WO2021199951A1 - 低圧鋳造用溶湯保持炉 - Google Patents

低圧鋳造用溶湯保持炉 Download PDF

Info

Publication number
WO2021199951A1
WO2021199951A1 PCT/JP2021/009169 JP2021009169W WO2021199951A1 WO 2021199951 A1 WO2021199951 A1 WO 2021199951A1 JP 2021009169 W JP2021009169 W JP 2021009169W WO 2021199951 A1 WO2021199951 A1 WO 2021199951A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten metal
low
pressure casting
holding furnace
stalk
Prior art date
Application number
PCT/JP2021/009169
Other languages
English (en)
French (fr)
Inventor
城也太 望月
拓矢 志水
和久 永田
Original Assignee
株式会社トウネツ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トウネツ filed Critical 株式会社トウネツ
Publication of WO2021199951A1 publication Critical patent/WO2021199951A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D18/00Pressure casting; Vacuum casting
    • B22D18/04Low pressure casting, i.e. making use of pressures up to a few bars to fill the mould
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D45/00Equipment for casting, not otherwise provided for
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a molten metal holding furnace for low pressure casting.
  • the present invention relates to a molten metal holding furnace for low-pressure casting, which is suitable for a low-pressure casting method in which a molten metal of aluminum, an aluminum alloy, a non-ferrous metal, or the like is injected into a mold at a low speed and a low pressure to form a cast product.
  • Low-pressure casting methods for obtaining castings such as aluminum, aluminum alloys and non-ferrous metals are known.
  • air, dry air, or a gas such as an inert gas such as argon or nitrogen is held by pressurizing and supplying it to a holding furnace containing the molten metal at a low pressure of 0.01 to 0.2 MPa.
  • the molten metal in the furnace (melted metal storage container) is filled into the cavity of the mold.
  • the pressure in the holding furnace is released, the mold is removed, and the cast product is extruded.
  • this type of molten metal holding furnace for low-pressure casting is equipped with a molten metal storage container made of a breathable refractory material such as a standard refractory or an amorphous refractory.
  • a molten metal storage container made of a breathable refractory material such as a standard refractory or an amorphous refractory.
  • a pressurized gas hereinafter, also referred to as a pressurized gas
  • pressure is applied to the inside of a breathable refractory material such as a standard refractory or an irregular refractory constituting the molten metal storage container.
  • the gas invades and is once held inside the refractory material.
  • the pressure in the molten metal storage container becomes almost the same as the atmospheric pressure, the inner surface of the molten metal storage container
  • the gas that has entered the refractory material from the inner bottom surface (hearth) becomes bubbles and is released into the molten metal.
  • the bubbles rise while oxidizing the surrounding molten metal, and flow into the stalk (hot water supply pipe) together with the oxide. Bubbles and oxides that have flowed into the stalk flow into the mold cavity from the outlet when the pressurized gas is supplied to the holding furnace again, and are hard spots (existing inside the product) in the cast product. It has been a cause of deterioration of product quality, such as the generation of hard foreign substances.
  • the phenomenon of oxidizing the molten metal is particularly remarkable when the supplied pressurized gas is air.
  • Patent Document 1 a non-breathable air bubble blocking member having a size larger than the lower end opening of the stalk is arranged at a position facing the lower end opening of the stalk in the hearth of the molten metal storage container. By doing so, it is disclosed that air bubbles from the hearth surface are prevented from entering the lower end opening of the stalk.
  • the present inventor also arranges a plate-shaped member made of a material having a lower porosity than the molten metal storage container so as to be substantially directly below the lower end opening of the stalk. , Disclosed to prevent the inflow of air bubbles into the molten metal injected from the stalk into the mold.
  • Patent Document 1 when a non-breathable air bubble blocking member having a size larger than the lower end opening of Stoke is arranged, the desired flat plate shape and size cause distortion during firing. Easy to manufacture and difficult to manufacture. Moreover, even if it can be manufactured, there is a problem in terms of economy such as a high unit price due to a low yield.
  • Patent Document 2 even if a plate-shaped member made of a refractory material having a low porosity is arranged, bubbles and oxides generated may be generated from the lower end opening of the stalk depending on the movement of the molten metal.
  • Patent Document 1 it is naturally expected that there will remain a problem that generated bubbles and oxides may flow in from the lower end opening of the stalk depending on the movement of the molten metal.
  • a main object of the present invention is to provide a molten metal holding furnace for low-pressure casting capable of preventing or suppressing bubbles and oxides generated from the refractory material constituting the molten metal storage container from flowing in from the lower end opening of the stalk. To do.
  • the bubble induction member has a contact lower surface in which the lower surface at least in the peripheral portion thereof comes into contact with the molten metal.
  • the lower surface of the contact is provided with a guide portion having an inclination that rises toward the outer edge.
  • the bubble induction member has at least a first member and a second member, and the lower surface of at least the peripheral portion of the second member has a contact lower surface that comes into contact with the molten metal.
  • the lower surface of the contact is provided with a guide portion having an inclination that rises toward the outer edge.
  • the present invention it is possible to prevent or suppress the inflow of air bubbles and oxides generated from the refractory material constituting the molten metal storage container from the lower end opening of the stalk.
  • FIG. 3A is a cross-sectional view of a main part and FIG. 3B is a bottom view of a bubble guiding member.
  • a fourth embodiment is shown, in which (a) is a cross-sectional view of a main part and (b) is a bottom view of a bubble guiding member.
  • FIG. 5A is a cross-sectional view of a main part and FIG. 5B is a bottom view of a bubble guiding member.
  • FIG. 6A is a cross-sectional view of a main part and FIG. 6B is a bottom view of a bubble guiding member.
  • FIG. 7A is a cross-sectional view of a main part and FIG. 7B is a bottom view of a bubble guiding member.
  • the molten metal holding furnace 1 shown in FIG. 1 is a one-chamber type molten metal holding furnace for low-pressure casting that also serves as a molten metal holding chamber and a pressurizing chamber, and includes a molten metal storage container 10 for storing the molten metal.
  • the container layer 11, the fireproof layer 12, and the heat insulating layer 13 are located in this order from the inside, and the outer wall (iron skin) 14 covers the bottom surface, the side surface, and the upper surface on the outside.
  • the container layer 11 is formed of a breathable refractory material such as an alumina-based amorphous refractory.
