, and the volume expands from before the reaction, so a heating step (synthesis step) must be performed separately. Not a problem.
  • the particle size of the magnesia particles (MgO) and the alumina particles (Al 2 O 3 ) is preferably 100 micrometers or less, more preferably 50 micrometers or less, 10 micrometers or less, and particularly preferably 1 micrometers or less.
  • the particle diameter of the magnesia particles (MgO) is 1 micrometer or less
  • the particle diameter of the alumina particles (Al 2 O 3 ) is the seal layers 8, 8c, 17,
  • the ceramics in the heat-resistant sealant before synthesis is preferably substantially 95% or more, 98% or more, and 100% for alumina and silica.
  • magnesia (MgO) is 1 to 50% by mass and the balance is alumina (Al 2 O 3 ).
  • magnesia (MgO) is 1 to 20% by mass and the remainder is alumina (Al 2 O 3 ).
  • the following forms (a) to (c) can be adopted.
  • (A) 70% of alumina particles (Al 2 O 3 ) of 75 micrometers or less, 15% of alumina particles (Al 2 O 3 ) of 10 micrometers or less, 15% of magnesia particles (MgO) of 1 micrometers or less Can be blended.
  • the seal layers 8, 8c, 17, 20, and 25 are formed of the heat-resistant sealant according to the present embodiment that synthesizes spinel when baked. At least one of the layers 8, 8 c, 17, 20, and 25 is formed of a heat-resistant sealant that synthesizes spinel according to this embodiment, but the rest is formed of a known sealant. May be.
  • Embodiment 5 3 and 4 show the fifth embodiment.
  • the present embodiment has basically the same configuration and the same function and effect as the above-described embodiment. However, the following points are different.
  • This embodiment is a case where it applies to the blowing plug (high temperature assembly) attached so that it may be embed
  • the blow plug has a refractory layer 30, an iron shell 32 surrounding the outer peripheral portion 30 p of the refractory layer 30, and a gas supply pipe 33 connected to the bottom 32 b of the iron shell 32.
  • the refractory layer 30 includes a gas passage 35 for blowing hubring gas into the molten metal M, a gas pool chamber 36 formed between the lower surface 30 d of the refractory layer 30 and the iron shell 32 and communicating with the gas passage 35. It has. Between the outer peripheral portion 30p of the refractory layer 30 and the inner peripheral portion 32i of the iron shell 32, a seal layer 38 to which a heat resistant sealant is applied is formed.
  • the ceramic of the heat-resistant sealant that forms the seal layer 38 contains alumina particles (Al 2 O 3 ) and silica particles (SiO 2 ) as main components (active components).
  • the ceramic composition of the heat-resistant sealant before synthesis preferably contains more alumina (Al 2 O 3 ) than silica (SiO 2 ) in terms of mass ratio (molar ratio).
  • silica (SiO 2), silica materials containing more alumina than (SiO 2) (Al 2 O 3) can be used a heat-sealing agent which is kneaded with water.
  • the heat-resistant sealant is applied to the outer peripheral portion 30 p of the refractory layer 30 and / or the inner peripheral portion 32 i of the iron skin 32. In this way, the sealant before synthesis is applied to the boundary region. Thereafter, the refractory layer 30 and the iron skin 32 are assembled.
  • the blowing nozzle is maintained in a high temperature region.
  • the blow plug since the blow plug is embedded in the bottom wall W of the ladle that stores the high-temperature molten metal M of about 1400 to 1650 ° C., for example, the above-mentioned (1) formula A reaction like this occurs and mullite is synthesized. Therefore, in the boundary region between the outer peripheral portion 30p of the refractory layer 30 (one of the first member and the second member) and the inner peripheral portion 32i of the iron shell 32 (the other of the first member and the second member). Sealability can be improved. If necessary, kyanite can be added to the heat-resistant sealant before synthesis.
  • the heat-resistant sealant before synthesis contains alumina particles (Al 2 O 3 ) and magnesia particles (MgO) as main components (active ingredients), as in the first embodiment.
  • the heat resistant sealant was tested.
  • ceramics of the heat-resistant sealant is 70% alumina particles (Al 2 O 3 ) having a mass ratio of 75 micrometers or less and 15% alumina particles (Al 2 O 3 ) having a diameter of 10 micrometers or less.
  • Silica particles (SiO 2 ) of 1 micrometer or less were blended at 15%.
  • the heat-resistant sealing agent was formed by mixing water and ceramics as a dispersion medium. This heat-resistant sealant was applied to the boundary region between the first member (material: high alumina) and the second member (material: high alumina). The coating thickness was 1 mm. Then, the gas was allowed to flow from the inlet toward the outlet while being heated to 1500 ° C.
  • the heat-resistant sealant according to the present invention can stably obtain high sealing performance in a high temperature region.
  • the seal layer after 120 minutes from the start of the test was observed with an optical microscope. The result is shown in FIG. As shown in FIG. 6, the sealing material constituting the sealing layer was in close contact with the nozzle body. Looking at the boundary between the nozzle body and the seal layer, it is estimated that there is a possibility that melting has occurred in part. It is considered that fine silica particles are melted. Although island-like pores (black portions) are generated in the seal layer, the pores are not open pores but closed pores. Gas cannot permeate closed pores. This also shows that the sealing performance of the sealing layer of the present invention is improved. The reason why the closed pores can be obtained is presumed to be due to volume expansion due to mullite synthesis than before the reaction. Volume expansion is considered advantageous for the formation of closed pores, not open pores. In the sealing layer, the ceramic portion other than the pores was dense. This also shows that the sealing performance of the sealing layer of the present invention is further improved.
  • FIG. 7 shows a seventh embodiment.
  • This embodiment has basically the same configuration and the same function and effect as the above-described embodiment. The same symbols are assigned to the same parts.
  • the heat-resistant sealant before synthesis for forming the seal layer 8 contains alumina (Al 2 O 3 ) and silica (SiO 2 ) as main components (active components).
  • alumina (Al 2 O 3 ) and silica (SiO 2 ) as main components (active components).
  • the dense refractory 3 is formed of a baked dense fired refractory, so the gas permeability is small, but the gas may permeate slightly. That is, a part of the gas supplied to the upper porous refractory 1 may permeate through the upper dense refractory 3a to leak into the lower dense refractory 3b. Similarly, part of the gas supplied to the lower porous refractory 2 may permeate through the lower dense refractory 3b and try to leak into the upper dense refractory 3a.
  • the present embodiment as shown in FIG.
  • the seal layer 8 is interposed in the boundary region between the lower surface 3d of the upper dense refractory 3a and the upper surface 3u of the lower dense refractory 3b. For this reason, the leakage from the upper dense refractory 3a to the lower dense refractory 3b is blocked. In addition, leakage from the lower dense refractory 3b to the upper dense refractory 3a is blocked. Therefore, gas supply to the upper porous refractory 1 and the lower porous refractory 2 can be performed independently.
  • the blow nozzle (tundish upper nozzle, high temperature assembly) is equipped on the bottom side of the tundish, which is a molten metal container for holding a high temperature molten metal (for example, molten steel), and has a cylindrical porous fireproof property with gas permeability.
  • An object 1X (one of the first member and the second member) and a metal (iron-based) cylindrical outer skin 6 surrounding the porous refractory 1X (the other of the first member and the second member) ).
  • a ring-shaped gas pool 19 is formed inside the cylindrical porous refractory 1X.
  • a gas introduction pipe 5 is provided as a lower gas introduction passage for supplying the blown gas to the gas pool 19.
  • a passage 7 for passing a molten metal extending in the vertical direction is formed along the vertical direction.
  • the porous refractory 1X has a large number of pores 1m through which gas can permeate in the thickness direction, and examples of the material include alumina, magnesia, and zirconia.
  • a ring-shaped concave pool portion 1 ⁇ / b> W around the axis P ⁇ b> 1 is formed in the boundary region between the cylindrical porous refractory 1 ⁇ / b> X and the cylindrical outer iron shell 6.
  • the concave pool portion 1W is formed in a ring shape so as to go around the upper portion of the outer peripheral portion of the cylindrical porous refractory 1X.
  • the unfired heat-resistant sealant is loaded in the concave pool portion 1W.
  • the heat-resistant sealant is fired (synthesized) by heating at the time of preheating, heating before using (carrying in) the high-temperature assembly, or heating with a molten metal when using the high-temperature assembly.
  • the seal layer 1R is formed in a ring shape around the axis P1.
  • the seal layer 1R expands as a residual expansion in the radial direction and the height direction by firing (synthesis).
  • the boundary region between the upper part of the cylindrical porous refractory 1X and the upper part 6u of the cylindrical outer iron shell 6 is sealed.
  • the synthesized sealing layer 1R is thicker than the thickness of the outer iron shell 6, and a sufficient amount of residual expansion in the radial direction is ensured.
  • the boundary region between the upper part of the cylindrical porous refractory 1X and the upper part of the cylindrical outer iron shell 6 can be satisfactorily sealed.
  • the gas blown into the gas pool 18 and the like is prevented from leaking from the boundary region to the upper end 6up side of the outer iron shell 6.
  • the overall height dimension of the iron skin 6 is indicated as HA, the center position of the height dimension is indicated as Hm, and the position 2/3 from the lower end 6d of the height dimension is indicated as Hx.
  • the sealing layer 1 ⁇ / b> R is positioned above the position Hm in the iron skin 6.
  • the seal layer 1R is located on the upper part 6u having a conical shape whose diameter decreases toward the upper end 6up of the iron skin 6.
  • the seal layer 1R is preferably positioned above the position Hx in the iron skin 6.
  • the reason is that the iron skin 6 is heated violently from the upper side by the molten metal in the tundish, and the upper side of the iron skin 6 is exposed to a high temperature environment. Because. As a result, the gas blown into the gas pool 19 or the like is prevented by the seal layer 1R from leaking to the upper end 6up side of the outer iron shell 6. In addition, it is thought that the thermal expansion in the radial direction of the iron skin 6 is smaller than the expansion amount in the radial direction of the cylindrical porous refractory 1X.
  • the heat-resistant sealant before synthesis forming the pool portion 1R described above contains alumina (Al 2 O 3 ) and silica (SiO 2 ) as main components (active components).
  • the composition of the heat-resistant sealant preferably contains more alumina (Al 2 O 3 ) than silica (SiO 2 ) by mass ratio.
  • silica (SiO 2), silica (SiO 2) materials containing more alumina (Al 2 O 3) is used a heat-sealing agent which is kneaded with water (dispersion medium).
  • the dispersion medium may be alcohol. Then, the heat-resistant sealant is loaded into the concave pool portion 1W.
  • the blowing nozzle When the blowing nozzle is used in such a loaded state, the blowing nozzle is maintained in a high temperature region.
  • a high-temperature molten metal of about 1400 to 1700 ° C. flows through the passage 7 in the direction of the arrow A1.
  • a reaction such as the formula (1) occurs in the sealant by receiving heat from the high-temperature molten metal. Since the iron shell 6 and the refractory 1X have heat transfer properties, they can contribute to the heating of the sealing agent.
  • mullite (3Al 2 O 3 .2SiO 2 ) is synthesized from SiO 2 having a molar ratio of 2 and Al 2 O 3 having a molar ratio of 3.
  • the synthesized 3Al 2 O 3 .2SiO 2 (mullite) expands in volume from before the reaction. Furthermore, even if the sealing layer 1R that has generated mullite is a dense body or has pores, the pores are closed. In this way, mullite (3Al 2 O 3 ⁇ 2SiO 2 ) is synthesized by heat when using the gas blowing nozzle, which is a high-temperature assembly, and the volume expands from before the reaction. It is not necessary to carry out.
  • the particle size of the silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ) is preferably 100 micrometers or less, more preferably 30 micrometers or less, 10 micrometers or less, and 3 micrometers or less, and more preferably 1 micrometer. The following are particularly preferred:
  • gas for example, inert gas such as argon gas
  • gas introduction pipe 5 The gas supplied to the gas supply pipe 5 is supplied to the porous portion of the porous refractory 1X through the gas pool 19, and is blown out from the inner peripheral surface 1Xi into the passage 7 (arrow C1 direction, B1 direction).
  • the heat-resistant sealing agent that forms the sealing layer 1R has a composition in which the volume is increased by firing, and a gap is hardly generated in the boundary region between the outer peripheral portion of the cylindrical porous refractory 1X and the outer iron shell 6. . For this reason, even if the temperature becomes high during use, it is difficult for gas to leak out from the boundary region.
  • the heat-resistant sealant before synthesis can contain at least one of kyanite and andalusite as necessary.
  • FIG. 9 shows the vicinity of the seal layer 1R formed by firing (synthesis) of a heat-resistant sealant.
  • the thickness of the outer skin 6 is a1
  • the maximum thickness of the combined sealing layer 1R is a2
  • the height of the sealing layer 1R is b
  • the relationship of a1 ⁇ a2 and the relationship of a1 ⁇ a2 ⁇ b are obtained.
  • a2 ⁇ b the sealing distance (slope side portion 101) of the sealing layer 1R is secured as b, and high sealing performance is obtained.
  • the cylindrical porous refractory 1X on which the seal layer 1R is formed is a porous material having a large number of pores, the expansion is absorbed by the pores, and the amount of expansion is limited.
  • the ring-shaped sealing layer 1R that can form the residual expansion that expands in the radial direction and the height direction by synthesis is advantageous in ensuring the expansion amount and, in turn, the sealing performance. is there.
  • the upper part of the cylindrical porous refractory 1X (refractory material) is conical, and the radial direction (arrow DA as it goes toward the upper end 6up side of the iron skin 6). Direction) becomes smaller.
  • the cross section of the concave pool portion 1W and the seal layer 1R is substantially triangular, and the oblique side portion 101 along the inner wall surface of the iron skin 6 and the upper side facing the cylindrical porous refractory 1X.
  • the length of the oblique side portion 101 is indicated as K1
  • the length of the oblique side portion 102 is indicated as K2
  • the length of the oblique side portion 103 is indicated as K3.
  • the relationship is K2> K3, and the relationship is K2> K1> K3.
  • the intersecting portion 104 is positioned relatively lower in the seal layer 1R.
  • the thickness of the radial direction (arrow DA direction) of the part 1X3 (refer FIG. 9) which faces the hypotenuse part 102 among the cylindrical porous refractories 1X is ensured.
  • K3 / K2 0.8 or less, 0.6 or less, and 0.4 or less.
  • FIG. 10 shows a ninth embodiment.
  • the present embodiment basically has the same configuration and the same function and effect as the first and eighth embodiments.
  • the blowing nozzle (tundish upper nozzle, high-temperature assembly) is relatively higher than the upper porous refractory 1 and the upper porous refractory 1 having gas permeability disposed on the upper side.
