WO2011060583A1 - 非天然的胶原样蛋白及其应用 - Google Patents

非天然的胶原样蛋白及其应用 Download PDF

Info

Publication number
WO2011060583A1
WO2011060583A1 PCT/CN2009/075039 CN2009075039W WO2011060583A1 WO 2011060583 A1 WO2011060583 A1 WO 2011060583A1 CN 2009075039 W CN2009075039 W CN 2009075039W WO 2011060583 A1 WO2011060583 A1 WO 2011060583A1
Authority
WO
WIPO (PCT)
Prior art keywords
gelatin
protein
fusion protein
unit
csf
Prior art date
Application number
PCT/CN2009/075039
Other languages
English (en)
French (fr)
Inventor
黄岩山
周林福
陈智
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to EP09851375.7A priority Critical patent/EP2502939B1/en
Priority to CN2009801038709A priority patent/CN102164949B/zh
Priority to US13/510,937 priority patent/US9051358B2/en
Priority to JP2012539158A priority patent/JP5737597B2/ja
Priority to PCT/CN2009/075039 priority patent/WO2011060583A1/zh
Publication of WO2011060583A1 publication Critical patent/WO2011060583A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/001Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof by chemical synthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/01Hydrolysed proteins; Derivatives thereof
    • A61K38/012Hydrolysed proteins; Derivatives thereof from animals
    • A61K38/014Hydrolysed proteins; Derivatives thereof from animals from connective tissue peptides, e.g. gelatin, collagen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/06Antianaemics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/78Connective tissue peptides, e.g. collagen, elastin, laminin, fibronectin, vitronectin or cold insoluble globulin [CIG]