  • the container layer 11 in the embodiment is formed by mixing, for example, powdered alumina, silicon dioxide, and water in advance, forming the container layer 11 into a predetermined shape, and drying and firing the mixture.
  • the heat insulating layer 13 can be formed by, for example, attaching a fire-resistant cloth to a standard heat insulating body.
  • the molten metal holding chamber 6, which is the internal space of the molten metal storage container 10, is provided with, for example, a cylindrical stalk 3 having a hot water outlet 2 at the upper part, and constitutes a furnace main body. Further, the molten metal holding chamber 6 is provided with a tube heater 7 fixed to the side wall portion (details are not shown), and the molten metal M inside can be held within a predetermined temperature range.
  • the molten metal holding chamber 6 is provided with an air supply port 4 and an exhaust port 5 at the upper portion so that pressurized gas can be supplied and exhausted to the inside of the molten metal holding chamber 6.
  • the molten metal M is stored in the molten metal holding chamber 6 in advance. Air, dry air, or an inert gas such as argon or nitrogen, etc., via the air supply port 4 by a pressurized gas supply means (not shown) that supplies the pressurized gas to the internal space inside the molten metal storage container 10. Pressurized gas is sent into the molten metal holding chamber 6.
  • the container layer 11 of the molten metal storage container 10 is formed of a breathable refractory material such as an amorphous refractory material made of alumina, silicon dioxide, etc., the inside of the refractory material constituting the molten metal storage container 10 Pressurized gas may enter the container.
  • the liquid level of the molten metal M is pressurized by the pressurized gas sent into the molten metal holding chamber 6, and the molten metal M rises in the stalk 3 and enters the cavity of the casting die (not shown) through the hot water outlet 2. It is press-fitted.
  • the supply of the pressurized gas from the air supply port 4 is stopped, and the pressurized gas in the molten metal holding chamber 6 is exhausted from the exhaust port 5.
  • the step of releasing the pressure when the pressure is released at once and becomes almost the same as the atmospheric pressure, the pressure is invaded and held in the container layer 11, the refractory layer 12 and / or the heat insulating layer 13 in the molten metal storage container 10.
  • the pressurized gas that has been used is released as bubbles from the container layer 11.
  • the bubbles accompanying the release of the pressurized gas rise while oxidizing the surrounding molten metal, and flow into the stalk 3 together with the oxide.
  • the bubbles and oxides that have flowed into the stalk 3 flow into the mold cavity (not shown) from the outlet 2 when the pressurized gas is supplied into the molten metal holding furnace 1 again, and are cast. It has been a cause of deterioration of product quality, such as causing hard spots (hard foreign substances existing inside the product) on the product.
  • the present invention is provided in a furnace main body including a molten metal storage container 10, a molten metal M inside the molten metal storage container 10, and a stalk 3 for connecting a cavity of a mold, and an internal space inside the molten metal storage container 10.
  • the present invention relates to a molten metal holding furnace for low-pressure casting having a pressurized gas supply means for supplying the pressurized gas.
  • the bubble guiding member 20 is arranged so as to face the lower end opening of the stalk 3 and the outer edge 20a is located outside the lower end opening position of the stalk 3.
  • the bubble guiding member 20 has a contact lower surface 20b whose lower surface at least in its peripheral portion contacts the molten metal M, and the contact lower surface 20b includes a guiding portion having an inclination that rises toward the outer edge 20a.
  • the bubble guiding member 20 of the first embodiment is, for example, an inverted conical trapezoid formed in a disk shape and whose contact lower surface 20b is inclined toward a peripheral edge (outer edge 20a).
  • the contact lower surface 20b may not be a uniform inclined surface as shown in the figure, but may be a curved surface such as an arc.
  • a material that is breathable a material that has a lower porosity than the container layer 11, a non-breathable material, or the like can be used, and the material is not limited for the following reasons. ..
  • the bubble release position due to the release of the pressurized gas is located outside the outer edge 20a of the bubble guiding member 20, the bubble rises as it is, so that the stalk 3 It is possible to avoid the opening at the lower end of the stalk 3 and prevent bubbles and oxides from flowing into the stalk 3. Further, even if the bubble release position due to the release of the pressurized gas is inward from the outer edge 20a of the bubble guiding member 20, the bubbles and oxides are guided along the contact lower surface 20b and the peripheral edge (outer edge 20a). Since it rises from the outside of the peripheral edge (outer edge 20a) toward, the lower end opening of the stalk 3 is avoided, and bubbles and oxides can be prevented from flowing into the stalk 3.
  • the bubble guiding member having the guiding portion of the embodiment there are the following advantages as compared with the form without the guiding portion shown in Patent Document 1. Even if the release of bubbles from the container layer 11 due to the release of the pressurized gas is at a position including the lower end opening of the stalk 3, the lower surface 20b of the contact serves as a bubble induction portion, and the rise of bubbles and oxides is on the periphery ( Since it is outside the outer edge 20a), the lower end opening of the stalk 3 is avoided, and bubbles and oxides can be prevented from flowing into the stalk 3.
  • bubbles and oxides come to store kinetic energy having a horizontal vector in the process of being induced (rised) along the contact lower surface 20b, and do not rise as it is from the peripheral edge (outer edge 20a).
  • the air is discharged to the outside from the peripheral edge (outer edge 20a), so that the effect of avoiding the lower end opening of the stalk 3 is high.
  • the annular grooves 20b1 and 20b2 are formed on the contact lower surface of the bubble guiding member 20A, and the entire surface is inclined upward toward the peripheral edge (outer edge 20a). Bubbles and oxides that have entered the annular grooves 20b1 and 20b2 accumulate and become saturated, and when they flow out from the annular grooves 20b1 and 20b2, they become large as kinetic energy having a horizontal vector and move outward in the radial direction. Is smooth. Further, an appropriate support column portion 23 can be formed in the vicinity of the outer edge 20a.
  • the contact lower surface 20b of the bubble guiding member 20B straddles the axis of the stalk 3 and has an ascending inclined surface from one side toward the other outer edge 20a.
  • the bubble guiding member 20B in the illustrated example is square in a plan view, it may have another shape such as a circle or an ellipse.
  • the support pillar portion 23 is formed.
  • a groove 20 g is formed on the lower surface of the bubble induction member 20C, and the groove 20 g straddles the axis of the stalk 3 and inclines upward from one to the other outer edge 20a.
