WO2011058892A1 - スイッチング電源回路 - Google Patents

スイッチング電源回路 Download PDF

Info

Publication number
WO2011058892A1
WO2011058892A1 PCT/JP2010/069305 JP2010069305W WO2011058892A1 WO 2011058892 A1 WO2011058892 A1 WO 2011058892A1 JP 2010069305 W JP2010069305 W JP 2010069305W WO 2011058892 A1 WO2011058892 A1 WO 2011058892A1
Authority
WO
WIPO (PCT)
Prior art keywords
main
slave
reactor
power supply
diode
Prior art date
Application number
PCT/JP2010/069305
Other languages
English (en)
French (fr)
Inventor
和広 大下
矢吹 俊生
紀雄 榮
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to ES10829852T priority Critical patent/ES2875422T3/es
Priority to US13/498,596 priority patent/US8952667B2/en
Priority to EP10829852.2A priority patent/EP2501027B1/en
Priority to CN201080051217.5A priority patent/CN102640407B/zh
Priority to AU2010319195A priority patent/AU2010319195B2/en
Publication of WO2011058892A1 publication Critical patent/WO2011058892A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1584Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel
    • H02M3/1586Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load with a plurality of power processing stages connected in parallel switched with a phase shift, i.e. interleaved
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • the present invention relates to a switching power supply circuit, and more particularly to a power factor correction circuit.
  • Non-Patent Document 1 describes a power factor correction circuit.
  • a main power factor correction circuit and a slave factor correction circuit are provided.
  • the main power factor improvement circuit and the power factor improvement circuit are connected to the same DC power source, and the main power factor improvement circuit and the power factor improvement circuit are connected in parallel to each other. These have the same configuration.
  • the main power factor improvement circuit and the power factor improvement circuit are so-called step-up type chopper circuits, which have a reactor, a diode, and a switching element.
  • a MOS field effect transistor is employed as such a switching element.
  • the switching element of the power factor correction circuit is turned on when a predetermined period has elapsed from when the switching element of the main power factor improvement circuit is turned on. That is, such a power factor correction circuit operates by so-called interleaving.
  • Patent Documents 1 and 2 are disclosed as techniques related to the present invention.
  • Non-Patent Document 1 employs a MOS field effect transistor as a switching element, the power factor correction circuit of Non-Patent Document 1 is not suitable for large current applications.
  • Non-Patent Document 1 In order to apply the power factor correction circuit of Non-Patent Document 1 to a large current application, it is conceivable to employ an insulated gate bipolar transistor as introduced in Patent Document 2 as a switching element.
  • the power factor correction circuit of Non-Patent Document 1 When the power factor correction circuit of Non-Patent Document 1 is employed for a large current application, it causes an increase in conduction loss caused by each component. Therefore, for example, a diode having a low forward drop voltage is employed in the switching power supply circuit. In the diode, since the forward drop voltage and the reverse recovery characteristic are in a trade-off relationship, a reverse recovery current can flow through the diode. There is a possibility that a reverse voltage is applied to the switching element due to the reverse recovery current.
  • an object of the present invention is to provide a power factor correction circuit that eliminates or reduces a reverse voltage applied to a switching element employed in a switching power supply circuit.
  • a first aspect of the switching power supply circuit according to the present invention includes a low power supply line (LL), a main power supply line and a sub power supply line (LH1, LH2) to which a higher potential is applied than the low power supply line,
  • the main reactor and the sub reactors (L1, L2) provided on the main power line and the sub power line, respectively, and having the same inductance, and the main reactor and the sub power line on the main power line and the sub power line, respectively.
  • An emitter is provided between the point between the diode and the low power supply line with the emitter directed toward the low power supply line, and the current flows through the main reactor reaches zero.
  • T 1 An emitter is provided toward the low power supply line between the main insulated gate bipolar transistor (S1) that is non-conductive after the passage, the point between the slave reactor and the slave diode, and the low power supply line.
  • the first insulated gate bipolar transistor is turned on as one of the conditions that a certain period shorter than the period until the next turned on is passed, and the second period shorter than the first period ( t2)
  • a second aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to the first aspect, wherein the switching power supply circuit is connected in parallel to the main insulated gate bipolar transistor (S1), and the anode is connected to the main power supply line (LH1). And a second main diode (D12) provided toward the center.
  • a third aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to the first or second aspect, wherein one end is the low potential line (LL) and the other end is the main reactor (L1). ) On the opposite side of the first main diode (D11) and on the opposite side of the main power line (LH1) and the sub reactor (L2) from the first sub diode (D21). A capacitor (C2) connected in common to the slave power line (LH2) and having a capacitance of 0.5 ⁇ F or more is further provided.
  • a fourth aspect of the switching power supply circuit according to the present invention is the switching power supply circuit according to any one of the first to third aspects, wherein the condition and the current flowing through the sub reactor (L2) are zero.
  • the sub-insulated gate bipolar transistor (S2) is turned on when both of the following second conditions are satisfied.
  • the switching power supply circuit operates in a current critical mode (a mode in which the insulated gate bipolar transistor is turned on after the current flowing through the reactor reaches zero). It can function as a power factor correction circuit (PFC).
  • a current critical mode a mode in which the insulated gate bipolar transistor is turned on after the current flowing through the reactor reaches zero. It can function as a power factor correction circuit (PFC).
  • an insulated gate bipolar transistor since an insulated gate bipolar transistor is used, it can handle large currents.