Definitions

  • the present invention relates to the field of proteins and, more particularly, to a novel class of recombinant fusion proteins having biological activity and longer half-life, and their preparation and use. Background technique
  • bioactive peptides/proteins Due to various factors such as kidney and liver and degradation, most clinically applied bioactive peptides/proteins are often cleared rapidly in the body, with typical half-lives ranging from a few minutes to a few hours. In the course of treatment, a large amount and frequent injections are required to obtain a drug concentration that is effective, which not only causes pain to the patient, but also causes a decrease in efficacy due to fluctuations in blood concentration, and an increase in toxic side effects.
  • a water-soluble polymer for example, polyethylene glycol, dextran, etc.
  • PEG-ADA polyethylene glycol, dextran, etc.
  • Modification can increase the half-life in the body, increase stability and solubility, and reduce immunogenicity.
  • chemical modification of the protein/polypeptide generally results in a significant or even complete loss of activity of these biomacromolecules (Veronese FM, Biomaterials, 22: 405-417, 2001).
  • the polymer compound reacts with a group such as an amino group, a thiol group or an imidazolyl group on the surface of the protein/polypeptide, and is linked to the protein/polypeptide molecule by a covalent bond.
  • a group such as an amino group, a thiol group or an imidazolyl group on the surface of the protein/polypeptide
  • the number of potential groups reactive with active PEG is also numerous.
  • PEG is bound at different sites, the stability and biological activity of the product are different. What's more, most of the chemically synthesized polymers, such as PEG, cannot be degraded by organisms.
  • PEG-IFN a 2a For example, long-term high-dose injections of PEG-IFN a 2a have been found to accumulate in the kidney (Conover CD et al., Artificial Organs., 21: 369-378, 1997; Bendele A et al. , Toxicol Sci., 42 : 152— 157, 1998). From a drug design perspective, it is clearly safer to have none of these accumulated drugs.
  • PEG-modified proteins have been found to produce a PEG antibody (defined as a pleiotropic hapten) that affects the half-life of the drug (Cal iceti P & Veronese FM, Adv Drug Deli v Rev., 55 : 1261- 1277, 2003).
  • the existing schemes for improving the in vivo half-life of active proteins have the following disadvantages: 1.
  • the product is not uniform, and the process requirements are complicated; 2.
  • the modification is not degraded by the organism and will accumulate in the body; 3.
  • Increased immunogenicity 4. Lead to a significant decrease or even complete loss of biological activity of the protein; 5.
  • hydrophilic amino acids such as Gly, Asp, Glu, Ser, etc.
  • Gly, Asp, Glu, Ser, etc. are used to construct amino acid polymers.
  • Fusion vectors to extend the half-life of protein drugs are difficult to predict and there are many problems.
  • 1 artificially designed sequences, although theoretically containing many hydrophilic amino acids, in view of the complexity of the relationship between protein structure and function, it is difficult to predict the spatial structure of fully artificially designed sequences (such as secondary Structure, tertiary structure, etc., so its potential biological function and immunogenicity are unknown; 2 artificially designed repeat sequences are different from the protein sequences produced by natural evolution, especially those with extremely high repeat sequences, it is difficult Recombinant expression, the actual expression is often extremely low and can not be practically applied.
  • the inventors have extended the protein drug by recombinant expression of polyglutamic acid as a fusion vector according to the method provided by David W. Leung et al. (US20080176288), but in fact, according to the method provided by it, it is impossible to express its claim. sequence.
  • a recombinant gelatin-like unit useful for extending the half-life of a protein in vivo, said gelatin-like unit being a polypeptide having the structure:
  • Gly is a glycine residue
  • X and Y are any of the 20 natural amino acids except Cys;
  • n 20-300;
  • gelatin-like unit has the following characteristics:
  • the gelatin unit is not a natural gelatin protein.
  • the gelatin-like unit further has the following features:
  • the isoelectric point is 3-7 (preferably 3. 2-6, more preferably 3. 2-5. 5);
  • the average antigenic index calculated according to the Kolaskar-Tongaonkar method is not higher than 0.98;
  • the GRAVY value representing hydrophilicity is less than _1. 1 (preferably less than _1. 4, more preferably less than -1. 5).
  • the sequence of the gelatin-like unit is derived or derived from gelatin.
  • the gelatin-like unit has a molecular weight of 10-100 kDa.
  • a polynucleotide encoding the gelatin-like unit of the first aspect.
  • a recombinant fusion protein is provided, characterized in that the fusion protein is formed by fusing a biologically active polypeptide with a gelatin-like unit as described in the first aspect.
  • the fusion protein has a half-life extension of at least 1 fold in vivo compared to the biologically active polypeptide without the gelatin unit; more preferably, the half-life is extended by at least 2, 3, 4, 5, 6 , or 10 times.
  • the ratio of the apparent molecular weight (molecular sieve assay) to the theoretical molecular weight of the fusion protein is 1.25, more preferably 1. 5, optimally 2.
  • the biologically active polypeptide has a molecular weight of from 0.5 to 70 Kda, more preferably from 1 to 66 Kda.
  • the gelatin unit is located at the amino terminus, the carboxy terminus, both ends, or in the middle of the fusion protein.
  • the fusion protein is in a monomeric or multimeric form.
  • the fusion protein is a monomer as shown in Formula I or a multimeric form thereof.
  • GLK denotes a gelatin unit as described in the first aspect of the invention
  • P and q are independently 0 or 1, and p and q are not 0 at the same time;
  • R is a biologically functional protein that does not contain the gelatin unit, and the R is not a gelatin protein;
  • all (Gly-X_Y) n fragments in the fusion protein comprise a sum of n greater than 20, less than
  • the fusion protein has a molecular weight of 20 to 500 Kda.
  • the fusion protein is a multimer, and each of R and GLK in Formula I may be the same or different.
  • a polynucleotide is provided, the polynucleotide encoding the recombinant fusion protein of the third aspect.
  • an expression vector comprising the sequence of the polynucleotide of the fourth aspect is provided.
  • a recombinant host cell comprising the expression vector of the fifth aspect, or the polynucleotide of the fourth aspect integrated in the chromosome, is provided.
  • a method of preparing the recombinant fusion protein comprising the steps of:
  • Figure 1 shows several typical basic structures of recombinant gelatin-like fusion proteins.
  • Figure 2 is a flow chart showing the construction of the pPIC-GLK116 4 expression plasmid.
  • Figure 3 is a flow chart showing the construction of pP I C-GLK 116 4 /G-CSF expression plasmid.
  • Figure 4 shows the SDS-PAGE electrophoresis (8%) analysis during the purification of rGLK116 4 /G-CSF.
  • the final product was purified as a single band with an apparent molecular weight between 66KD and 97KD. From left: Lane 1. Low molecular weight protein Marker, Lane 2. Fermentation supernatant, 3. SP column elution peak, 4. Q column elution peak.
  • Figure 5 is a SEC-HPLC analysis of purified rGLK116 4 /G-CSF using a TSK Gel G3000 Swxl column with a buffer of 50 mM PB, 0.25 M NaCl, pH 7.0, a detection wavelength of 214 nm, and a flow rate of 0.8 ml/min. .
  • Figure 6 is a reversed-phase high performance liquid chromatography (RP-HPLC) analysis of purified rGLK116 4 /G-CSF, RP-HPLC using VYDAC protein C4 TP5415 column, mobile phase A is: aqueous solution containing 0.1% TFA, mobile phase 8 ⁇ / ⁇ B, using a 1:1 acetonitrile: aqueous solution, a detection wavelength of 214nm, a flow rate of 0. 8ml / min.
  • RP-HPLC reversed-phase high performance liquid chromatography
  • Figure 7 shows the results of immunoblot analysis of rGLK116 4 /G-CSF, and the primary antibody used was an anti-G-CSF murine polyclonal antibody.
  • Figure 8 shows the in vitro biological activity of the rGLK 116 4 /G_CSF fusion protein assayed using the rhG-CSF-dependent strain NSF60.
  • Figure 9 SEC-HPLC analysis of rhG-CSF and rGLKl 16 4 /G_CSF in vitro stability study results.
  • Figure 10 Results of serum antibody detection after continuous injection of rGLK116 ⁇ PrGLK116 4 /G-CSF mice.
  • A is a G-CSF coating
  • B is a rGLK116 4 coating.
  • Figure 12 Results of pharmacokinetic studies of different doses of rGLK116 4 /G-CSF fusion protein, rhG_CSF and rHSA/G-CSF in normal adult SD rats.
  • Figure 13 is a flow chart showing the construction of the pPIC-GLK116 4 /IFN a expression plasmid.
  • Figure 14 shows SDS-PAGE electrophoresis (8%) analysis during the purification of rGLK116 4 /IFN a.
  • the final product was purified to a single band with an apparent molecular weight of approximately 85 kD. From left: Lane 1. Low molecular weight protein Marker, Lane 2. Fermentation supernatant, 3. Q column elution peak.
  • Figure 16 is a flow chart showing the construction of pPIC-Exendin-4/GLK104 6 and pPIC-Exendin-4/GLK107 6 expression plasmids.
  • Exendin-4 is exenatide.
  • Figure 17 shows SDS-PAGE electrophoresis (10%) analysis during the purification of rExendin-4/GLK104 6 with an apparent molecular weight between 66KD and 97KD. From left: Lane 1. Low molecular weight protein Marker, Lane 2. Fermentation supernatant, 3. SP column elution peak, 4. Q column elution peak.
  • Figure 18 The in vitro biological activities of the rExendin_4/GLK104 6 and rExendin-4/GLK107 6 fusion proteins were determined using BHK cells stably transfected with GLP-1R.
  • Figure 20 is a flow chart showing the construction of pCEP4-EP0/GLK107 4 expression plasmid.
  • Figure 21 Pharmacodynamic study results of different doses of rEP0/GLK107 4 fusion protein and rhEPO in normal BALB/c mice. Detailed ways
  • GLK gelatin l ike protein
  • the present inventors After extensive and intensive research, the present inventors have found for the first time that recombinant gelatin l ike protein (GLK) and its mutants are very suitable as fusion vectors for fusion proteins.
  • the present inventors used a gelatin-like unit as a fusion carrier to fuse with an active protein to significantly prolong the in vivo half-life of the biologically active polypeptide/protein in the body.
  • the present invention has been completed on this basis.
  • gelatin-like unit As used herein, the terms “gelatin-like unit”, “gelatin-like protein”, or “GLK (gelatin-like protein)” are used interchangeably.
  • Natural gelatin is a kind of protein derived from collagen. It is a product obtained by collagen denaturation. Its basic structure has multiple Gly-XY repeats. The structural formula is (Gly-XY) n , where X and Y are often guanidine. Acid and hydroxyproline residues, and the ratio of the content of proline and hydroxyproline residues affect their structure and melting point. The difference in amino acid composition at the X and Y positions affects the hydrophilicity, isoelectric point, secondary structure, and immunogenicity of collagen.
  • Gelatin can be extracted by treating the bones and fur of the animal.
  • animal-derived gelatin often has a virus that infects it.
  • the application of animal-derived gelatin to humans also presents a problem of biocompatibility.
  • Recombinant gelatin with different biochemical properties can be obtained by using different fragments of collagen gene, and numerous studies have shown that Pichia pastoris expression system can be used to produce recombinant gelatin or gelatin with unique biochemical properties from different sources (Olsen D et al Adv Drug Deliv Rev., 55: 1547-1567, 2003).
  • Recombinant gelatin like natural gelatin obtained by hydrolysis of collagen, has a stabilizing effect on proteins and has been used as a stabilizer for vaccines (US 2006/0204511 Al).
  • a gelatin-like unit refers to a polypeptide fragment derived from or derived from natural gelatin and expressed by recombinant, and also includes a mutated gelatin-like sequence having a natural gelatin structure.
  • the length or molecular weight of the gelatin-like unit is not particularly limited.
  • Each gelatin unit typically contains from 60 to 1500 amino acid residues, preferably from 200 to 1000 amino acid residues, by length; each gelatin unit is typically from 6 to 150 kDa, preferably from 20 to 80 kDa, by weight.
  • the present invention relates to a novel class of recombinant gelatin-like fusion proteins consisting of one or several biologically functional proteins and gelatin-like units derived from natural or artificial, providing diagnostic/therapeutic/targeting effects.
  • the basic structure of a recombinant gelatin-like fusion protein is a monomer having a ⁇ GLK ⁇ pR- ⁇ GLK ⁇ q structure or a multimeric form thereof.
  • GLK represents a gelatin-like unit; P and q are 0 or 1, and p and q are not simultaneously 0; R is a biologically functional protein free of said gelatin unit, and said P is not a gelatin protein If the recombinant gelatin-like fusion protein becomes a multimeric form, it becomes ⁇ GLK 1 ⁇ p_R" ⁇ GLK 2 ⁇ q- ⁇ GLK 3 ⁇ pR 2 , ⁇ GLK 1 ⁇ pR - ⁇ GLK2 ⁇ q- ⁇ GLK3 ⁇ pR 2 - ⁇ GLK4 ⁇ q, ⁇ GLK1 ⁇ pR- ⁇ GLK2 ⁇ q- ⁇ GLK3 ⁇ pR 2 - ⁇ GLK4 ⁇ q- ⁇ GLK5 ⁇ pR- ⁇ GLK6 ⁇
  • the structural forms such as q may be the same or different, and GLK1 to GLK6 may be the same or different, but contain at least one GLK structure and one biologically active
  • the present invention is achieved by fusing one or several biologically active proteins and fragments thereof to one or more gelatin-like proteins GLK (gelatin-l ike protein) having a certain molecular weight.
  • GLK for fusion expression is not immunogenic and has excellent water solubility under physiological conditions.
  • the recombinant gelatin-like fusion protein prepared according to the present invention not only exhibits better in vitro stability and in vivo half-life, but also has a uniform structure compared with the existing protein modification or fusion scheme, and surprisingly has more High biological activity.
  • the GLK moiety as a fusion carrier is biocompatible, has no immunogenicity, can be degraded by the body, and does not accumulate in the body.
  • recombinant gelatin-like fusion protein refers to a fusion protein having a basic structure of ⁇ GLK ⁇ pR- ⁇ GLK ⁇ q, and the protein/polypeptide R and (Gly-XY) are directly linked by peptide bonds.
  • the R and GLK can also be connected by a spacer.
  • spacer refers to one or more molecules, such as amino acids, nucleic acids or chemical molecules, such as polyethylene glycol (PEG), which can be inserted into one or more Component domain. The spacer can be used to provide a target site between the desired components for convenient operation, or to facilitate maintaining the spatial structure of the active protein, or the interaction of the active protein with the target molecule.
  • the spacer of the present invention is a short linker peptide, such as some Gly, Ser-rich short linker peptides, such as (GlyGlyGlyGlySer) n , n between 1 and 10; the linker peptide can also adopt other link peptides which are currently widely used. as mentioned Darning Shan peptides (Shan D et ah, J Immunol , 162:. 6589-6595, 1999).
  • the GLK contained in the recombinant gelatin-like fusion protein is a highly repetitive protein sequence having the structural characteristics of (Gly-XY) JJ, and the sequence may be completely or partially derived from natural gelatin or a simple repeat of a partial fragment of a natural gelatin. It can also be an optimized artificial sequence with Gly-XY features.
  • the sequence source of GLK may be a non-human gelatin sequence or a human-derived gelatin sequence, such as David Olsen (Olsen D et al., Adv Drug Del iv Rev., 55 : 1547-1567, 2003)
  • the sequence fragment of al (I) collagen mentioned in the text; the GLK sequence may be identical to the native sequence, or may be selected from a natural sequence, and then The size required by the present invention is achieved by simple repetition.
  • GLK sequences that can be used are extremely broad, whether it is a gelatin-like sequence with a (Gly-XY) n characteristic from a natural source sequence or a synthetic source, such as gelatin fragments involved in US5801045, US6150081, US6428978, W001/34646A2, etc. .
  • soluble sequences in the aqueous phase at ⁇ 40 °C can be used for the preparation of recombinant gelatin-like fusion proteins.
  • the inventors have redesigned a class of recombinant gelatin-like sequences based on the natural gelatin Gly-X-Y repeating unit according to the following principles:
  • Gly-XY repeat units with high frequency in the natural gelatin sequence such as Gly-Pro-Hyp.
  • Gly-Pro-Ala Gly-A la-Hyp
  • Gly-Glu-Lys Gly-Pro-Lys
  • Gly-Glu-Hyp Gly-Ser-Hyp
  • Gly-Gln-Hyp Gly-Glu-Arg
  • Gly Units such as -Pro_Arg recombine them;
  • X, Y are hydrophilic amino acids. More preferably, they are Ala, Asn, Gin, Glu, Lys, Pro, Ser. , Hyp, Arg, and/or several;
  • the redesigned GLK sequence contains as little as possible of known immunogenic sequences. Sites that have been shown to be immunogenic according to the prior published technical documents, such as H. Hori et al., reported that I le-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro (Hori H et al. , J. Al lergy Cl in Immunol., 110 : 652-657, 2002);
  • the redesigned recombinant gelatin-like sequence is calculated by the Kolaskar-Tongaonkar method, and the average antigenic index (Average antigenic propensity) is not higher than 0.98.
  • the modified artificial sequence is rich in hydrophilic amino acids, and typical sequences thereof include, but are not limited to, SEQ ID NO: 2, 19, 21 and the like.
  • Recombinant gelatin-like fusion protein ⁇ GLK ⁇ p-R- ⁇ GLK ⁇ q, the basic structure of GLK Gly_X_Y
  • the number of repeating units (n), that is, the molecular weight range of GLK is variable.
  • the first recombinant gelatin-like fusion protein must have a suitable molecular weight to ensure that it is not cleared by the kidneys.
  • the molecular weight of the recombinant gelatin-like fusion protein is determined by the protein/polypeptide fraction R and GLK.
  • the molecular weight of the active protein R is determined, and the number is also determined, recombinant gelatin-like fusion
  • the molecular weight of the protein is determined by the size and number of GLK.
  • the molecular weight of the protein/polypeptide R moiety is small (eg ⁇ 20KD)
  • the molecular weight of the GLK should be at least between 15 and 70 KD, and the larger molecular weight is not necessarily It is beneficial to prolong the half-life of recombinant gelatin-like fusion protein in vivo, but it is not conducive to recombinant expression, and is easily degraded by protease. Unexpected immunogenicity is also difficult to control, so the suitable GLK molecular weight is between 6-150KD, which is better. It is between 20-80KD.
  • the GLK molecular weight range can be further relaxed, and can be between lkDa and 150 KDa, for example, about 1000-2000 Da, about 2-20 kDa, about Between 20-50kDa, between about 50-100kDa, between about 100-150kDa, between about 150_200kDa.
  • the molecular weight of the recombinant gelatin-like fusion protein is not particularly limited and is usually 20-500 KDa, preferably 25-300 KDa.
  • Bioly active protein/polypeptide refers to proteins, antibodies, polypeptides and fragments and variants thereof, having one or more pharmacological and/or biological activities, or targeting, multimerization and the like. They can be either natural or artificially constructed.
  • Bioly active protein/polypeptide includes enzymes, enzyme inhibitors, antigens, antibodies, hormones, coagulation factors, interferons, cytokines, growth factors, differentiation factors, factors related to bone growth, and bone mass Factors related to factor absorption, chemotactic factors, cel l moti l ity factors, migration factors, cytostatic factors, killing factors, antifungal factors , plasma adhesion molecules, interstitial adhesion molecules and extracellular matrix, receptor ligands and fragments thereof.
  • the biologically active protein/polypeptide according to the present invention is more specifically a protein/polypeptide which exhibits "therapeutic activity” or a "therapeutically active” protein/polypeptide which possesses one or more Known biological and/or therapeutic activity. These activities are associated with one or more of the therapeutic proteins described herein, or other known therapeutic proteins.
  • therapeutic protein refers to a protein useful for treating, preventing or ameliorating a disease, condition, or function disorder.
  • a "therapeutic protein” can be a specific binding to a particular cell type (normal (eg, lymphocytes) or abnormal (eg, cancer cells)) and used to administer a drug (drug, or cytotoxic agent) a protein that is specifically localized to this cell type.
  • a drug drug, or cytotoxic agent
  • therapeutic protein refers to a biologically active protein, particularly a biologically active protein useful for the treatment, prevention and amelioration of disease.
  • Non-limiting therapeutic proteins include proteins that have the following biological activities: such as increased angiogenesis, inhibition of angiogenesis, regulation of hematopoiesis, promotion of neurodevelopment, enhancement of immune response, suppression of immune responses, and the like.
  • therapeutic activity or “activity” may refer to an activity in a human, non-human mammal or other species of organism that achieves an effect consistent with the desired therapeutic result.
  • the therapeutic activity can be measured in vivo or in vitro.
  • the therapeutic protein corresponding to the therapeutic protein portion of the recombinant gelatin-like fusion protein of the present invention includes, but is not limited to, VEGF receptor, TNF receptor, HER-2/neural membrane receptor, human ErbB3 receptor secretion form Isomer, transforming growth factor b ill receptor extracellular domain, transforming growth factor b ll receptor receptor extracellular domain, IL-1 receptor, IL-4 receptor, urokinase, ⁇ -glucoglucoside Enzyme, arginine deiminase, Arginase, herstatin, epidermal growth factor, FGF-1, fibroblast growth factor-2, common fibroblast growth factor, nerve growth factor, platelet-derived growth factor, VEGF-1, IL -1, IL-2, IL-3, IL-4, IL-6, IL-8, IL-10, IL- 11, IL-12, IL- 18, IL-21, IL-24, IL-1RA , RANKL, RANK, 0PG,
  • the therapeutic protein may also be an antibody and a fragment thereof, a single chain antibody scFv or the like.
  • These proteins, as well as nucleic acid sequences encoding these proteins, are well known and can be found in public databases such as Chemical Abstracts Services Databases (e.g., CAS Regi stry), GenBank and GenSeq. It will be readily apparent to those skilled in the art, in light of the spirit of the present invention, that the vast majority of biologically active proteins that have been discovered in the prior art are suitable for use in the present invention. Of course, it should also be understood that biologically active proteins/polypeptides newly discovered after this invention are equally applicable to the present invention.
  • the biologically active protein in the recombinant gelatin-like fusion protein of the present invention may be non-glycosylated or may be sugar Grouped, such as partial cytokines, cell surface proteins and secreted proteins, are often modified, such as by binding one or more oligosaccharide groups.
  • oligosaccharide groups There are generally two main types of glycosylation: 0-linked oligosaccharide glycosylation, a ligation site at a serine or threonine residue; N-linked oligosaccharide glycosylation, a ligation site at Asn-X At the asparaginic acid residue site of the -Ser/Thr sequence, here, X may be any amino acid other than proline.
  • Glycosyl isomers can be obtained by removing or introducing glycosylation sites, such as replacing or removing amino acid residues, such as glutamic acid instead of asparaginic acid, or in a host that does not produce such glycosylated proteins.
  • the non-glycosylated recombinant protein is expressed in the cell, for example, in E. coli or a glycosylation-deficient yeast.
  • the mechanisms by which peptides/proteins are rapidly cleared in the body are diverse, including glomerular filtration, receptor-mediated endocytosis, protease action, lymphatic system clearance, and liver clearance.
  • the longer half-life of the active protein after fusion with the Fc fragment of IgG or albumin is due to the presence of specific FcRn-mediated protection of the circulating action in the body.
  • the exact mechanism by which the gelatin sequence is fused to the active protein to extend the half-life of the active protein is not known. No similar receptors have been found to function so far.
  • the GLK sequence itself does not bind to FcRn.
  • the present inventors coated human serum with a ELISA plate, added a GLK/G-CSF fusion protein (with G-CSF as a negative control), and incubated with a biotin-labeled G-CSF (Abeam pl C. ) antibody after incubation incubation. Binding, HRP coloration confirmed that the GLK fusion protein did not bind to any component in the serum, thus eliminating the possibility that this "GLK fusion protein binds to certain components in serum".
  • the half-life is not extended purely because of the increased molecular weight after fusion.
  • Existing studies have found that simply increasing the molecular weight of the fusion protein does not necessarily extend its half-life in vivo, such as Carlos A. (Buscagl) Ia CA et al., Blood, 93 : 2025-2032, 1999) It was found that the half-life (about a few hours) of the TS78 protein (76KD) with a large molecular weight is much smaller than that of GST-Ag 36 (60KD) (about 30). hour).
  • the data of Example 7 also shows that the same active polypeptide, using different sequences, but gelatin-like units with close molecular weights as fusion vectors, the resulting fusion proteins have different half-lives.
  • the GLK structure is rich in hydrophilic amino acids, so it has a large hydrated molecular radius and prevents it from being filtered out in the kidneys.
  • GLK of the present invention has a lower isoelectric point and is negatively charged under normal physiological conditions. Many plasma proteins are mostly negatively charged and have transport functions, and negatively charged recombinant gelatin-like fusion proteins reduce the possibility of binding to these plasma proteins and therefore can persist in plasma for longer periods of time.
  • polysaccharide-protein complex (glycocalyx) on the surface of endothelial cells on the vessel wall reduces the weight Clearance of gelatin-like fusion proteins.
  • the polysaccharide-protein on the vessel wall controls the transport of substances between the blood vessels and the surrounding matrix (Simionescu M, Simionescu N, Annu. Rev. Physiol., 48: 279-293, 1986).
  • the polysaccharide-protein complex is negatively charged under normal physiological conditions, and the recombinant gelatin-like fusion protein is also negatively charged. Due to the rejection of the same charge, the interaction between the recombinant gelatin-like fusion protein and glycocalyx is also reduced, thereby reducing recombination.
  • the fusion protein of the present invention can be produced by directly synthesizing a peptide by a solid phase technique, or each of the fragments of the protein of the present invention can be chemically synthesized separately and then chemically linked to produce a full-length molecule.
  • the fusion proteins of the invention are prepared by recombinant methods.
  • Recombinant methods for preparing gelatin fusion proteins involve the expression of a recombinant target gelatin fusion protein nucleotide in a prokaryotic host, eukaryotic host, plant or animal, and the process of obtaining a recombinant gelatin-like fusion protein.