  • the lower porous refractory 2 having gas permeability disposed on the lower side, the dense refractory 3 interposed between the upper porous refractory 1 and the lower porous refractory 2, and the upper porous refractory
  • An upper gas introduction pipe 4 for supplying blowing gas to 1 a lower gas introduction pipe 5 for supplying blowing gas to a lower porous refractory 2, an upper porous refractory 1, a dense refractory 3 and a lower porous refractory 2.
  • a cylindrical outer shell 6 that functions as a metal skin that surrounds and holds the outer peripheral surface. Thereby, the passage 7 for the molten metal passage extending in the vertical direction is formed.
  • Reference numeral 16 denotes an auxiliary dense refractory laminated above the upper porous refractory 1.
  • a ring-shaped upper gas pool 18 is formed between the cylindrical porous refractory 1 ⁇ / b> X and the cylindrical outer iron shell 6.
  • a ring-shaped lower gas pool 19 is formed inside the cylindrical porous refractory 1X.
  • the dense refractory 3 is divided into an upper dense refractory 3a and a lower dense refractory 3b in the height direction. Between the upper dense refractory material 3a and the lower dense refractory material 3b, the heat resistant sealant is filled. Therefore, the synthesized seal layer 8 is formed.
  • the outer dense surfaces of the upper dense refractory 3a, the lower dense refractory 3b, and the lower porous refractory 2 are provided with an iron skin (inner metal skin) 9 attached by shrink fitting or the like.
  • the iron skin 9 is located on the inner peripheral side of the outer iron skin 6. This part is a double iron skin.
  • a seal layer 17 is interposed between the iron skin 6 (first member) and the iron skin 9 (first member).
  • the upper gas introduction pipe 4 is introduced so that the front end portion 4 a faces upward along the outer peripheral portion of the dense refractory 3.
  • the tip portion 4a of the upper gas introduction pipe 4 communicates with the outer peripheral portion 1p of the upper porous refractory 1 through a ring-shaped or cylindrical gas pool 18.
  • the boundary region between the inner peripheral portion of the iron skin 9 and the outer peripheral portion of the dense refractory 3 is filled with the same heat-resistant sealant as the seal layer 8 to form the seal layer 8c, and gas can leak out. There is no such thing.
  • the lower gas introduction pipe 5 is introduced so that the front end portion 5 a is in the horizontal direction, and communicates with the outer peripheral portion 2 p of the lower porous refractory 2 through the ring-shaped gas pool 19.
  • the upper porous refractory 1 and the lower porous refractory 2 have a large number of pores 1m and 2m through which gas can permeate, and are made of the same material or a similar material. Examples of the material include alumina, magnesia, and zirconia.
  • the dense refractory 3 and the auxiliary dense refractory 16 are formed of a refractory fired so as to be dense. Unlike a non-fired castable layer, the porosity is extremely low and the gas permeability is low. Small, high density and high strength. That is, the dense refractory 3 has a gas permeability smaller than that of the upper porous refractory 1 and the lower porous refractory 2 and is dense.
  • the heat-resistant sealant before synthesis for forming the seal layers 8, 8c, 17 contains alumina (Al 2 O 3 ) and silica (SiO 2 ) as main components (active components).
  • alumina Al 2 O 3
  • silica SiO 2
  • a heat-resistant sealing agent is applied to a boundary region between the lower surface 3d of the upper dense refractory 3a (first member) and the upper surface 3u of the lower dense refractory 3b (second member).
  • a heat resistant sealant is also loaded into the concave pool portion 1W formed on the outer peripheral portion of the cylindrical porous refractory 1X. In this way, the sealant before synthesis is applied to the boundary region.
  • the blowing nozzle in this state is used, the blowing nozzle is maintained in a high temperature region. In this case, for example, a high-temperature molten metal of about 1400 to 1600 ° C. flows through the passage 7 in the direction of the arrow A1.
  • a reaction such as the formula (1) occurs in the sealant by receiving heat from the high-temperature molten metal. Since the iron skins 6 and 9 and the refractories 1, 2, 3a, 3b and 16 have heat transfer properties, they can contribute to the heating of the sealing agent.
  • mullite 3Al 2 O 3 .2SiO 2
  • SiO 2 having a molar ratio of 2
  • Al 2 O 3 having a molar ratio of 3.
  • the synthesized 3Al 2 O 3 .2SiO 2 (mullite) expands in volume from before the reaction.
  • mullite (3Al 2 O 3 .2SiO 2 ) is synthesized by heat during use of the gas blowing nozzle, which is a high-temperature assembly, and the volume expands before the synthesis reaction (firing).
  • the heating process may not be performed separately.
  • the smaller the particle size of the silica particles (SiO 2 ) and the alumina particles (Al 2 O 3 ) the easier the synthesis reaction of the formula (1) occurs. For this reason, it is better that the particle diameters of the silica particles (SiO 2 ) and the alumina particles (Al 2 O 3 ) are small.
  • the particle size of the silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ) is preferably 100 micrometers or less, more preferably 30 micrometers or less, 10 micrometers or less, and 3 micrometers or less, and more preferably 1 micrometer.
  • gas for example, inert gas such as argon gas
  • gas is supplied from the gas source to the upper gas introduction pipe 4 and the lower gas introduction pipe 5.
  • the gas supplied to the upper gas introduction pipe 4 is supplied to the porous portion of the upper porous refractory 1 through the gas pool 18, and is directed from the inner peripheral surface 1i of the upper porous refractory 1 into the passage 7 (arrow B1). Blown in the direction).
  • the gas supplied to the lower gas supply pipe 5 is supplied to the porous portion of the lower porous refractory 2 via the gas pool 19, and is directed from the inner peripheral surface 2i of the lower porous refractory 2 into the passage 7 (arrow C1). Blown in the direction). This suppresses the adhesion of alumina to the sliding plate, collector nozzle, and immersion nozzle of the tundish sliding nozzle device.
  • a ring around the axis P ⁇ b> 1 is formed in the boundary region between the outer peripheral portion of the cylindrical dense refractory 16 and the inner peripheral portion of the cylindrical outer iron shell 6.
  • a concave pool portion 1W is formed.
  • the concave pool portion 1W is formed in a ring shape so as to make one round on the outer peripheral portion of the cylindrical porous refractory 1X.
  • the recessed pool portion 1W is loaded with a heat-resistant sealant. This heat-resistant sealant is baked by heat at the time of use and becomes the seal layer 1R.
  • the combined sealing layer 1R is thicker than the thickness of the iron shell 6, and is formed in a ring shape around the axis P1.
  • the seal layer 1R seals the boundary region between the upper part of the cylindrical porous refractory 1X and the upper part of the cylindrical outer iron shell 6. For this reason, it is suppressed that the gas from the gas pool 18 leaks outside from the said boundary area, ie, the upper part of the outer side iron shell 6.
  • FIG. The seal layer 1R is positioned above the position Hm in the iron skin 6.
  • the seal layer 1R is preferably positioned above the position Hx in the iron skin 6.
  • the iron skin 6 is heated violently from the upper side by the hot molten metal held in the tundish.
  • the upper side of the iron skin 6 is exposed to a severe high temperature environment. For this reason, it is because it is preferable to improve sealing performance.
  • the seal layer 1R may be located between the position Hx and the position Hm. As shown in FIG. 3, the dense refractory 16 holding the seal layer 1R is dense and has a very low porosity. For this reason, the amount of expansion in the radial direction of the seal layer 1R is suppressed from being absorbed by the dense refractory 16, and can contribute to enhancing the sealing performance.
  • the dense refractory 3 is formed of a dense fired refractory that has been fired in advance, so that the gas permeability is small, but gas may permeate slightly. That is, a part of the gas supplied to the upper porous refractory 1 may permeate through the upper dense refractory 3a to leak into the lower dense refractory 3b. Similarly, part of the gas supplied to the lower porous refractory 2 may permeate through the lower dense refractory 3b and try to leak into the upper dense refractory 3a.
  • the seal layer 8 is interposed in the boundary region between the lower surface 3d of the upper dense refractory 3a and the upper surface 3u of the lower dense refractory 3b. For this reason, the leakage from the upper dense refractory 3a to the lower dense refractory 3b is blocked. In addition, leakage from the lower dense refractory 3b to the upper dense refractory 3a is blocked. Therefore, gas supply to the upper porous refractory 1 and the lower porous refractory 2 can be performed independently.
  • the heat-resistant sealant that forms the seal layer 8 has a composition in which the volume is increased by firing and a gap is hardly generated in the boundary region between the upper dense refractory 3a and the lower dense refractory 3b. For this reason, even if the temperature becomes high during use, it becomes difficult for the gas to leak from the seal layer 8.
  • an iron skin 9 is provided as a metal skin surrounding the outer peripheral surfaces of the upper dense refractory 3a, the lower dense refractory 3b, and the lower porous refractory 2.
  • the heat-resistant sealant is filled between the upper dense refractory 3 a and the lower dense refractory 3 b to form the seal layer 8. Therefore, the seal layer 8 is formed by a set of the upper stage made of the upper porous refractory 1 and the upper dense refractory 3a and a set of the lower stage made of the lower porous refractory 2 and the lower dense refractory 3b. Can be assembled with heat-resistant sealant. Further, according to the present embodiment, as described above, between the iron skin 6 (one of the first member and the second member) and the iron skin 9 (the other of the first member and the second member). Also, a seal layer 17 formed of a heat-resistant seal is interposed.
  • Silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ), which are contained as active ingredients, are blended in the heat-resistant sealant that forms the seal layer 17. Further, in the boundary region between the lower portion 6d of the outer skin 6 (one of the first member and the second member) and the lower porous refractory 2 (the other of the first member and the second member), the heat-resistant sealant A sealing layer 20 is formed by coating the film.
  • a seal layer 25 formed by applying a heat-resistant sealant is formed.
  • the sealing agent which comprises the sealing layer 1R and the sealing layers 8, 8c, 17, 20, and 25 is formed with the above-mentioned heat-resistant sealing agent.
  • the seal layers 8, 8c, 17, 20, and 25 are transferred by heat transfer from the molten metal such as molten steel. Is heated to a high temperature. Therefore, the silica particles (SiO 2 ) and alumina particles (Al 2 O 3 ) constituting the sealing agent synthesize mullite and expand. For this reason, the sealing performance in the sealing layers 8, 8c, 17, 20, and 25 described above can be improved.
  • the seal layer 1R and the seal layers 8, 8c, 17, 20, and 25 may be heated to a high temperature by preheating before use or heating before carrying in the assembly.
  • the seal layers 8, 8 c, 17, 20, and 25 are formed of the heat-resistant sealant according to the present embodiment, but the present invention is not limited to this, and the seal layers 8, 8 c, 17, 20, and 25 are formed. At least one of them is formed with the heat-resistant sealant according to the present embodiment, and the rest may be formed with a known sealant (such as mortar).
  • the heat-resistant sealant before synthesis can contain at least one of kyanite and andalusite as necessary.
  • FIG. 11 shows a tenth embodiment.
  • the present embodiment has basically the same configuration and the same function and effect as the above-described embodiment.
  • a ring-shaped concave pool portion 1W around the axis P1 is formed in the boundary region between the cylindrical dense refractory 16 and the cylindrical outer iron shell 6. ing.
  • the recessed pool portion 1W is formed so as to make one round in the outer peripheral portion of the cylindrical dense refractory 16. At the time of assembly, the recessed pool portion 1W is loaded with an unfired or semi-fired heat resistant sealant.
  • This heat-resistant sealant is baked by the heat of the molten metal that passes through the passage 7 during use, thereby forming the seal layer 1R.
  • the seal layer 1R is formed in a ring shape around the axis P1.
  • the seal layer 1R is formed of mullite or spinel that expands when synthesized, and expands in the radial direction (DA direction) and the height direction.
  • DA direction radial direction
  • the boundary region between the outer peripheral portion of the dense refractory 16 and the inner peripheral portion of the cylindrical outer iron shell 6 is sealed. For this reason, it is suppressed that the gas of the gas pool 18 leaks from the upper end 6up side of the iron skin 6 through the said boundary area
  • the ring-shaped concave pool portion 16W is formed around the axis P1. .
  • the recessed pool portion 16W is filled with an unfired heat resistant sealant.
  • the loaded heat-resistant sealant is baked (synthesized) by heat from the molten metal at the time of use, heating before use of the high-temperature assembly, or heating before carrying in the high-temperature assembly.
  • a spinel is formed to expand in the radial direction and the height direction to form the seal layer 16R. This expansion exists as a residual expansion.
  • the urging force FA see FIG.
  • the heat-resistant sealant before synthesis can contain at least one of kyanite and andalusite as necessary. As shown in FIG.
  • the seal layer 1 ⁇ / b> R is positioned above the center height position Hm in the iron skin 6.
  • the seal layer 1R is preferably positioned above the position Hx in the height direction in the iron skin 6. This is because the iron skin 6 disposed on the lower side of a hot water storage container such as tundish is vigorously heated from the upper side thereof, and the upper side of the iron skin 6 is exposed to a severe high temperature environment, so that it is preferable to improve the sealing property.
  • the cross sections of the recessed pool portion 1W and the seal layer 1R are substantially trapezoidal, but they may be triangular in cross section.
  • the heat-resistant sealant before synthesis can contain at least one of kyanite and andalusite as necessary.
  • the high-temperature assembly according to the present invention can be widely used in a high-temperature region where a molten metal such as molten steel, molten iron, molten aluminum, or molten titanium is used, a high-temperature region exposed to high-temperature gas, and the like.
  • the combination of the first member and the second member may be a combination of refractory-refractory, metal-metal, refractory-metal, metal-refractory.
  • the refractory include bricks such as regular bricks, and castables obtained by drying and solidifying a refractory material having fluidity.
  • the metal include a metal shell and a metal plate.
  • the boundary area between the first dense refractory and the second dense refractory may be sealed with a seal layer expanded by synthesis.
  • the boundary area between the first porous refractory and the second porous refractory may be sealed with a sealing layer expanded by synthesis.
  • the boundary area between the porous refractory and the dense refractory may be sealed with a seal layer expanded by synthesis. It is also possible to seal between at least one of the porous refractory and the dense refractory and the iron skin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)
  • Gasket Seals (AREA)