  • a contact lower surface 20b for guidance is formed by using a surface.
  • a plurality of grooves 20g are formed to form a plurality of contact lower surfaces 20b for guidance, but only one groove 20g is formed and only one contact lower surface 20b for guidance is formed. You may.
  • the bubble guiding member in the above example is composed of a single member, it is possible to form a bubble guiding member having a guiding portion by a plurality of members, for example, two members as in the fifth embodiment of FIG. can.
  • the bubble induction member 20 is composed of the first member 21 located in the central portion and the second member 22 located in the peripheral portion, and at least the periphery of the second member 22.
  • the lower surface of the portion has a contact lower surface 20b that comes into contact with the molten metal, and the contact lower surface 20b is provided with an induction portion having an inclination that rises toward the outer edge 20a.
  • the first member 21 and the second member 22 may be the same member or may be different members.
  • the first member 21 may be a breathable material and the second member 22 may be a material having a lower porosity than the container layer 11, or the first member 21 may be a breathable material and a second member. 22 may be a non-breathable material.
  • both the first member 21 and the second member 22 may be made of a breathable material. That is, any combination of a breathable material, a material having a porosity lower than that of the container layer 11, and a non-breathable material may be used.
  • the breathable material include silicon carbide, low cement refractory, silicon carbide refractory, high alumina refractory, silicon nitride-bonded silicon carbide refractory, and zirconia refractory.
  • low cement refractories and silicon nitride-bonded silicon carbide refractories are desirable. Furthermore, it may be the same as the breathable refractory material for molding the container layer 11.
  • the material having a porosity lower than that of the container layer 11 include porous ceramics, for example, porous alumina ceramics and porous silicon carbide ceramics.
  • the non-breathable material include fine ceramics, for example, silicon nitride fine ceramics and the like. Also in this form, the shape in a plan view is not limited.
  • the bubble guiding member is installed on the surface of the container layer 11, and as in the sixth embodiment shown in FIG. 7, a recess 11a is formed in the container layer 11, and the bubble guiding member 20D is provided in the recess 11a. It is almost the same surface as the surface of the container layer 11.
  • a groove 20 g is formed on the lower surface of the bubble induction member 20D, and the groove 20 g forms the axis of the stalk 3 as in the fourth embodiment shown in FIG. This is an example in which a contact lower surface 20b for guidance is formed by straddling and forming an ascending inclined surface from one side toward the other outer edge 20a.
  • the bubble guiding member is installed on the container layer 11 surface as in the fourth embodiment shown in FIG. 5, and the sixth embodiment shown in FIG. It is also possible to set the intermediate position between the surface of the container layer 11 and the form having substantially the same surface as in the embodiment of the above.
  • the bubble induction member may be a breathable material.
  • the breathable material suitable for the bubble induction member include silicon carbide, low cement refractory, silicon carbide refractory, high alumina refractory, silicon nitride-bonded silicon carbide refractory, and zirconia refractory.
  • low cement refractories and silicon nitride-bonded silicon carbide refractories are desirable.
  • it may be the same as the breathable refractory material for molding the container layer 11. Since the bubbles released from the container layer 11 are generated when the pressure is released at once and become substantially the same as the atmospheric pressure, the diameter of the bubbles is larger than the pores of the container layer 11.
  • the bubble guiding member is formed of the refractory material forming the container layer 11, the bubbles in contact with the contact lower surface 20b do not penetrate the bubble guiding member. Therefore, as long as the form is such that bubbles are induced, it is not necessary to select a special material, and a refractory material in the technical field of this type of molten metal can be used.
  • the inclination angle of the lower surface of the contact with respect to the horizontal plane is preferably 1 to 45 degrees, particularly 1 to 10 degrees. If it is less than 1 degree, the effect of inducing bubbles and oxides is not sufficient, and if it exceeds 45 degrees, bubbles and oxides do not escape from the outer edge 20a to the outside and rise from the outer edge 20a as it is, sometimes.
  • the molten metal will be fluidized, and from these viewpoints, the effect of suppressing the inflow into the lower end opening of the stalk will be insufficient.
  • a glass-based coating material may be applied, and if there is a groove on the contact lower surface 20b, the glass-based coating material may be applied in advance only to the groove.
  • the above embodiments have been described as applying the present invention to a one-chamber type molten metal holding furnace for low-pressure casting that also serves as a molten metal holding chamber and a pressurizing chamber, but the present invention is limited to the one-chamber type. However, it is applicable to all low-pressure casting molten metal holding furnaces provided with a molten metal holding chamber and a pressure chamber, such as a two-chamber type molten metal holding furnace consisting of a molten metal holding chamber and a pressure chamber. Furthermore, it applies to at least all low-pressure casting molten metal holding furnaces equipped with a pressurizing chamber.
  • the bubble induction member is arranged so as to face the lower end opening of the stalk. That is, when the lower end opening of the stalk is projected downward, the bubble guiding member is provided on the hearth of the molten metal storage container at a part of the lower position where the outer edge of the bubble guiding member can cover the projection.
  • the “on the hearth portion” may be in contact with the “surface of the hearth portion”, or may be separated from the “surface of the hearth portion” by being supported by, for example, a support member. ..
  • the bubble guiding member is composed of a plurality of members, the outer edge of the member constituting the peripheral portion of the bubble guiding member may cover the lower end opening projection of the stalk.
  • the molten metal may be aluminum, an aluminum alloy, or another metal molten metal. Also, those skilled in the art will appreciate that the above embodiments can be modified in various ways.
  • molten metal holding furnace 3 ... stalk, 10 ... molten metal storage container, 11 ... container layer, 11a ... recess, 12 ... refractory layer, 13 ... heat insulating layer, 20, 20A, 20B, 20C, 20D, 20E ... bubble induction member , 20a ... outer edge, 20b ... contact bottom surface, 20g ... groove, 21 ... first member, 22 ... second member, M ... molten metal, B ... air bubbles or oxides.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