  • the second period is shorter than the first period.
  • the main insulated gate bipolar transistor hereinafter referred to as the main IGBT
  • the secondary IGBT secondary insulated gate bipolar transistor
  • the reverse recovery currents of the first main diode and the first sub diode flow through the main reactor and the sub reactor, respectively. Since the slave IGBT is turned on after the slave reactor reaches zero, the slave IGBT is turned on in a state where the reverse recovery current from the slave diode flows through the slave reactor. On the other hand, the main IGBT becomes conductive when the sub reactor reaches zero. Therefore, the peak of the reverse recovery current flowing through the sub reactor is higher than the peak of the reverse recovery current flowing through the main reactor. Therefore, the sub reactor has a longer period until the absolute value of the reverse recovery current drops to zero. . Thereby, a reverse voltage can be applied to the slave IGBT for a longer period than the main IGBT. However, since the second slave diode is connected in parallel to the slave IGBT, the reverse voltage is avoided. Can do.
  • the reverse voltage applied to the main insulated gate bipolar transistor can be avoided.
  • the switching power supply circuit According to the third aspect of the switching power supply circuit according to the present invention, it is possible to reduce the current due to charging / discharging of the parasitic capacitance that is parasitic in each part due to switching of conduction / non-conduction of the main insulated gate bipolar transistor.
  • the follower reactor becomes zero after a lapse of a certain period after the main IGBT is turned on due to an instantaneous increase in voltage, and thereby the main IGBT is turned on. Even if the follower IGBT is turned on after a certain period of time, the period between the turn-on time of the main IGBT and the slave IGBT may be returned to the fixed period as the conduction / non-conduction of the main IGBT and the slave IGBT is repeated. it can.
  • the switching power supply circuit includes a main circuit 1, a slave circuit 2, input terminals P1 and P2, output terminals P3 and P4, and a power supply line LL.
  • the power supply line LL connects the input terminal P2 and the output terminal P4.
  • a DC voltage is applied between the input terminals P1 and P2.
  • the diode rectifier circuit 3 is connected to the input terminals P1 and P2.
  • the diode rectifier circuit 3 rectifies the AC voltage from the AC power source 4 and applies the rectified DC voltage between the input terminals P1 and P2.
  • the potential applied to the input terminal P2 is lower than the potential applied to the input terminal P1. It is not essential that the diode rectifier circuit 3 is connected to the input terminals P1 and P2. Any configuration that applies a DC voltage between the input terminals P1 and P2 only needs to be connected to the input terminals P1 and P2.
  • a capacitor C2 may be provided between the input terminals P1 and P2.
  • the capacitor C2 can reduce current noise.
  • the main circuit 1 includes a main power supply line LH1, a main reactor L1, a main diode D11, and a main insulated gate bipolar transistor (hereinafter referred to as a main transistor) S1.
  • the main power line LH1 connects the input terminal P1 and the output terminal P3.
  • the main reactor L1 and the main diode D11 are provided on the main power supply line LH1.
  • Main diode D11 is connected in series with main reactor L1 on the side opposite to input terminal P1 with respect to main reactor L1.
  • the anode of the main diode D11 is provided toward the main reactor L1 side.
  • the main transistor S1 is provided between a point between the main reactor L1 and the main diode D11 and the power supply line LL.
  • the main transistor S1 is provided with its collector terminal facing the main power supply line LH1 and its emitter terminal facing the power supply line LL.
  • the main transistor S1 is turned on when a switch signal is input from the control unit 6 to its gate terminal.
  • the slave circuit 2 includes a slave power line LH2, a slave reactor L2, slave diodes D21 and D22, and a slave insulated gate bipolar transistor (hereinafter referred to as slave transistor) S2.
  • slave transistor a slave insulated gate bipolar transistor
  • the slave power line LH2 connects the input terminal P1 and the output terminal P3.
  • the sub reactor L2 and the sub diode D21 are provided on the sub power line LH2.
  • the inductance of the sub reactor L2 is equal to the inductance of the main reactor L1.
  • the sub diode D21 is connected in series with the sub reactor L2 on the side opposite to the input terminal P1 with respect to the sub reactor L2.
  • the slave diode D21 has an anode facing the slave reactor L2.
  • the sub-transistor S2 is provided between the point between the sub-reactor L2 and the sub-diode D21 and the power supply line LL.
  • the sub transistor S2 is provided with its collector terminal facing the sub power line LH2 and its emitter terminal facing the power line LL.
  • the sub-transistor S2 is turned on when a switch signal is input from the control unit 6 to its gate terminal.
  • the slave diode D22 is connected in parallel with the slave transistor S2 with its anode directed toward the power supply line LL.
  • a smoothing capacitor C1 is provided between the output terminals P3 and P4.
  • the control unit 6 detects the current IL1 flowing through the main reactor L1, and makes the main transistor S1 conductive based on the current IL1.
  • the controller 6 turns on the sub-transistor S2 on the condition that a predetermined period has elapsed since the main transistor S1 was turned on. Further, the control unit 6 may detect the current IL2 flowing through the sub reactor L2, and may make the sub transistor S2 conductive when one of the above conditions and a condition based on the current IL2 are satisfied. These conductions will be described in detail later.
  • a method in which each reactor L1 and L2 constitutes a transformer can be adopted as in each document cited in the prior art document. Note that the control of the main transistor S1 and the sub-transistor S2 described below is mainly performed by the control unit 6 unless otherwise specified.