Abstract

高温環境で使用される第1部材と第2部材との境界領域におけるシール性を高めるのに有利な高温組付体、高温組付体の製造方法、耐熱シール剤が提供される。第1部材と第2部材との境界領域に配置される耐熱シール剤は、合成されると体積膨張するセラミックスを形成する複数の材質のセラミックス粒子を含有する。

Description

高温組付体、高温組付体の製造方法、耐熱シール剤
 本発明はタンディッシュ上部ノズル等の高温組付体、高温組付体の製造方法、これらに使用される耐熱シール剤に関する。
 溶湯等の金属溶湯にガスを吹き込んでガスバブリングを行うガス吹き込みノズルが使用されている。ガス吹き込みノズルは、ガスを流すガス通路を有する耐火物と、耐火物を包囲する鉄皮とを有する(特許文献1)。しかし、耐火物と鉄皮との境界領域のシール性を更に高めることが要請されている。更に、溶鋼等の溶湯を通過させる溶湯ノズルも提供されている。溶湯ノズルは、溶湯を通過させる溶湯通路を有する耐火物と、耐火物を包囲する鉄皮とを有する。この場合においても、耐火物と鉄皮との境界領域のシール性を更に高めることが要請されている。
特開2007-262471号公報
 本発明は、加熱される高温環境で使用される第1部材と第2部材との境界領域におけるシール性を高めるのに有利な高温組付体、高温組付体の製造方法、耐熱シール剤を提供するにある。
 本発明に係る高温組付体は、少なくとも第1部材および第2部材を具備すると共に、第1部材と第2部材との境界領域に配置された耐熱シール剤とを具備する高温領域で使用される高温組付体であって、耐熱シール剤は、合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有することを特徴とする。有効成分として含有するとは、合成(焼成)されると体積膨張するセラミックスを形成するセラミックス粒子として含有するという意味である。高温組付体は、例えば800~2000℃の高温領域で使用されるものである。耐熱シール剤は例えば800~2000℃の高温領域に長時間にわたり加熱される。
 本発明に係る高温組付体の製造方法は、合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有する耐熱シール剤と、第1部材と、第2部材とを用意する第1工程と、第1部材と第2部材との境界領域に耐熱シール剤を介在させるように少なくとも第1部材と第2部材とを組み付けて組付体を形成する第2工程と、組付体の第1部材と第2部材との境界領域に耐熱シール剤を介在させた状態で、組付体の使用時における組付体の使用温度、組付体の使用前における組付体の加熱温度、組付体の搬入前における組付体の加熱温度のうちの少なくとも一つで、耐熱シール剤を加熱して焼成させ、第1セラミックス粒子および第2セラミックス粒子を合成させて体積膨張するセラミックスを形成して組付体の第1部材と第2部材との境界領域をシールする第3工程とを含むことを特徴とする。
 本発明に係るセラミックス剤は、第1部材と第2部材との境界領域に配置される耐熱シール剤であって、合成(焼成)されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有することを特徴とする。
 上記したように第1部材と第2部材との境界領域に、合成前(焼成前)の耐熱シール剤を介在させる。その状態で、組付体の使用時における組付体の使用温度、組付体の使用前における組付体の加熱温度、組付体の搬入前における組付体の加熱温度のうちの少なくとも一つで、合成前(焼成前)の耐熱シール剤を加熱して焼成させる。これにより耐熱シール剤を構成する第1セラミックス粒子および第2セラミックス粒子を合成(焼成)させてセラミックスを形成し、組付体の第1部材と第2部材との境界領域をシールする。この場合、耐熱シール剤は膨張してシール層を形成する。シール層の膨張は残存する。シール層の残存膨張により第1部材と第2部材との境界領域におけるシール性を高めることができる。組付体の加熱温度(使用温度)は、例えば800~2000℃の高温領域である。従って第1部材と第2部材との境界領域に介在する合成前の耐熱シール剤も高温に加熱されるため、耐熱シール剤に含有されている第1セラミックス粒子および第2セラミックス粒子は、反応前よりも体積膨張するセラミックス(例えばムライト、スピネル等)を形成する。
 以上説明したように本発明によれば、耐熱シール剤を構成する第1セラミックス粒子および第2セラミックス粒子を合成(焼成)させてセラミックスを形成して組付体の第1部材と第2部材との境界領域をシールする。この場合、第1部材と第2部材との境界領域におけるシール性を高めることができる。合成前の耐熱シール剤であるため、シール性を要請される部材に合成前に直接的に塗布させることができる。耐熱シール剤が焼成されると膨張し、残存膨張をもつシール層が形成される。膨張(残存膨張)して隙間におけるシール性を高めることができる。耐熱シール部の焼成(合成)については、高温組付体の使用時の温度で加熱して焼成しても良い。あるいは、高温組付体の使用前の段階,高温組付体の工場への搬入前において別途加熱して焼成しても良い。なお、高温組付体の使用時の温度で加熱して焼成すれば、耐熱シール部を加熱して焼成させる焼成工程を別途必要としないため、簡易である。
実施形態1に係るタンディッシュ上部ノズルの断面図である。 実施形態2に係るタンディッシュ上部ノズルの断面図である。 実施形態5に係る吹き込みプラグの断面図である。 実施形態5に係る吹き込みプラグの断面図であり、図3のIV-IV線に沿って切断した断面図である。 試験例に係り、ガス漏れ試験の結果を示すグラフである。 試験例に係り、シール層の組織の顕微鏡写真を示す写真図である。 実施形態7に係るタンディッシュ上部ノズルの断面図である。 実施形態8に係るタンディッシュ上部ノズルの断面図である。 実施形態8の要部の断面図である。 実施形態9に係るタンディッシュ上部ノズルの断面図である。 実施形態10に係るタンディッシュ上部ノズルの断面図である。
 1は上段ポーラス耐火物、2は下段ポーラス耐火物、3は緻密質耐火物、3aは上段緻密質耐火物、3bは下段緻密質耐火物、4は上段ガス導入通路、5は下段ガス導入通路、6は外側鉄皮、7は通路、8はシール層、9は鉄皮を示す。
 本発明に係る耐熱シール剤によれば、合成されると体積膨張するセラミックスはムライトであることが好ましい。この場合、第1セラミックス粒子はシリカで形成され、第2セラミックス粒子はアルミナで形成されていることが好ましい。この場合、次の(1)式のようにムライトが合成(焼成)される。
2SiO2+3Al2O3→3Al2O3・2SiO2 (ムライト)        (1)
合成されたムライト(3Al2O3・2SiO2)は、体積が反応前より膨張する。この場合、耐熱シール剤における気孔が閉じられ易い。この場合、(1)の式を考慮すれば、質量比(モル比)でシリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有することがより好ましい。例えば、シリカ(SiO2)とSiO2より多くのアルミナ(Al2O3)を含む材料を水等の分散媒で練って耐熱シール剤を形成できる。
 また、合成されると体積膨張するセラミックスはスピネルであることが好ましい。この場合、第1セラミックス粒子はマグネシアで形成され、第2セラミックス粒子はアルミナで形成されていることが好ましい。この場合、次の(2)式のようにスピネルが合成(焼成)される。
MgO+Al2O3→MgO・Al2O3 (スピネル)        (2)
合成されたスピネル(MgO・Al2O3)は体積が反応前より膨張する。
 合成前の耐熱シール剤を構成する第1セラミックス粒子および第2セラミックス粒子の一方の粒径は、30マイクロメートル以下であることが好ましい。この場合、一方の粒径は、30マイクロメートル以下、20マイクロメートル以下、10マイクロメートル以下、5マイクロメートル以下であることが好ましい。粒径が小さいと、反応性を高めることができる。第1セラミックス粒子および第2セラミックス粒子の他方の粒径は200マイクロメートル以下、100マイクロメートル以下、50マイクロメートル以下、30マイクロメートル以下、20マイクロメートル以下であることが好ましい。耐熱シール剤で形成された合成前および合成後のシール層の厚みは、高温組付体の用途、サイズ、種類によって相違するが、0.2~20ミリメートル、0.2~10ミリメートルが例示される。
 本発明に係る高温組付体は、第1部材と、第2部材と、第1部材と第2部材との境界領域に配置された耐熱シール剤とを具備しており、高温領域で使用される。合成前の耐熱シール剤は、合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有する。体積膨張するため、第1部材と第2部材との境界領域におけるシール性が高まる。第1部材と第2部材との組合わせは、耐火物と金属との組み合わせ、耐火物と耐火物との組み合わせ、金属と金属との組み合わせが例示される。金属としては、炭素鋼、合金鋼、鋳鉄、鋳鋼、チタン、チタン合金、アルミニウム、アルミニウム合金が挙げられる。第1部材と第2部材との組合わせに金属が存在すれば、耐熱シール剤への熱伝導を高めることができる。耐火物としては、例えば、ポーラス質耐火物および緻密質耐火物のうちの少なくとも一方が例示される。金属としては、例えば、筒形状、箱形状、壁形状および板形状のうちの少なくとも一方が例示される。
 合成前の耐熱シール剤において、カイアナイトおよびアンダルサイトのうちの少なくとも一方が必要に応じて配合されている。カイアナイトおよびアンダルサイトはシリマイト系鉱物である。ここで、合成前の耐熱シール剤におけるセラミックスを100%とするとき、質量比で、カイアナイトおよびアンダルサイトのうちの少なくとも一方が0.01~40%含有されている形態を採用できる。加熱されると、カイアナイトおよびアンダルサイトはそれぞれ膨張するため、シール層におけるシール性を向上させることができる。シリマナイト族鉱物は、加熱により分解してムライトとシリカになると考えられている。ムライトは、シリマナイト族鉱物より比重が小さいため容積変化(膨張)を起こす。カイアナイトおよびアンダルサイトの粒径が大きいほど、残存膨張は大きくなり、粒径が小さくなると、ほとんど残存膨張に関する効果が得られなくなる。
 (実施形態1)
 以下、本発明の実施形態1について図1を参照しつつ説明する。吹き込みノズルはタンディッシュ上部ノズル(高温組付体)である。このノズルは、連続鋳造機に使用される溶湯を溜めるタンディッシュの底部に装着されるタンディッシュスライディングノズル装置の上部ノズルである。タンディッシュ上部ノズルは、相対的に上側に配置されたガス透過性を発揮する細孔1mを有する筒状の上段ポーラス耐火物1と、上段ポーラス耐火物1よりも相対的に下側に配置されたガス透過性を発揮する細孔2mを有する筒状の下段ポーラス耐火物2と、上段ポーラス耐火物1と下段ポーラス耐火物2との間に介装される筒状の緻密質耐火物3と、上段ポーラス耐火物1に吹込ガスを供給する上段ガス導入通路としての上段ガス導入パイプ4と、下段ポーラス耐火物2に吹込ガスを供給する下段ガス導入通路としての下段ガス導入パイプ5と、上段ポーラス耐火物1、緻密質耐火物3及び下段ポーラス耐火物2の外周面を包囲して保持する金属皮体としての鉄皮として機能する筒形状をなす外側鉄皮6と、を備えている。これにより上下方向にのびる溶湯通過用の通路7を形成している。なお、16は、上段ポーラス耐火物1の上方に積層された補助緻密質耐火物である。図1に示すように、緻密質耐火物3は、上段緻密質耐火物3aと下段緻密質耐火物3bとに分割されている。緻密質とは、ポーラス耐火物よりも緻密であり、同じ厚みのときポーラス耐火物よりもガス透過性が低いことをいう。上段緻密質耐火物3aと下段緻密質耐火物3bとの間には、耐熱シール剤が填装されてシール層8が形成されている。上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周面には、焼嵌め等で取り付けられ鉄皮(内側金属皮体)9を備えている。鉄皮9は外側鉄皮6の内周側に位置している。この部分は二重鉄皮になっている。鉄皮6(第1部材)と鉄皮9(第1部材)との間には、シール層17が介装されている。
 上段ガス導入パイプ4は、先端部4aが緻密質耐火物3の外周部に沿って上向きになるように導入されている。上段ガス導入パイプ4の先端部4aは、リング状または筒状のガスプール18を介して上段ポーラス耐火物1の外周部1pに連通している。鉄皮9の内周部と緻密質耐火物3の外周部との境界領域には、シール層8と同じ耐熱シール剤が填装されておりシール層8cを形成しており、ガスが漏れ出せないようになっている。下段ガス導入パイプ5は、先端部5aが横向きになるように導入され、リング状のガスプール19を介して下段ポーラス耐火物2の外周部2pに連通している。上段ポーラス耐火物1及び下段ポーラス耐火物2は、ガスを透過できる多数の連通細孔を有し、互いに同一材料または同系材料で形成されていることが好ましい。材料としては、例えば、アルミナ系、マグネシア系、ジルコニア系等を例示できる。緻密質耐火物3と補助緻密質耐火物16とは、緻密となるように焼成された耐火物で形成されており、不焼成のキャスタブル層とは異なり、気孔率が極めて低く、ガス透過性が小さく、高い緻密性及び高い強度を有する。すなわち、緻密質耐火物3は、上段ポーラス耐火物1及び下段ポーラス耐火物2よりもガス透過性が小さく緻密性を有する。ガス透過性が小さいとは、同じ厚みのとき厚み方向におけるガス透過性が小さいことをいう。
 シール層8,8c,17を形成する合成前の耐熱シール剤は、アルミナ(Al2O3)およびシリカ(SiO2)を主要成分(有効成分)として含有する。耐熱シール剤の組成については、質量比(モル比)で、シリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有すること好ましい。例えば、シリカ(SiO2)と、シリカ(SiO2)より多くのアルミナ(Al2O3)を含む材料を水で練った耐熱シール剤を用いる。そして、かかる合成前の耐熱シール剤を、上段緻密質耐火物3a(第1部材)の下面3dと下段緻密質耐火物3b(第2部材)の上面3uとの間の境界領域に塗布しておく。このように合成前のシール剤を当該境域領域に塗布しておく。この状態の吹き込みノズルの使用時には、吹き込みノズルは高温領域において維持される。この場合、例えば1400~1600℃程度といった高温の溶湯が通路7を矢印A1方向に流れる。このように高温組付体の使用時において高温の溶湯からの受熱で、シール剤には、(1)式のような反応が起こる。鉄皮6,9,耐火物1,2,3a,3b,16は伝熱性を有するため、シール剤の加熱に貢献できる。
 2SiO2+3Al2O3→3Al2O3・2SiO2   (1)
このようにモル比2のSiO2とモル比3のAl2O3とでムライト(3Al2O3・2SiO2)が合成される。合成される3Al2O3・2SiO2(ムライト)は、体積が反応前より膨張する。更にムライトを生成させたシール層8,8c,17を顕微鏡で観察すると、シール層8,8c,17における気孔が閉じられる。このように高温組付体であるガス吹き込みノズルの使用時の熱により、ムライト(3Al2O3・2SiO2)は合成され、体積が反応前より膨張するため、合成工程である加熱工程を別途実施せずとも良い。ここで、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径が小さい程、(1)式の合成反応が起こりやすい。このため、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径は小さい方がよい。シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径粒径は、100マイクロメートル以下が好ましく、30マイクロメートル以下、10マイクロメートル以下、3マイクロメートル以下が更に好ましく、1マイクロメートル以下が特に好ましい。