【課題】溶湯収納容器を構成する耐火材料より発生した気泡がストークの下端開口から流入するのを防止又は抑制することができる低圧鋳造用溶湯保持炉を提供する。 【解決手段】 溶湯収納容器10と、その内部の溶湯Mと金型のキャビティとを連結するストーク3とを備えた炉本体と、前記溶湯収納容器10内の内部空間に加圧気体を供給する加圧気体供給手段と、を有する低圧鋳造用溶湯保持炉であって、前記ストーク3の下端開口に対向して配置され、外縁20aが前記ストーク3の下端開口位置より外方に位置する気泡誘導部材20を有し、前記気泡誘導部材は20は、少なくともその周辺部における下面が前記溶湯Mと接触する接触下面20bを有し、前記接触下面20bには前記外縁20a向かって上昇する傾斜を有する誘導部を備える。

Description

低圧鋳造用溶湯保持炉
 本発明は、低圧鋳造用溶湯保持炉に関する。特に、例えば、アルミニウム、アルミニウム合金及び非鉄金属等の溶湯を、金型に低速、低圧で注入し、鋳造品を成形する低圧鋳造法に好適である低圧鋳造用溶湯保持炉に関する。
 アルミニウム、アルミニウム合金及び非鉄金属などの鋳造品を得るための低圧鋳造法が知られている。
 この低圧鋳造法においては、空気、ドライエアもしくはアルゴン、窒素などの不活性ガス等の気体を、溶湯を収納する保持炉内に0.01~0.2MPaの低圧で加圧供給することにより、保持炉(溶湯収納容器)内の溶湯を金型のキャビティに充填するものである。
 充填された溶湯の凝固が完了すると、保持炉内の加圧を解放して、金型が外され、鋳造品が押し出される。
 一般に、この種の低圧鋳造用溶湯保持炉においては、定形耐火物や不定形耐火物などの通気性を有する耐火物材料からなる溶湯収納容器を備えている。その結果、次の現象が生じる。
 すなわち、加圧された気体(以下、加圧気体ともいう)を供給する工程において、溶湯収納容器を構成する定形耐火物や不定形耐火物などの通気性を有する耐火物材料の内部へ加圧された気体が侵入し、一旦耐火物材料内部に保持される。
 その後、加圧気体の供給を停止し保持炉内から排気する(加圧を解放する)工程において、溶湯収納容器内の圧力が大気圧とほぼ同じになった際に、溶湯収納容器の内側面や内底面(炉床)から耐火物材料内部に侵入した気体が気泡となって溶湯中へ放出される。その際、気泡は周囲の溶湯を酸化させながら上昇し、酸化物とともにストーク(給湯管)内へ流入する。ストーク内に流入した気泡や酸化物は、再度保持炉内へ加圧された気体を供給する際、出湯口から金型のキャビティに流入して、鋳造される製品にハードスポット(製品内部に存在する硬い異物)を生じさせるなど、製品の品質低下の原因となっていた。溶湯を酸化させる現象は、供給された加圧気体が空気の場合が特に顕著である。
 この改善策として、特許文献1には、溶湯収納容器の炉床部であってストークの下端開口を臨む位置に、ストークの下端開口より大なる大きさを有する非通気性の気泡阻止部材を配置することにより、炉床面からの気泡をストークの下端開口内に侵入することを防止することが開示されている。
 本発明者も、同様に、特許文献2に示されているように、溶湯収納容器よりも気孔率の低い材料からなる板状部材をストークの下端開口の略直下にくるように配置することにより、ストークから金型へ注入される溶湯への気泡の流入を防止することを開示した。
特開2018-12131号公報 特開2018-94622号公報
 しかしながら、特許文献1のように、ストークの下端開口より大なる大きさを有する非通気性の気泡阻止部材を配置する場合、所望の平板形状や大きさにすることは焼成の際に歪みが生じやすく製作が困難である。また、製作できるとしても、歩留まりが悪いため単価が高価になるなど経済性の点でも難点がある。
 また、本発明者らは、特許文献2のように、気孔率の低い耐火材料からなる板状部材を配置しても、溶湯の動きによっては、発生した気泡や酸化物がストークの下端開口から流入するおそれがある問題が残されていることの知見を得た。
 さらに、特許文献1においても、溶湯の動きによっては、発生した気泡や酸化物がストークの下端開口から流入するおそれがある問題が残るであろうことは、当然に予想されるものである。
 したがって、本発明の主たる課題は、溶湯収納容器を構成する耐火物材料より発生した気泡や酸化物がストークの下端開口から流入するのを防止又は抑制することができる低圧鋳造用溶湯保持炉を提供することにある。
 上記課題を解決する本発明に係る態様は次のとおりである。
 <第1の態様>
 溶湯収納容器と、その内部の溶湯と金型のキャビティとを連結するストークとを備えた炉本体と、
 前記溶湯収納容器内の内部空間に加圧気体を供給する加圧気体供給手段と、
 を有する低圧鋳造用溶湯保持炉であって、
 前記ストークの下端開口に対向して配置され、外縁が前記ストークの下端開口位置より外方に位置する気泡誘導部材を有し、
 前記気泡誘導部材は、少なくともその周辺部における下面が前記溶湯と接触する接触下面を有し、