  • the control unit 6 includes a microcomputer and a storage device.
  • the microcomputer executes each processing step (in other words, a procedure) described in the program.
  • the storage device is composed of one or more of various storage devices such as a ROM (Read Only Memory), a RAM (Random Access Memory), a rewritable nonvolatile memory (EPROM (Erasable Programmable ROM), etc.), and a hard disk device, for example. Is possible.
  • the storage device stores various information, data, and the like, stores a program executed by the microcomputer, and provides a work area for executing the program. It can be understood that the microcomputer functions as various means corresponding to each processing step described in the program, or can realize that various functions corresponding to each processing step are realized. Further, the control unit 6 is not limited to this, and various procedures executed by the control unit 6 or various means or various functions to be realized may be realized in hardware or in part.
  • This switching power supply circuit is suitable for high current applications as compared to, for example, a MOS field effect transistor because the main circuit 1 and the subcircuit 2 are each provided with insulated gate bipolar transistors S1 and S2.
  • this switching power supply circuit is used for a large current application, it is desirable to employ a diode having a small forward drop voltage as the main diode D11 and the sub diode D21. This is because the conduction loss in the main diode D11 and the sub diode D21 increases as the current increases.
  • the reverse recovery characteristics of the main diode D11 and the slave diode D21 are not excellent, and the reverse recovery current easily flows through the main diode D11 and the slave diode D21.
  • the reverse recovery characteristics of the main diode D11 and the sub diode D21 are the same.
  • an inverter 5 is connected to the output terminals P3 and P4.
  • the inverter 5 does not need to be connected to the output terminals P3 and P4, and any other load may be connected to the output terminals P3 and P4.
  • a current flows from the input terminal P1 to the input terminal P2 via the main reactor L1 and the main transistor S1.
  • Such a current increases according to a slope determined by the inductance of the main reactor L1 and the DC voltage between the input terminals P1 and P2 (see the current IL1 in FIG. 2). Electromagnetic energy is accumulated in the reactor L1 by such current.
  • the main transistor S1 When the main transistor S1 is switched from conduction to non-conduction, current flows from the input terminal P1 to the input terminal P2 via the main reactor L1, the main diode D11, and the smoothing capacitor C1. At this time, the voltage (inductive electromotive voltage) due to the electromagnetic energy accumulated in the reactor L1 is added to the DC voltage between the input terminals P1 and P2, and the sum is applied to the smoothing capacitor C1. Therefore, the main circuit 1 can boost the DC voltage between the input terminals P1 and P2 and apply it to the smoothing capacitor C1.
  • Such current is reduced by an inclination based on the inductance of the main reactor L1 and the capacitance of the smoothing capacitor C1 (see current IL1 in FIG. 2).
  • the current that is, the current IL1 becomes zero
  • the main transistor S1 is turned on again. Thereafter, the above-described operation is repeated. With this operation, the current IL1 changes along a sawtooth shape.
  • a mode in which the main transistor S1 is turned on after the current IL1 flowing through the main reactor L1 reaches zero is called a so-called critical current mode.
  • the main circuit 1 can function as a switching power supply circuit that boosts the voltage between the input terminals P1 and P2 and applies it between the output terminals P3 and P4. Even in a period in which no current flows to the smoothing capacitor C1 (a period in which the main transistor S1 is conductive), current flows in the diode rectifier circuit 3 via the main transistor S1. Therefore, the conduction angle of the current flowing through the diode rectifier circuit 3 can be expanded. In other words, the main circuit 1 can function as a power factor correction circuit.
  • An insulated gate bipolar transistor is employed as the switching element of the main circuit 1. Therefore, for example, a larger current can be passed as compared with a configuration employing a MOS field effect transistor.
  • the sub-transistor S2 is turned on under a first condition that a predetermined period has elapsed since the main transistor S1 was turned on.
  • the predetermined period is a period shorter than a period (hereinafter also referred to as a cycle) T from when the main transistor S1 is turned on to when it is turned on again.
  • a cycle a period (hereinafter also referred to as a cycle) T from when the main transistor S1 is turned on to when it is turned on again.
  • the slave circuit 2 performs the same operation with a half cycle delay with respect to the main circuit 1. Therefore, current IL2 flowing through sub reactor L2 is delayed by a half cycle with respect to current IL1 flowing through main reactor L1. Therefore, when one of the currents IL1 and IL2 is small, the other is large.
  • the current flowing through the diode rectifier circuit 3 is equal to the current IL1 flowing through the main reactor L1.
  • the current flowing through the diode rectifier circuit 3 is equal to the sum of the currents IL1 and IL2.
  • the other is large, so that the average value of the current flowing through the diode rectifier circuit 3 can be increased without changing the maximum value (peak) of the current (FIG. 2).
  • the peak of the current flowing through the diode rectifier circuit 3 can be reduced in order to achieve the same average current value.
  • the sub-transistor S2 may be conducted on the second condition that the current IL2 flowing through the sub-reactor L2 reaches zero. As a result, the operation in the critical current mode can be ensured in the follower circuit 2 more reliably.
  • the present switching power supply circuit is devised as follows so that the phase difference returns to the half cycle.
  • the phase difference shift will be described.
  • the voltage between the input terminals P1 and P2 increases instantaneously, and thereby the current IL2 can be delayed to zero.
  • the slave transistor S2 is turned on further later than the time when the main transistor S1 is turned on by a half cycle delay.