 ある形態によれば、例えば、シリカ粒子(SiO2)の粒子粒径は3マイクロメートル以下または1マイクロメートル以下とされ、アルミナ粒子(Al2O3)の粒径粒径は、シール層8,8c,17を高密度で充填することを考慮し、75~1マイクロメートルとされていることが好ましい。ここで、合成前の耐熱シール剤における組成は、シリカ(SiO2)が5~50質量%で、残部がアルミナ(Al2O3)であると、体積膨張の点で好ましい。さらに、シリカ(SiO2)が10~20質量%で、残りがアルミナ(Al2O3)であると、更に好ましい。合成前のシール剤のセラミックスは、質量比で、アルミナおよびシリカで実質的に95%以上、98%以上、100%であることが好ましい。従って、焼成前(合成反応前)の耐熱シール剤は、マグネシア、ジルコニア等の他の成分を含有していない方が良いと考えられる。
 従って、合成前の耐熱シール剤のセラミックス組成としては、次の(a)~(e)ように例示できる。但しこれに限定されるものではない。
(a)75マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を15%、1マイクロメートル以下のシリカ粒子(SiO2)を15%の配合にできる。
(b)75マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を15%、3マイクロメートル以下のシリカ粒子(SiO2)を15%の配合にできる。
(c)100マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を10%、3マイクロメートル以下のシリカ粒子(SiO2)を20%の配合にできる。但しこれに限定されるものではない。
(d)50マイクロメートル以下のアルミナ粒子(Al2O3)を60%、10マイクロメートル以下のアルミナ粒子(Al2O3)を20%、1マイクロメートル以下のシリカ粒子(SiO2)を20%の配合にできる。
(e)30マイクロメートル以下のアルミナ粒子(Al2O3)を50%、10マイクロメートル以下のアルミナ粒子(Al2O3)を10%、1マイクロメートル以下のシリカ粒子(SiO2)を40%の配合にできる。%は質量%を意味する。ムライトに合成されなかったアルミナは、アルミナとして残存する。シール層におけるアルミナはシール層の耐熱性の向上に貢献できる。
 次に、本実施形態のガス吹き込みノズルを連続鋳造において使用する際のガスの流れについて説明する。使用の際には、取鍋から移し替えられたタンディッシュ内の溶鋼等の溶湯は連鋳機に向けて流れるが、溶湯は、通路7内を下方(図1に示す矢印A1方向)に向けて流れる。この場合、ガス源から上段ガス導入パイプ4、下段ガス導入パイプ5にガス(例えばアルゴンガス等の不活性ガス)がそれぞれ供給される。上段ガス導入パイプ4に供給されたガスは、ガスプール18を介して上段ポーラス耐火物1のポーラス部分に供給され、上段ポーラス耐火物1の内周面1iから通路7内に向けて(矢印B1方向に)吹き出される。これによりノズル上部へのアルミナの付着が抑制される。下段ガス供給パイプ5に供給されたガスは、ガスプール19を介して下段ポーラス耐火物2のポーラス部分に供給され、下段ポーラス耐火物2の内周面2iから通路7内に向けて(矢印C1方向に)吹き出される。これによりタンディッシュスライディングノズル装置の摺動板、コレクターノズル、浸漬ノズルへのアルミナの付着が抑制される。
 緻密質耐火物3は、不焼成のキャスタブルと異なり、焼成された緻密な焼成耐火物で形成されているため、ポーラス耐火物1,2に比較して気孔率およびガス透過性が小さいが、僅かながらガスが透過することもある。すなわち、上段ポーラス耐火物1に供給されたガスの一部が上段緻密質耐火物3a内を透過して下段緻密質耐火物3bに漏れ出そうとすることもある。同様に、下段ポーラス耐火物2に供給されたガスの一部が下段緻密質耐火物3b内を透過して上段緻密質耐火物3aに漏れ出そうとすることもある。しかし本実施形態によれば、図1に示すように、上段緻密質耐火物3aの下面3dと下段緻密質耐火物3bの上面3uとの境界領域には、合成後のシール層8が介在している。このため、上段緻密質耐火物3aから下段緻密質耐火物3bへの漏れ出しがブロックされる。且つ、下段緻密質耐火物3bから上段緻密質耐火物3aへの漏れ出しがブロックされる。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給をそれぞれ独立して行うことができる。
 また、シール層8を形成する耐熱シール剤が、焼成(合成)により体積が増大して上段緻密質耐火物3aと下段緻密質耐火物3bとの境界領域に隙間を生じさせ難い組成を有している。このため使用中に高温になってもシール層8からガスが漏れ出し難くなる。また、上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周面を包囲する金属皮体として鉄皮9が設けられている。そして、シール層8の外周縁部8pが鉄皮9の内周壁に当接しているので、上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周に沿ってガスが流れることが抑制される。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給を一層独立して行うのに有利となる。また、パイプ4と接する鉄皮9及び緻密質耐火物3との間には、シール層8と同じ耐熱シール剤で形成されたシール層8cが填装されている。このためパイプ4の外側を通ってガスが漏れ出せないようになっている。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給を一層独立して行うことができる。
 また本実施形態によれば、上段緻密質耐火物3aと下段緻密質耐火物3bとの間に耐熱シール剤が填装されてシール層8を形成するので、上段ポーラス耐火物1と上段緻密質耐火物3aからなる上段部の組と、下段ポーラス耐火物2と下段緻密質耐火物3bとからなる下段部の組とを、シール層8を形成する耐熱シール剤で接着して組み立てることができる。また本実施形態によれば、前述したように、鉄皮6(第1部材および第2部材のうちの一方)と鉄皮9(第1部材および第2部材のうちの他方)との間にも、耐熱シールで形成されたシール層17が介装されている。シール層17を形成する耐熱シール剤に有効成分として含有されているシリカ粒子(SiO2)およびアルミナ粒子(Al2O3)が配合されている。
 更に外側鉄皮6(第1部材および第2部材のうちの一方)の下部6dと下段ポーラス耐火物2(第1部材および第2部材のうちの他方)との境界領域においても、耐熱シール剤を塗布して形成されたシール層20が形成されている。更にまた、外側鉄皮6(第1部材)の上部6uの内周部と上段ポーラス耐火物1(第2部材)の外周部との境界領域においても、外側鉄皮6(第1部材)の上部6uの内周部と補助緻密室耐火物16(第2部材)の外周部との境界領域においても、耐熱シール剤を塗布して形成されたシール層25が形成されている。そして、シール層8,8c,17,20,25を構成するシール剤は、上記した耐熱シール剤で形成されている。このため吹き込みノズルの使用時において、高温の溶鋼等の溶湯が通路7を通過するため、溶鋼等の溶湯の熱からの伝熱により、シール層8,8c,17,20,25が高温に加熱される。よって、当該シール剤を構成するシリカ粒子(SiO2)およびアルミナ粒子(Al2O3)がムライトを合成してシール層の厚み方向に膨張する。このため上記したシール層8,8c,17,20,25におけるシール性も高めることができる。なお上述したように、シール層8,8c,17,20,25は本実施形態に係る耐熱シール剤で形成されているが、これに限らず、シール層8,8c,17,20,25のうちの少なくともいずれか一つについて、本実施形態に係る耐熱シール剤で形成されており、残りを公知のシール剤(モルタル等)で形成することにしても良い。
 (実施形態2)
 図2は実施形態2を示す。本実施形態は実施形態1と基本的には同様の構成、同様の作用効果を有する。但し、以下の点が相違する。図1に示す実施形態では、緻密質耐火物3は、上段緻密質耐火物3aと下段緻密質耐火物3bとに分割されている。そして上段緻密質耐火物3aと下段緻密質耐火物3bとの間には、上記したように焼成されるとムライトを合成する耐熱シール剤が填装されてシール層8が形成されている。但し本実施形態では、図2に示すように、緻密質耐火物3は、実施形態1に係る上段緻密質耐火物3aと下段緻密質耐火物3bとが一体化された形状とされているため、実施形態1のシール層8は形成されていない。本実施形態においても、シール層8c,17,20,25は本実施形態に係る耐熱シール剤で形成されている。これに限らず、シール層8c,17,20,25のうちの少なくともいずれか一つについて、本実施形態に係る耐熱シール剤で形成されており、残りを公知のシール剤(モルタル等)で形成することにしても良い。
 (実施形態3)
 実施形態3は実施形態1,2と基本的には同様の構成、同様の作用効果を有する。合成前の耐熱シール剤におけるセラミックスを100%とするとき、質量比で、シリカ粒子(SiO2)が0.1~30%、アルミナ粒子(Al2O3)が50~70%、アンダルサイトおよびカイアナイトのうちの一方または双方の粒子が0.1~20%(0.1~10%,0.1~50%)含有されている。加熱されると、アンダルサイトおよびカイアナイト(カイヤナイトともいう)はアルミニウムケイ酸塩(Al2SiO5)であり、加熱されると膨張するため、使用中に膨張して、シール性を更に向上させることができる。アンダルサイトまたはカイアナイトの粒子の粒径としては、必要に応じて選択でき、1~1000マイクロメートル、1~100マイクロメートル、5~50マイクロメートルが挙げられるが、これらに限定されるものではない。カイアナイトおよびアンダルサイトの粒径が大きいほど、残存膨張は大きくなり、粒径が小さくなると、ほとんど残存膨張に関する効果が得られなくなる。場合によっては、アンダルサイトおよび/またはカイアナイトの粒子の配合割合は質量比で1~30%とすることもできる。アンダルサイトまたはカイアナイトの粒子が過大であると、均質な組織が得られにくい。なお、アンダルサイトまたはカイアナイトの添加量を増やすと、焼成後において残存線変化率は大きくなり、膨張が継続すると考えられる。ただし、アンダルサイトまたはカイアナイトの添加量が過剰に多くなると、残存膨張が大きくなりすぎ、しかも、膨張が継続して組織が脆弱化し、剥落発生の恐れが生じる。
 (実施形態4)
 実施形態4は実施形態1,2と基本的には同様の構成、同様の作用効果を有するため、図1および図2を準用する。但し、以下の点が相違する。本実施形態においては、耐熱シール剤により合成されると体積膨張するセラミックスはスピネルである。従って耐熱シール剤においては、第1セラミックス粒子はマグネシアで形成され、第2セラミックス粒子はアルミナで形成されている。前記したシール層8,8c,17,20,25を形成する耐熱シール剤は、アルミナ(Al2O3)およびマグネシア(MgO)を主要成分(有効成分)として含有する。耐熱シール剤のセラミックス組成については、質量比で、マグネシア(MgO)よりも多くのアルミナ(Al2O3)を含有すること好ましい。例えば、マグネシア(MgO)と、シリカ(SiO2)より多くのアルミナ(Al2O3)を含む材料を水で練った耐熱シール剤を用いることが好ましい。そして、かかる耐熱シール剤を、上段緻密質耐火物3a(第1部材)の下面3dと下段緻密質耐火物3b(第2部材)の上面3uとの間の境界領域に塗布しておく。このように合成前のシール剤を当該境域領域に塗布しておく。この状態の吹き込みノズルの使用時には、吹き込みノズルは高温領域において維持される。この場合、例えば1400~1600℃程度といった高温の溶湯が通路7を矢印A1方向に流れる。溶湯からの受熱でシール剤には(2)式のような反応が起こる。
 MgO+Al2O3→MgO・Al2O3    (2)
モル比1のMgOとモル比1のAl2O3とでスピネルが合成される。スピネル(MgO・Al2O3)は、体積が反応前より膨張する。このように高温組付体であるガス吹き込みノズルの使用時の熱により、スピネルは使用の際に合成(焼成)され、体積が反応前より膨張するため、加熱工程(合成工程)を別途実施せずとも良い。ここで、マグネシア粒子(MgO)とアルミナ粒子(Al2O3)の粒径が小さい程、(2)式の合成反応が起こりやすい。このため、マグネシア粒子(MgO)とアルミナ粒子(Al2O3)の粒径は小さい方がよい。マグネシア粒子(MgO)とアルミナ粒子(Al2O3)の粒径粒径は、100マイクロメートル以下が好ましく、50マイクロメートル以下、10マイクロメートル以下が更に好ましく、1マイクロメートル以下が特に好ましい。
 ある実施形態によれば、例えば、マグネシア粒子(MgO)の粒径粒径は1マイクロメートル以下とされ、アルミナ粒子(Al2O3)の粒径粒径は、シール層8,8c,17,20,25を高密度で充填することを考慮し、75~1マイクロメートルとされていることが好ましい。ここで、合成前の耐熱シール剤におけるセラミックスについては、アルミナおよびシリカで実質的に95%以上、98%以上、100%であることが好ましい。合成前の耐熱シール剤におけるセラミックスについては、マグネシア(MgO)が1~50質量%で、残部がアルミナ(Al2O3)であると、体積膨張の点で好ましい。さらに、マグネシア(MgO)が1~20質量%で、残りがアルミナ(Al2O3)であると、更に好ましい。次の(a)~(c)の形態を採用できる。
(a)75マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を15%、1マイクロメートル以下のマグネシア粒子(MgO)を15%の配合にできる。
(b)75マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を15%、3マイクロメートル以下のマグネシア粒子(MgO)を15%の配合にできる。
(c)100マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を10%、3マイクロメートル以下のマグネシア粒子(MgO)を20%の配合にできる。但しこれに限定されるものではない。
 なお本実施形態によれば、シール層8,8c,17,20,25は、焼成されるとスピネルを合成する本実施形態に係る耐熱シール剤で形成されているが、これに限らず、シール層8,8c,17,20,25のうちの少なくともいずれか一つについて、本実施形態に係るスピネルを合成する耐熱シール剤で形成されているものの、残りを公知のシール剤で形成することにしても良い。
 (実施形態5)