 前記接触下面には前記外縁に向かって上昇する傾斜を有する誘導部を備える、
 ことを特徴とする低圧鋳造用溶湯保持炉。
 <第2の態様>
 溶湯収納容器と、その内部の溶湯と金型のキャビティとを連結するストークとを備えた炉本体と、
 前記溶湯収納容器内の内部空間に加圧気体を供給する加圧気体供給手段と、
 を有する低圧鋳造用溶湯保持炉であって、
 前記ストークの下端開口に対向して配置され、外縁が前記ストークの下端開口位置より外方に位置する気泡誘導部材を有し、
 前記気泡誘導部材は、少なくとも第1の部材及び第2の部材を有し、前記第2の部材の少なくともその周辺部における下面が前記溶湯と接触する接触下面を有し、
 前記接触下面には前記外縁に向かって上昇する傾斜を有する誘導部を備える、
 ことを特徴とする低圧鋳造用溶湯保持炉。
 本発明によれば、溶湯収納容器を構成する耐火物材料より発生した気泡や酸化物がストークの下端開口から流入するのを防止又は抑制することができる。
低圧鋳造用溶湯保持炉の概要断面図である。 第1の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第2の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第3の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第4の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第5の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第6の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。 第7の実施の形態を示すもので、(a)は要部断面図、(b)は気泡誘導部材の底面図である。
 以下、本発明の実施形態について説明する。
 図1に示す溶湯保持炉1は、溶湯保持室と加圧室を兼ねた一室型の低圧鋳造用溶湯保持炉であり、溶湯を収納する溶湯収納容器10を備え、溶湯収納容器10は、内側から順に、容器層11、耐火層12および断熱層13が位置しており、その外側は、底面および側面および上面を外壁(鉄皮)14が覆っている。
 容器層11は、例えばアルミナ質系の不定形耐火物など、通気性を有する耐火物材料により成形される。実施形態における容器層11は、予め、例えば粉状のアルミナ、二酸化ケイ素と水とを混ぜ合わせ、所定の形状に成形し、乾燥・焼成することにより成形される。断熱層13は、例えば定形断熱体に耐火性の布帛を貼りつけて構成することができる。
 溶湯収納容器10の内部空間である溶湯保持室6には、上部に出湯口2を有する例えば円筒状のストーク3が設けられ、炉本体が構成されている。また、溶湯保持室6には、側壁部に固定された(詳細は図示されていない)チューブヒータ7を備えており、内部の溶湯Mを予定の温度範囲内で保持することができる。溶湯保持室6は、上部に給気ポート4と排気ポート5を備えており、加圧気体を溶湯保持室6内に対して給排気できるようになっている。
 かかる溶湯保持炉1においては、予め、溶湯保持室6に溶湯Mが収納される。
 溶湯収納容器10内の内部空間に加圧気体を供給する加圧気体供給手段(図示されていない)により、給気ポート4を介して、空気、ドライエアもしくは、アルゴン、窒素などの不活性ガスなどの加圧気体が溶湯保持室6内に送り込まれる。この際、溶湯収納容器10の容器層11はアルミナと二酸化ケイ素等からできた不定形耐火物など通気性を有する耐火物材料により成形されているため、溶湯収納容器10を構成する耐火物材料内へ加圧気体が侵入することがある。
 溶湯保持室6に送り込まれた加圧気体により、溶湯Mの液面が加圧され、溶湯Mはストーク3内を上昇して、出湯口2を介し、図示されない鋳造用金型のキャビティ内に圧入される。
 鋳造完了後、給気ポート4からの加圧気体の供給は停止され、溶湯保持室6内の加圧気体は、排気ポート5から排気される。この加圧を解放する工程では、一気に圧力を解放して大気圧とほぼ同じになった際、溶湯収納容器10内の容器層11、耐火層12および/または断熱層13に侵入して保持されていた加圧気体は、容器層11から気泡となって放出される。
 前述のように、加圧気体の放出に伴う気泡は周囲の溶湯を酸化させながら上昇し、酸化物とともにストーク3内へ流入する。ストーク3内に流入した気泡や酸化物は、再度、溶湯保持炉1内へ加圧された気体を供給する際、出湯口2から金型のキャビティ(図示せず)に流入して、鋳造される製品にハードスポット(製品内部に存在する硬い異物)を生じさせるなど、製品の品質低下の原因となっていた。
 これを防止又は抑制するために、種々の実施の形態が提案される。