  • Any system that can express recombinant proteins including prokaryotic, eukaryotic, transgenic animal and plant systems, can be used in the present invention.
  • all methods for expressing fusion proteins mentioned in U.S. Patent No. 6,458,653 are suitable for this patent.
  • nucleotide sequence encoding the target can be prepared by a variety of different conventional methods.
  • nucleotide sequence may be modified or altered, for example, by genetic engineering techniques.
  • the nucleotide sequence is part of an expression cassette comprising a transcription initiation region (promoter sequence), and in the host cell, the transcription initiation region controls expression of the nucleotide sequence And encoding the polypeptide of the invention.
  • This region may be derived from the promoter region of a gene that is highly expressed in the host strain used, which is a constitutive or regulatory gene.
  • yeast it may be a promoter of methanol oxidase (A0X), phosphoglycerate kinase (PGK) and the like.
  • the expression cassette may also include a transcriptional termination region that is functional in the host strain used, and is tightly ligated downstream of the nucleotide sequence encoding the polypeptide of the present invention.
  • nucleotide sequence encoding the polypeptide of the invention is preceded by a signal peptide sequence for directing the nascent polypeptide into the secretory pathway in its host.
  • tags that can be used to screen recombinant host bacteria can be added, such as yeast.
  • the expression cassette and the unit formed by the selection marker can be introduced directly into the host cell or pre-inserted into a functional self-replicating expression vector.
  • the sources of expression vectors that can be used are extremely broad, including but not limited to: /ij ⁇ ertw ⁇ ces yeast commonly used expression plasmid pKDl; fecc artw ⁇ ces is a yeast preferred 2 ⁇ J ⁇ Ji -' pichia system commonly used pPIC9 , pPIC9K, pPICZ a expression plasmid, and the like.
  • bacteria or cells expressing the above fusion protein are cultured by inoculation.
  • the acquisition of the fusion protein may be in the cell growth phase of the continuous culture process or the culture phase at the end of the growth phase, depending on the expression characteristics of the host cell.
  • the fusion protein can be expressed inside the host bacteria, such as most prokaryotic expression systems, and can also be secreted in a medium, such as yeast, animal cell expression systems, which are generally secreted extracellularly.
  • Highly purified recombinant gelatin-like proteins or recombinant gelatin-like active protein fusion proteins can be obtained by a combination of various methods such as centrifugation, bacteriostatic, ultrafiltration, precipitation, and chromatography.
  • the purified fusion protein can be used for structural identification, in vitro and in vivo biological activity assays, or pharmacokinetics.
  • Pro in the recombinant gelatin-like protein structure expressed by some eukaryotic systems may be partially or completely converted into Hyp, but this change does not affect the effect of the present invention.
  • prolyl-4-hydroxylase P4H
  • some or all of Pro can be converted to Hyp in a yeast system by some special means, for example, Vuorela (Vuorela et al. , EMBO J.
  • gelatin-like unit (Gly-XY) ⁇ in the fusion protein of the present invention has some or all of the following physicochemical properties:
  • hydrophilic amino acids Asn, Asp, Gin, Glu, Lys, Pro, Ser, Hyp, Arg have a high percentage of amino acids, and the total is 40% to 2/3 (66.7%);
  • the isoelectric point is 3-7 (preferably 3. 2-6, more preferably 3. 2-5. 5);
  • the average antigenic index calculated according to the Kolaskar-Tongaonkar method is not higher than 0.98;
  • GRAVY value The average of the hydrophilic values of all amino acids in a polypeptide or protein (the sum of the hydrophilic values divided by the sum of the number of amino acids) (Kyte J' Doolttle RF, / Mol Biol., 157: 105-132, 1982 )
  • S Gly /n is the total number of Gly in the GLK sequence and the ratio to n
  • S( Pro+ meticulous yp , /n: is the ratio of the total number of Pro and Hyp to n in the GLK sequence.
  • the recombinant gelatin-like fusion protein of the present invention unexpectedly retains a high biological activity.
  • the in vitro activity of the fusion-expressed rGLK116 4 /G-CSF fusion protein was approximately 146% of the unfused G-CSF.
  • the in vitro activity of the rGLK116 4 /IFNa fusion protein of the present invention is more than 7 times that of the existing "albumin-IFNa" fusion protein in vitro.
  • the recombinant gelatin-like fusion protein of the present invention in addition to improving the half-life in vivo, unexpectedly found that the in vitro stability of the biologically active protein was enhanced after fusion.
  • both the unfused rhG-CSF and the rGLK116 4 /G-CSF fusion protein solution were shaken at 40 ° C for 48 hours, and molecular sieve analysis revealed a large amount of aggregates in the rhG-CSF sample, and total protein.
  • the content also decreased significantly, but the rGLK116 4 /G-CSF fusion protein changed little in these indicators, indicating that the fusion with GLK significantly increased the in vitro stability of the biologically active protein.
  • the mechanism by which a recombinant gelatin-like fusion protein enhances the in vitro stability of a biologically active protein may be:
  • the gelatin sequence can interact with a partially unfolded protein exposed portion, avoiding aggregation of the unfolded biologically active protein. It is extremely clinically meaningful to increase the stability in vitro after fusion, reduce the formation of protein aggregates during preparation and storage, and thus reduce the immunogenicity of therapeutic protein drugs.
  • the in vitro stability of the active protein is significantly improved after fusion with gelatin, the addition of a stabilizer such as HSA to the preparation is avoided, thereby reducing the risk caused by the addition of HSA, such as production of antibodies or neutralizing antibodies.
  • the carrier protein used to increase the half-life of the fusion protein it must be non-immunogenic. Otherwise, the antibody against the carrier protein will form an antibody-fusion protein immune complex, accelerate the clearance of the fusion protein in the body, and bring other Adverse reactions.
  • Gelatin has been widely used as a formulation excipient and has proven to be non-immunogenic.
  • Example 4 also demonstrates that neither the recombinant gelatin sample nor the gelatin fusion protein induces antibody production in the body. It is even more advantageous because the gelatin sequence itself has no species difference problem, and it is more convenient to evaluate the efficacy and safety in various animal models compared with the previous fusion expression scheme.
  • the recombinant gelatin-like fusion protein prepared according to the present invention significantly improves the half-life in vivo.
  • Example 5 compares the pharmacokinetics and pharmacodynamics of rhG-CSF, rHSA/G-CSF and rGLK116 4 /G-CSF in SD rats.
  • a single subcutaneous administration of different doses of rGLK116 4 /G-CSF significantly promoted the increase of leukocytes, and its half-life in vivo was much higher than that of rhG-CSF, which was basically the same as that of rHSA/G-CSF.
  • Example 10 also shows that Exendin-4 has a significant increase in half-life in rhesus monkeys after fusion with collagen. Use of recombinant gelatin-like fusion protein
  • the use of the recombinant gelatin-like fusion protein prepared according to the present invention is determined by the non-collagen portion of the fusion protein, that is, the recombinant gelatin-like fusion protein.
  • the biological function of GLK ⁇ pR- ⁇ GLK ⁇ q is determined by the R part.
  • the addition of the GLK part only changes its in vitro stability and clearance rate in vivo.
  • the nature of the biologically active protein/polypeptide R determines the use, usage and dosage of the recombinant gelatin-like fusion protein.
  • EP0, G-CSF, IL-11 and M-CSF are used for the proliferation of red blood cells, neutrophils, platelets and stem cells, respectively.
  • /GM-CSF, GLK/M-CSF also has these effects.
  • the recombinant gelatin-like fusion protein of the present invention although inherently excellent in stability, also discloses a pharmaceutical combination comprising the above recombinant gelatin-like fusion protein and a pharmaceutically acceptable carrier for ease of preservation, transportation and clinical application. Things.
  • the pharmaceutical composition may further comprise a conventional additive, such as a diluent, a protective agent, a preservative obtained pharmaceutical composition for treating, preventing, alleviating or diagnosing the body, especially a disease or discomfort of the human body. Shape.
  • the fusion protein of the present invention can also be used together with other drugs to achieve a better therapeutic effect.
  • the main advantages of the invention include:
  • the gelatin fusion protein prepared by recombinant expression has uniform structure, simple preparation method, and can be degraded by the body without accumulating in the body;
  • the gelatin-like unit of the invention has increased hydrophilicity, reduced isoelectric point, no or substantially no immunogenicity, and no additional biological activity;
  • GLK does not have a complex structure, but has a linear structure similar to a linear high molecular polymer (such as PEG, etc.), and its steric hindrance is small after fusion, so compared with the previous fusion scheme, recombinant gelatin-like fusion protein It is more conducive to retain the biological activity of the active protein.
  • a linear high molecular polymer such as PEG, etc.
  • the solution of the invention has the advantages of both the polymer compound modification and the protein fusion technology, but avoids the disadvantages of both, and is a better method for changing the half-life of the recombinant protein drug in vivo.
  • the invention will be further elucidated below in conjunction with specific embodiments. It is to be understood that the examples are merely illustrative of the invention and are not intended to limit the scope of the invention.
  • the practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, all of which are known to those skilled in the art.
  • the gene consists of four identical monomers (sequences of SEQ ID NO: 1) in tandem, and the monomer is named, encoding 116 amino acids (see SEQ ID NO: 2 for the sequence), by Shanghai Yingjun Bio Technology Co., Ltd
  • the plasmid pGLKl lSi-T was first digested with Vai ilOra III. The 1% agarose gel was electrophoresed, and the fragment of about 330 bp in size (ie, ft) was recovered by gel-cutting, and purified by a column centrifugal small-sized gel recovery kit (Shanghai Huasheng Bioengineering Co., Ltd.), and stored at -20 °C until use. At the same time, pGLKl ie ⁇ T plasmid with 2911 single Enzyme digestion. The digested plasmid was recovered as above, and dissolved in 30 ⁇ l of TE solution. It was then treated with alkaline phosphatase (Alkal ine Phosphatase, BAP, TaKaRa).
  • alkaline phosphatase Alkal ine Phosphatase, BAP, TaKaRa
  • pPIC9 In V itr 0 gen
  • pPIC9 is an expression plasmid with 3 ⁇ 4 0 I / ⁇ C0 RI double digestion
  • electrophoresis on 1% agarose gel to recover a fragment.
  • pGLK116 4 -T ⁇ 3 ⁇ 4oI/ ⁇ coRI was digested, and a target fragment of about 1200 bp was recovered.
  • the digested fragment with pPIC9 was ligated with T4 DNA ligase.
  • the ligation product was transformed into coll DH5a competent cells and identified.
  • the linearized pPIC-GLK116 4 plasmid was transformed into GS115 by electroporation using methanol yeast ic ia pastor GS115 as the host strain. Incubate at 30 °C for 3 days until a single colony appears.
  • the transformed recombinant yeast single colony was inoculated into 10 ml of BMGY liquid medium, cultured at 30 ° C, 250 rpm for 24 hours, allowed to stand overnight, the supernatant was discarded, and 10 ml of BMMY liquid medium containing 1% methanol was added, 30 ° C. Expression was induced at 250 rpm. Relatively expressed higher strains were selected as expression strains. 5. Fermentation and purification of rGLK116 4 protein
  • the expression strain obtained in the step 4 was inoculated into a liquid YPD medium, and cultured overnight at 30 ° C, shaking at 250 rpm to 0D 6 . . It is about 20 or so as a seed tank for the upper tank.
  • the cultured seed solution was placed in a B. BRAUN BIOSTAT C-10 fermentor and the medium was configured according to the Invitrogen Pichia Fermentation Process Guide.
  • the amount of the medium was 10%
  • the fermentation temperature was set to 30 ° C
  • the pH was 5.0.
  • methanol was added to induce expression.
  • the expression phase controlled the fermentation temperature at 25 °C and induced the cans for 72 hours.
  • the cells were removed by high-speed centrifugation, and 1 liter of the fermentation supernatant was taken. Ice-cold acetone was added to a final concentration of 40% at 4 ° C, stirred for 30 minutes, centrifuged, and the precipitate was discarded. Further, ice-cold acetone was added to the supernatant to a final concentration of 80%, stirred for 30 minutes, and the precipitate was collected by centrifugation. The obtained recombinant gelatin-like fusion protein pellet was resuspended in 100 ml of pure water and dialyzed against 20 mM PB, pH 7.0, 4 °C overnight.
  • Sepharose FF column (GE Healthcare, XK26/20, column volume 50ml), 2 times column volume after loading Flux A eluted unbound protein and was eluted with a linear gradient of 10 column volumes, 0-100% buffer B (20 mMPB, 0.5 M NaCl, pH 7.0).
  • the eluted rGLK116 4 was concentrated by ultrafiltration (Millipore, CO 10KD) to a protein concentration of about 10 mg/ml, and then desalted using a Sephadex G25 column (GE Healthcare, XK26/20; column volume 50 ml), buffer 10 mM PB, pH 7 .0, freeze-dried.
  • Example 2 Expression, purification and identification of rGLK116 4 /G-CSF fusion protein
  • Example 2 Basically the same as Example 1, the construction of the expression plasmid is shown in Figure 3.
  • the GLK116 4 /G-CSF DNA coding sequence and the mature GLK116 4 /G-CSF fusion protein amino acid sequence are shown in SEQ ID NO: 5 and SEQ ID NO: 6, respectively. .
  • pPIC-GLK116 4 /G-CSF transforms methanol yeast ic ia pastor GS115 (fiisV, plasmid linearization,
  • the transformed recombinant yeast single colony was inoculated into 10 ml of BMGY liquid medium, and the expression process was induced as in Example 1.
  • the fermentation was carried out in the same manner as in Example 1.
  • the cells were centrifuged to remove the cells, and after centrifugation, 1 liter of the supernatant was filtered and sterilized by a 0.45 ⁇ m filter.
  • the supernatant after sterilization was adjusted to pH 3.0, and diluted with water for injection to conductance ⁇ 5! ⁇ /( ⁇ .
  • the eluted rGLK116 4 /G-CSF was desalted by Sprint haddex G25 column (GE Healthcare, XK50/30; column volume 600 ml), the buffer was 20 mM Tris, pH 8.5, and the desalted GLK116 4 /G_CSF solution was applied to the sample.
  • GLK116 4 /G_CSF was eluted with 0-100% buffer D (20 mM Tris, 0.5 M NaCl, pH 8.5).
  • the eluted GLK116 4 /G-CSF was concentrated by ultrafiltration (Mi ll ipore , Li CO 10KD) to a protein concentration of 10 mg/ml, and then desalted and buffered with a S India Hadex G25 column (GE Healthcare, XK26/20; column volume 50 ml).
  • the solution was 10 mM PB, pH 7.0, and lyophilized.
  • the purity of the obtained rGLK 116 4 /G_CSF was analyzed by 8% SDS-PAGE electrophoresis, and the apparent molecular weight was found to be between 66 KD and 97 KD, which was a single band (see Fig. 4).
  • the SEC-HPLC was a TSK Gel G3000 Swxl column with a buffer of 50 mM PB, 0.25 M NaCl, ⁇ 7 ⁇ 0. The results are shown in Figure 5.
  • RP-HPLC was carried out using a VYDAC protein C4 TP5415 column.
  • the mobile phase A was: an aqueous solution containing 0.1% TFA
  • the mobile phase B was a 9:1 acetonitrile:aqueous solution containing 0.1% TFA. See Figure 6 for the results. 4.
  • the primary antibody used was an anti-G-CSF murine polyclonal antibody (ANTIGENIX), and immunoblot analysis of the obtained GLK116 4 /G-CSF was performed.
  • rGLK116 4 /G-CSF The in vitro activity of rGLK116 4 /G-CSF was determined by G-CSF-dependent cell line NFS60, and the biological activity was determined by MTT assay (Pharmacopoeia of the People's Republic of China, 2005 edition, three parts).
  • rGLK116 4 /G-CSF activity is about 3. 3 X 10 7 IU / mg, calculated by molar ratio, about equivalent to about 146% of the biological activity of G-CSF.
  • the rhG-CSF standard and rGLK116 4 /G-CSF were dissolved in a solution of 20 mM PB, pH 6.0 to a protein concentration of 1 mg/ml. Sterile filtration, dispersing into a sterile vial, shaking at 40 ° C for 48 hours, analysis of the polymer and content by SEC-HPLC. The results showed (see Table 2 and Figure 9) that a large number of aggregates appeared in the rhG-CSF sample, and the total protein content also decreased significantly, but the rGLK116 4 /G-CSF fusion protein changed little in these indicators. This indicates that the fusion with GLK significantly improves the biology. In vitro stability of the active protein.
  • Animal immunization Four groups of Balc/C mice, 3 in each group, weighing about 25 g were used. A subcutaneous injection of 4 times on the back, once a week. The amount of rGLK116 4 /G-CSF fusion protein and rGLK116 4 were both 2. 5 nmol, and the blank control group was injected with the same volume of physiological saline. Blood was taken one week after the fourth week of immunization and the completion of the eighth immunization, and the serum was separated and stored at -70 °C.
  • the protein was formulated into lg/ml with 0.2 M carbonate buffer (pH 9.6), coated with 100 ⁇ l, 4 ° C per well in the ELISA plate, washed 3 times with PBST for 5 minutes each time, and then used. After 5% of the skim milk powder was shaken and sealed for 1 hour, it was washed 3 times with PBST for 5 minutes each time.
  • the sera from each group were incubated for 1 hour at 37 °C at 1:50, 1:200, 1:800, then incubated with HRP-labeled goat anti-mouse secondary antibody for 1 hour, washed with PBST, and stained with TMB-HCL. , detection by a microplate reader at a wavelength of 450 nm.
  • a rabbit anti-human G-CSF antibody at 200 ng/ml was used as a positive control.
  • RhG-CSF control Fergrastim, Amgen, USA
  • rHSA/G-CSF prepared according to US Patent 5,876, 969
  • rGLK116 4 /G-CSF and rGLK116 4 four proteins in SD rats Comparison of pharmacokinetic and pharmacodynamic effects.
  • SPF adult SD rats (about 300-350 g) were from the Shanghai Animal Testing Center of the Chinese Academy of Sciences. Grouped according to Table 3, injected, blood samples were collected from the tail vein, and white blood cell counts were performed. After centrifugation at 3000 rpm for 5 minutes, serum was separated and stored at -20 ° C. Determination of pharmacokinetics: The blood concentration of rhG-CSF, rGLKl 16 4 /G-CSF and rHSA/G-CSF in the sample was detected by double antibody sandwich ELISA. For details, see Human G-CSF DuoSet Kit Human G. -CSF ELISA Construction Kit (ANTIGENIX) operating manual.
  • the standard curve was drawn by the four-parameter logic curve in MicroCal Origin software, and the regression equation and related statistical parameters were obtained.
  • the sample data was substituted into the regression equation of the standard curve by Microsoft Excel 2003 software to calculate the relevant values. Finally, the curve fitting was performed with 3P87 software. Main calculation Pharmacokinetic parameters.
  • GLK 42 It is a sequence selected from the group of 1150-1569 in the collagen sequence derived from human C0L5A1 type, and the complete sequence is shown in SEQ ID NO: 7, SEQ ID NO: 8, encoding GLK 42 .
  • the DNA and amino acid sequence of /G_CSF are shown in SEQ ID NO: 9, SEQ ID NO: 10, respectively.
  • Example 7 Expression and purification of rGLK116 4 /IFNa fusion protein
  • the TTWff gene was synthesized by Shanghai Zeheng Biotechnology Co., Ltd. (see SEQ ID NO: 11 for the sequence), and cloned into the PMD18-T vector to construct the plasmid pIFNa-T.
  • the 5' end of IFN a is the ralll recognition site, 3' The end is the fcoRI recognition site.
  • Example 14 The fermentation and purification methods were similar to those in Example 1, and the purified product was analyzed by 8% SDS-PAGE. The results are shown in Fig. 14.
  • the in vitro biological activity of the rGLK116 4 /IFNa fusion protein was determined using conventional cytopathic inhibition (WISH cells) (Pharmacopoeia of the People's Republic of China, 2005 edition, three).
  • the in vitro activity of the rGLKl 16 4 /IFN a fusion protein measured by cytopathic inhibition was approximately 2.2 X 10 7 IU/mg.
  • IFN a converted by molar ratio, was about 11% of the unfused, which was more than 7 times the in vitro activity of the control albumin-IFNa fusion protein (only 1.4%).
  • Serum was taken at 0, 1, 2, 4, 8, 10, 14 hours, respectively, and 2', 5'_( ⁇ 5 radioimmunoassay kit (511 «3 ⁇ 4 Chemical Co., Tokyo, Japan) was used to measure 2' in serum. , 5'-OAS activity.
  • the concentration of 2',5'-OAS in the experimental macaques was dose-dependent.
  • 2',5'-OAS activity in vivo It peaked after 2 days.
  • the rGLK116 4 /IFNa fusion protein group was also detectable 14 days after in vivo, while the IFNa group was close to the blank value after 6 days.
  • the same dose of rGLK116 4 /IFNa 2', 5'-OAS activity was significantly higher than IFN a. This indicates that the half-life of the fusion protein is significantly prolonged.
  • GLK/IFNa fusion proteins with different properties were constructed by similar methods using different GLK sequences, and their structural characteristics, half-life (SD rats) and other related data were compared, as shown in Table 5.
  • GLK116 2 P- Compared with GLK116 2 , after replacing all Pro and Hyp of the original sequence with Ser, although the hydrophilicity is not changed much, the half-life is significantly decreased;
  • the GLK302 sequence does not contain Pro and Hyp, and the basic sequence is GGSGGS repeat. Compared with GLK116 2 P_, it contains more 61 7 (61 7 total and 1 ratio 2.02). The molecular weight and isoelectric point are similar, but GLK302 More hydrophobic (increased GRAVY value), its half-life in vivo is also shorter than GLK116 2 P-. This suggests that the ratio of the total number of Gly to n is preferably 1.5, preferably 1.15, more preferably 1.05.
  • GLK116 2 N- Compared with GLK116 2 , after replacing all Asn of the original sequence with Glu, although the hydrophilicity is not changed much, the isoelectric point is significantly decreased, and the half-life of the body is prolonged significantly.
  • the gene consists of 6 identical monomeric monomer sequences, see SEQ ID NO: 18) in tandem, the monomer is named to encode 104 amino acids (see SEQ ID NO: 19 for the sequence); the gene consists of 6 identical monomers ⁇ (The monomer sequence is shown in SEQ ID ⁇ 0: 20). The monomer is named as 7 and encodes 107 amino acids (see SEQ ID NO: 21 for the sequence).
  • the DNA was synthesized by Shanghai Yingjun Biotechnology Co., Ltd. (Invitrogen).
  • Example 2 By linking ⁇ ⁇ 1 ⁇ 2 and ⁇ to pGLK104 4 -T and pGLK107 4 _T, respectively, plasmid pGLK 104 6 _T, pGLK 107 4 _T containing 6 GLK104 GLK107 ⁇ bodies was constructed.
  • Clone £> 2 2-Mine was synthesized by Shanghai Zeheng Biotechnology Co., Ltd., and its DNA sequence is shown in SEQ ID NO: 22: After synthesis, it was cloned into PMD18-T vector to construct plasmid pExendin-4-T.
  • the 5' end has an ⁇ -factor signal peptide sequence (containing 3 ⁇ 4o I site) and the 3' end is a ra III recognition site.
  • SEQ IDs: 23-26 are the amino acid sequences of 5 6 (1 -4/61 ⁇ 104 6 and 5 6 (1 -4/61 ⁇ 107 6 DNA sequences and mature fusion proteins, respectively).
  • the fermentation method and the purification method were similarly eluted as in Example 1.
  • the purified rExendin-4/GLK104 6 and rExendin-4/GLK107 6 were respectively concentrated by ultrafiltration (Mi ll ipore, Li CO 10KD) to a protein concentration of 10 mg/ml. Then, it was desalted using a S-printed Hadex G25 column (GE Healthcare, XK26/20; column volume: 50 ml), and the buffer was 10 mM ⁇ , ⁇ 7 ⁇ 0, and lyophilized. See Figure 17 for the results of the electrophoresis analysis.
  • Example 9 Biological Activity of rExendin-4/GLK104 6 and rExendin-4/GLK107 6 Fusion Proteins
  • BHK cells transfected with GLP-1R can receive GLP-1 and its agonists. Signal stimulation increases intracellular cAMP levels, so measuring the release of cAMP can indirectly reflect the biological activity of the rExendin-4 fusion protein.
  • the method of the previously described culture method, etc. Li Y BHK-GLP-1R cells with reference to (. Li Y et al, J Biol Chem, 278:. 471-478, 2003) 0
  • Example 10 Pharmacokinetics of rExendin-4/GLK104 6 and rExendin-4/GLK107 6
  • the pharmacokinetic study of the fusion protein was carried out in macaques, 6 macaques, 3 males and 3 females (3-4 years old, 4. 2-4. 8 kg), purchased from the Animal Center of the Chinese Academy of Military Medical Sciences. Animals were routinely raised using experimental animals (Zhejiang University Experimental Animal Center). One group was administered subcutaneously and the sample was diluted with PBS at 4 mg/kg. At 0. 5, 1, 4, 8, 12,
  • the concentration of the fusion protein in the plasma is measured. The experiment was performed with blank plasma for dilution calibration.
  • 3 ⁇ 43 ⁇ 4 was synthesized by Shanghai Zeheng Biotechnology Co., Ltd., and its DNA sequence is shown in SEQ ID NO: 27. After synthesis, it was cloned into PMD18-T to construct plasmid pEP0-T.
  • the 5' end of EP0 carries the A3 ⁇ 4e I recognition site and the Kozak sequence, and the 3' carries the ra I I I recognition site.
  • the italicized portion is the native signal peptide sequence of EP0.
  • the primers GLK107 4 /P1 SEQ ID NO: 28
  • GLK107 4 /P2 SEQ ID
  • Primer GLK107 4 1 has a ral ll recognition site
  • primer GLK107 4 2 has a / foil recognition site.
  • the amplification product was obtained by conventional PCR.
  • the pCEP4-EP0/GLK107 4 plasmid was extracted with an ultrapure plasmid extraction kit (purchased from Marl igen). Chinese Hamster Ovary (CH0) was used as a host cell and transfected with conventional liposomes. After transfection, EP0 activity was measured by ELISA. Positive clones were screened by methotrexate (MTX) under pressure. One of the positive cells was selected and gradually cultured with CD CH0 serum-free medium (purchased from GIBC0) (Debeljak N et al., Anal Biochem., 359: 216-223, 2006). 5. rEP0/GLK107 4 expression of recombinant protein
  • the expression cell strain obtained in the step 4 was resuscitated in a serum-free medium, and the cells were sequentially subjected to 125 ml, 500 ml, 1000 ml cell culture using a spinner flask, and then inoculated into a B. Braun Biostart culture tank, when the viable cell density was greater than 1. 5 X 10 6 /ml, add 10% 10 times concentrated medium per day, culture for about 15 days, sample the cell density every day and use lowry method to detect the expression of the target protein. After the end of the fermentation culture, the recombinant expression cells were collected, centrifuged at 6000 r/min for 5 minutes, and the supernatant was collected. 8% SDS-PAGE electrophoresis analysis.
  • Example 12 Erythropoiesis of rEP0/GLK107 4 fusion protein in normal mice
  • rEP0/GLK107 The effect of rEP0/GLK107 on erythropoiesis was studied by subcutaneous administration once a week. The results are shown in Fig. 21. The Hb levels were also increased with increasing doses between different rEP0/GLK107 4 dose groups. rEPO also showed erythropoiesis, but activity was significantly lower than rEP0/GLK107 4 under similar molar conditions. Therefore, compared to rEPO, 13 ⁇ 4?0/60 (107 4 not only prolongs the dosing cycle, but also enhances erythropoiesis.
  • Example 13 Pharmaceutical composition
  • the final composition of the composition is: rGLK116 4 / G-CSF fusion protein concentration of 10mg / mL, the concentration of phosphate buffer is 10mmol / L, pH 6.5, glycine content of 2.3% (weight ratio).