 図3および図4は実施形態5を示す。本実施形態は前記した実施形態と基本的には同様の構成、同様の作用効果を有する。但し、以下の点が相違する。本実施形態は取鍋の底壁Wに埋設されるように取り付けられる吹き込みプラグ(高温組付体)に適用した場合である。吹き込みプラグは、耐火物層30と、耐火物層30の外周部30pを包囲する鉄皮32と、鉄皮32の底部32bに接続されたガス供給管33とをもつ。耐火物層30は、金属溶湯Mにハブリング用のガスを吹き込むガス通路35と、耐火物層30の下面30dと鉄皮32との間に形成され且つガス通路35に連通するガスプール室36とをもつ。耐火物層30の外周部30pと鉄皮32の内周部32iとの間には、耐熱シール剤が塗布されたシール層38が形成されている。シール層38を形成する耐熱シール剤のセラミックスは、実施形態1と同様に、アルミナ粒子(Al2O3)およびシリカ粒子(SiO2)を主要成分(有効成分)として含有する。合成前の耐熱シール剤のセラミックス組成については、質量比(モル比)で、シリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有すること好ましい。例えば、シリカ(SiO2)と、シリカ(SiO2)より多くのアルミナ(Al2O3)を含む材料を水で練った耐熱シール剤を用いることができる。そして、かかる耐熱シール剤を、耐火物層30の外周部30p、および/または、鉄皮32の内周部32iに塗布しておく。このように合成前のシール剤を当該境域領域に塗布しておく。その後、耐火物層30および鉄皮32を組み付ける。この状態の吹き込みプラグの使用すれば、吹き込みノズルは高温領域において維持される。この場合、吹き込みプラグは例えば1400~1650℃程度といった高温の溶湯Mを貯留する取鍋の底壁Wに埋設されているため、溶湯Mからの受熱でシール剤には、前記した(1)式のような反応が起こり、ムライトが合成され。このため耐火物層30(第1部材および第2部材のうちの一方)の外周部30pと鉄皮32(第1部材および第2部材のうちの他方)の内周部32iとの境界領域におけるシール性を高めることができる。必要に応じて、合成前の耐熱シール剤にカイアナイトを配合させることもできる。 
 (実施形態6)
 本実施形態は前記した図3および図4に示す実施形態5と基本的には同様の構成、同様の作用効果を有する。合成前の耐熱シール剤は、実施形態1と同様に、アルミナ粒子(Al2O3)およびマグネシア粒子(MgO)を主要成分(有効成分)として含有する。
 (試験例)
 耐熱シール剤について試験を行った。この試験例では、耐熱シール剤のうちセラミックスは、質量比で、75マイクロメートル以下のアルミナ粒子(Al2O3)を70%、10マイクロメートル以下のアルミナ粒子(Al2O3)を15%、1マイクロメートル以下のシリカ粒子(SiO2)を15%の配合にされていた。そして分散媒である水とセラミックスとを混合して耐熱シール剤が形成されていた。第1部材(材質:ハイアルミナ)と第2部材(材質:ハイアルミナ)との境界領域にこの耐熱シール剤を塗布した。塗布厚みは1ミリメートルとした。そして、外側からバーナの燃焼火炎で1500℃に加熱しつつ、ガスを入口から出口に向けて流した。そして出口から排出されるガスのリーク流量を測定した。ノズルの背圧については0.2kg/cmを保持した。比較例として、従来から使用しているモルタルを使用し、試験例と同様な条件で試験を行った。試験結果を図5に示す。図5において●印は本発明の試験例を示す。◆は比較例を示す。図5の◆印として示すように、比較例では、試験開始から20分間を経過した頃から、リークするガス流量が増加している。また図5の●印として示すように、比較例では、試験開始から120分間を経過しても、リークするガス流量は増加していない。このことから本発明に係る耐熱シール剤は高温領域における高いシール性が安定して得られることがわかる。
 試験開始から120分間経過したシール層について、光学顕微鏡で観察した。その結果を図6に示す。図6に示すように、シール層を構成するシール材はノズル本体に密着していた。ノズル本体とシール層との境界をみると、一部に溶融が発生している可能性があるとも推定される。微細なシリカ粒子が溶融したものと考えられる。シール層に島状の気孔(黒色部分)が発生しているが、気孔は開放気孔ではなく、閉鎖気孔とされていた。ガスは閉鎖気孔を透過できない。このことからも本発明のシール層のシール性が向上していることがわかる。閉鎖気孔が得られる理由賭しては、ムライト合成により反応前よりも体積膨張するためと推察される。体積膨張は開放気孔ではなく、閉鎖気孔の形成に有利と考えられる。またシール層において気孔以外のセラミックス部分は緻密であった。このことからも本発明のシール層のシール性が更に向上していることがわかる。
 (実施形態7)
 図7は実施形態7を示す。本実施形態は前記した実施形態と基本的には同様の構成、同様の作用効を有する。同一部位には同一の符号を付する。図7に示すように、上段緻密質耐火物3aと下段緻密質耐火物3bとの間には、耐熱シール剤が填装されてシール層8が形成されている。シール層8を形成する合成前の耐熱シール剤は、アルミナ(Al2O3)およびシリカ(SiO2)を主要成分(有効成分)として含有する。合成前の耐熱シール剤の組成については、質量比で、シリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有すること好ましい。緻密質耐火物3は、不焼成のキャスタブルと異なり、焼成された緻密な焼成耐火物で形成されているためガス透過性が小さいが、僅かながらガスを透過させることもある。すなわち、上段ポーラス耐火物1に供給されたガスの一部が上段緻密質耐火物3a内を透過して下段緻密質耐火物3bに漏れ出そうとすることもある。同様に、下段ポーラス耐火物2に供給されたガスの一部が下段緻密質耐火物3b内を透過して上段緻密質耐火物3aに漏れ出そうとすることもある。しかし本実施形態によれば、図7に示すように、上段緻密質耐火物3aの下面3dと下段緻密質耐火物3bの上面3uとの境界領域にはシール層8が介在している。このため、上段緻密質耐火物3aから下段緻密質耐火物3bへの漏れ出しがブロックされる。且つ、下段緻密質耐火物3bから上段緻密質耐火物3aへの漏れ出しがブロックされる。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給をそれぞれ独立して行うことができる。
 (実施形態8)
 図8及び図9は実施形態8を示す。吹き込みノズル(タンディッシュ上部ノズル,高温組付体)は、高温の溶湯(例えば溶鋼)を保持する溶湯容器であるタンデッシュの底側に装備されるものであり、ガス透過性を有する筒状ポーラス耐火物1X(第1部材および第2部材のうちの一方)と、ポーラス耐火物1Xを包囲する金属製(鉄系)の筒状の外側鉄皮6(第1部材および第2部材のうちの他方)とを有する。筒状ポーラス耐火物1Xの内部には、リング状のガスプール19が形成されている。ガスプール19に吹込ガスを供給する下段ガス導入通路としてのガス導入パイプ5が設けられている。筒状ポーラス耐火物1Xには、上下方向にのびる溶湯通過用の通路7が縦方向に沿って形成されている。ポーラス耐火物1Xは、これの厚み方向にガスを透過できる多数の細孔1mを有しており、材料としては、例えば、アルミナ系、マグネシア系、ジルコニア系等を例示できる。
 図8に示すように、筒状ポーラス耐火物1Xと筒状の外側鉄皮6との境界領域には、軸線P1回りのリング状の凹状プール部1Wが形成されている。凹状プール部1Wは、筒状ポーラス耐火物1Xの外周部の上部においてこれを1周するようにリング状に形成されている。組付時には、凹状プール部1Wには、未焼成の耐熱シール剤が装填されている。
 この耐熱シール剤は、予熱時の加熱、高温組付体の使用(搬入)前の加熱、または高温組付体の使用時の溶湯による加熱等により焼成(合成)される。これによりシール層1Rが軸線P1回りのリング状に形成される。シール層1Rは、焼成(合成)により径方向および高さ方向に残存膨張として膨張する。この結果、筒状ポーラス耐火物1Xの上部と筒状の外側鉄皮6の上部6uとの境界領域をシールする。殊に、合成後のシール層1Rは、外側鉄皮6の厚みよりも厚く、径方向への残存膨張量が良好に確保される。この結果、筒状ポーラス耐火物1Xの上部と筒状の外側鉄皮6の上部との境界領域を良好にシールできる。この結果、ガスプール18等に吹き込まれたガスが当該境界領域から外側鉄皮6の上端6up側に漏れることが抑制される。鉄皮6(組付体)の全高寸法をHAとして示し、高さ寸法の中央位置をHmとして示し、高さ寸法のうち下端6dから2/3の位置をHxとして示す。図8に示すように、シール層1Rは鉄皮6において位置Hmよりも上側に位置にする。従って、シール層1Rは、鉄皮6のうち上端6upに向かうにつれて縮径する円錐形状の上部6uに位置している。殊に、高さ方向において、シール層1Rは鉄皮6において位置Hxよりも上側に位置することが好ましい。その理由としては、タンデッシュ内の溶湯により鉄皮6はこれの上側からも激しく加熱され、鉄皮6の上側は激しい高温環境に晒されるため、鉄皮6の上側のシール性を高めることが好ましいためである。この結果、ガスプール19等に吹き込まれたガスが外側鉄皮6の上端6up側に漏れることがシール層1Rにより抑制される。なお、鉄皮6の径方向の熱膨張は、筒状ポーラス耐火物1Xの径方向の膨張量に比較して小さいと考えられる。
 上記したプール部1Rを形成する合成前の耐熱シール剤は、アルミナ(Al2O3)およびシリカ(SiO2)を主要成分(有効成分)として含有する。耐熱シール剤の組成については、質量比で、シリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有すること好ましい。例えば、シリカ(SiO2)と、シリカ(SiO2)より多くのアルミナ(Al2O3)を含む材料を水(分散媒)で練った耐熱シール剤を用いる。分散媒はアルコール等としても良い。そして、かかる耐熱シール剤を凹状のプール部1Wに装填する。このように装填した状態で、吹き込みノズルの使用時には、吹き込みノズルは高温領域において維持される。この場合、例えば1400~1700℃程度といった高温の溶湯が通路7を矢印A1方向に流れる。このように高温組付体の使用時において高温の溶湯からの受熱で、シール剤には、(1)式のような反応が起こる。鉄皮6,耐火物1Xは伝熱性を有するため、シール剤の加熱に貢献できる。
2SiO2+3Al2O3→3Al2O3・2SiO2   (1)
 このようにモル比2のSiO2とモル比3のAl2O3とでムライト(3Al2O3・2SiO2)が合成される。合成される3Al2O3・2SiO2(ムライト)は、体積が反応前より膨張する。更にムライトを生成させたシール層1Rは緻密体であるか、あるいは、気孔を有していたとしても、気孔は閉じられる。このように高温組付体であるガス吹き込みノズルの使用時の熱により、ムライト(3Al2O3・2SiO2)は合成され、体積が反応前より膨張するため、合成工程である加熱工程を別途実施せずとも良い。ここで、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径が小さい程、(1)式の合成反応が起こりやすい。このため、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径は小さい方がよい。シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径粒径は、100マイクロメートル以下が好ましく、30マイクロメートル以下、10マイクロメートル以下、3マイクロメートル以下が更に好ましく、1マイクロメートル以下が特に好ましい。
 次に、本実施形態のガス吹き込みノズルを連続鋳造において使用する際のガスの流れについて説明する。使用の際には、取鍋から移し替えられたタンディッシュ内の溶鋼等の溶湯は連鋳機に向けて流れるが、溶湯は、通路7内を下方(図8に示す矢印A1方向)に向けて流れる。この場合、ガス源からガス導入パイプ5にガス(例えばアルゴンガス等の不活性ガス)がそれぞれ供給される。ガス供給パイプ5に供給されたガスは、ガスプール19を介してポーラス耐火物1Xのポーラス部分に供給され、内周面1Xiから通路7内に向けて(矢印C1方向,B1方向)吹き出される。これによりタンディッシュスライディングノズル装置の摺動板、コレクターノズル、浸漬ノズルへのアルミナの付着が抑制される。また、シール層1Rを形成する耐熱シール剤が、焼成により体積が増大して筒状ポーラス耐火物1Xの外周部と外側鉄皮6との境界領域に隙間を生じさせ難い組成を有している。このため使用中に高温になっても当該境界領域からガスが漏れ出し難くなる。なお、合成前の耐熱シール剤は、カイアナイトおよびアンダルサイトのうちの少なくとも一方を必要に応じて含有できる。
 図9は、耐熱シール剤の焼成(合成)で形成されたシール層1R付近を示す。ここで、外側鉄皮6の厚みをa1とし、合成後のシール層1Rの最大厚みをa2とし、シール層1Rの高さをbとすると、シール層1R付近のシール性を高める為には、a1<a2の関係、a1<a2<bの関係が得られることが好ましい。但しこれに限定されるものではない。a2<bであるため、シール層1Rのシール距離(斜辺部101)がbとして確保され、高いシール性が得られる。なお、シール層1Rが形成される筒状ポーラス耐火物1Xは、多数の気孔を有するポーラス質であるため、膨張が気孔で吸収され、膨張量には限界がある。この点本実施形態によれば、合成により径方向および高さ方向に膨張する残存膨張を形成できるリング状のシール層1Rで形成されているため、膨張量の確保ひいてはシール性の確保に有利である。図9に示すように、鉄皮6の上部6u側では、筒状ポーラス耐火物1X(耐火物)の上部は円錐形状されており、鉄皮6の上端6up側に向かうにつれて径方向(矢印DA方向)の厚みが小さくなる。この場合、環境条件が過酷であれば、筒状ポーラス耐火物1Xの強度が不足し、亀裂が発生するおそれがある。そこで図2に示すように、凹状プール部1Wおよびシール層1Rの断面ほぼ三角形状とされており、鉄皮6の内壁面に沿った斜辺部101と、筒状ポーラス耐火物1Xに対面する上側の斜辺部102と、筒状ポーラス耐火物1Xに対面する下側の斜辺部103と、斜辺部102および斜辺部103が交差する交差部104とをもつ。図9に示すように、斜辺部101の長さをK1として示し、斜辺部102の長さをK2として示し、斜辺部103の長さをK3として示す。K2>K3の関係、K2>K1>K3の関係とされている。これによりシール層1Rにおいて交差部104が相対的に下側に位置する。このため筒状ポーラス耐火物1Xのうち斜辺部102に対面する部分1X3(図9参照)の径方向(矢印DA方向)の厚みが確保される。K3/K2=0.8以下、0.6以下、0.4以下が例示される。交差部104は丸みをもつことが好ましい。但し、亀裂等が問題にならないときには、K2=K3、K3>K2としても良い。場合によっては、凹状プール部1Wおよびシール層1Rの断面をほぼ台形状としても良い。
 (実施形態9)
 図10は実施形態9を示す。本実施形態は実施形態1,8と基本的には同様の構成、同様の作用効果を有する。図10に示すように、吹き込みノズル(タンディッシュ上部ノズル,高温組付体)は、相対的に上側に配置されたガス透過性を有する上段ポーラス耐火物1と、上段ポーラス耐火物1よりも相対的に下側に配置されたガス透過性を有する下段ポーラス耐火物2と、上段ポーラス耐火物1と下段ポーラス耐火物2との間に介装される緻密質耐火物3と、上段ポーラス耐火物1に吹込ガスを供給する上段ガス導入パイプ4と、下段ポーラス耐火物2に吹込ガスを供給する下段ガス導入パイプ5と、上段ポーラス耐火物1、緻密質耐火物3及び下段ポーラス耐火物2の外周面を包囲して保持する金属皮体として機能する筒形状をなす外側鉄皮6と、を備えている。これにより上下方向にのびる溶湯通過用の通路7を形成している。なお、16は、上段ポーラス耐火物1の上方に積層された補助緻密質耐火物である。筒状ポーラス耐火物1Xと筒状の外側鉄皮6との間には、リング状の上段のガスプール18が形成されている。筒状ポーラス耐火物1Xの内部には、リング状の下段のガスプール19が形成されている。図10に示すように、緻密質耐火物3は、高さ方向において、上段緻密質耐火物3aと下段緻密質耐火物3bとに分割されている。上段緻密質耐火物3aと下段緻密質耐火物3bとの間には、耐熱シール剤が填装された状態で合成されている。よって、合成後のシール層8が形成されている。上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周面には、焼嵌め等で取り付けられ鉄皮(内側金属皮体)9を備えている。鉄皮9は外側鉄皮6の内周側に位置している。この部分は二重鉄皮になっている。鉄皮6(第1部材)と鉄皮9(第1部材)との間にはシール層17が介装されている。