  • the slave transistor S2 is turned on when three-fifths of the period has elapsed since the time when the main transistor S1 was turned on.
  • the currents IL1 and IL2 reach zero at the same period, so that the phase difference between the currents IL1 and IL2 maintains a value corresponding to three-fifth period. Therefore, the conduction time points of the main transistor S1 and the sub transistor S2 are shifted from each other by 3/5 cycles.
  • the conduction period t2 of the sub-transistor S2 is set shorter than the conduction period t1 of the main transistor S1 in order to return the phase difference shift to a half cycle.
  • the conduction period of the main transistor S1 is set to several microseconds, and the conduction period of the slave transistor S2 is set to be shorter by several hundreds of seconds.
  • the peak of the current IL1 is lower than the peak of the current IL2.
  • the current IL2 is reduced from a value lower than the current IL1. Moreover, since the inductances of the main reactor L1 and the sub reactor L2 are approximately the same, the inclination when the currents IL1 and IL2 are reduced is also approximately the same. Therefore, the period from when the sub transistor S2 is turned on to when the current IL2 becomes zero is shorter than the period (one cycle T) from when the main transistor S1 becomes conductive until the current IL1 reaches zero. Therefore, the current IL2 reaches zero before one cycle T elapses from the time when the slave transistor S2 becomes conductive.
  • the period between the conduction points of the main transistor S ⁇ b> 1 and the slave transistor S ⁇ b> 2 is 3/5 cycles Even when the main transistor S1 and the sub-transistor S2 repeat conduction / non-conduction, the period can be returned to the half cycle.
  • the difference between the conduction period t2 and the conduction period t1 may be variable. For example, if the current IL2 has already reached zero when a predetermined period (here, a half cycle) has elapsed since the main transistor S1 was turned on, the difference SUB1 is employed. If the current IL1 has not yet reached zero when a predetermined period has elapsed from when the main transistor S1 is turned on, the difference SUB2 larger than the difference SUB1 is employed.
  • a predetermined period here, a half cycle
  • the minimum value of the current IL2 is smaller than the minimum value of the current IL1.
  • the minimum value of the current IL1 is ⁇ 0.32A
  • the minimum value of the current IL2 is ⁇ 0.40A.
  • the magnitude relationship between the minimum values of the currents IL1 and IL2 is considered as follows.
  • the time point when the currents IL1 and IL2 change from increasing to decreasing depends on the time point when the main transistor S1 and the sub transistor S2 are turned on.
  • the main transistor S1 receives a switch signal at its gate terminal when the current IL1 reaches zero, and the slave transistor S2 receives a switch signal at its gate terminal after the current IL2 reaches zero. Therefore, the period from when the current IL2 reaches zero until the current IL2 changes from decrease to increase is longer than the period from when the current IL1 reaches zero until the current IL1 changes from decrease to increase. Therefore, the minimum value of the current IL2 is smaller than the minimum value of the current IL1.
  • the minimum value of the current IL1 is smaller than the minimum value of the current IL2, so that the current IL1 decreases from the minimum value to zero. Is shorter than the period until the current IL2 reaches the minimum value to zero. Therefore, the period during which the reverse voltage is applied to the main transistor S1 is shorter than that of the slave transistor S2.
  • a slave diode D22 is provided in reverse parallel to the slave transistor S2 to which a reverse voltage can be applied over a long period of time.
  • FIG. 6 shows an example of a timing chart for the present switching power supply circuit.
  • the current ID2 that flows through the slave diode D21, the current IL2, the current ISD2 that flows through one set of the slave transistor S2 and the slave diode D22, and the voltage VS2 across the slave transistor S2 are shown at the same coordinates. Yes. In this coordinate, when the vertical axis is regarded as current, the height of one block indicates 5A, and when the vertical axis is regarded as voltage, the height of one block indicates 200V.
  • the horizontal axes A, B, and C arranged in order from the top in the figure indicate that the current values of the currents ISD2, IL2, and IS2 are zero, respectively, and the second horizontal axis D from the bottom in the figure indicates the voltage VS2 of the both-ends voltage VS2. It shows that the voltage value is zero.
  • the direction from the secondary reactor L2 to the output terminal P3 is positive
  • the current ISD2 the direction from the secondary power supply line LH2 to the power supply line LL is positive.
  • the matter that the sub-transistor S2 conducts on the condition that the current IL2 reaches zero is one of the conditions. is required.
  • the above items are not essential requirements for the reverse voltage applied to the slave transistor S2 due to the reverse recovery current described above. In short, it is only necessary that the inductances of the main reactor L1 and the sub reactor L2 are the same and the conduction period t2 is shorter than the conduction period t1.
  • the main circuit 1 may further include a main diode D12.
  • the main diode D12 is connected in parallel with the main transistor S1 with the anode directed toward the power supply line LL and the cathode directed toward the main power supply line LH1.
  • the reverse voltage applied to the main transistor S1 can also be eliminated by the main diode D12.
  • the charge / discharge current due to the parasitic capacitance existing in each part can flow by switching the main transistor S1 from non-conduction to conduction (turn-on) or switching from conduction to non-conduction (turn-off).
  • Such charge / discharge current flows not only in the main circuit 1 but also in the sub-circuit 2 and can adversely affect the operation of the sub-circuit 2.
  • the charging / discharging current also flows due to the turn-on or turn-off of the sub-transistor S2, which can adversely affect the main circuit 1. Further, under the influence of the charge / discharge current, there is a possibility of failing to detect that the currents IL1 and IL2 have become zero.