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Inorganic Chemistry (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Obesity (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

非天然的胶原样蛋白及其应用 技术领域
本发明涉及蛋白质领域, 更具体地, 涉及一类新型的、 具有生物活性和更长半衰期 的重组融合蛋白及其制备和应用。 背景技术
由于肾脏和肝脏以及降解等多种因素的作用, 大部分临床应用的生物活性多肽 /蛋白 在体内经常快速的被清除, 一般半衰期只有几分钟到几个小时。 在治疗过程中, 需要很 大的量以及频繁的注射来获得保持有效的药物浓度, 不仅给病人带来痛苦, 而且因为血 药浓度波动带来疗效下降, 毒副作用增加。
目前已经有多种方法报道可以延长这些生物活性多肽 /蛋白在体内的半衰期。如利用 水溶性高分子聚合物(例如: 聚乙二醇, 葡聚糖等)来修饰生物活性多肽 /蛋白, 并已经成 功应用, 如 PEG-ADA, PEG-IFNa等。 修饰后可以提高体内半衰期, 增加稳定性和溶解度, 降低免疫原性等。 但是不幸的是这些修饰方法仍然存在很多问题。 首先, 化学修饰蛋白 质 /多肽后一般均会使这些生物大分子的活性显著下降甚至完全消失(Veronese FM, Biomaterials, 22 : 405-417, 2001)。 其次, 高分子化合物都是与蛋白质 /多肽表面的氨 基、 巯基、 咪唑基等基团反应, 以共价键形式连接到蛋白质 /多肽分子上。 但是, 由于蛋 白质 /多肽分子量巨大,结构复杂,因此其潜在的可与活性 PEG反应的基团也是数目众多。 在不同的位点结合 PEG, 其产物的稳定性, 生物学活性等性质都是不同的。 更甚者, 大部 分化学合成的高聚物, 如 PEG等不能被生物体降解。 例如, 已经发现当长期大剂量注射 PEG-干扰素(PEG-IFN a 2a)后会在肾脏中积累(Conover CD et al., Artificial Organs., 21 : 369— 378, 1997; Bendele A e t al., Toxicol Sci., 42 : 152— 157, 1998)。 从 药物设计角度而言, 没有这些积累的药物显然是更为安全的。 另一方面, 已经发现 PEG 修饰的蛋白能产生一种 PEG 抗体(被定义为多效半抗原), 从而影响药物的半衰期 (Cal iceti P & Veronese FM, Adv Drug Deli v Rev., 55 : 1261-1277, 2003)。
正是因为这些技术问题, 虽然通过化学修饰的方法来改善蛋白质 /多肽体内药代特性 的技术已经面世很久, 但是真正能在临床中应用的产品极少。
也有通过与一些特定的载体蛋白融合来增加生物活性多肽 /蛋白的体外稳定性或体 内半衰期的方法。 如通过与白蛋白, 抗体 Fc片段, 转铁蛋白(转铁蛋白突变体及其片段) 融合来延长生物活性多肽 /蛋白的半衰期, 如美国专利 5, 876, 969 和 5, 766, 88 及 7, 176, 278所述。之所以与这些蛋白质融合后能延长半衰期, 主要是这些蛋白质都可以通 过 FcRn受体介导的循环作用, 来提高其自身在体内的稳定性从而延长半衰期。 理想的作 为融合蛋白载体的蛋白质应该具备如下特征: 1. 自身在体内具有较长的半衰期; 2.不具 有免疫原性; 3.不具有任何与延长半衰期无关的生物学效应; 4.不影响治疗蛋白的生物 学活性。 但是, 目前已经公开的技术方案都无法全部满足以上要求。 其存在的首要问题 是免疫原性的增加, 如 Fc片段结构本身并不保守, 具有多种序列结构, 很容易产生免疫 原性。另外,这些载体蛋白本身通常具有一些生物学效应, 如抗体片段 Fc具有结合补体, 与 Fc受体结合后导致的变态反应, 调理吞噬, 抗体依赖的细胞杀伤作用等广泛的生理功 能; HSA本身具有许多正常的体内生理功能, 参与许多物质的运输和代谢。这些生物学特 性的存在, 对于作为融合蛋白载体来说都是不利的。 而且, 这些载体蛋白质本身具有复 杂的空间结构,与活性蛋白融合后都会因为空间位阻效应而使活性蛋白生物学活性显著 下降(Baggio LL e t al., Diabetes. , 53 : 2492-2500, 2004 ; Huang YS et al., Eur J Pharm Biopharm. , 67 : 301 - 308, 2007)。
综上所述, 现有改善活性蛋白体内半衰期的方案存在如下弊端: 1.产物不均一, 工 艺要求复杂; 2.修饰物不被生物体降解, 会在体内蓄积; 3. 增加了免疫原性; 4.导致蛋 白生物学活性显著下降甚至完全丧失; 5.有可能引入了本身不需要的生物学活性功能。 无论化学修饰, 还是通过蛋白融合来改变活性蛋白体内外半衰期的方案, 都无法完全避 免上述弊端。
为了避免白蛋白, Fc片段这些天然载体蛋白存在的弊端, 也进行了人工构建氨基酸 序列作为载体蛋白的尝试, 如构建富含 Gly, Glu的氨基酸聚合物, 将其作为融合载体来 延长蛋白药物半衰期, David W. Leung等模仿化学合成的聚谷氨酸, 人工合成聚谷氨酸 序列用于作为融合载体来延长蛋白药物半衰期 (US 20080176288) , 或者人工合成多聚甘 氨酸序列作为融合载体, (Schlapschy M et al., Protein Eng Des Sel., 20 : 273-284, 2007) , 也有完全人工设计, 选取一些亲水性氨基酸, 如 Gly, Asp, Glu, Ser 等人工构建氨基酸聚合物, 将其作为融合载体来延长蛋白药物半衰期。 但是这些完全重 新设计的氨基酸聚合物作为融合载体实际效果很难预测, 存在诸多问题。 例如, 1 : 人工 设计的序列, 虽然理论上含有很多亲水性氨基酸, 但是鉴于蛋白质结构与功能之间关系 的复杂性, 现有技术上很难预测完全人工设计序列的空间结构(如二级结构, 三级结构 等), 因此其潜在的生物学功能和免疫原性是未知的; 2人工设计重复序列不同于天然进 化所产生的蛋白序列, 特别是那些重复序列极高的片段, 很难进行重组表达, 实际表达 量往往极低而无法实际应用。 发明人曾按照 David W. Leung等(US20080176288)提供的 方法通过重组表达聚谷氨酸用于作为融合载体来延长蛋白药物, 但是实际上按其所提供 的方法, 根本无法表达获得其所声称的序列。
因此, 本领域迫切需要开发一种有效简便地改善蛋白质 /多肽的体内外稳定性, 且无 或几乎无其他副作用的技术方案。 发明内容
本发明的目的就是提供一种有效简便地改善蛋白质 /多肽的体内半衰期的方法, 与现有技 术相比较, 该方法具有更多的优势。 在本发明的第一方面,提供了一种可用于延长蛋白体内半衰期的重组的明胶样单元, 所述的明胶样单元是结构如下的多肽:
(Gly-X-Y) n
式中,
Gly为甘氨酸残基;
X和 Y分别为 20种天然氨基酸除了 Cys之外的任意氨基酸残基;
n为 20-300;
并且, 所述的明胶样单元具有以下特征:
(a) 所述明胶样单元中以下亲水性氨基酸 Asn, Asp, Gin, Glu, Lys , Pro , Ser, Hyp , Arg的氨基酸百分比含量总和为 40%至 2/3 (66. 7%);
(b) 所述明胶样单元中, Pro和 Hyp的数量之和与 n的比值 6;
(c) Gly的数量之和与 n的比值 1. 15 (更佳地 1. 05) ;
附加条件是, 所述的明胶单元不是天然的明胶蛋白。
在另一优选例中, 所述的明胶样单元还具有以下特征:
(d) 等电点为 3-7 (较佳地为 3. 2-6, 更佳地为 3. 2-5. 5);
(e)根据 Kolaskar-Tongaonkar法计算平均抗原指数不高于 0. 98;
(f)根据 ProtParam 公式计算, 代表亲水性的 GRAVY 值小于 _1. 1 (较佳地小于 _1. 4, 更佳地小于 -1. 5)。
在另一优选例中, 所述的明胶样单元的序列来源于或衍生自明胶。 例如, 在 X, Y位 上进行取代, 将部分或全部天然明胶中的疏水性氨基酸 l ie , Leu, Met , Phe , Val等突变 为亲水性氨基酸, 优选的是突变为 Ala,Asn, Gin, Glu, Lys, Pro, Ser, Hyp,Arg中任意 一种和 /或几种, 使得 GRAVY 值小于 -1. 4。
在另一优选例中, 所述的明胶样单元的分子量为 10-100kDa。
在本发明的第二方面,提供了一种多核苷酸,它编码第一方面中所述的明胶样单元。 在本发明的第三方面, 提供了一种重组的融合蛋白, 其特征在于, 所述的融合蛋白 由生物活性多肽和第一方面中所述的明胶样单元融合而形成。
在另一优选例中, 与不含所述明胶单元的生物活性多肽相比, 所述融合蛋白在体内 的半衰期至少延长 1倍; 更佳地, 半衰期延长至少 2、 3、 4、 5、 6、 或 10倍。
在另一优选例中, 所述融合蛋白的表观分子量 (分子筛测定法)与理论分子量之比 1. 25, 更佳地 1. 5, 最佳地 2。
在另一优选例中, 生物活性多肽的分子量为 0. 5-70Kda, 更佳地为 l-66Kda。
在另一优选例中, 所述的明胶单元位于所述融合蛋白中的氨基端、 羧基端、 两端、 或中间。
在另一优选例中, 所述的融合蛋白为单体或多聚体形式。
在另一优选例中, 所述融合蛋白是如式 I所示的单体或其多聚体形式,
{ GLK } p-R- { GLK } q 式 I 式中,
GLK表示如本发明第一方面中所述的明胶单元;
P和 q独立地为 0或 1,且 p和 q不同时为 0 ;
R为不含所述的明胶单元的、 具有生物学功能的蛋白, 且所述的 R不是明胶蛋白; 禾口
"_"表示肽键。
在另一优选例中, 所述融合蛋白内所有 (Gly-X_Y) n片段包含的 n总和大于 20, 小于
300。
在另一优选例中, 所述融合蛋白的分子量为 20-500Kda。
在另一优选例中,所述的融合蛋白为多聚体,且式 I中的各 R和 GLK可相同或不同。 在本发明的第四方面, 提供了一种多核苷酸, 所述的多核苷酸编码第三方面中所述 重组的融合蛋白。
在本发明的第五方面, 提供了含有第四方面所述的多核苷酸的序列的表达载体。 在本发明的第六方面, 提供了一种重组的宿主细胞, 所述宿主细胞含有第五方面所 述的表达载体、 或者染色体中整合有第四方面所述的多核苷酸。
在本发明的第七方面, 提供了一种制备所述的重组融合蛋白的方法, 包括步骤:
(1) 培养第六方面所述的宿主细胞, 从而表达所述的重组融合蛋白; 和
(2)分离出所述的重组融合蛋白。 附图说明
图 1为重组明胶样融合蛋白几种典型基本结构。
图 2为 pPIC-GLK1164表达质粒的构建流程图。
图 3为 pP I C-GLK 1164/G-CSF表达质粒的构建流程图。
图 4为 rGLK1164/G-CSF 纯化过程中 SDS-PAGE电泳(8%)分析, 纯化最终产品为单一条 带, 表观分子量介于 66KD-97KD之间。 左起: 泳道 1.低分子量蛋白 Marker,泳道 2.发酵液 上清, 3. SP 柱洗脱峰, 4. Q柱洗脱峰。
图 5为 SEC-HPLC分析纯化的 rGLK1164 /G-CSF, 采用 TSK Gel G3000 Swxl柱, 缓冲液 为 50mM PB, 0. 25M NaCl, pH7. 0 , 检测波长为 214nm, 流速为 0· 8ml/min。
图 6为反相高效液相色谱(RP-HPLC)分析纯化的 rGLK1164 /G-CSF, RP-HPLC采用 VYDAC protein C4 TP5415柱, 流动相 A为: 含 0. 1% TFA 的水溶液, 流动相 B采用含 0. 1% TFA 的 9 : 1乙腈:水溶液, 检测波长为 214nm,流速为 0. 8ml/min。
图 7为 rGLK1164/G-CSF免疫印迹分析结果, 所用一抗为抗 G-CSF鼠多抗。
图 8显示了利用 rhG-CSF依赖株 NSF60测定 rGLK 1164/G_CSF融合蛋白的体外生物学活 性。
图 9 SEC-HPLC分析 rhG-CSF和 rGLKl 164/G_CSF体外稳定性研究结果。 图 10 rGLK116^PrGLK1164/G-CSF小鼠连续注射后血清抗体检测结果。 A为 G-CSF包被, B为 rGLK1164包被。
图 11 不同剂量 rGLK1164/G-CSF融合蛋白, rhG_CSF, rHSA/G-CSF和 rGLK1164在正常 成年 SD大鼠体内的药效学研究结果。
图 12 不同剂量 rGLK1164/G-CSF融合蛋白, rhG_CSF和 rHSA/G-CSF在正常成年 SD大鼠 体内的药代动力学研究结果。
图 13为 pPIC-GLK1164/IFN a表达质粒的构建流程图。
图 14为 rGLK1164/IFN a纯化过程中 SDS-PAGE电泳(8%)分析, 纯化最终产品为单一条 带, 表观分子量约为 85KD。 左起: 泳道 1.低分子量蛋白 Marker, 泳道 2.发酵液上清, 3. Q 柱洗脱峰。
图 15 rGLK1164/IFN a在猕猴体内药代动力学研究结果。
图 16 pPIC-Exendin-4/GLK1046和 pPIC-Exendin-4/GLK1076表达质粒的构建流程图。 Exendin-4为艾塞那肽。
图 17为 rExendin-4/GLK1046纯化过程中 SDS-PAGE电泳(10%)分析, 表观分子量介于 66KD-97KD之间。 左起: 泳道 1.低分子量蛋白 Marker, 泳道 2.发酵液上清, 3. SP 柱洗脱 峰, 4. Q柱洗脱峰。
图 18 利 用 稳 定转 染有 GLP-1R的 BHK细 胞测 定 rExendin_4/GLK1046和 rExendin-4/GLK1076融合蛋白的体外生物学活性。
图 19 rExendin-4/GLK1046和 rExendin-4/GLK1076在正常成年猕猴体内的药代动力学 研究结果。
图 20 pCEP4-EP0/GLK1074表达质粒的构建流程图。
图 21不同剂量 rEP0/GLK1074融合蛋白和 rhEPO在正常 BALB/c小鼠体内药效的药效 学研究结果。 具体实施方式
本发明人经过广泛而深入的研究,通过大量筛选,首次发现重组明胶样蛋白(gelatin l ike protein, GLK)及其突变体非常适合作为融合蛋白的融合载体。 本发明人将明胶样 单元作为融合载体, 使其与活性蛋白融合后, 可以显著延长生物活性多肽 /蛋白在机体内 的体内半衰期。 在此基础上完成了本发明。
具体而言, 试验表明, 将明胶样单元与具有生物活性的蛋白融合表达后获得的重组 明胶样融合蛋白, 可以显著改善生物活性蛋白的体外稳定性, 更重要的是可以明显降低 融合蛋白在体内被清除的速度, 改变活性蛋白在体内的药代分布, 从而延长活性蛋白在 体内的半衰期。 在描述本发明所涉及的蛋白质, 核苷酸序列和各种方法学之前, 可以理解的是本发 明不局限于这些特定的方法, 操作规程, 细胞株, 载体和试剂, 因为这些是可以有所变 动的。 另外, 在这里所使用的术语只是为了描述特定的实例, 不是故意限定本发明的范 围。 除非特别限定, 否则这里所有的技术以及使用的科学术语与本领域一般技术人员所 理解的相同。 本发明描述的只是一些优选的方法, 设备和材料, 其他一些方法和材料相 似或相当于本发明中的一些描述, 也可用于实践或测试本发明。 明胶样单元
如本文所用,术语"明胶样单元"、 "明胶样蛋白 "、或" GLK (gelatin-like protein) " 可互换使用。
天然明胶是来源于胶原的一类蛋白质, 它是经胶原变性获得的产物, 其基本结构有 多个 Gly-X-Y重复, 结构通式为 (Gly-X-Y)n, 其中 X和 Y经常是脯氨酸和羟脯氨酸残基, 而且,脯氨酸和羟脯氨酸残基的含量比例会影响其结构和熔点。X, Y位氨基酸组成的不同, 会影响胶原的亲水性, 等电点, 二级结构, 免疫原性等特性。
明胶可通过处理动物的骨头和毛皮而提取。 然而, 动物来源的明胶常常残存的具有 侵染能力的病毒。 此外, 动物源性明胶施用于人还存在生物相容性的问题。
分子生物学技术发展使得利用基因重组技术获得基于人源明胶的生理特性稳定、 均 一性高的重组明胶成为可能。 目前, 已有较多关于人源的重组胶原或明胶在微生物、 动 物细胞或者植物中表达的报道(美国专利 US.5, 593, 859; US.6, 428,978; US. 6,617, 431; Werten MW et al. , Yeast, 15:1087-1096, 1999)。 利用胶原基因不同的片段可以获得具 有不同生化特性的重组明胶, 而众多的研究结果表明, 毕赤酵母表达系统可以用来生产 不同来源的具有独特生化特性的重组明胶或类明胶(Olsen D et al. , Adv Drug Deliv Rev., 55: 1547-1567, 2003)。重组明胶同胶原水解获得的天然明胶一样具有稳定蛋白的作 用, 已被用来作为疫苗的稳定剂 (US 2006/0204511 Al)。
在本发明中, 明胶样单元指序列源自或衍生自天然明胶的且通过重组表达的多肽片 段, 也包含具有天然明胶 ^- ^^结构特征的经过突变的明胶样序列。
在本发明中, 明胶样单元的长度或分子量没有特别限制。 按长度计, 每个明胶单元 通常含 60-1500个氨基酸残基, 较佳地 200-1000个氨基酸残基; 按分子量计, 每个明胶 单元通常为 6-150KDa, 较佳地为 20_80KDa。 重组明胶样融合蛋白
本发明涉及一类新型的重组明胶样融合蛋白, 它由一个 /数个来自于天然或人造的具 有生物学功能的蛋白与明胶样单元组成, 使其具有诊断 /治疗 /靶向作用。 重组明胶样融 合蛋白的基本结构是具有 {GLK} p-R- {GLK} q 结构的单体或其多聚体形式。 其中 GLK 表示明胶样单元; P和 q为 0或 1,且 p和 q不同时为 0; R为不含所述的明胶单元的、 具有生物学功能的蛋白, 且所述的 P不是明胶蛋白; 重组明胶样融合蛋白如果成为多聚 体形式, 则成为 {GLK 1} p_R「 {GLK 2} q- {GLK 3} p-R2, {GLK 1 } p-R - {GLK2} q- {GLK3} p-R2- {GLK4} q, {GLK1} p-R- {GLK2} q- {GLK3} p-R2- {GLK4} q- {GLK5} p-R- {GLK6} q等结构形式, 其中 可以是相同的或不同的, GLK1至 GLK6可以是相同的或不同的, 但是至少包含一段 GLK结构和一段具有生物学活性功能的蛋白 /多肽单元 (如!^或 )。图 1显示了几种典型重组明胶样融合蛋白的结构。 )