 本発明は、図1に示すように、溶湯収納容器10と、その内部の溶湯Mと金型のキャビティとを連結するストーク3とを備えた炉本体と、溶湯収納容器10内の内部空間に加圧気体を供給する加圧気体供給手段と、を有する低圧鋳造用溶湯保持炉に関するものである。
 第1の実施の形態は、図2に示すように、ストーク3の下端開口に対向して配置され、外縁20aがストーク3の下端開口位置より外方に位置する気泡誘導部材20を有し、この気泡誘導部材20は、少なくともその周辺部における下面が溶湯Mと接触する接触下面20bを有し、接触下面20bには外縁20aに向かって上昇する傾斜を有する誘導部を備える。
 第1の実施の形態の気泡誘導部材20は、例えば円盤状に形成され、その接触下面20bが周縁(外縁20a)に向かって傾斜している逆円錐台形のものである。
 接触下面20bは、図示のように一様な傾斜面ではなく、円弧などの曲線を描くものなどでもよい。
 本発明に係る気泡誘導部材は、通気性であるもの、容器層11より気孔率が低い材料からなるもの、非通気性であるものなどを用いることができ、次の理由によって、材質が限定されない。
 すなわち、第1の実施の形態に則して説明すれば、加圧気体の放出に伴う気泡の放出位置が、気泡誘導部材20の外縁20aより外方位置であればそのまま上昇するので、ストーク3の下端開口を避けることになり、気泡や酸化物がストーク3内に流入することを防止できる。
 また、加圧気体の放出に伴う気泡の放出位置が、気泡誘導部材20の外縁20aより内方位置であっても、気泡や酸化物は接触下面20bに沿って誘導されて周縁(外縁20a)に向かい、周縁(外縁20a)より外側から上昇するので、ストーク3の下端開口を避けることになり、気泡や酸化物がストーク3内に流入することを防止できる。
 実施の形態の誘導部を有する気泡誘導部材を使用することによって、特許文献1に示された誘導部を有しない形態との比較でも次の利点がある。
 加圧気体の放出に伴う、容器層11からの気泡の放出が、ストーク3の下端開口を含む位置であっても、接触下面20bが気泡の誘導部となり、気泡や酸化物の上昇は周縁(外縁20a)より外側となるので、ストーク3の下端開口を避けることになり、気泡や酸化物がストーク3内に流入することを防止できる。
 そして、特に、気泡や酸化物は接触下面20bに沿って誘導(上昇)される過程で、水平方向のベクトルを有する運動エネルギーを蓄えるようになり、周縁(外縁20a)よりそのまま上昇するのではなく、模式的に図2に示すように、周縁(外縁20a)より外側に排出されるようになるので、ストーク3の下端開口を避ける効果が高いものとなる。
 図3に示す第2の実施の形態は、気泡誘導部材20Aの接触下面に環状の溝20b1、20b2を形成し、かつ全体として周縁(外縁20a)に向かって上り傾斜面としたものである。環状の溝20b1、20b2内に入り込んだ気泡や酸化物が溜り飽和となり、その後環状の溝20b1、20b2から流出するとき水平方向のベクトルを有する運動エネルギーとして大きなものとなり、半径方向外方への移動が円滑である。
 また、外縁20a近傍に適宜の支持柱部23を形成できる。
 図4に示す第3の実施の形態は、気泡誘導部材20Bの接触下面20bがストーク3の軸芯を跨いで、一方から他方の外縁20aに向かって上り傾斜面としたものである。
 図示例の気泡誘導部材20Bは平面視で方形としてあるが、円形や楕円などの他の形状であってもよい。支持柱部23が形成されている。
 図5に示す第4の実施の形態は、気泡誘導部材20Cの下面に溝20gを形成し、その溝20gが、ストーク3の軸芯を跨いで、一方から他方の外縁20aに向かって上り傾斜面とすることにより、誘導用の接触下面20bを形成した例である。
 この実施の形態では、気泡や酸化物が、溝20gの両壁により図5(b)の上下方向へ移動できず、専ら図5(b)の左方向に誘導される利点がある。
 なお、図5では、溝20gを複数形成し、複数の誘導用の接触下面20bを形成した例であるが、1つの溝20gのみを形成し、1つの誘導用の接触下面20bのみを形成してもよい。
 上記例の気泡誘導部材は単一部材によって構成してあるが、複数の部材、例えば図6の第5の実施の形態のように2つの部材によって誘導部を有する気泡誘導部材を形成することができる。
 例えば、ストーク3に対応して、中央部に位置する第1の部材21と、周囲部に位置する第2の部材22とで気泡誘導部材20を構成し、第2の部材22の少なくともその周辺部における下面が溶湯と接触する接触下面20bを有し、接触下面20bには外縁20aに向かって上昇する傾斜を有する誘導部を備えるものである。
 また、第1の部材21と第2の部材22とは同じ部材でもよいし、異なる部材であってもよい。例えば、第1の部材21が通気性材料で、第2の部材22が容器層11より気孔率が低い材料であってもよいし、第1の部材21が通気性材料で、第2の部材22が非通気性材料であってもよい。さらにいえば、第1の部材21及び第2の部材22とも通気性材料であってもよい。つまり、通気性材料、容器層11より気孔率が低い材料、非通気性材料の組み合わせであれば何れでもよい。