  • the capacitance of the capacitor C2 be 0.5 ⁇ F or more. As a result, the charge / discharge current can be reduced. As a result, the adverse effect of the main circuit 1 and the subcircuit 2 acting on each other and the failure of the zero current detection of the currents IL1 and IL2 can be avoided or suppressed.
  • the switching power supply circuit includes one main circuit 1 and one sub circuit 2. However, a plurality of slave circuits 2 may be provided. If the switching power supply circuit includes two slave circuits 2, one slave circuit 2 operates with a delay of a first predetermined period (for example, one-third cycle) with respect to the main circuit 1, and the other slave circuit 2 2 operates with a delay of a second predetermined period (for example, two-thirds cycle) with respect to the main circuit 1.
  • a first predetermined period for example, one-third cycle
  • a second predetermined period for example, two-thirds cycle

Abstract

 本発明は逆電圧を解消できる力率改善回路である。主トランジスタ(S1)及び従トランジスタ(S2)はいずれも絶縁ゲートバイポーラトランジスタである。従トランジスタ(S2)には従ダイオード(D21)が逆並列接続されている。主トランジスタ(S1)は主リアクトル(L1)を流れる電流が零に至ることを以って導通し、第1期間経過後に非導通する。従トランジスタ(S2)は主トランジスタ(S1)が導通した時点から次に導通するまでの期間よりも短い一定期間を経過したことを条件の一つとして導通し、第1期間よりも短い第2期間経過後に非導通する。

Description

スイッチング電源回路
 本発明はスイッチング電源回路に関し、特に力率改善回路に関する。
 非特許文献1には力率改善回路が記載されている。かかる力率改善回路においては主力率改善回路と従力率改善回路とが設けられている。主力率改善回路及び従力率改善回路には同じ直流電源に接続され、主力率改善回路と従力率改善回路は互いに並列に接続される。またこれらは互いに同じ構成を有している。
 主力率改善回路及び従力率改善回路はいわゆる昇圧型のチョッパ回路であり、リアクトル、ダイオード、スイッチング素子を有している。かかるスイッチング素子としてMOS電界効果トランジスタが採用される。
 従力率改善回路のスイッチング素子は主力率改善回路のスイッチング素子が導通した時点から所定期間経過したときに導通する。即ち、かかる力率改善回路はいわゆるインターリーブで動作する。
 また本発明に関連する技術として特許文献1,2が開示されている。
特開2008-193818号公報 特開2007-252177号公報
喜多村 守、「1.5kWの低ノイズ高調波対策電源を作れる臨界モード/インターリーブPFC IC R2A20112」、トランジスタ技術2008年5月号、CQ出版株式会社、2008年8月、P.176-184
 しかしながら、非特許文献1においてはスイッチング素子としてMOS電界効果トランジスタを採用しているので、非特許文献1の力率改善回路は大電流の用途に適していない。
 そこで非特許文献1の力率改善回路を大電流の用途に適用させるべく、スイッチング素子として、特許文献2で紹介されるような絶縁ゲートバイポーラトランジスタを採用することが考えられる。非特許文献1の力率改善回路が大電流の用途に採用される場合は各構成要素で生じる導通損失の増大を招く。よって、スイッチング電源回路において、例えば順方向降下電圧の低いダイオードが採用される。ダイオードでは、順方向降下電圧と逆回復特性がトレードオフの関係にあるので、ダイオードには逆回復電流が流れ得る。かかる逆回復電流によってスイッチング素子には逆電圧が印加される可能性があった。
 そこで、本発明は、スイッチング電源回路に採用されるスイッチング素子に印加される逆電圧を解消もしくは低減する力率改善回路を提供することを目的とする。