 図10に示すように、上段ガス導入パイプ4は、先端部4aが緻密質耐火物3の外周部に沿って上向きになるように導入されている。上段ガス導入パイプ4の先端部4aは、リング状または筒状のガスプール18を介して上段ポーラス耐火物1の外周部1pに連通している。鉄皮9の内周部と緻密質耐火物3の外周部との境界領域には、シール層8と同じ耐熱シール剤が填装されておりシール層8cを形成しており、ガスが漏れ出せないようになっている。下段ガス導入パイプ5は、先端部5aが横向きになるように導入され、リング状のガスプール19を介して下段ポーラス耐火物2の外周部2pに連通している。上段ポーラス耐火物1及び下段ポーラス耐火物2は、ガスを透過できる多数の細孔1m,2mを有し、互いに同一材料または同系材料で形成されていることが好ましい。材料としては、例えば、アルミナ系、マグネシア系、ジルコニア系等を例示できる。緻密質耐火物3と補助緻密質耐火物16とは、緻密となるように焼成された耐火物で形成されており、不焼成のキャスタブル層とは異なり、気孔率が極めて低く、ガス透過性が小さく、高い緻密性及び高い強度を有する。すなわち、緻密質耐火物3は、上段ポーラス耐火物1及び下段ポーラス耐火物2よりも、ガス透過性が小さく、緻密性を有する。
 シール層8,8c,17を形成する合成前の耐熱シール剤は、アルミナ(Al2O3)およびシリカ(SiO2)を主要成分(有効成分)として含有する。合成前の耐熱シール剤の組成については、質量比で、シリカ(SiO2)よりも多くのアルミナ(Al2O3)を含有すること好ましい。例えば、シリカ(SiO2)と、シリカ(SiO2)より多くのアルミナ(Al2O3)を含む材料を水またはアルコール等で練った耐熱シール剤を用いる。そして、かかる耐熱シール剤を、上段緻密質耐火物3a(第1部材)の下面3dと下段緻密質耐火物3b(第2部材)の上面3uとの間の境界領域に塗布しておく。筒状ポーラス耐火物1Xの外周部に形成されている凹状プール部1Wにも耐熱シール剤を装填しておく。このように合成前のシール剤を当該境域領域に塗布しておく。この状態の吹き込みノズルの使用時には、吹き込みノズルは高温領域において維持される。この場合、例えば1400~1600℃程度といった高温の溶湯が通路7を矢印A1方向に流れる。このように高温組付体の使用時において高温の溶湯からの受熱で、シール剤には、(1)式のような反応が起こる。鉄皮6,9,耐火物1,2,3a,3b,16は伝熱性を有するため、シール剤の加熱に貢献できる。
 2SiO2+3Al2O3→3Al2O3・2SiO2   (1)
このようにモル比2のSiO2とモル比3のAl2O3とでムライト(3Al2O3・2SiO2)が合成される。合成される3Al2O3・2SiO2(ムライト)は、体積が反応前より膨張する。このように高温組付体であるガス吹き込みノズルの使用時の熱により、ムライト(3Al2O3・2SiO2)は合成され、体積が合成反応(焼成)前より膨張するため、合成工程である加熱工程を別途実施せずとも良い。ここで、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径が小さい程、(1)式の合成反応が起こりやすい。このため、シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径は小さい方がよい。シリカ粒子(SiO2)とアルミナ粒子(Al2O3)の粒径粒径は、100マイクロメートル以下が好ましく、30マイクロメートル以下、10マイクロメートル以下、3マイクロメートル以下が更に好ましく、1マイクロメートル以下が特に好ましい。
 次に、本実施形態のガス吹き込みノズルを連続鋳造において使用する際のガスの流れについて説明する。使用の際には、取鍋から移し替えられたタンディッシュ内の溶鋼等の溶湯は連鋳機に向けて流れる。溶湯は、通路7内を下方(図10に示す矢印A1方向)に向けて流れる。この場合、ガス源から上段ガス導入パイプ4、下段ガス導入パイプ5にガス(例えばアルゴンガス等の不活性ガス)がそれぞれ供給される。上段ガス導入パイプ4に供給されたガスは、ガスプール18を介して上段ポーラス耐火物1のポーラス部分に供給され、上段ポーラス耐火物1の内周面1iから通路7内に向けて(矢印B1方向に)吹き出される。これによりノズル上部へのアルミナの付着が抑制される。下段ガス供給パイプ5に供給されたガスは、ガスプール19を介して下段ポーラス耐火物2のポーラス部分に供給され、下段ポーラス耐火物2の内周面2iから通路7内に向けて(矢印C1方向に)吹き出される。これによりタンディッシュスライディングノズル装置の摺動板、コレクターノズル、浸漬ノズルへのアルミナの付着が抑制される。
 さて本実施形態によれば、図10に示すように、筒状の緻密質耐火物16の外周部と筒状の外側鉄皮6の内周部との境界領域には、軸線P1回りのリング状の凹状プール部1Wが形成されている。凹状プール部1Wは、筒状ポーラス耐火物1Xの外周部に1周するようにリング状に形成されている。組付時には、凹状プール部1Wには耐熱シール剤が装填されている。この耐熱シール剤は、使用時の熱により焼成されてシール層1Rとなる。合成後のシール層1Rは、鉄皮6の厚みよりも厚くされており、軸線P1回りでリング状に形成されている。シール層1Rは、筒状ポーラス耐火物1Xの上部と筒状の外側鉄皮6の上部との境界領域をシールしている。このため、ガスプール18からのガスが当該境界領域から、即ち、外側鉄皮6の上部から外部に漏れることが抑制されている。シール層1Rは鉄皮6において位置Hmよりも上側に位置にする。殊に、シール層1Rは鉄皮6において位置Hxよりも上側に位置することが好ましい。タンデッシュに保持されている高温の溶湯により鉄皮6はこれの上側からも激しく加熱される。鉄皮6の上側は激しい高温環境に晒される。このため、シール性を高めることが好ましいためである。ガスプール18からのガスが外側鉄皮6の上部から外部に漏れることが抑制されている。場合によっては、シール層1Rは位置Hxと位置Hmとの間に位置していても良い。図3に示すように、シール層1Rを保持する緻密質耐火物16は緻密質であり、気孔率は極めて小さい。このため、シール層1Rの径方向の膨張量が緻密質耐火物16によって吸収されることが抑制され、シール性を高めるのに貢献できる。
 緻密質耐火物3は、不焼成のキャスタブルと異なり、予め焼成された緻密な焼成耐火物で形成されているためガス透過性が小さいが、僅かながらガスが透過することもある。すなわち、上段ポーラス耐火物1に供給されたガスの一部が上段緻密質耐火物3a内を透過して下段緻密質耐火物3bに漏れ出そうとすることもある。同様に、下段ポーラス耐火物2に供給されたガスの一部が下段緻密質耐火物3b内を透過して上段緻密質耐火物3aに漏れ出そうとすることもある。しかし本実施形態によれば、上段緻密質耐火物3aの下面3dと下段緻密質耐火物3bの上面3uとの境界領域にはシール層8が介在している。このため、上段緻密質耐火物3aから下段緻密質耐火物3bへの漏れ出しがブロックされる。且つ、下段緻密質耐火物3bから上段緻密質耐火物3aへの漏れ出しがブロックされる。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給をそれぞれ独立して行うことができる。
 また、シール層8を形成する耐熱シール剤が、焼成により体積が増大して上段緻密質耐火物3aと下段緻密質耐火物3bとの境界領域に隙間を生じさせ難い組成を有している。このため使用中に高温になってもシール層8からガスが漏れ出し難くなる。また、上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周面を包囲する金属皮体として鉄皮9が設けられている。そして、シール層8の外周縁部8pが鉄皮9の内周壁に当接しているので、上段緻密質耐火物3a、下段緻密質耐火物3b及び下段ポーラス耐火物2の外周に沿ってガスが流れることが抑制される。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給を一層独立して行うのに有利となる。また、パイプ4と接する鉄皮9及び緻密質耐火物3との間には、シール層8と同じ耐熱シール剤で形成されたシール層8cが填装されている。このためパイプ4の外側を通ってガスが漏れ出せないようになっている。したがって、上段ポーラス耐火物1及び下段ポーラス耐火物2へのガス供給を一層独立して行うことができる。
 また本実施形態によれば、上段緻密質耐火物3aと下段緻密質耐火物3bとの間に耐熱シール剤が填装されてシール層8を形成する。従って、上段ポーラス耐火物1と上段緻密質耐火物3aからなる上段部の組と、下段ポーラス耐火物2と下段緻密質耐火物3bとからなる下段部の組とを、シール層8を形成する耐熱シール剤で接着して組み立てることができる。また本実施形態によれば、前述したように、鉄皮6(第1部材および第2部材のうちの一方)と鉄皮9(第1部材および第2部材のうちの他方)との間にも、耐熱シールで形成されたシール層17が介装されている。シール層17を形成する耐熱シール剤に有効成分として含有されているシリカ粒子(SiO2)およびアルミナ粒子(Al2O3)が配合されている。更に外側鉄皮6(第1部材および第2部材のうちの一方)の下部6dと下段ポーラス耐火物2(第1部材および第2部材のうちの他方)との境界領域においても、耐熱シール剤を塗布して形成されたシール層20が形成されている。更にまた、外側鉄皮6(第1部材)の上部6uの内周部と上段ポーラス耐火物1(第2部材)の外周部との境界領域においても、外側鉄皮6(第1部材)の上部6uの内周部と補助緻密室耐火物16(第2部材)の外周部との境界領域においても、耐熱シール剤を塗布して形成されたシール層25が形成されている。
 そして、シール層1R、シール層8,8c,17,20,25を構成するシール剤は、上記した耐熱シール剤で形成されている。このため吹き込みノズルの使用時において、高温の溶鋼等の溶湯が通路7を通過するため、溶鋼等の溶湯の熱からの伝熱により、シール層1R、シール層8,8c,17,20,25が高温に加熱される。よって、当該シール剤を構成するシリカ粒子(SiO2)およびアルミナ粒子(Al2O3)がムライトを合成して膨張する。このため上記したシール層8,8c,17,20,25におけるシール性も高めることができる。場合によっては、使用前の予熱または組付体の搬入前の加熱により、シール層1R、シール層8,8c,17,20,25が高温に加熱されることにしても良い。なお上述したように、シール層8,8c,17,20,25は本実施形態に係る耐熱シール剤で形成されているが、これに限らず、シール層8,8c,17,20,25のうちの少なくともいずれか一つについて、本実施形態に係る耐熱シール剤で形成されており、残りを公知のシール剤(モルタル等)で形成することにしても良い。なお、合成前の耐熱シール剤は、カイアナイトおよびアンダルサイトのうちの少なくとも一方を必要に応じて含有できる。
 (実施形態10)
 図11は実施形態10を示す。本実施形態は前記した実施形態と基本的には同様の構成、同様の作用効果を有する。本実施形態においても、図11に示すように、筒状の緻密質耐火物16と筒状の外側鉄皮6との境界領域には、軸線P1回りのリング状の凹状プール部1Wが形成されている。凹状プール部1Wは、筒状の緻密質耐火物16の外周部において1周するように形成されている。組付時において、凹状プール部1Wには、未焼成または半焼成の耐熱シール剤が装填されている。この耐熱シール剤は、使用時における通路7を通過する溶湯の熱により焼成されてシール層1Rが形成される。シール層1Rは、軸線P1回りでリング状に形成されている。シール層1Rは、合成されると膨張するムライトまたはスピネルで形成されており、径方向(DA方向)および高さ方向に膨張する。結果として、緻密質耐火物16の外周部と筒状の外側鉄皮6の内周部との境界領域をシールしている。このためガスプール18のガスが当該境界領域を介して鉄皮6の上端6up側から漏れることが抑制されている。
 さらに本実施形態によれば、図11に示すように、上段ポーラス耐火物1と補助緻密質耐火物16との境界領域には、リング状の凹状プール部16Wが軸線P1回りで形成されている。凹状プール部16Wには未焼成の耐熱シール剤が装填されている。装填された耐熱シール剤は、使用時の溶湯からの熱、高温組付体の使用前の加熱、高温組付体の搬入前の加熱のうちのいずれかにより、焼成(合成)され、ムライトまたはスピネルを形成して径方向および高さ方向に膨張し、シール層16Rを形成する。この膨張は残存膨張として存存する。この結果、外側鉄皮6の上端6upに向かう付勢力FA(図11参照)を発揮する。この結果、補助緻密質耐火物16の円錐形状(上部に向かうにつれて縮径する円錐)の外周部を、外側鉄皮6の円錐形状の内周部(上部に向かうにつれて縮径する円錐)に接近または密接させるのに有利となる。従って、補助緻密質耐火物16の円錐形状の外周部と外側鉄皮6の円錐形状の内周部との境界領域のシール性を一層高め得る。なお、合成前の耐熱シール剤は、カイアナイトおよびアンダルサイトのうちの少なくとも一方を必要に応じて含有できる。図11に示すように、シール層1Rは鉄皮6において中央高さ位置Hmよりも上側に位置にする。殊に、シール層1Rは鉄皮6において高さ方向の位置Hxよりも上側に位置することが好ましい。タンデッシュ等の貯湯容器の下側に配置されている鉄皮6はこれの上側から激しく加熱され、鉄皮6の上側は激しい高温環境に晒されるため、シール性を高めることが好ましいためである。凹状プール部1Wおよびシール層1Rの断面はほぼ台形状とされているが、断面三角形状としても良い。なお、合成前の耐熱シール剤は、カイアナイトおよびアンダルサイトのうちの少なくとも一方を必要に応じて含有できる。
 (その他)本発明は上記し且つ図面に示した実施形態のみに限定されるものではなく、要旨を逸脱しない範囲内で適宜変更して実施できる。高温組付体として、真空脱ガス装置の浸漬管等に適用しても良い。
産業上の利用分野
 本発明に係る高温組付体は、溶鋼、溶銑、アルミニウム溶湯、チタン溶湯等の金属溶湯が使用される高温領域、高温のガスに晒される高温領域等に広く使用できる。第1部材と第2部材との組み合わせは、耐火物-耐火物、金属-金属、耐火物-金属、金属-耐火物の組み合わせでも良い。耐火物は定形れんが等のれんが、流動性をもつ耐火材料を乾燥固化させたキャスタブル等が例示される。金属としては、金属殻体、金属板体が例示される。第1緻密質耐火物と第2緻密質耐火物との境界域を、合成により膨張したシール層でシールすることにしても良い。第1ポーラス質耐火物と第2ポーラス質耐火物との境界域を、合成により膨張したシール層でシールすることにしても良い。
ポーラス質耐火物と緻密質耐火物との境界域を、合成により膨張したシール層でシールすることにしても良い。ポーラス質耐火物および緻密質耐火物のうちの少なくとも一方と鉄皮との間をシールすることにしても良い。