本发明是通过将一个或几个生物活性蛋白及其片段与一段或几段具有一定分子量的 明胶样蛋白 GLK (gelatin-l ike protein)融合表达来实现的。用于融合表达的 GLK不具有 免疫原性, 在生理条件下具有极好的水溶性。 根据本发明制备的重组明胶样融合蛋白, 不仅体现出更好的体外稳定性和体内半衰期, 而且与现有的蛋白质修饰或融合方案相比, 其结构是均一的, 而且出人意外地具有更高的生物学活性。 并且, 作为融合载体的 GLK 部分是生物相容的, 具有无免疫原性, 可被机体降解, 不会在体内蓄积等优点。
在这里, "重组明胶样融合蛋白"指具有基本结构为 { GLK } p-R- { GLK } q的融合蛋 白, 蛋白 /多肽 R与(Gly-X-Y)„之间是直接通过肽键连接的。 进一步的, R与 GLK之间还 可以通过间隔物相连。 术语 "间隔物"指一个或多个分子, 例如氨基酸, 核酸或化学分 子, 例如聚乙二醇 (PEG) , 即可以插入一个或多个组分结构域。 间隔物可以用于提供需要 组分之间的目标位点, 以方便操作, 也可以是为了利于保持活性蛋白的空间结构, 或者 活性蛋白与靶分子的相互作用。最适用于本发明的间隔物是短的连接肽,如一些富含 Gly, Ser的短连接肽, 如(GlyGlyGlyGlySer) n, n介于 1_10之间; 连接肽也可以采用其他目 前已在广泛应用的连接肽, 如 Darning Shan 所提及的肽段(Shan D et ah , J Immunol. , 162 : 6589-6595, 1999) 0 当然, GLK本身也可以作为一段连接肽使用。可以容易 理解的是, 蛋白 /多肽部分还可以重复出现, 从而充当一个间隔物的作用, 形成如 R -R厂 GLK, R -R「GLK-R2, GLK- - R" R「GLK_R2- R2, R「R「GLK_R2-R2等结构。 图 1提供的 仅是一些重组明胶样融合蛋白的典型结构, 但是根据本发明的精神, 并不仅限于图 1 的 结构。
重组明胶样融合蛋白中包含的 GLK是具有 (Gly-X-Y) JJ胶结构特征的高度重复蛋白 序列, 其序列可以是完全或者部分来源于天然明胶, 也可以是天然明胶部分序列片段的 简单重复, 也可以是经过优化的具有 Gly-X-Y特征的人工序列。 由于不同种属间明胶序 列的同源性差异较小, GLK的序列来源可以是非人源性的明胶序列, 也可以是来源于人源 性的明胶序列,如 David Olsen (Olsen D et al., Adv Drug Del iv Rev., 55 : 1547-1567, 2003) 文中所提及的 a l (I) 胶原的序列片段; GLK序列可以完全是与天然序列一致的, 也可 以是选取其中一段天然序列, 然后通过简单重复来达到本发明所需要的大小。 可以选用 的 GLK序列来源是极其广泛的,不管是天然来源序列或者人工合成来源的具有 (Gly-X-Y) n 特征的明胶样序列, 如 US5801045 , US6150081 , US6428978 , W001/34646A2等所涉及的 明胶片段。 只要是没有免疫原性, 在〈40 °C时水相中可溶的序列均可用于重组明胶样融合 蛋白的制备。
进一步的, 为了更好的达到本发明的效果, 发明者还根据如下原则在天然明胶 Gly-X-Y重复单元基础上重新设计了一类重组明胶样序列:
1. 尽量选取天然明胶序列中出现频率高的 Gly-X-Y 重复单元, 如 Gly-Pro-Hyp, Gly-Pro-Ala, Gly-A la-Hyp, Gly-Glu-Lys, Gly-Pro-Lys, Gly-Glu-Hyp, Gly-Ser-Hyp, Gly-Gln-Hyp, Gly-Glu-Arg和 Gly-Pro_Arg等单元将其重新组合;
2.尽量选取富含亲水性氨基酸的 Gly-X-Y重复单元将其重新组合, 优选的 X, Y是亲 水性氨基酸, 更优选的, 是 Ala, Asn, Gin, Glu, Lys , Pro , Ser, Hyp , Arg中任意一 种和 /或几种;
3.重新设计的 GLK序列中尽量不含已知的具有免疫原性的序列。 根据现有公开的技 术 文 件 已 经 表 明 有 免 疫 原 性 的 位 点 , 如 H. Hori 等 报 导 的 I le-Pro-Gly-Glu-Phe-Gly-Leu-Pro-Gly-Pro (Hori H et al., J. Al lergy Cl in Immunol., 110 : 652-657, 2002);
4. 重新设计的 GLK序列中尽量不含已知的蛋白酶作用位点的序列,如信号肽酶 KEX-2 位点等这类目前已知的蛋白酶作用位点。
5. 重新设计的重组明胶样序列经 Kolaskar-Tongaonkar法计算, 平均抗原指数 (Average antigenic propensity)不高于 0. 98
改构后的人工序列富含亲水性氨基酸,其典型序列包括但并不限于 SEQ ID N0 : 2, 19, 21等。
重组明胶样融合蛋白 { GLK } p-R- { GLK } q中, GLK的基本结构 Gly_X_Y重复单元数 目(n)的大小, 也就是 GLK的分子量范围是可变的。 为了达到本发明的目的, 首先重组明 胶样融合蛋白必须具有合适的分子量大小, 以保证不被肾脏过滤清除。 重组明胶样融合 蛋白分子量是由蛋白 /多肽部分 R和 GLK共同决定的, 对于一种特定的活性重组明胶样融 合蛋白, 活性蛋白质 R的分子量是确定的, 而且数目也是确定的话, 重组明胶样融合蛋 白分子量是由 GLK的大小和数目决定的。当蛋白 /多肽 R部分分子量较小的时候(如〈20KD), 为了避免重组明胶样融合蛋白被肾小球滤过, GLK的分子量应该至少在 15-70KD之间, 更 大的分子量并不一定有利于延长重组明胶样融合蛋白在机体内的半衰期, 反而不利于重 组表达, 而且容易被蛋白酶降解, 意外的免疫原性也难以控制, 因此合适的 GLK分子量 介于 6-150KD之间, 更优的是介于 20-80KD之间。 当 R部分本来就比较大, 或者可以形 成二聚或多聚体, 则 GLK分子量范围可以进一步放宽, 可以是介于 lkDa-150KDa之间, 例如约 1000-2000Da, 约 2- 20kDa 之间, 约 20- 50kDa 之间, 约 50-100kDa 之间, 约 100-150kDa之间, 约 150_200kDa之间。
重组明胶样融合蛋白的分子量没有特别限定, 通常为 20-500KDa, 较佳地为 25- 300KDa。
生物活性蛋白 /多肽
"生物活性蛋白 /多肽"指的是蛋白质, 抗体, 多肽及其片段和变异体, 具有一种或 者多种药理学和 /或生物学活性, 或靶向引导, 多聚化等功能。它们可以是天然就存在的, 也可以是人工构建的。 "生物活性蛋白 /多肽"包括酶, 酶抑制剂, 抗原, 抗体, 激素, 凝血因子, 干扰素, 细胞因子, 生长因子, 分化因子, 骨组织生长有关的因子, 与骨质 因子吸收相关的因子, 趋化因子(chemotactic factors) , 细胞运动因子(cel l moti l ity factors) , 移动因子(migration factors), 静止因子(cytostatic factors), 杀(细)菌 因子, 抗真菌因子, 血浆黏附分子, 间质黏附分子和细胞外基质, 受体配基及其片段等。
本发明所涉及的生物学活性蛋白 /多肽, 更特指表现出 "治疗活性" 的蛋白 /多肽, 或者 "治疗上有活性"的蛋白 /多肽, 这种蛋白 /多肽拥有一种或者更多已知的生物和 /或 治疗活性。 这些活性与一种或更多种在这里描述的, 或者其他已知的治疗蛋白相关。 作 为一个非限制性例子, "治疗蛋白"是指一种对于治疗, 预防或者改善疾病, 状况, 或 者机能絮乱有用的蛋白。 作为一个非限制性例子, "治疗蛋白"可以是一种特异性的结 合到特定细胞类型(正常(例如淋巴细胞)或者异常(例如癌细胞) )并且用于将化合物(药 物, 或者细胞毒性剂)特异性定位于该细胞类型的蛋白。
在另外的非限制性例子中, "治疗蛋白"是指有生物活性的蛋白, 特别是一种对于 治疗, 防止和改善疾病有用的生物活性蛋白。 非限制性的治疗蛋白包括拥有以下生物活 性的蛋白: 如增加血管新生, 抑制血管新生, 调节造血功能, 促进神经发育, 提高免疫 反应, 抑制免疫反应等。
正如上述提及中的一样, "治疗活性" 或者 "活性"可以指在人类、 非人哺乳动物 或其他种属生物体中, 得到与理想的治疗结果一致的效果的活性。 治疗活性可以在体内 或者体外测量。
本发明中与重组明胶样融合蛋白的治疗性蛋白部分相应的治疗性蛋白, 包括, 但并 不限于: VEGF受体, TNF受体, HER-2/神经膜受体, 人 ErbB3受体分泌形态异构体, 转 化生长因子 b ill型受体胞外区, 转化生长因子 b ll型受体胞外区, IL-1受体, IL-4受体, 尿激酶, β _葡糖脑苷脂酶, 精氨酸脱亚胺酶, Arginase , herstatin, 表皮生长因子, FGF-1, 纤维原细胞生长因子 -2, 普通纤维细胞生长因子, 神经生长因子, 血小板来源生 长因子, VEGF-1 , IL-1, IL-2 , IL- 3, IL- 4, IL- 6, IL- 8, IL- 10, IL- 11, IL- 12, IL- 18, IL-21 , IL-24, IL-1RA, RANKL, RANK, 0PG, LEPTIN, 干扰素 α, 干扰素 β, 干扰素 γ, 干扰素 Ω, TGF- β , TGF- β -Ι, TGF- P _3, TNF α, 心房钠尿多肽, Β型钠尿肽, 促性 腺激素, 人黄体生成素, 促卵泡激素, 人生长激素, EP0, G-CSF, GM-CSF, TP0, M-CSF, SCF, VEGF, EP0模拟肽, TP0模拟肽, FLT3配体, Αρο2配体, 骨细胞抑止因子, ΒΜΡ-2, BMP-7, GLP-1及其类似物, Exendin-3, Exendin-4, 胰岛素及其类似物, GIP, 胰高血糖 素, 内皮抑制素 (endostatin), plasminogen kringle 1 domain, plasminogen kringle 5 domain, angiostatin等。 治疗性蛋白也还可以是抗体及其片段, 单链抗体 scFv等。 这些蛋白以及编码这些蛋白的核酸序列都是大家熟知的, 并且在如 Chemical Abstracts Services Databases (例如 CAS Regi stry) , GenBank禾口 GenSeq这样的公共数据库中可 以找到。 对于本专业人员来说, 根据本发明的精神, 容易理解的是现有已经发现的绝大 部分生物活性蛋白都适用于本发明。 当然, 同样应理解的是, 在此发明以后新发现的具 有生物学活性的蛋白 /多肽, 也同样适用于本发明。
本发明中重组明胶样融合蛋白中的生物活性蛋白, 可以是非糖基化的, 也可以是糖 基化的, 例如部分细胞因子, 细胞表面蛋白和分泌性蛋白, 经常会被修饰, 如结合一个 或多个的寡糖基团。 糖基化一般有两种主要类型: 0-连接的寡糖糖基化, 连接位点在丝 氨酸或苏氨酸残基上; N-连接的寡糖糖基化, 连接位点在 Asn-X-Ser/Thr序列的天冬酰 胺酸残基位点上, 在此, X可以是除了脯氨酸以外的任何氨基酸。
糖基化异构体可以通过去除或者引入糖基化位点获得, 比如替换或者去除氨基酸残 基, 象用谷氨酸代替天冬酰胺酸那样, 或者在不产生这种糖基化蛋白的宿主细胞中表达 非糖基化重组蛋白, 例如在大肠杆菌或者糖基化缺陷的酵母中表达。 作用机制
多肽 /蛋白质在体内迅速被清除的机制是多样的, 包括肾小球过滤, 受体介导内吞, 蛋白酶作用, 淋巴系统清除, 肝脏清除等多种机制。 活性蛋白与 IgG的 Fc片段或白蛋白 融合后之所以可以保持较长的半衰期,是因为体内存在特殊的 FcRn介导的循环作用保护。
将明胶序列与活性蛋白融合表达后延长活性蛋白半衰期的确切机制尚未清楚。 到目 前为止尚未发现有类似的受体起作用。 GLK序列本身不会与 FcRn结合。 本发明人将人血 清包被酶标板, 加入 GLK/G-CSF融合蛋白(同时以 G-CSF作为阴性对照), 保温孵育洗涤 后用生物素标记的 G-CSF (Abcam plC. )抗体结合, 经 HRP显色证明 GLK融合蛋白并没有与 血清中的任何组分有结合作用, 因此排除了这种" GLK融合蛋白与血清中某些组分相互结 合" 的可能性。 另外, 可以肯定的是并不是纯粹因为融合后增加了分子量而导致半衰期 的延长, 现有的研究已经发现, 纯粹的增大融合蛋白分子量并不一定能延长其体内半衰 期, 如 Carlos A. (Buscagl ia CA e t al. , Blood , 93 : 2025-2032, 1999) 研究发现分子量 大的 TSac蛋白(76KD)体内半衰期(约几小时)远小于比它分子量小的 GST-Ag 36 (60KD) (约 30小时)。 实施例 7的数据也显示, 同样的活性多肽, 选用不同序列, 但是分子量接近的 明胶样单元作为融合载体, 最终获得的融合蛋白却具有不同的半衰期。
应理解, 本发明的保护范围并不受作用机理的限制。 本发明人提供以下机理是为了 便于更好地理解本发明。 融合后重组明胶样融合蛋白能增加活性蛋白在体内外稳定性和 半衰期的可能原因有:
(1) GLK的 Gly-X-Y结构中 Y位 Pro (Hyp)的大量存在,使其在生理环境中保持了一种 松散的结构, 从而形成了一道屏障保护了活性蛋白不被体内蛋白酶降解。
(2) GLK结构中富含亲水性氨基酸, 因此有很大的水合分子半径, 也避免了其在肾脏 过滤排出。理论分子量约为 55KD的 rGLK1164/G-CSF融合蛋白,用分子筛分析其表观分子 量约为 154KD (表观分子量: 理论分子量 = 2. 8)。
(3)融合蛋白中 GLK特别的带电性质导致了重组明胶样融合蛋白在体内更长时间的 驻留。 本发明的 GLK具有较低的等电点, 在正常生理条件下带负电荷。 很多血浆蛋白大 多带负电荷且具有运输功能, 带有负电荷的重组明胶样融合蛋白减少了与这些血浆蛋白 相互结合的可能性, 因此可以在血浆中存留更长的时间。
(4)血管壁上内皮细胞表面覆盖的多糖-蛋白质复合物(glycocalyx)的存在降低了重 组明胶样融合蛋白的清除率。血管壁上的多糖-蛋白质控制着血管内与周围基质间的物质 运输(Simionescu M, Simionescu N, Annu. Rev. Physiol. , 48 : 279—293, 1986)。 多 糖-蛋白质复合物在正常生理状态下带负电荷, 而重组明胶样融合蛋白也带负电荷, 由于 同种电荷的排斥, 也减少了重组明胶样融合蛋白与 glycocalyx的相互作用, 从而减少了 重组明胶样融合蛋白从血管向组织中的渗透。 重组明胶样融合蛋白的制备
本发明的融合蛋白可用固相技术通过直接合成肽而加以生产, 也可以分别化学合成 本发明蛋白的各片段, 然后用化学方法加以连接以产生全长的分子。 在优选方案中, 本 发明的融合蛋白用重组方法来制备。
重组方法来制备明胶融合蛋白涉及在原核宿主, 真核宿主, 植物或者动物中表达编 码重组目标明胶融合蛋白核苷酸, 以及获得重组明胶样融合蛋白的过程。 任何可以表达 重组蛋白的系统, 包括原核, 真核, 转基因动植物系统, 都可应用于本发明。 例如, 美 国专利 US6548653所提及的所有用于表达融合蛋白的方法, 都适合于本专利。
更详细的说, 通过重组方法来获得目标重组明胶样融合蛋白, 首先需要获得编码所 需重组明胶样融合蛋白的核苷酸, 编码目标核苷酸序列可用多种不同的常规方法制备。 此外, 为了得到上述序列的衍生或变异序列, 可以对核苷酸序列进行修饰或改动, 例如 通过基因工程技术。
更优选地, 在本发明的过程中, 核苷酸序列是包含有转录起始区(启动子序列)的表 达框的一部分, 在宿主细胞中, 此转录起始区控制核苷酸序列的表达, 并编码本发明中 的多肽。 此区域可来自在所用的宿主菌中高度表达的, 组成型或调控型基因的启动区。 例如对于酵母, 可以是甲醇氧化酶 (A0X), 磷酸甘油酸酯激酶 (PGK)以及类似基因的启动 子。 表达框也可以包括在所使用的宿主菌中有功能的转录终止区, 紧密的连接在编码本 发明中多肽的核苷酸序列下游。
在优选的方案中, 编码本发明中多肽的核苷酸序列之前带有一段信号肽序列, 用于 引导新生的多肽在其宿主中进入分泌途径。
除了表达框, 一个或几个可用于筛选重组宿主菌的标签 (Tag)都可以加入, 例如酵母
S. cerevisiae的 URA3基因, pic ia酵母中 G418抗性基因, 或其他任何选择性标签。 表达框和筛选标记形成的单位可被直接引入到宿主细胞中, 或者预先插入到功能性自我 复制的表达载体中。 可选用的表达载体来源是极其广泛的, 包括但并不限于: /i j^ertw^ces酵母常用的表达质粒 pKDl ; fecc artw^ces属酵母优选的 2 μ J^Ji -' pichia 系统常用的 pPIC9, pPIC9K, pPICZ a 表达质粒等。
在构建了上述重组表达质粒以后, 可以根据常见的分子生物学文献, 如 《分子克隆 实验指南》 第三片反 (Sambrook J, Russel l DW, Molecular cloning : A laboratory manual. 3rd edition, New York : Cold Spring Harkbor Laboratory Press, 2001)或商业公司 提供的常规技术, 将重组质粒引入到所选的宿主细胞中, 并筛选成功整合有重组质粒的 宿主菌细胞。 可以实用任何可将外源 DNA引入到细胞中的常规方法, 如转化, 电转化, 接合等。 任何可以表达重组蛋白的系统, 包括原核, 真核, 转基因动植物系统, 都可应 用于本发明。
在转化细胞筛选后, 表达上述融合蛋白的细菌或细胞会被接种培养。 融合蛋白的收 获会在连续培养过程的细胞生长阶段, 也可以是在生长末期的培养阶段, 视宿主细胞的 表达特性而定。 融合蛋白可以表达在宿主菌内部, 如绝大部分原核表达系统, 也可以分 泌在培养基中, 如酵母、 动物细胞表达系统, 一般都是胞外分泌的。 通过相应的离心, 破菌, 超滤, 沉淀, 层析等多种方法的组合, 可以获得高度纯化的重组明胶样蛋白或重 组明胶样样-活性蛋白融合蛋白。 纯化后的融合蛋白可用于结构鉴定, 体内外生物学活性 测定, 或者药物代谢动力学等用途。
由于表达载体和宿主菌的差异, 通过有些真核系统表达的重组明胶样蛋白结构中的 Pro可能会被部分或者全部转化为 Hyp, 但是这个变化并不影响本发明的实施效果。 虽然 酵母中一般不存在脯氨酰 -4-羟化酶 (P4H), 但通过某些特殊的手段, 在酵母系统中也可 以实现 Pro 部分或者全部转化为 Hyp, 例如, Vuorela (Vuorela e t al. , EMBO J. , 16 : 6702-6712, 1997)及 Vaughan (Vaughan e i , DNA cell Biol. , 17 : 511-518, 1998) 的研究结果表明, 在酿酒酵母或毕赤酵母中共同表达明胶和脯氨酰 -4-羟化酶 (P4H)基因 可以获得羟基化的明胶。 重组明胶样融合蛋白的性质
(a)理化性质