 本発明にかかるスイッチング電源回路の第1の態様は、低電源線(LL)と、いずれも前記低電源線よりも高い電位が印加される主電源線及び従電源線(LH1,LH2)と、前記主電源線及び前記従電源線の上にそれぞれ設けられ、互いに等しいインダクタンスを有する主リアクトル及び従リアクトル(L1、L2)と、前記主電源線及び前記従電源線の上でそれぞれ前記主リアクトル及び前記従リアクトルと直列に接続され、アノードをそれぞれ前記主リアクトル及び前記従リアクトル側に向けて設けられた第1の主ダイオード及び第1の従ダイオード(D11,D21)と、前記主リアクトルと前記主ダイオードとの間の点と、前記低電源線との間で、エミッタを前記低電源線に向けて設けられ、前記主リアクトルを流れる電流が零に至ることを以って導通し、第1期間(t1)経過後に非導通する主絶縁ゲートバイポーラトランジスタ(S1)と、前記従リアクトルと前記従ダイオードとの間の点と、前記低電源線との間で、エミッタを前記低電源線に向けて設けられ、前記主絶縁ゲートバイポーラトランジスタが導通した時点から、次に導通するまでの期間よりも短い一定期間を経過したことを条件の一つとして導通し、前記第1期間よりも短い第2期間(t2)経過後に非導通する従絶縁ゲートバイポーラトランジスタ(S1)と、前記従絶縁ゲートバイポーラトランジスタ(S2)と並列に接続され、アノードを前記前記低電源線に向けて設けられた第2の従ダイオード(D22)とを備える。
 本発明にかかるスイッチング電源回路の第2の態様は、第1の態様にかかるスイッチング電源回路であって、前記主絶縁ゲートバイポーラトランジスタ(S1)と並列に接続され、アノードを前記主電源線(LH1)に向けて設けられた第2の主ダイオード(D12)を更に有する。
 本発明にかかるスイッチング電源回路の第3の態様は、第1又は第2の態様にかかるスイッチング電源回路であって、一端が前記低電位線(LL)と、他端が、前記主リアクトル(L1)に対して前記第1の主ダイオード(D11)とは反対側で前記主電源線(LH1)と、前記従リアクトル(L2)に対して前記第1の従ダイオード(D21)とは反対側で前記従電源線(LH2)とに共通して接続され、静電容量が0.5μF以上であるコンデンサ(C2)を更に備える。
 本発明にかかるスイッチング電源回路の第4の態様は、第1乃至第3のいずれか一つの態様にかかるスイッチング電源回路であって、前記条件と、前記従リアクトル(L2)を流れる電流が零に至る第2条件との両方を満足するときに前記従絶縁ゲートバイポーラトランジスタ(S2)を導通させる。
 本発明にかかるスイッチング電源回路の第1の態様によれば、本スイッチング電源回路を電流臨界モード(リアクトルに流れる電流が零に至った以後に絶縁ゲートバイポーラトランジスタを導通させるモード)で動作するインターリーブ型の力率改善回路(PFC)として機能させることができる。
 また絶縁ゲートバイポーラトランジスタを採用しているので大電流に対応できる。
 しかも、第2期間は第1期間よりも短い。しかも主リアクトルと従リアクトルとのインダクタンスが互いに等しいので、従リアクトルを流れる電流の最大値は主リアクトルを流れる電流の最大値よりも小さい。ひいては従絶縁ゲートバイポーラトランジスタ(以下、従IGBTと呼ぶ)が非導通してから従リアクトルを流れる電流が零に至るまでの期間は、主絶縁ゲートバイポーラトランジスタ(以下、主IGBTと呼ぶ)が非導通してから主リアクトルを流れる電流が零に至るまでの期間よりも短い(図4参照)。
 主リアクトル及び従リアクトルに流れる電流が零に至った後は、第1の主ダイオード及び第1の従ダイオードの逆回復電流が主リアクトル及び従リアクトルをそれぞれ流れる。従IGBTは従リアクトルが零に至った後に導通するので、従IGBTは従ダイオードによる逆回復電流が従リアクトルを流れた状態で導通する。一方、主IGBTは従リアクトルが零に至るときに導通する。よって、主リアクトルを流れる逆回復電流のピークに比べて従リアクトルを流れる逆回復電流のピークが高く、したがって逆回復電流の絶対値が下降して零に至るまでの期間は従リアクトルの方が長い。これにより、従IGBTには主IGBTに比してより長い期間にわたって逆電圧が印加され得るところ、従IGBTには第2の従ダイオードが並列に接続されているので、かかる逆電圧を回避することができる。
 本発明にかかるスイッチング電源回路の第2の態様によれば、主絶縁ゲートバイポーラトランジスタにかかる逆電圧をも回避できる。
 本発明にかかるスイッチング電源回路の第3の態様によれば、主絶縁ゲートバイポーラトランジスタの導通/非導通の切り替えに起因にして、各部に寄生する寄生容量の充放電による電流を低減できる。
 本発明にかかるスイッチング電源回路の第4の態様によれば、例えば電圧の瞬時増大によって主IGBTが導通してから一定期間経過後よりも後に従リアクトルが零に至り、これによって主IGBTが導通してから一定期間よりも後に従IGBTが導通したとしても、主IGBT及び従IGBTの導通/非導通が繰り返し行われるにつれ、主IGBTと従IGBTの導通時点の間の期間を一定期間に戻すことができる。
 この発明の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。
スイッチング電源回路の概念的な構成の一例を示す図である。 タイミングチャートの概念的な一例を示す図である。 タイミングチャートの概念的な一例を示す図である。 タイミングチャートの概念的な一例を示す図である。 タイミングチャートの概念的な一例を示す図である。 タイミングチャートの概念的な一例を示す図である。 スイッチング電源回路の概念的な構成の一例を示す図である。
 実施の形態.