Claims (12)

  1.  少なくとも第1部材および第2部材を具備すると共に、前記第1部材と前記第2部材との境界領域に配置された耐熱シール剤とを具備する高温領域で使用される高温組付体であって、前記耐熱シール剤は、合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有することを特徴とする高温組付体。
  2.  請求項1において、合成されると体積膨張するセラミックスはムライトであり、前記第1セラミックス粒子はシリカで形成され、前記第2セラミックス粒子はアルミナで形成されていることを特徴とする高温組付体。
  3.  請求項1において、合成されると体積膨張するセラミックスはスピネルであり、前記第1セラミックス粒子はマグネシアで形成され、前記第2セラミックス粒子はアルミナで形成されていることを特徴とする高温組付体。
  4.  合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有する合成前の耐熱シール剤と、第1部材と、第2部材とを用意する第1工程と、
     前記第1部材と前記第2部材との境界領域に合成前の耐熱シール剤を介在させるように少なくとも前記第1部材と前記第2部材とを組み付けて組付体を形成する第2工程と、
     前記組付体の前記第1部材と前記第2部材との境界領域に前記耐熱シール剤を介在させた状態で、前記組付体の使用時における前記組付体の使用温度、前記組付体の使用前における前記組付体の加熱温度、前記組付体の搬入前における前記組付体の加熱温度のうちの少なくとも一つで、前記耐熱シール剤を加熱して焼成させ、前記第1セラミックス粒子および前記第2セラミックス粒子を合成させて体積膨張するセラミックスを形成して前記組付体の前記第1部材と前記第2部材との境界領域をシールする第3工程とを含むことを特徴とする高温組付体の製造方法。
  5.  請求項4において、合成されると体積膨張するセラミックスはムライトであり、前記第1セラミックス粒子はシリカで形成され、前記第2セラミックス粒子はアルミナで形成されていることを特徴とする高温組付体の製造方法。
  6.  請求項4において、合成されると体積膨張するセラミックスはスピネルであり、前記第1セラミックス粒子はマグネシアで形成され、前記第2セラミックス粒子はアルミナで形成されていることを特徴とする高温組付体の製造方法。
  7.  請求項4~6のうちの一項において、前記第1工程に係る前記耐熱シール剤におけるセラミックスを100%とするとき、質量比で、アンダルサイトおよびカイアナイトのうちの一方または双方が0.01~40%含有されていることを特徴とする高温組付体の製造方法。
  8.  第1部材と第2部材との境界領域に配置される合成前の耐熱シール剤であって、合成されると体積膨張するセラミックスを形成する第1セラミックス粒子および第2セラミックス粒子を有効成分として含有することを特徴とする耐熱シール剤。
  9.  請求項8において、合成されると体積膨張するセラミックスはムライトであり、前記第1セラミックス粒子はシリカで形成され、第2セラミックス粒子はアルミナで形成されていることを特徴とする耐熱シール剤。
  10.  請求項8において、合成されると体積膨張するセラミックスはスピネルであり、前記第1セラミックス粒子はマグネシアで形成され、前記第2セラミックス粒子はアルミナで形成されていることを特徴とする耐熱シール剤。
  11.  請求項8~10のうちの一項において、前記第1セラミックス粒子および前記第2セラミックス粒子の一方の粒径は、30マイクロメートル以下であり、他方の粒径は200マイクロメートル以下であることを特徴とする耐熱シール剤。
  12.  請求項8~10のうちの一項において、前記耐熱シール剤におけるセラミックスを100%とするとき、質量比で、アンダルサイトおよびカイアナイトのうちの一方または双方が0.01~40%含有されていることを特徴とする耐熱シール剤。
PCT/JP2010/006700 2009-11-18 2010-11-15 高温組付体、高温組付体の製造方法、耐熱シール剤 WO2011061919A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IN3922DEN2012 IN2012DN03922A (ja) 2009-11-18 2010-11-15
US13/509,586 US20120276387A1 (en) 2009-11-18 2010-11-15 High-Temperature Assembly, Method for Producing High-Temperature Assembly, and Heat-Resistant Sealing Material
CN2010800524435A CN102630191A (zh) 2009-11-18 2010-11-15 高温组装体、高温组装体的制造方法、耐热密封剂
CA2780625A CA2780625C (en) 2009-11-18 2010-11-15 High-temperature assembly, method for producing high-temperature assembly, and heat-resistant sealing material
KR1020117006490A KR101232921B1 (ko) 2009-11-18 2010-11-15 내열 실링제
BR112012010990A BR112012010990A2 (pt) 2009-11-18 2010-11-15 conjunto de alta temperatura, metodo para produzir o mesmo e material de vedacao resistente ao calor
KR1020127025885A KR101230123B1 (ko) 2009-11-18 2010-11-15 고온 조합체 및 고온 조합체의 제조 방법