本发明的融合蛋白中的所述明胶样单元 (Gly-X-Y) π具有以下部分或全部理化特性:
(1)亲水性氨基酸 Asn, Asp, Gin, Glu, Lys , Pro , Ser, Hyp, Arg的氨基酸百分比 含量较高, 总和为 40%至 2/3 (66. 7%);
(2) Pro和 Hyp的数量之和与 n的比值 6 ;
(3) Gly的数量之和与 n的比值 1· 15 (更佳地 1. 05) ;
(4) 等电点为 3-7 (较佳地为 3. 2-6, 更佳地为 3. 2-5. 5);
(5)根据 Kolaskar-Tongaonkar法计算平均抗原指数不高于 0. 98;
(6) 根据 ProtParam 公式计算, 代表亲水性的 GRAVY 值小于 _1. 1 (较佳地小于 _1. 4, 更佳地小于 -1. 5)。 表 1.实施例 1-12中涉及的部分明胶单元的特性
Figure imgf000014_0001
a. GRAVY值: 多肽或蛋白中所有氨基酸亲水值的平均值(亲水值总和除以氨基酸数目的总 和)(Kyte J' Dool i ttle RF, / Mol Biol. , 157 : 105-132, 1982)„
b. SGly/n为 GLK序列中 Gly的总数和与 n的比值
c. S(Pro+yp,/n: 为 GLK序列中 Pro和 Hyp的总数与 n的比值。
d. 根据每个氨基酸出现在部分已知的表位上的机率来计算。 最少预测的残基数目为 8个。 根据报道, 预测的准确性大约为 75% (Kolaskar AS, Tongaonkar PC 报道方法计算(/¾K Lett., 276 : 172-174 , 1990)。 (b)生物活性
以往通过融合表达来延长活性蛋白体外稳定性的方案, 往往是以牺牲活性蛋白的生 物学活性作为代价的。这是因为作为融合载体的蛋白质如白蛋白, Fc片段, 往往分子量 大,具有很大的空间位阻,因此融合后阻碍了生物活性蛋白与其效应配体的结合。如 Huang YS等(Huang YS et al., Eur J Pharm Biopharm. , 67 : 301 - 308, 2007)制备的 HSA/IFN a 融合蛋白, 仅保留了 IFN a 原有活性的 1. 7% (按摩尔比计算)。 但是, 本发明的重组明胶 样融合蛋白, 却出人意料的保留了很高的生物学活性。 如实施例 3所描述的, 融合表达 的 rGLK1164/G-CSF 融合蛋白体外活性约是未融合的 G-CSF 的 146%。 另外, 本发明 rGLK1164/IFNa融化蛋白的体外活性是现有 "白蛋白 -IFNa" 融合蛋白体外活性的 7倍以 上。
更好的体外活性意味着临床更小的剂量, 从而带来成本, 疗效方面的改善。 重组明 胶样融合蛋白能够保留更多的体外活性的机理尚未研究, 可能与 GLK序列在生理状态下 保持了松散的结构, 而不形成高级结构, 因此其空间位阻较小有关。
(c)体外稳定性
本发明的重组明胶样融合蛋白, 除了改善体内的半衰期, 还意外发现融合后提高生 物活性蛋白的体外稳定性。如实施例 3所描述的, 未融合的 rhG-CSF与 rGLK1164/G-CSF融合 蛋白溶液都在 40 °C震荡 48小时后, 分子筛分析发现 rhG-CSF样品中出现大量聚体, 而且总 蛋白含量也显著下降, 但是 rGLK1164/G-CSF融合蛋白在这些指标改变很少, 表明与 GLK融 合后显著提高了生物活性蛋白的体外稳定性。 重组明胶样融合蛋白提高生物活性蛋白的体外稳定性的作用机制可能是: 明胶序列 可以与部分去折叠的蛋白质暴露部分相互作用, 避免了去折叠生物活性蛋白质的聚集。 融合后提高体外稳定性, 减少制备和贮存期间蛋白聚体的形成, 从而减少治疗用蛋白药 物的免疫原性, 是极其具有临床意义的。
由于与明胶融合后活性蛋白体外稳定性显著提高, 避免了制剂中添加 HSA等稳定剂, 因此也减少了因加入 HSA而导致的风险, 例如产生抗体或者中和抗体。
(d)免疫原性
对于用于提高半衰期的融合蛋白的载体蛋白, 必须是没有免疫原性的, 否则, 产生 针对载体蛋白的抗体会形成抗体-融合蛋白免疫复合物, 加速融合蛋白在体内的清除, 并 带来其他不良反应。 明胶已经广泛用于制剂辅料, 已经证明是不具有免疫原性的, 实施 例 4也证明了无论是重组明胶样本身, 还是明胶融合蛋白, 都不会诱导机体产生抗体。 更 为优越的是由于明胶序列本身没有种属差异问题, 跟以往的融合表达方案相比较, 可以 更方便的在各种动物模型中评价期疗效和安全性。
(f)体内生物学活性和半衰期
根据本发明制备的重组明胶样融合蛋白, 显著改善体内的半衰期。 实施例 5比较了 rhG-CSF, rHSA/G-CSF和 rGLK1164/G-CSF三种蛋白在 SD大鼠体内的药代和药效情况。 单次 皮下给予不同剂量的 rGLK1164/G-CSF,有显著促进白细胞增加的效果, 而且其体内半衰期 远超过 rhG-CSF, 与 rHSA/G-CSF基本相同。 实施例 10也表明与胶原融合后 Exendin-4在猕 猴体内半衰期得到显著增加。 重组明胶样融合蛋白的用途
由于融合蛋白中明胶部分本身不具有生物学或药理学活性, 根据本发明所制备的重 组明胶样融合蛋白的用途是由融合蛋白中的非胶原部分决定的, 也就是说重组明胶样融 合蛋白 { GLK } p-R- { GLK } q的生物学功能是由 R部分决定的, GLK部分的加入仅仅是改变 了其体外稳定性和体内的清除速度。 生物活性蛋白 /多肽 R的性质决定了重组明胶样融合 蛋白的用途, 用法和剂量。 如生血因子 EP0, G-CSF, IL-11 , M-CSF分别用于红细胞, 中 性粒细胞, 血小板和干细胞的增殖, 与 GLK融合后所制备的 EP0/GLK , GLK/G-CSF , GLK/GM-CSF, GLK/M-CSF同样具有这些功效。这些对于本领域技术人员而言是显而易见的。 药用组合物
本发明的重组明胶样融合蛋白虽然本身具有很好的稳定性, 但是为了便于保存, 运 输和临床应用, 本发明也公开了包含上述重组明胶样融合蛋白和药学上可接受的载体的 药用组合物。 当然, 药物组合物中还可包含常规的添加剂, 例如稀释剂, 保护剂, 防腐 剂获得的药用组合物用于治疗, 预防, 缓解或者诊断机体, 特别是人体的疾病或不适症 状。 为了提高药用效果, 本发明的融合蛋白也可以与其他药物共同使用,以达到更好的治 疗效果。 本发明的主要优点包括:
1.不同于高分子聚合物(如 PEG)修饰的方法, 通过重组表达制备的明胶融合蛋白, 结 构均一, 制备方法简单, 而且可以被机体降解而不会在体内积蓄;
2.不同于载体蛋白(如 Fc或白蛋白)融合方案, 本发明的明胶样单元的亲水性增加、 等电点降低、 没有或基本没有免疫原性, 且没有额外的生物学活性;
3. GLK不具有复杂结构, 而具有类似于线性高分子聚合物 (如 PEG等)一样的线性结构, 与其融合后空间位阻很小, 因此与以前的融合方案相比较, 重组明胶样融合蛋白更有利 于保留活性蛋白的生物学活性。
本发明方案具有高分子化合物修饰和蛋白质融合技术两者的优点, 但又避免了两者 的缺点, 是一种更优的改变重组蛋白药物体内半衰期的方法。 下面结合具体实施例, 进一步阐明本发明。 应理解, 这些实施例仅用于说明本发明 而不用于限制本发明的范围。 除非另有描述, 本发明的实施将采用分子生物学、 微生物 学、 重组 DNA和免疫学的常规技术, 这些均是本领域技术人员所知的。 这些技术在下列文 献中有完整的描述: 例如, 《分子克隆实验指南》 第三版(Sambrook J, Russel l DW, Molecular cloning : A laboratory manual. 3rd edition, New York : Cold Spring Harkbor Laboratory Press, 2001); 《蛋白质纯化: 原理和实践》 第 3版(Scopes RK, Protein Purification : Principles and Practice, 3rd edition, New York : Springer-Verlag, 1994), 或者, 可按照试剂生产商所提供的说明书进行。 关于 ic ia pastor的操作, 如 果没有特另1 J指出, 均按照 Invitrogen公司 Pichia Expression Kit禾口 Pichia Fermentation Process Guidel ines操作说明进行。 另外, 以下所有序列中, 如没有特别说明, 下划线 部分皆为酶切识别位点, 斜体部分为信号肽序列。 实施例 1 : rGLK1164蛋白的表达, 纯化
1. ί¾Γϋ&基因的克隆
本发明中 ^&基因由 4个相同的单体(序列参见 SEQ ID NO : 1)串联所组成, 单体命 名为 , 编码 116个氨基酸(序列参见 SEQ ID N0 : 2), 由上海英骏生物技术有限公司
(Invitrogen)合成。 合成时在 5'端加入了酵母 GS115的 a-factor信号肽序列 (SEQ ID NO :
1中第 1-24位,带 ¾o I位点), 紧接着为内切酶 Z^ral l l的识别位点, 3'端则带有 ?911及 fcoRI识别位点,并连接在克隆载体 pMD18-T (TaKaRa公司)上, 构建成质粒 pGLKl
Figure imgf000016_0001
为了获得 二聚体, 首先将质粒 pGLKl lSi-T用 Vai ilOra I I I双酶切。 1%琼脂糖 胶进行电泳, 切胶回收约 330bp大小目的片段(即 ft) ,用柱离心式小量胶回收试剂盒 纯化(上海华舜生物工程有限公司), -20 °C保存待用。 同时, pGLKl ie^T质粒用 2911单 酶切。 酶切的质粒如上割胶回收, 溶于 30 μ 1的 TE溶液。 然后用碱性磷酸酶(Alkal ine Phosphatase, BAP, TaKaRa公司)处理。
磷酸化处理后的 pGLKl lSi-T与
Figure imgf000017_0001
I I双酶切回收的 ft片段用 T4 DNA连接 酶按 1 : 10摩尔比进行连接。 连接产物转化 co i DH5a感受态细胞。
在转化平板上挑取单克隆至氨苄抗性的 LB液体培养基培养, 按常规方法提取质粒,用 ¾0I/fC0RI双酶切鉴定。 酶切阳性克隆测序鉴定。
同上, 将 连接于 pGLK1162-T上, 即可构建成含 4个 ft单体的目的基因 (序列参见 SEQ ID NO : 3)。
2. 表达质粒 pPIC-GLK1164的构建
参见图 2。采用 pPIC9 (InVitr0gen)为表达质粒, 用 ¾0I/^C0RI双酶切后, 1%琼脂糖胶 电泳, 回收片段。 pGLK1164-T^ ¾oI/^coRI双酶切, 回收约 1200bp的 目的片段。
与 pPIC9的酶切片段用 T4 DNA连接酶连接。 连接产物转化 coll DH5a感受态细胞 并鉴定。
3. rGLK1164蛋白表达工程酵母的构建
以甲醇酵母 ic ia pastor GS115 为表达宿主菌, 通过电转化将线性化的 pPIC-GLK1164质粒转化到 GS115中。 30 °C培养 3天, 至单菌落出现。
4. ^1^1164蛋白的表达筛选
将上述转化的重组酵母单菌落接种至 10ml BMGY液体培养基中, 30 °C, 250rpm培养 24 小时后, 静置过夜, 弃上清, 加入 10ml含 1%甲醇的 BMMY液体培养基, 30 °C, 250rpm诱导 表达。 选取相对表达较高菌株作为表达株。 5. rGLK1164蛋白的发酵和纯化
将步骤 4中获得的表达株接种于液体 YPD培养基中, 于 30 °C, 250rpm振荡培养过夜至 0D6。。约为 20左右, 作为上罐种子液。 将培养好的种子液接入 B. BRAUN BIOSTAT C-10发酵 罐, 培养基按 Invitrogen公司 Pichia Fermentation Process Guidel ines配置。 接禾中量 为 10%, 设定发酵温度 30 °C,pH5. 0,待甘油耗尽, 开始流加甲醇进行诱导表达。 表达阶段 控制发酵温度 25 °C, 诱导 72小时放罐。
高速离心去除菌体, 取 1升发酵上清液, 4°C下加入冰预冷的丙酮至终浓度为 40%, 搅 拌 30分钟, 离心, 弃沉淀。 上清液中再加入冰预冷的丙酮至终浓度为 80%, 搅拌 30分钟, 离心收集沉淀。获得的重组明胶样融合蛋白沉淀重悬至 100毫升纯水里,对 20mM PB,pH7. 0, 4°C透析过夜。
透析完成的明胶融合蛋白溶液, 上样于预先用缓冲液 A (20mM PB, pH7. 0)平衡好的 Q
Sepharose FF 柱(GE Healthcare , XK26/20,柱体积 50ml),上样完成后以 2倍柱体积的缓 冲液 A洗脱未结合的蛋白, 然后以线性梯度, 10个柱体积, 0-100%缓冲液 B (20 mMPB, 0.5M NaCl, pH7.0)洗脱。
洗脱的 rGLK1164经超滤浓缩(Millipore, 丽 CO 10KD)至蛋白浓度约 10mg/ml, 然后用 Sephadex G25柱(GE Healthcare, XK26/20;柱体积 50ml)脱盐, 缓冲液为 10mM PB, pH7.0, 冷冻干燥。
蛋白浓度测定采用 Bradford法, 经检测, 每升酵母发酵液可制备 rGLK116^ 40mg, 纯 化收率为 20%左右, 经 RP-HPLC分析纯度为 98%。 实施例 2: rGLK1164/G-CSF融合蛋白的表达, 纯化和鉴定
1. - 57¾因的合成
-^757¾因(序列参见 SEQ ID NO: 4)由上海泽衡生物技术有限公司合成, 并克隆到 PMD18-T载体上, 构建成质粒 pG-CSF-T。 G-C57¾5'端为 ralll识别位点, 3'端则为 fcoRI 识别位点。 2. 表达质粒 pPIC-GLK1164/G-CSF的构建
基本同实施例 1,表达质粒的构建流程参见图 3, GLK1164/G-CSF DNA编码序列及成熟 的 GLK1164/G-CSF融合蛋白氨基酸序列分别参见 SEQ ID NO: 5和 SEQ ID NO: 6。
3. rGLK1164 /G-CSF融合蛋白表达工程酵母的构建
pPIC-GLK1164 /G-CSF转化甲醇酵母 i c ia pastor GS115(fiisV, 质粒线性化处理,
GS115感受态细胞的制备以及电转化方法同实施例 1。
4. rGLK1164 /G-CSF融合蛋白的表达
将转化的重组酵母单菌落接种至 10ml BMGY液体培养基中, 诱导表达过程同实施例 1。
5. rGLKl 164/G-CSF融合蛋白的纯化
参照实施例 1进行发酵,发酵液离心去除菌体,离心后取 1升上清液用 0.45 μπι的过滤 器过滤除菌。 除菌后的上清液调节 pH至 3.0, 用注射用水稀释至电导< 5!^/(^。 上样于预 先用缓冲液 A(20mM NaAc,pH3.0)平衡好的 SP Sepharose FF柱(GE Healthcare, XK26/20, 柱体积 50ml),上样完成后以 2倍柱体积的缓冲液 A洗脱未结合的蛋白, 然后用缓冲液
B(20mM NaAc, 0.3M NaCl, pH3.0)洗脱,收集洗脱峰。
洗脱的 rGLK1164 /G-CSF经 S印 hadex G25柱(GE Healthcare, XK50/30;柱体积 600ml) 脱盐, 缓冲液为 20mM Tris,pH8.5, 脱盐后的 GLK1164/G_CSF溶液上样于预先用缓冲液
C(20mM Tris,pH8.5)平衡好的 Q Sepharose FF柱(GE Healthcare, XK16/20,柱体积 20ml), 上样完成后以 2倍柱体积的缓冲液 C洗脱未结合的蛋白, 然后以线性梯度, 10个柱体积,
0-100%缓冲液 D(20 mM Tris, 0.5M NaCl, pH8.5)洗脱 GLK1164/G_CSF。 洗脱的 GLK1164 /G-CSF超滤浓缩(Mi l l ipore , 丽 CO 10KD)至蛋白浓度 lOmg/ml,然后 用 S印 hadex G25柱(GE Healthcare, XK26/20;柱体积 50ml)脱盐, 缓冲液为 10mM PB, pH7. 0, 冷冻干燥。
蛋白浓度测定采用 Bradford法, 每升发酵上清可制备 GLK1164 /G-CSF 30mg, 纯化收 率约为 28%。 分析结果见表 4。 实施例 3 : rGLK1164/G-CSF的分析鉴定
1. SDS-聚丙烯酰胺凝胶电泳
用 8%SDS-PAGE电泳分析获得的 rGLK 1164/G_CSF的纯度, 可见其表观分子量介于 66KD-97KD之间, 为单一条带(参见图 4)。
2.分子筛层析一高效液相色谱 (SEC-HPLC)
SEC-HPLC采用 TSK Gel G3000 Swxl柱, 缓冲液为 50mM PB, 0. 25M NaCl , ρΗ7· 0。 结 果参见图 5, 表观分子量约为 154KD (表观分子量: 理论分子量 = 2. 8)。
3.反相层析一高效液相色谱 (RP-HPLC)
RP-HPLC采用 VYDAC protein C4 TP5415柱, 流动相 A为: 含 0. 1% TFA 的水溶液, 流 动相 B采用含 0. 1% TFA 的 9 : 1乙腈:水溶液, 结果参见图 6。 4. Western blot分析
以 G-CSF做对照,所用一抗为抗 G-CSF鼠多抗 (ANTIGENIX),对所获得的 GLK1164 /G-CSF 的免疫印迹分析。
实验结果表明(图 7), 在 90KD附近呈现阳性条带。 5.体外活性测定
rGLK1164/G-CSF的体外活性测定选用 G-CSF依赖细胞株 NFS60 , 以 MTT法测定生物学活 性(中华人民共和国药典, 2005版, 三部)。
其中一个典型的活性检测结果参见图 8。
rGLK1164/G-CSF活性约为 3. 3 X 107IU/mg,按摩尔比计算,约相当于 G-CSF的生物学活 性 146%左右。
6.体外稳定性
rhG-CSF标准品和 rGLK1164/G-CSF溶于 20mM PB, pH6. 0的溶液中至蛋白浓度 lmg/ml。 无菌过滤, 分装至无菌西林瓶中, 40°C震荡 48小时后, 用 SEC-HPLC法分析聚体和含量。 结果表明(参见表 2和图 9), rhG-CSF样品中出现大量聚体, 并且总蛋白含量也显著下降, 但是 rGLK1164/G-CSF融合蛋白在这些指标改变很少。 这表明与 GLK融合后显著提高了生物 活性蛋白的体外稳定性。
表 2 SEC-HPLC分析不同结构 G-CSF加速试验结果
纯度 (%) (SEC-HPLC分析) 保温后蛋白质含量 (%)
Oh 24h 48h Oh 24h 48h rhG-CSF 99. 8 94. 3 85. 2 100 91. 2 68. 9 rGLK1164/G-CSF 99. 5 98. 7 97. 5 100 97. 8 96. 7 实施例 4. rGLK116 PrGLK1164/G-CSF融合蛋白在小鼠体内免疫原性研究