 <構成>
 図1に例示するように、本スイッチング電源回路は主回路1と従回路2と入力端P1,P2と出力端P3,P4と電源線LLとを備えている。電源線LLは入力端P2と出力端P4とを接続している。
 入力端P1,P2の間には直流電圧が印加される。図1の例示では、入力端P1,P2にはダイオード整流回路3が接続されている。ダイオード整流回路3は交流電源4からの交流電圧を整流し、整流後の直流電圧を入力端P1,P2の間に印加する。ここでは入力端P2に印加される電位は入力端P1に印加される電位よりも低い。なお、入力端P1,P2にダイオード整流回路3が接続されることは必須要件ではない。入力端P1,P2の間に直流電圧を印加する任意の構成が入力端P1,P2に接続されていればよい。
 また入力端P1,P2の間にはコンデンサC2が設けられてもよい。コンデンサC2は電流のノイズを低減することができる。
 主回路1は主電源線LH1と主リアクトルL1と主ダイオードD11と主絶縁ゲートバイポーラトランジスタ(以下、主トランジスタと呼ぶ)S1とを備えている。
 主電源線LH1は入力端P1と出力端P3とを接続している。主リアクトルL1及び主ダイオードD11は主電源線LH1の上に設けられている。主ダイオードD11は主リアクトルL1に対して入力端P1とは反対側で主リアクトルL1と直列に接続される。また主ダイオードD11はそのアノードが主リアクトルL1側に向けて設けられる。
 主トランジスタS1は主リアクトルL1と主ダイオードD11との間の点と、電源線LLとの間に設けられる。また主トランジスタS1はそのコレクタ端子を主電源線LH1側にそのエミッタ端子を電源線LL側に向けて設けられる。主トランジスタS1は、制御部6からそのゲート端子にスイッチ信号が入力されて導通する。
 従回路2は従電源線LH2と従リアクトルL2と従ダイオードD21,D22と従絶縁ゲートバイポーラトランジスタ(以下、従トランジスタと呼ぶ)S2とを備えている。
 従電源線LH2は入力端P1と出力端P3とを接続している。従リアクトルL2及び従ダイオードD21は従電源線LH2の上に設けられている。従リアクトルL2のインダクタンスは主リアクトルL1のインダクタンスと等しい。従ダイオードD21は従リアクトルL2に対して入力端P1とは反対側で従リアクトルL2と直列に接続される。また従ダイオードD21はそのアノードが従リアクトルL2側に向けて設けられる。
 従トランジスタS2は従リアクトルL2と従ダイオードD21との間の点と、電源線LLとの間に設けられる。また従トランジスタS2はそのコレクタ端子を従電源線LH2側にそのエミッタ端子を電源線LL側に向けて設けられる。従トランジスタS2は、制御部6からそのゲート端子にスイッチ信号が入力されて導通する。従ダイオードD22はそのアノードを電源線LL側に向けて従トランジスタS2と並列に接続される。
 出力端P3,P4の間には平滑コンデンサC1が設けられている。
 制御部6は主リアクトルL1を流れる電流IL1を検知し、電流IL1に基づいて主トランジスタS1を導通させる。制御部6は主トランジスタS1が導通した時点から所定期間が経過したことを条件の一つとして従トランジスタS2を導通させる。また制御部6は従リアクトルL2を流れる電流IL2を検知し、上記条件の一つと電流IL2に基づく条件とを満たしたときに従トランジスタS2を導通させてもよい。これらの導通については後に詳述する。また、電流IL1,IL2の検出については先行技術文献で挙げられた各文献のように、各リアクトルL1,L2がトランスを構成する手法を採用できる。なお、以下で説明する主トランジスタS1及び従トランジスタS2の制御について、特別な記載が無い限りその主体は制御部6である。
 またここでは、制御部6はマイクロコンピュータと記憶装置を含んで構成される。マイクロコンピュータは、プログラムに記述された各処理ステップ(換言すれば手順)を実行する。上記記憶装置は、例えばROM(Read Only Memory)、RAM(Random Access Memory)、書き換え可能な不揮発性メモリ(EPROM(Erasable Programmable ROM)等)、ハードディスク装置などの各種記憶装置の1つ又は複数で構成可能である。当該記憶装置は、各種の情報やデータ等を格納し、またマイクロコンピュータが実行するプログラムを格納し、また、プログラムを実行するための作業領域を提供する。なお、マイクロコンピュータは、プログラムに記述された各処理ステップに対応する各種手段として機能するとも把握でき、あるいは、各処理ステップに対応する各種機能を実現するとも把握できる。また、制御部6はこれに限らず、制御部6によって実行される各種手順、あるいは実現される各種手段又は各種機能の一部又は全部をハードウェアで実現しても構わない。
 本スイッチング電源回路は、主回路1及び従回路2がそれぞれ絶縁ゲートバイポーラトランジスタS1,S2を備えているので、例えばMOS電界効果トランジスタに比して大電流の用途に適する。本スイッチング電源回路が大電流の用途に用いられる場合には、主ダイオードD11及び従ダイオードD21として順方向降下電圧を小さいダイオードを採用することが望ましい。大電流になるほど主ダイオードD11及び従ダイオードD21での導通損失が高まるからである。他方、かかる主ダイオードD11及び従ダイオードD21の逆回復特性が優れておらず、主ダイオードD11及び従ダイオードD21には逆回復電流が流れやすい。ここでは主ダイオードD11と従ダイオードD21の逆回復特性は互いに同じである。
 図1の例示では出力端P3,P4にはインバータ5が接続されている。なお出力端P3,P4にはインバータ5が接続される必要はなく、他の任意の負荷が出力端P3,P4に接続されればよい。
 <動作>
 まず図1,2を参照して本スイッチング電源回路の動作の概要について説明する。なお以下の説明及び図面では、電流IL1,IL2についてダイオード整流回路3からインバータ5側へ向かう方向を正と仮定している。