 通気性材料としては、炭化ケイ素、低セメント耐火物、炭化ケイ素質耐火物、高アルミナ質耐火物、窒化ケイ素結合炭化ケイ素質耐火物、ジルコニア質耐火物等が挙げられる。特に、低セメント耐火物、窒化ケイ素結合炭化ケイ素質耐火物であるのが望ましい。さらに言えば、容器層11を成形する通気性を有する耐火物材料と同じものでもよい。
 容器層11より気孔率が低い材料としては、多孔質セラミックス、例えば、多孔質アルミナセラミックス、多孔質炭化ケイ素セラミックス等が挙げられる。
 非通気性材料としては、ファインセラミックス、例えば、窒化ケイ素質ファインセラミックス等が挙げられる。
 この形態においても、平面視の形状が限定されるものではない。
 気泡誘導部材は、容器層11面上に設置するほか、図7に示す第6の実施の形態のように、容器層11に凹部11aを形成し、その凹部11aに気泡誘導部材20Dを設け、容器層11の面とほぼ同一面としてある。
 図7に示す第6の実施の形態は、図5に示す第4の実施の形態と同様に、気泡誘導部材20Dの下面に溝20gを形成し、その溝20gが、ストーク3の軸芯を跨いで、一方から他方の外縁20aに向かって上り傾斜面とすることにより、誘導用の接触下面20bを形成した例である。
 さらに、図8に示す第7の実施の形態のように、気泡誘導部材は、図5に示す第4の実施の形態のように容器層11面上に設置する形態と図7に示す第6の実施の形態のように容器層11の面とほぼ同一面とする形態との中間位置とすることもできる。
 気泡誘導部材は、通気性材料であってもよいことは先に説明したとおりである。気泡誘導部材に適した通気性材料としては、炭化ケイ素、低セメント耐火物、炭化ケイ素質耐火物、高アルミナ質耐火物、窒化ケイ素結合炭化ケイ素質耐火物、ジルコニア質耐火物等が挙げられる。特に、低セメント耐火物、窒化ケイ素結合炭化ケイ素質耐火物であるのが望ましい。さらに言えば、容器層11を成形する通気性を有する耐火物材料と同じものでもよい。容器層11から放出される気泡は、一気に圧力を解放して大気圧とほぼ同じになった際に生じるものであるから、気泡の径は容器層11の気孔より大きいものである。
 したがって、例えば容器層11を形成する耐火物材料により気泡誘導部材を形成したとしても、接触下面20bと接した気泡が気泡誘導部材を突き抜けることはない。
 よって、気泡の誘導がなされるような形態である限り、特別な材料を選定する必要はなく、この種の溶湯炉の技術分野における耐火物材料を利用できる。
 接触下面の水平面基準における傾斜角度(図5にのみ傾斜角度θ示している)は、1~45度、特に1~10度が望ましい。1度未満になると、気泡や酸化物の誘導効果が十分でなく、45度を超えると、気泡や酸化物が外縁20aから外方に逃げないで、外縁20aからそのまま上昇するようになり、ときには溶湯の流動化を招くようになり、これらの観点からストークの下端開口に流入することを抑制する効果が十分でないものとなる。
また、接触下面20bと接した気泡や酸化物は、接触下面20bの表面上にある凹凸による摩擦で、動きが阻害され誘導されにくくなるおそれがあるため、気泡誘導部材の少なくとも接触下面20bに予めガラス系コーティング材料を塗布するとよいし、接触下面20bに溝がある場合は、溝のみに予めガラス系コーティング材料を塗布してもよい。
 以上の実施の形態は、本発明を、溶湯保持室と加圧室を兼ねた一室型の低圧鋳造用溶湯保持炉に適用するものとして説明してきたが、本発明は、一室型に限らず、溶湯保持室と加圧室からなる二室型の低圧鋳造用溶湯保持炉等、溶湯保持室と加圧室が備えてある低圧鋳造用溶湯保持炉であれば、すべてに適用される。さらに言えば、少なくとも加圧室が備えてある低圧鋳造用溶湯保持炉であれば、すべてに適用される。
 他方で、上記気泡誘導部材は、ストークの下端開口に対向して配置される。すなわち、ストークの下端開口を下方に投影した場合に、気泡誘導部材の外縁が投影を覆うことができる下方の位置の一部に、気泡誘導部材が溶湯収納容器の炉床部上に設けられるものである。
 ここに、「炉床部上」とは、「炉床部表面」と接触していてもよいし、例えば支持部材により支持されることにより、「炉床部表面」と離間していてもよい。
 また、気泡誘導部材が複数の部材で構成される場合、気泡誘導部材の周囲部を構成する部材の外縁が、ストークの下端開口投影を覆うことができるものであればよい。
 溶湯としてはアルミニウム又はアルミニウム合金のほか他の金属溶湯でもよい。また、上記の実施の形態は種々の変更が可能であることは当業者であれば判るであろう。
1…溶湯保持炉、3…ストーク、10…溶湯収納容器、11…容器層、11a…凹部、12…耐火層、13…断熱層、20、20A、20B、20C、20D、20E…気泡誘導部材、20a…外縁、20b…接触下面、20g…溝、21…第1の部材、22…第2の部材、M…溶湯、B…気泡又は酸化物。