动物免疫: 采用 Balc/C小鼠 4组, 每组 3只, 体重在 25g左右。 背部一点皮下注射 4次, 每周 1次。 给药量为 rGLK1164/G-CSF融合蛋白和 rGLK1164均为 2. 5nmol , 空白对照组注射同 体积的生理盐水。 免疫第 4周和第 8次免疫完成后一周取血, 分离获得血清后 -70 °C保存待
给药 4次后抗体血清滴度分析
^1^1164或6- 5?蛋白用 0. 2M的碳酸盐缓冲液(pH9. 6)配制成 l g/ml , ELISA板中每 孔加入 100 μ 1, 4°C包被过夜, PBST洗涤 3次每次 5分钟, 然后用 5%的脱脂奶粉震荡封闭 1 小时后, 用 PBST洗涤 3次每次 5分钟。 取各组血清按照 1 : 50、 1: 200、 1: 800在 37 °C孵育 1小时, 然后加上 HRP标记的羊抗鼠二抗孵育 1小时, 甩干后 PBST洗涤, TMB-HCL显色, 在 450nm波长下酶标仪检测。 同时, 以 200ng/ml的兔抗人 G-CSF抗体作为阳性对照。
结果如图 10所示。 G-CSF包被组, 只有 rGLKl 164/G-CSF融合蛋白给药组和阳性对照组 有较高吸收值, ^1^1164包被组, 所有血清样本吸收值都很低, 表明给药 4周后所生成抗 体都是抗 G-CSF的, 没有抗 rGLK1164抗体产生。 这提示, 本发明的明胶样单元的没有免疫 原性。 实施例 5 : rGLK4/G-CSF融合蛋白的药效学和药代动力学研究
将 rhG-CSF对照品(Fi lgrastim, Amgen, USA), rHSA/G-CSF (根据美国专利 5, 876, 969 制备), rGLK1164/G-CSF和 rGLK1164四种蛋白在 SD大鼠体内的药代和药效情况进行比较。
SPF级成年 SD大鼠(约 300-350克)来自中科院上海动物试验中心, 参照表 3进行分组, 注射, 尾静脉采集血样, 进行白细胞计数; 3000rpm离心 5分钟后分离血清, _20 °C保存待 药代动力学的测定: 采用双抗体夹心 ELISA法检测样品中 rhG-CSF, rGLKl 164/G-CSF 和 rHSA/G-CSF的血药浓度, 具体操作参见 Human G-CSF DuoSet试剂盒 Human G-CSF ELISA Construction Kit (ANTIGENIX)的操作手册。 用 MicroCal Origin软件中的四参数逻辑曲 线绘制标准曲线, 并求回归方程及相关统计参数; 用 Microsoft Excel 2003软件将样品 数据代入标准曲线的回归方程计算相关数值; 最后用 3P87软件进行曲线拟合并计算主要 药代动力学参数。
表 3 不同结构 G-CSF药代及药效分组及给药表
Figure imgf000021_0001
药效学的结果参见图 11, 相比于单次注射 Fi lgrastim , rGLK1164/G_CSF组和 rHSA/G-CSF在给药后 48小时后白细胞明显升高, 而且其升高的幅度和持续时间远大于 rhG-CSF组。不同 rGLK1164/G-CSF剂量组间, 随着剂量的增加, 白细胞升高幅度明显增加, 白细胞升高持续时间也更长;相同剂量组之间 rGLK1164/G-CSF和 rHSA/G-CSF对于升高白细 胞的效果和持续的时间没有明显的区别。
药代学结果参见图 12, 从血药浓度-时间曲线图看, rhG-CSF皮下注射后迅速被代谢, 24小时候后就无法被检出, 而 rGLK1164/G-CSF组和 rHSA/G-CSF在 72小时仍能被检出。皮下 给药 rGLK1164/G-CSF在大鼠体内末端半衰期在 10小时左右, 略长于 rHSA/G-CSF。 实施例 6: 不同结构的 GLK/G-CSF蛋白性质比较
用相似的方法, 构建了不同结构的 GLK/G-CSF蛋白, 并比较了其活性, 半衰期 (SD大 鼠)等相关数据。
Figure imgf000021_0002
其中, GLK42。是选自源自于人的 C0L5A1型胶原序列中 1150-1569位序列, 完整序列参 见 SEQ ID NO: 7, SEQ ID NO: 8, 编码 GLK42。/G_CSF的 DNA以及氨基酸序列分别参见 SEQ ID NO: 9, SEQ ID NO: 10。 实施例 7: rGLK1164/IFNa融合蛋白表达和纯化
1. Interferon a2b (IFN a )基因的合成
TTWff基因由上海泽衡生物有限公司合成(序列参见 SEQ ID NO: 11), 并克隆到 PMD18-T载体上,构建成质粒 pIFNa -T, IFN a的 5'端为 ralll识别位点, 3'端则为 fcoRI 识别位点。
2.表达质粒 pPIC-GLK1164/IFNa的构建
构建流程图参见图 13, 完整的 GLK1164/IFNa DNA序列和成熟的 rGLK1164/IFN a融合 蛋白氨基酸序列分别参见 SEQ ID NO: 12和 SEQ ID NO: 13。 3. rGLK1164/IFNa融合蛋白表达工程酵母的构建和筛选
用与实施例 1类似的方法。
4. rGLK1164/IFNa融合蛋白在甲醇酵母 GS115中的表达和纯化
发酵与纯化方法与实施例 1相似, 纯化产物采用 8% SDS-PAGE电泳分析, 结果参见 图 14。
5.体外活性测定
rGLK1164/IFNa融合蛋白的体外生物学活性测定采用常规的细胞病变抑制法 (WISH 细胞)(中华人民共和国药典, 2005版, 三部)。
细胞病变抑制法测得的 rGLKl 164/IFN a融合蛋白体外活性约为 2.2 X 107IU/mg
IFN a , 按摩尔比折算, 约为未融合时的 11%, 是对照 "白蛋白 -IFNa"融合蛋白体外活性 (仅为 1.4%)的 7倍以上。
6. 药效学研究
研究在猕猴体内进行, 15只猕猴, 雌雄各半(3-4年龄, 4.2-4.8公斤), 购于中国军 事医学研究院动物中心。 3只一组, 分成 5组, 皮下注射。样品用 PBS稀释, rGLK1164/IFNa 融合蛋白 3组, 剂量分别为 0.36, 1.0和 3.6 pmol/kg, IFNa组, 剂量为 0.36 pmol/kg, 空白对照组 rGLK1164蛋白, 剂量为 0.36 pmol/kg。 分别在 0, 1, 2, 4, 8, 10, 14小时取 血清, 用 2',5'_(^5放射免疫试剂盒(511«¾ Chemical Co. , Tokyo, Japan)测定血清中 2',5' -OAS活性。
如图 15所示, 实验猕猴体内 2',5' -OAS浓度呈明显剂量依赖性。 2',5' -OAS体内活性 2天后达到峰值。 rGLK1164/IFNa融合蛋白组在体内 14天后还能检测到, 而 IFNa组 6天后 接近于空白值, 相同剂量的 rGLK1164/IFNa 2', 5' -OAS活性明显高于 IFN a。 这表明融合 蛋白的半衰期显著延长。
采用不同性质的 GLK序列, 用相似的方法构建获得了不同性质的 GLK/IFNa 融合 蛋白, 并比较了其结构特点, 半衰期(SD大鼠)等相关数据, 如表 5所示。
表 5. 不同 GLK结构融合 IFNa 后获得产物性质比较
Figure imgf000023_0001
上表中四条 GLK序列长度相似, 但是融合后最终半衰期不一样:
GLK1162P-与 GLK1162相比, 将原序列所有的 Pro和 Hyp都替代为 Ser后, 虽然亲水性 变化不大, 但是半衰期明显下降;
GLK302序列不含有 Pro和 Hyp, 基本序列为 GGSGGS重复, 与 GLK1162P_相比, 含有更 多的617(617总数与1的比值2.02), 两者分子量和等电点相近, 但是 GLK302疏水性更强 (GRAVY值增大), 其体内半衰期也比 GLK1162P-短。 这提示, Gly总数与 n的比值宜 1.5, 较佳地 1.15, 更佳地 1.05。
GLK1162N-与 GLK1162相比, 将原序列所有的 Asn都替代为 Glu后, 虽然亲水性变化 不大, 但是等电点明显下降, 其体内半衰期明显延长。
GLK1162/IFNa , GLK1162P-/IFN a , GLK302/IFNa , GU(1162N_/IFN α的构建方法同 实施例 1和实施例 2中相似, 成熟肽氨基酸序列分别参见 SEQ ID NO: 14-17。 实施例 8: rExendin-4/rGLK的表达和纯化
基因由 6个相同的单体 单体序列参见 SEQ ID NO: 18)串联所组成, 单 体命名为 编码 104个氨基酸(序列参见 SEQ ID NO: 19); 基因由 6个相同的 单体 ί^ (单体序列参见 SEQ ID Ν0: 20)串联所组成, 单体命名为 ^ 7 编码 107个 氨基酸(序列参见 SEQ ID N0:21)DNA均由上海英骏生物技术有限公司(Invitrogen)合成。 构建方法与实施例 1相似: 把 ^ ί½和 ^ 分别连接于 pGLK1044-T、 pGLK1074_T上, 即 可构建成含 6个 GLK104 GLK107 ~体的质粒 pGLK 1046_T, pGLK 1074_T。 毫因的克隆 £> 2 2-毫因由上海泽衡生物技术有限公司合成, 其 DNA序列见 SEQ ID NO: 22: 合成后克隆到 PMD18-T载体上, 构建成质粒 pExendin-4-T。 的 5'端带有 α-factor信号肽序列(含 ¾o I位点), 3'端为 ra I I I识别位点。 2. 表达质粒 pPIC-Exendin-4/GLK1046和 pPIC-Exendin-4/GLK1076的构建参见图 16
SEQ ID :23-26分别是5 6 (1 -4/61^1046和5 6 (1 -4/61^1076 DNA序列和成熟融合 蛋白的氨基酸序列。
3. rExendin-4/GLK1046、 rExendin_4/GLK1076融合蛋白表达工程酵母的构建和筛选 同实施例 1。
4. rExendin-4/GLK1046、 rExendin-4/ GLK1076融合蛋白的发酵和纯化
发酵方法与纯化方法与实施例 1相似洗脱,纯化获得的 rExendin-4/GLK1046和 rExendin-4/GLK1076分别经超滤浓缩(Mi l l ipore, 丽 CO 10KD)至蛋白浓度 10mg/ml,然后用 S印 hadex G25柱(GE Healthcare , XK26/20;柱体积 50ml)脱盐, 缓冲液为 10mM ΡΒ, ρΗ7· 0, 冷冻干燥。 电泳分析结果参见图 17。 实施例 9: rExendin-4/GLK1046和 rExendin-4/GLK1076融合蛋白的生物学活性 稳定转染有 GLP-1R的 BHK细胞(baby hamster kidney cel l)能接受 GLP-1及其激动剂 的信号剌激, 使胞内 cAMP含量升高, 因此测定 cAMP的释放量可以间接反应 rExendin-4融 合蛋白的生物学活性。 BHK-GLP-1R细胞的培养方法参照 Li Y等之前所述的方法(Li Y et al., J Biol Chem. , 278 : 471-478, 2003) 0
结果表明: rExendin-4/GLK在 BHK-GLP-1R中能够按剂量依赖性剌激胞内 cAMP的产生; 与 Exendin-4标准品具有相似的体外受体结合活性, (图 18 ; Exendin-4 EC5。=0. 017nM, rExendin- 4/GLK1046 EC5。=0. 095nM, rExendin- 4/GLK1076, EC5。=0. 113nM)。 实施例 10 : rExendin-4/GLK1046和 rExendin-4/GLK1076的药代动力学
融合蛋白的药代动力学研究在猕猴体内进行, 6只猕猴,雌雄各 3只(3-4年龄, 4. 2-4. 8 公斤), 购于中国军事医学研究院动物中心。 动物采用实验动物常规饲养(浙江大学实验 动物中心)。 3只一组, 采用皮下注射, 样品用 PBS稀释, 4mg/kg。 分别在 0. 5, 1, 4, 8, 12,
24, 48, 72, 96, 120, 144, 192, 240, 288,和 336 小时采集血样, 血样收集于预先装 有 EDTA的采集管中。 采用超灵敏 Ex-4 RIA试剂盒 (Phoenix pharmaceuticals , Inc. ,
USA)。 检测血浆中融合蛋白的浓度。 实验用空白血浆做稀释校准。
结果如图 19所示, rExendin-4/GLK1046与 rExendin-4/GLK1076皮下注射后在猴子体 内的末端半衰期分别为 70. 4小时, 45. 4小时。 rExendin_4/rGLK1046皮下注射 48小时, 达 到最大浓度, 浓度为 36980 ng/ml。 半衰期提高了 15倍以上(注: Exendin-4的半衰期仅 2. 4 小时。 ) 实施例 11 : rEP0/GLK107j¾合蛋白的表达和纯化
1. £7¾¾因的克隆
¾¾因由上海泽衡生物技术有限公司合成, 其 DNA序列为参见 SEQ ID NO : 27。 合成后克隆到 PMD18-T上, 构建成质粒 pEP0-T。 EP0 5'端带有 A¾e I识别位点及 Kozak 序列, 3'则带 ra I I I识别位点。 斜体部分为 EP0的天然信号肽序列。
2. ^ ^基因的克隆
根据 d^i^基因的序列, 合成引物 GLK1074/P1 (SEQ ID NO : 28),和 GLK1074/P2 (SEQ ID
NO : 29)。 引物 GLK10741带有 ral l l识别位点, 引物 GLK10742则带/ foil识别位点。 以 pGLK1074-T为模板。 通过常规 PCR获得扩增产物。
3.表达质粒 pCEP4-EP0/GLK1074的构建
构建流程参见附图 20。 rEP0/GLK1074DNA序列和成熟融合蛋白的氨基酸序列分别参见
SEQ ID NO : 30和 SEQ ID NO : 31。
4. rEP0/GLK1074重组蛋白表达细胞株的构建
pCEP4-EP0/GLK1074质粒用超纯质粒提取试剂盒(购自 Marl igen公司)抽提。 采用中国 仓鼠卵巢细胞(Chinese Hamster Ovary, CH0)为宿主细胞,常规的脂质体转染。 转染后, 用 ELISA法检测 EP0活性。 阳性克隆经甲氨蝶吟 (MTX)加压筛选。 选取其中一株阳性细胞逐 渐用 CD CH0无血清培养基(购自 GIBC0公司)培养(Debeljak N et al. , Anal Biochem. , 359 : 216-223, 2006)。 5. rEP0/GLK1074重组蛋白的表达
将步骤 4中获得的表达细胞株, 复苏于无血清培养基中, 细胞依次经过 125ml, 500ml, 1000ml细胞培养用旋转瓶扩增, 然后接种于 B. Braun Biostart 培养罐中, 当活细胞密度大于 1. 5 X 106/ml时, 每天补加 10% 10倍浓缩培养基, 培养 15天左右, 每天 取样计数细胞密度并用 lowry法检测目的蛋白表达量。 发酵培养结束后, 收集重组表达细 胞, 6000r/min, 离心 5分钟, 收集上清。 8% SDS-PAGE电泳分析。
6. rEP0/GLK1074重组蛋白的纯化
纯化方法同类似于实施例 1。 实施例 12 : rEP0/GLK1074融合蛋白在正常小鼠体内的促红细胞生成作用
在小鼠体内比较了 rEP0/GLK1074融合蛋白与 rEPO标准品(EP0GEN", AMGEN公司)的促红 细胞生成活性。 实验采用 BALB/c小鼠(雄性,6-8周龄, 18〜20g/只), 来自中科院上海动 物试验中心。 参照下表进行分组, 注射, 尾静脉采集血样。 比色测定血红蛋白(Hb)含量。 表 6 不同结构 EP0药效分组及给药剂量表
Figure imgf000026_0002
每周一次皮下给药研究 rEP0/GLK107 促红细胞生成作用, 结果如图 21所示, 不 同 rEP0/GLK1074剂量组间, 随着剂量的增加, Hb水平也相应增高。 rEPO也同样显示了促 红细胞生成作用, 但相似摩尔数条件下活性明显低于 rEP0/GLK1074。 因此相比于 rEPO, 1¾?0/60(1074不仅能延长给药周期, 而且能增强促红细胞生成作用。 实施例 13 : 药物组合物
如下制备含有 rGLK1164/G-CSF融合蛋白的注射用水剂:
取 200毫升 rGLK1164/G-CSF融合蛋白原液, 蛋白浓度为 15. 5mg/mL, 并含 10mmol/L 磷酸缓冲液 (pH 6. 5), 称取 7. 13克甘氨酸加入到原液中完全溶解, 再加入 2. 2毫升 pH 为 6. 5的 0. 5mol/L的磷酸缓冲液, 用 10%Na0H调节 pH至 6. 5, 最后加入适量的注射用 水至 310毫升,混合均匀后用 0. 22微米的滤膜对该制剂进行无菌过滤并分装于西林瓶中。 最终制剂组成为: rGLK1164/G-CSF 融合蛋白浓度为 10mg/mL, 磷酸缓冲液的浓度为 lOmmol/L, pH 6. 5, 甘氨酸含量为 2. 3% (重量比)。
Figure imgf000026_0001
Figure imgf000026_0003
8 rGLK42。氨基酸序列
9 GLK42。/G- CSF的 DNA序列(CDS : 1-1806)
10 rGLK42。/G-CSF氨基酸序列
11 Interferona2b的 DNA序列(CDS: 22-516)
12 GLK1164/IFNa的 DNA序列(CDS : 1-1839)
13 rGLKl 164/IFNa氨基酸序列
14 rGLK11162/IFN a氨基酸序列
15 rGLK11162P-/IFN a氨基酸序列
16 rGLK302S/IFN a氨基酸序列
17 rGLK1162N-/IFN a氨基酸序列
18 GLK10 单体的 DNA序列(CDS : 1-336)
19 ^!^^^单体氨基酸序列
20 GLKli^单体的 DNA序列(CDS : 1-345)
21 ^!^^^单体氨基酸序列
22 Exendin-4的 DNA序列 (CDS : 1-141)
23 Exendin-4/GLK1046的 DNA序列(CDS : 1-1938)
24 rExendin-4/GLK1046氨基酸序列
25 Exendin-4/GLK1076的 DNA序列(CDS : 1-1992)
26 Exendin-4/GLK1076氨基酸序列
27 EP0的 DNA序列 (CDS : 13-591)
28 GLK1074正向引物
29 GLK1074反向引物
30 EP0/GLK1074的 DNA序列(CDS: 13-1830)
31 rEP0/GLK1074氨基酸序列 在本发明提及的所有文献都在本申请中引用作为参考, 就如同每一篇文献被单独引 用作为参考那样。 此外应理解, 在阅读了本发明的上述讲授内容之后, 本领域技术人员 可以对本发明作各种改动或修改, 这些等价形式同样落于本申请所附权利要求书所限定 的范围。