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009262935A JP5523067B2 (ja) 2009-11-18 2009-11-18 タンディッシュ上部ノズル
JP2009-262935 2009-11-18
JP2010-132541 2010-06-10
JP2010132541A JP2011256079A (ja) 2010-06-10 2010-06-10 耐熱シール剤、高温組付体、高温組付体の製造方法
JP2010203079A JP5701548B2 (ja) 2010-09-10 2010-09-10 高温組付体、高温組付体の製造方法
JP2010-203079 2010-09-10

Publications (1)

Publication Number Publication Date
WO2011061919A1 true WO2011061919A1 (ja) 2011-05-26

Family

ID=44059406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/006700 WO2011061919A1 (ja) 2009-11-18 2010-11-15 高温組付体、高温組付体の製造方法、耐熱シール剤

Country Status (7)

Country Link
US (1) US20120276387A1 (ja)
KR (2) KR101230123B1 (ja)
CN (1) CN102630191A (ja)
BR (1) BR112012010990A2 (ja)
CA (1) CA2780625C (ja)
IN (1) IN2012DN03922A (ja)
WO (1) WO2011061919A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306118B1 (ko) * 2011-09-28 2013-09-09 조선내화 주식회사 철강공정용 실링재
CN104785768A (zh) * 2015-05-08 2015-07-22 抚顺新钢铁有限责任公司 一种连铸中间包用浸入式水口高效烘烤装置
CN105033236B (zh) * 2015-08-25 2017-11-28 首钢京唐钢铁联合有限责任公司 引流砂外排装置及连铸钢包开浇方法
US10386259B2 (en) * 2016-08-25 2019-08-20 General Electric Company Hazgas system with acoustic wave sensors
EA201992113A1 (ru) 2017-04-17 2020-02-19 ВЕЗУВИУС ЮЭсЭй КОРПОРЕЙШН Пористый огнеупорный литой материал, его применение и получение
CN113185269A (zh) * 2021-05-08 2021-07-30 江苏悦展新型材料有限公司 一种新型滑板复合工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252470A (ja) * 1994-03-15 1995-10-03 Harima Ceramic Co Ltd 耐火性シートモルタル
JPH10251739A (ja) * 1997-03-07 1998-09-22 Harima Ceramic Co Ltd ガス吹込み用ポーラスプラグ
JP2006219330A (ja) * 2005-02-09 2006-08-24 Plibrico Japan Co Ltd 吹付け補修用不定形耐火材及び補修方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4199704A (en) * 1979-03-15 1980-04-22 General Electric Company Alumina, calcia, baria, strontia sealing composition and article of manufacture
JPS6015592B2 (ja) * 1981-01-27 1985-04-20 黒崎窯業株式会社 高耐食性高気密性パツキング材
US4360190A (en) * 1981-03-16 1982-11-23 Junichi Ato Porous nozzle for molten metal vessel
US4541553A (en) * 1983-09-20 1985-09-17 Servsteel, Inc. Interlocking collector nozzle assembly for pouring molten metal
JPS6068143A (ja) * 1983-09-22 1985-04-18 Harima Refract Co Ltd ポ−ラス耐火物のガスシ−ル方法
US4746348A (en) * 1986-12-29 1988-05-24 Ppg Industries, Inc. Horizontal press bending apparatus and method
US4946082A (en) * 1989-07-10 1990-08-07 General Electric Company Transfer tube with in situ heater
JPH09276997A (ja) * 1996-04-12 1997-10-28 Nippon Steel Corp 熱間回転用タンディッシュのノズル−羽口構造
JP2934187B2 (ja) * 1996-05-17 1999-08-16 明智セラミックス株式会社 連続鋳造用ロングノズル
JPH105942A (ja) * 1996-06-19 1998-01-13 Shinagawa Refract Co Ltd 連続鋳造用一体型浸漬ノズル
US5799720A (en) * 1996-08-27 1998-09-01 Ajax Magnethermic Corp. Nozzle assembly for continuous caster
JP3361044B2 (ja) * 1997-10-07 2003-01-07 東芝セラミックス株式会社 スライドゲート用下ノズル
JP4323962B2 (ja) * 2002-04-02 2009-09-02 黒崎播磨株式会社 連続鋳造用ノズル内孔用耐火物製スリーブの接合構造
JP4359234B2 (ja) * 2004-12-22 2009-11-04 黒崎播磨株式会社 ガス吹き込みノズルの耐火性シール材

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07252470A (ja) * 1994-03-15 1995-10-03 Harima Ceramic Co Ltd 耐火性シートモルタル
JPH10251739A (ja) * 1997-03-07 1998-09-22 Harima Ceramic Co Ltd ガス吹込み用ポーラスプラグ
JP2006219330A (ja) * 2005-02-09 2006-08-24 Plibrico Japan Co Ltd 吹付け補修用不定形耐火材及び補修方法

Also Published As

Publication number Publication date
CA2780625C (en) 2015-01-13
KR101232921B1 (ko) 2013-02-13
KR20120127532A (ko) 2012-11-21
IN2012DN03922A (ja) 2015-09-04
CN102630191A (zh) 2012-08-08
KR101230123B1 (ko) 2013-02-05
KR20110091645A (ko) 2011-08-12
CA2780625A1 (en) 2011-05-26
BR112012010990A2 (pt) 2016-04-12
US20120276387A1 (en) 2012-11-01

Similar Documents

Publication Publication Date Title
WO2011061919A1 (ja) 高温組付体、高温組付体の製造方法、耐熱シール剤
JP4444831B2 (ja) 気体透過モールド壁の温度制御方法
TW201441177A (zh) 用於耐火元件的氧化鋯系鍍膜及包含此鍍膜的耐火元件
JP4933430B2 (ja) 溶融金属にガスを供給するストッパロッド
JP2007152377A (ja) アルミダイカスト用給湯管およびその製造方法
CN109943847A (zh) 热障涂层的间隙填充密封层
JP5701548B2 (ja) 高温組付体、高温組付体の製造方法
JP2011256079A (ja) 耐熱シール剤、高温組付体、高温組付体の製造方法
JP2010173873A (ja) セラミック接合体およびこれを用いた支持部材
JP2008126258A (ja) 断熱スリーブを備えた溶融金属用の鋳造ノズル
JP6073305B2 (ja) 鋳造用部品及び耐食層形成方法
JP2013019557A (ja) 管状火炎バーナ及びガラス加工方法
JP5016371B2 (ja) 熱間吹付け施工方法
JP2011104629A (ja) タンディッシュ上部ノズル
US20110094697A1 (en) Sand core for casting and process for producing the same
JP3853085B2 (ja) 溶融金属用容器およびその表面処理方法
JP3659759B2 (ja) 金属溶湯濾過収容槽及びその内張り煉瓦
JP2007229798A (ja) 連続鋳造用ノズル
TWI271239B (en) Thermal shock resistant casting element and manufacturing process thereof
WO2021199951A1 (ja) 低圧鋳造用溶湯保持炉
CN102167566A (zh) 一种含碳耐火材料的防水化涂料
JP2004255433A (ja) スライドゲートプレート
CN104540615A (zh) 耐火陶瓷气体吹洗塞以及用于制造所述气体吹洗塞的工序
JPH05240585A (ja) 継目材料,継目材料の製造方法及びこのような継目材料を持つ出湯口閉鎖装置
JP2001219266A (ja) 溶融金属排出装置のガス吹込部材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080052443.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20117006490

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10831318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3922/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2780625

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 13509586

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012010990

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 10831318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012010990

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20120509