Claims (8)

  1.  溶湯収納容器と、その内部の溶湯と金型のキャビティとを連結するストークとを備えた炉本体と、
     前記溶湯収納容器内の内部空間に加圧気体を供給する加圧気体供給手段と、
     を有する低圧鋳造用溶湯保持炉であって、
     前記ストークの下端開口に対向して配置され、外縁が前記ストークの下端開口位置より外方に位置する気泡誘導部材を有し、
     前記気泡誘導部材は、少なくともその周辺部における下面が前記溶湯と接触する接触下面を有し、
     前記接触下面には前記外縁に向かって上昇する傾斜を有する誘導部を備える、
     ことを特徴とする低圧鋳造用溶湯保持炉。
  2.  溶湯収納容器と、その内部の溶湯と金型のキャビティとを連結するストークとを備えた炉本体と、
     前記溶湯収納容器内の内部空間に加圧気体を供給する加圧気体供給手段と、
     を有する低圧鋳造用溶湯保持炉であって、
     前記ストークの下端開口に対向して配置され、外縁が前記ストークの下端開口位置より外方に位置する気泡誘導部材を有し、
     前記気泡誘導部材は、少なくとも第1の部材及び第2の部材を有し、前記第2の部材の少なくともその周辺部における下面が前記溶湯と接触する接触下面を有し、
     前記接触下面には前記外縁に向かって上昇する傾斜を有する誘導部を備える、
     ことを特徴とする低圧鋳造用溶湯保持炉。
  3.  前記気泡誘導部材は、通気性材料からなる請求項1又は2記載の低圧鋳造用溶湯保持炉。
  4.  前記気泡誘導部材は、前記溶湯収納容器を構成する気孔率の低い通気性材料からなる請求項1又は2記載の低圧鋳造用溶湯保持炉。
  5.  前記誘導部は、前記気泡誘導部材の中心部からその周縁部に向かって上昇する傾斜を有する請求項1又は2記載の低圧鋳造用溶湯保持炉。
  6.  前記誘導部は、前記気泡誘導部材の水平方向の一方側から他方側に延在し、前記他方側の延在縁が前記外縁を形成している請求項1又は2記載の低圧鋳造用溶湯保持炉。
  7.  前記誘導部は、下方に開口する溝により形成され、その溝底が前記外縁に向かって上昇する傾斜を有している請求項5記載の低圧鋳造用溶湯保持炉。
  8.  前記第1の部材と前記第2の部材とは別の材料からなる請求項2記載の低圧鋳造用溶湯保持炉。
PCT/JP2021/009169 2020-04-03 2021-03-09 低圧鋳造用溶湯保持炉 WO2021199951A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020067446A JP7333625B2 (ja) 2020-04-03 2020-04-03 低圧鋳造用溶湯保持炉
JP2020-067446 2020-04-03

Publications (1)

Publication Number Publication Date
WO2021199951A1 true WO2021199951A1 (ja) 2021-10-07

Family

ID=77929074

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/009169 WO2021199951A1 (ja) 2020-04-03 2021-03-09 低圧鋳造用溶湯保持炉

Country Status (2)

Country Link
JP (1) JP7333625B2 (ja)
WO (1) WO2021199951A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102454U (ja) * 1980-12-15 1982-06-24
JPS57102455U (ja) * 1980-12-15 1982-06-24
JPS62214862A (ja) * 1986-03-17 1987-09-21 Toyota Motor Corp 減圧鋳造方法及びその装置
JPH0281752U (ja) * 1988-12-03 1990-06-25
JP2018012131A (ja) * 2016-07-22 2018-01-25 株式会社アクセル技研 低圧鋳造用溶湯保持炉
JP2018094622A (ja) * 2016-12-16 2018-06-21 株式会社トウネツ 低圧鋳造用溶湯保持炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102454U (ja) * 1980-12-15 1982-06-24
JPS57102455U (ja) * 1980-12-15 1982-06-24
JPS62214862A (ja) * 1986-03-17 1987-09-21 Toyota Motor Corp 減圧鋳造方法及びその装置
JPH0281752U (ja) * 1988-12-03 1990-06-25
JP2018012131A (ja) * 2016-07-22 2018-01-25 株式会社アクセル技研 低圧鋳造用溶湯保持炉
JP2018094622A (ja) * 2016-12-16 2018-06-21 株式会社トウネツ 低圧鋳造用溶湯保持炉

Also Published As

Publication number Publication date
JP7333625B2 (ja) 2023-08-25
JP2021159984A (ja) 2021-10-11

Similar Documents

Publication Publication Date Title
JP6465854B2 (ja) 金属流インパクトパッド及びタンディッシュ用ディフューザー
TW201102191A (en) Pouring nozzle
KR20180026468A (ko) 턴디쉬 출구 변경장치
US3343829A (en) Porous plug assembly for metallurgical receptacle
JP2008529796A (ja) 鋼ストリップ連続鋳造方法及び装置
JPH0142787B2 (ja)
KR20200021910A (ko) 주조 시스템
WO2021199951A1 (ja) 低圧鋳造用溶湯保持炉
JPH0315244Y2 (ja)
JP2018094622A (ja) 低圧鋳造用溶湯保持炉
JPH09308950A (ja) 連続鋳造用ロングノズル
JPS6340668A (ja) 溶湯流出口を備えた溶湯容器
JPS59225862A (ja) 連続鋳造用浸漬ノズル
JPH03110048A (ja) タンディッシュストッパー
KR101891160B1 (ko) 연속주조 설비의 컬렉터 노즐용 실링 개스킷
JP2007167956A (ja) セラミック台座石及び冶金容器
JP5697193B2 (ja) ガス吹き込み用ノズル
US5286004A (en) Low porosity-high density radial burst refractory plug with constant flow
JP6951345B2 (ja) 摺動ゲートバルブプレート
JP5523067B2 (ja) タンディッシュ上部ノズル
KR20130046718A (ko) 턴디쉬용 스토퍼
CN106270475B (zh) 浇注包定型包嘴
JPS583467B2 (ja) チユウクウシツオユウスルチヨウジヤクチユウゾウヨウノズルノ セイゾウホウ
JP6938788B2 (ja) 連続鋳造用コレクタノズル
JP4452586B2 (ja) ランスパイプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781594

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781594

Country of ref document: EP

Kind code of ref document: A1