Claims

权 利 要 求
1. 一种可用于延长蛋白体内半衰期的重组的明胶样单元, 其特征在于, 所述的明胶 样单元是结构如下的多肽:
(Gly-X-Y) n
式中,
Gly为甘氨酸残基;
X和 Y分别为 20种天然氨基酸除了 Cys之外的任意氨基酸残基;
n为 20-300;
并且, 所述的明胶样单元具有以下特征:
(a) 所述明胶样单元中以下亲水性氨基酸 Asn, Asp, Gin, Glu, Lys , Pro , Ser, Hyp , Arg的氨基酸百分比含量总和为 40%至 2/3 (66. 7%);
(b) 所述明胶样单元中, Pro和 Hyp的数量之和与 n的比值 6;
(c) Gly的数量之和与 n的比值 1. 15;
附加条件是, 所述的明胶单元不是天然的明胶蛋白。
2. 如权利要求 1所述的明胶样单元, 其特征在于, 所述的明胶样单元还具有以下特 征:
(d) 等电点为 3-7 ;
(e)根据 Kolaskar-Tongaonkar法计算平均抗原指数不高于 0. 98;
(f)根据 ProtParam 公式计算, 代表亲水性的 GRAVY 值小于 -1. 1。
3. 如权利要求 1所述的明胶样单元, 其特征在于, 所述的明胶样单元的分子量为 10-lOOkDao
4. 一种重组的融合蛋白, 其特征在于, 所述的融合蛋白由生物活性多肽和权利要求 1所述的明胶样单元融合而形成。
5. 如权利要求 4所述的融合蛋白, 其特征在于, 与不含所述明胶单元的生物活性多 肽相比, 所述融合蛋白在体内的半衰期至少延长 1倍。
6. 如权利要求 4所述的融合蛋白, 其特征在于, 所述的明胶单元位于所述融合蛋白 中的氨基端、 羧基端、 两端、 或中间。
7.如权利要求 4所述的重组融合蛋白, 所述融合蛋白是如式 I所示的单体或其多聚 体形式,
{ GLK } p-R- { GLK } q 式 I
式中, GLK表示如权利要求 1所述的明胶单元;
P和 q独立地为 0或 1,且 p和 q不同时为 0 ;
R为不含所述的明胶单元的、 具有生物学功能的蛋白, 且所述的 R不是明胶蛋白; 禾口
"_"表示肽键。
8. 如权利要求 7所述的重组融合蛋白, 其特征在于, 所述的融合蛋白为多聚体, 且 式 I中的各 R和 GLK可相同或不同。
9. 一种多核苷酸, 其特征在于, 所述的多核苷酸编码如权利要求 4所述重组的融合 蛋白。
10.一种含有权利要求 9所述的多核苷酸的序列的表达载体。
11.一种重组的宿主细胞, 其特征在于, 所述宿主细胞含有权利要求 10所述的表达 载体、 或者染色体中整合有权利要求 9所述的多核苷酸。
12. —种制备权利要求 4所述的重组融合蛋白的方法, 其特征在于, 包括步骤:
(1) 培养权利要求 11所述的宿主细胞, 从而表达权利要求 4所述的重组融合蛋白; 和
(2)分离出所述的重组融合蛋白。
PCT/CN2009/075039 2009-11-19 2009-11-19 非天然的胶原样蛋白及其应用 WO2011060583A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09851375.7A EP2502939B1 (en) 2009-11-19 2009-11-19 Nonnatural collagen-like protein and use thereof
CN2009801038709A CN102164949B (zh) 2009-11-19 2009-11-19 新型重组融合蛋白
US13/510,937 US9051358B2 (en) 2009-11-19 2009-11-19 Nonnatural collagen-like protein and use thereof
JP2012539158A JP5737597B2 (ja) 2009-11-19 2009-11-19 非天然コラーゲン様タンパク質及びその応用
PCT/CN2009/075039 WO2011060583A1 (zh) 2009-11-19 2009-11-19 非天然的胶原样蛋白及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2009/075039 WO2011060583A1 (zh) 2009-11-19 2009-11-19 非天然的胶原样蛋白及其应用

Publications (1)

Publication Number Publication Date
WO2011060583A1 true WO2011060583A1 (zh) 2011-05-26

Family

ID=44059187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/075039 WO2011060583A1 (zh) 2009-11-19 2009-11-19 非天然的胶原样蛋白及其应用

Country Status (5)

Country Link
US (1) US9051358B2 (zh)
EP (1) EP2502939B1 (zh)
JP (1) JP5737597B2 (zh)
CN (1) CN102164949B (zh)
WO (1) WO2011060583A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051358B2 (en) 2009-11-19 2015-06-09 Zhejiang University Nonnatural collagen-like protein and use thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102351954B (zh) * 2011-10-26 2013-12-18 陕西巨子生物技术有限公司 重组胶原蛋白
CN102993276B (zh) * 2012-11-06 2014-12-10 北京博奥森生物技术有限公司 一种具有免疫活性的多肽衍生物及其内参抗体的制备方法和应用
CN105112391B (zh) * 2015-09-22 2018-07-06 浙江道尔生物科技有限公司 一种人源精氨酸酶突变体及其制备方法和用途
CN107540744B (zh) * 2017-10-10 2021-05-14 南京艾澜德生物科技有限公司 重组胶原蛋白及其温敏水凝胶
CN107556377B (zh) * 2017-10-10 2021-06-29 南京艾澜德生物科技有限公司 重组人源胶原蛋白及其医用纳米纤维膜
CN110092835A (zh) * 2018-01-30 2019-08-06 上海惠盾生物技术有限公司 一种glp-1类似物-col3a1融合蛋白
CN116102621A (zh) * 2018-11-07 2023-05-12 浙江道尔生物科技有限公司 用于改善活性蛋白或多肽性能的人工重组蛋白及其应用
CN111499730B (zh) * 2020-04-24 2021-07-20 尧舜泽生物医药(南京)有限公司 一种重组人胶原蛋白及其构建方法
CN113637067B (zh) * 2021-08-18 2022-10-18 南京艾澜德生物科技有限公司 重组人源胶原蛋白及其人造角膜
CN117136196A (zh) * 2022-03-03 2023-11-28 上海赛金生物医药有限公司 一种重组融合蛋白的制剂
CN116063460B (zh) * 2022-10-21 2024-01-30 珠海冀百康生物科技有限公司 一种小分子胶原蛋白组合物及其制备方法和应用

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576688A (en) 1897-02-09 Pruning-shears
US5593859A (en) 1991-10-23 1997-01-14 Thomas Jefferson University Synthesis of human procollagens and collagens in recombinant DNA systems
US5801045A (en) 1995-02-03 1998-09-01 Eastman Kodak Company Collagen-like polypeptides and biopolymers and nucleic acids encoding same
US5876969A (en) 1992-01-31 1999-03-02 Fleer; Reinhard Fusion polypeptides comprising human serum albumin, nucleic acids encoding same, and recombinant expression thereof
US6150081A (en) 1997-12-24 2000-11-21 Fuji Photo Film B.V. Silver halide emulsions with recombinant collagen suitable for photographic application and also the preparation thereof
WO2001034646A2 (en) 1999-11-12 2001-05-17 Fibrogen, Inc. Recombinant gelatins
US6428978B1 (en) 1998-05-08 2002-08-06 Cohesion Technologies, Inc. Methods for the production of gelatin and full-length triple helical collagen in recombinant cells
US6548653B1 (en) 1998-06-15 2003-04-15 Genzyme Transgenics Corporation Erythropoietin analog-human serum albumin fusion
US6617431B1 (en) 1996-12-17 2003-09-09 Meristem Therapeutics S.A. Recombinant collagen and derived proteins produced by plants, methods for obtaining them and uses
WO2006081190A2 (en) * 2005-01-25 2006-08-03 Five Prime Therapeutics, Inc. Compositions and methods for treating cardiac conditions
US20060204511A1 (en) 2003-08-05 2006-09-14 Bouwstra Jan B Use of recombinant or synthetic gelatin as stabiliser in vaccines
US7176278B2 (en) 2001-08-30 2007-02-13 Biorexis Technology, Inc. Modified transferrin fusion proteins
CN1966516A (zh) * 2006-07-11 2007-05-23 杜以波 纳米胶原寡肽及其制备方法
US20080176288A1 (en) 2001-03-21 2008-07-24 Cell Therapeutics, Inc. Recombinant Production of Polyanionic Polymers, and Uses Thereof
CN101302255A (zh) * 2007-05-11 2008-11-12 广东医学院 基质金属蛋白酶导向性重组人肿瘤坏死因子融合蛋白及制备

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1014176B1 (en) * 1998-12-23 2009-04-29 FUJIFILM Manufacturing Europe B.V. Silver halide emulsions containing recombinant gelatin-like proteins
WO2001007059A1 (en) * 1999-07-21 2001-02-01 University Of Southern California Matrix-targeted fusion polypeptides for tissue regeneration and wound healing
NL1013817C2 (nl) * 1999-12-10 2001-06-12 Stork Mps Bv Coagulatieoplossing voor het laten coaguleren van een collageen.
EP1238675A1 (en) * 2001-03-06 2002-09-11 Fuji Photo Film B.V. Recombinant gelatin-like proteins for use as plasma expanders
AU2002367732A1 (en) * 2001-10-31 2003-09-09 Children's Hospital Medical Center Method for diagnosis and treatment of rheumatoid arthritis
ES2315664T3 (es) * 2003-06-30 2009-04-01 Domantis Limited Anticuerpos de dominio unico (dab) pegilados.
JP2007501224A (ja) * 2003-08-05 2007-01-25 フジ フォト フィルム ビー.ブイ. 安定剤としての組換え又は合成ゼラチン様タンパク質の、凍結乾燥医薬組成物中の使用
US8263084B2 (en) * 2003-11-13 2012-09-11 Hanmi Science Co., Ltd Pharmaceutical composition for treating obesity-related disease comprising insulinotropic peptide conjugate
WO2006084189A2 (en) * 2005-02-03 2006-08-10 University Of Medicine And Dentistry Of New Jersey Method for determining thermal stability of collagen or collagen-like peptide
AU2007223888A1 (en) * 2006-03-06 2007-09-13 Amunix, Inc. Genetic packages and uses thereof
WO2008103041A1 (en) * 2007-02-21 2008-08-28 Fujifilm Manufacturing Europe B.V. Recombinant gelatins
US20100256075A1 (en) * 2007-09-14 2010-10-07 Arjo Lysander De Boer High Yield Secretion of Multimeric Recombinant Protein
CN101255197B (zh) * 2008-03-28 2012-01-25 浙江海正药业股份有限公司 血清白蛋白与白介素1受体拮抗剂的融合蛋白及应用
EP2268663A1 (en) * 2008-04-10 2011-01-05 FUJIFILM Manufacturing Europe B.V. Recombinant protein enriched in a heparin binding site and/or a heparan sulfate binding site
JP5737597B2 (ja) 2009-11-19 2015-06-17 浙江大学 非天然コラーゲン様タンパク質及びその応用

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US576688A (en) 1897-02-09 Pruning-shears
US5593859A (en) 1991-10-23 1997-01-14 Thomas Jefferson University Synthesis of human procollagens and collagens in recombinant DNA systems
US5876969A (en) 1992-01-31 1999-03-02 Fleer; Reinhard Fusion polypeptides comprising human serum albumin, nucleic acids encoding same, and recombinant expression thereof
US5801045A (en) 1995-02-03 1998-09-01 Eastman Kodak Company Collagen-like polypeptides and biopolymers and nucleic acids encoding same
US6617431B1 (en) 1996-12-17 2003-09-09 Meristem Therapeutics S.A. Recombinant collagen and derived proteins produced by plants, methods for obtaining them and uses
US6150081A (en) 1997-12-24 2000-11-21 Fuji Photo Film B.V. Silver halide emulsions with recombinant collagen suitable for photographic application and also the preparation thereof
US6428978B1 (en) 1998-05-08 2002-08-06 Cohesion Technologies, Inc. Methods for the production of gelatin and full-length triple helical collagen in recombinant cells
US6548653B1 (en) 1998-06-15 2003-04-15 Genzyme Transgenics Corporation Erythropoietin analog-human serum albumin fusion
WO2001034646A2 (en) 1999-11-12 2001-05-17 Fibrogen, Inc. Recombinant gelatins
US20080176288A1 (en) 2001-03-21 2008-07-24 Cell Therapeutics, Inc. Recombinant Production of Polyanionic Polymers, and Uses Thereof
US7176278B2 (en) 2001-08-30 2007-02-13 Biorexis Technology, Inc. Modified transferrin fusion proteins
US20060204511A1 (en) 2003-08-05 2006-09-14 Bouwstra Jan B Use of recombinant or synthetic gelatin as stabiliser in vaccines
WO2006081190A2 (en) * 2005-01-25 2006-08-03 Five Prime Therapeutics, Inc. Compositions and methods for treating cardiac conditions
CN1966516A (zh) * 2006-07-11 2007-05-23 杜以波 纳米胶原寡肽及其制备方法
CN101302255A (zh) * 2007-05-11 2008-11-12 广东医学院 基质金属蛋白酶导向性重组人肿瘤坏死因子融合蛋白及制备

Non-Patent Citations (22)

* Cited by examiner, † Cited by third party
Title
BAGGIO LL ET AL., DIABETES, vol. 53, 2004, pages 2492 - 2500
BENDELE A ET AL., TOXICOL SCI., vol. 42, 1998, pages 152 - 157
BUSCAGLIA CA ET AL., BLOOD, vol. 93, 1999, pages 2025 - 2032
CALICETI P; VERONESE FM, ADV DRUG DELIV REV., vol. 55, 2003, pages 1261 - 1277
CONOVER CD ET AL., ARTIFICIAL ORGANS., vol. 21, 1997, pages 369 - 3 78
DEBELJAK N ET AL., BIOCHEM., vol. 359, 2006, pages 216 - 223
HORI H ET AL., J. ALLERGY CLIN IMMUNOL., vol. 110, 2002, pages 652 - 657
HUANG YS ET AL., EUR J PHARM BIOPHANN., vol. 67, 2007, pages 301 - 308
HUANG YS ET AL., EUR J PHARRN BIOPHANN., vol. 67, 2007, pages 301 - 308
LI Y ET AL., J BIOL CHEM., vol. 278, 2003, pages 471 - 478
OLSEN D ET AL., ADV DRUG DELIV REV, vol. 55, 2003, pages 1547 - 1567
OLSEN D ET AL., ADV DRUG DELIV REV., vol. 55, 2003, pages 1547 - 1567
SAMBROOK J; RUSSELL DW: "Molecular cloning: A laboratory manual", 2001, COLD SPRING HARKBOR LABORATORY PRESS
SCHLAPSCHY M ET AL., PROTEIN ENG DES SEL., vol. 20, 2007, pages 273 - 284
SCOPES RK: "Protein Purification: Principles and Practice", 1994, SPRINGER-VERLAG
See also references of EP2502939A4 *
SHAN D ET AL., J IMMUNOL., vol. 162, 1999, pages 6589 - 6595
SIMIONESCU M; SIMIONESCU N, ANNU. REV. PHYSIOL., vol. 48, 1986, pages 279 - 293
VAUGHAN ET AL., DNA CELL BIOL., vol. 17, 1998, pages 511 - 518
VERONESE FM, BIOMATERIALS, vol. 22, 2001, pages 405 - 417
VUORELA ET AL., EMBO J., vol. 16, 1997, pages 6702 - 6712
WETIEN MW ET AL., YEAST, vol. 15, 1999, pages 1087 - 1096

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051358B2 (en) 2009-11-19 2015-06-09 Zhejiang University Nonnatural collagen-like protein and use thereof

Also Published As

Publication number Publication date
EP2502939B1 (en) 2016-01-27
JP5737597B2 (ja) 2015-06-17
EP2502939A1 (en) 2012-09-26
JP2013511263A (ja) 2013-04-04
EP2502939A9 (en) 2013-05-08
CN102164949B (zh) 2013-10-23
CN102164949A (zh) 2011-08-24
US20130203959A1 (en) 2013-08-08
EP2502939A4 (en) 2013-07-10
US9051358B2 (en) 2015-06-09

Similar Documents

Publication Publication Date Title
WO2011060583A1 (zh) 非天然的胶原样蛋白及其应用
CN110229238B (zh) 人成纤维细胞生长因子21融合蛋白及其制备方法与用途
US11833212B2 (en) Linker peptide for constructing fusion protein
EP2585098B1 (en) Fzd8 extracellular domains and fzd8 extracellular domain fusion molecules for use in treating obesity and obesity-related disorders
Huang et al. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like-protein polymer
US20150147290A1 (en) Use of g-csf dimer in the treatment of neutropenia
EP2968587A2 (en) Fibronectin based scaffold domains linked to serum albumin or a moiety binding thereto
CA3161326A1 (en) Designed ankyrin repeat domains with altered surface residues
US20210300995A1 (en) Long-acting fibronectin type III domain fusion protein
KR100694994B1 (ko) 사람 과립구 콜로니 형성인자 동종체
CN106256835A (zh) 高糖基化人生长激素融合蛋白及其制备方法与用途
WO2020093789A1 (zh) 用于改善活性蛋白或多肽性能的人工重组蛋白及其应用
CN103641896B (zh) 明胶样单元的用途
JP6374412B2 (ja) 生理活性ポリペプチド結合体の高収率生産のための改善された製造方法
US20220073563A1 (en) Carrier protein for improving properties of bioactive protein
Zvonova et al. Strategies for modulation of pharmacokinetics of recombinant therapeutic proteins
US8785597B2 (en) Mutant G-CSF fusion protein, and preparation and use thereof
KR20230106149A (ko) 성장호르몬 융합 단백질, 이의 제조 방법 및 용도

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980103870.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012539158

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13510937

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009851375

Country of ref document: EP