 主回路1において主トランジスタS1が導通していれば、入力端P1から入力端P2へと主リアクトルL1及び主トランジスタS1を経由して電流が流れる。かかる電流は主リアクトルL1のインダクタンスと入力端P1,P2の間の直流電圧とによって定まる傾斜に応じて増大する(図2において電流IL1を参照)。かかる電流によってリアクトルL1には電磁エネルギーが蓄積される。
 そして主トランジスタS1が導通から非導通へと切り替わると、入力端P1から入力端P2へと主リアクトルL1、主ダイオードD11及び平滑コンデンサC1を経由して電流が流れる。このとき、リアクトルL1に蓄積された電磁エネルギーによる電圧(誘導起電圧)が入力端P1,P2の間の直流電圧に加算されて、その合計が平滑コンデンサC1に印加される。よって、主回路1は入力端P1,P2の間の直流電圧を昇圧してこれを平滑コンデンサC1に印加できる。
 かかる電流は主リアクトルL1のインダクタンス及び平滑コンデンサC1の静電容量等に基づく傾斜で低減する(図2において電流IL1を参照)。そして、かかる電流、即ち電流IL1が、零になったときに、再び主トランジスタS1を導通させる。その後は上述した動作を繰り返す。かかる動作により電流IL1は鋸歯状の形状に沿って変化する。このように主リアクトルL1に流れる電流IL1が零に至った以後に主トランジスタS1を導通させるモードは、いわゆる臨界電流モードと呼ばれる。
 以上のように主回路1は、入力端P1,P2の間の電圧を昇圧してこれを出力端P3,P4の間に印加するスイッチング電源回路として機能することができる。また平滑コンデンサC1へと電流が流れない期間(主トランジスタS1が導通する期間)であっても、主トランジスタS1を介してダイオード整流回路3には電流が流れる。よって、ダイオード整流回路3を流れる電流の導通角度を広げることができる。換言すれば主回路1は力率改善回路として機能することができる。また主回路1のスイッチング素子として絶縁ゲートバイポーラトランジスタが採用されている。よって例えばMOS電界効果トランジスタが採用された構成と比較して、より大きな電流を流すことができる。
 従回路2においても主回路1と同様の動作が行われる。但し、従トランジスタS2は、主トランジスタS1が導通した時点から所定期間経過したことを第1の条件として導通する。かかる所定期間は、主トランジスタS1が導通してから再び導通するまでの期間(以下、周期とも呼ぶ)Tより短い期間である。図2の例示では、所定期間として期間Tの半分を採用しており、以下では所定期間として期間Tの半分を採用した場合について説明する。
 第1の条件により、従回路2においては主回路1に対して半周期遅れて同じ動作が行われる。よって、従リアクトルL2を流れる電流IL2は主リアクトルL1に流れる電流IL1に対して半周期遅れる。したがって、電流IL1,IL2の一方が小さいときには他方は大きい。
 例えば本スイッチング電源回路が主回路1のみを有している場合には、ダイオード整流回路3を流れる電流は主リアクトルL1を流れる電流IL1と等しい。一方、本スイッチング電源回路によれば、ダイオード整流回路3を流れる電流は電流IL1,IL2の和と等しい。本スイッチング電源回路では電流IL1,IL2の一方が小さいときには他方が大きいので、ダイオード整流回路3を流れる電流の平均値を、その電流の最大値(ピーク)を変えることなく高めることができる(図2の電流IL1の平均電流と、電流IL1,IL2の和の平均電流とをご参照)。換言すれば、同じ電流の平均値を達成するために、ダイオード整流回路3を流れる電流のピークを低減することができる。
 また従トランジスタS2は第1の条件に加えて、従リアクトルL2に流れる電流IL2が零に至ることを第2の条件として導通するとよい。これにより、より確実に従回路2において臨界電流モードでの動作を確保することができる。
 また電流IL1,IL2の位相差が例えば半周期に相当する値からずれたとしても、かかる位相差が半周期に戻るように、本スイッチング電源回路が以下のように工夫される。まず位相差のずれについて説明する。例えば入力端P1,P2の間の電圧が瞬間的に増大し、これにより電流IL2が遅れて零に至り得る。この場合、第2の条件により、主トランジスタS1が導通する時点から半周期遅れた時点よりさらに遅れて従トランジスタS2が導通する。図3の例示では、主トランジスタS1が導通した時点から5分の3周期経過した時点で従トランジスタS2が導通している。その後は電流IL1,IL2が互いに同じ周期で零に至るので、電流IL1,IL2の位相差は5分の3周期に相当する値を維持する。よって、主トランジスタS1と従トランジスタS2の導通時点が互いに5分の3周期ずれる。
 かかる位相差のずれを半周期へと戻すべく、本実施の形態では従トランジスタS2の導通期間t2を主トランジスタS1の導通期間t1よりも短く設定している。例えば主トランジスタS1の導通期間は数μ秒であり、従トランジスタS2の導通期間はそれよりも数百n秒短く設定される。
 導通期間t2が導通期間t1よりも短く、主リアクトルL1と従リアクトルL2のインダクタンスが互いに同程度であるので、電流IL1のピークは電流IL2のピークよりも低い。
 よって、電流IL2は電流IL1よりも低い値から低減する。また、主リアクトルL1と従リアクトルL2のインダクタンスが互いに同程度であるので、電流IL1,IL2が低減する際の傾斜も同程度である。したがって、主トランジスタS1が導通してから電流IL1が零に至るまでの期間(1周期T)よりも、従トランジスタS2が導通してから電流IL2が零に至る期間のほうが短い。よって電流IL2は従トランジスタS2が導通した時点から1周期Tを経過する前に零に至る。
 これにより、図4に例示するように、例えば入力端P1,P2の間の電圧の瞬時的な増大に起因して主トランジスタS1及び従トランジスタS2の導通時点の間の期間が5分の3周期となったとしても、主トランジスタS1及び従トランジスタS2が導通/非導通を繰り返すにつれ、当該期間を半周期へと戻すことができる。
 なお、導通期間t2と導通期間t1との差を可変としても構わない。例えば、主トランジスタS1が導通した時点から所定期間(ここでは半周期)経過した時に電流IL2が既に零に至っている場合は、差SUB1を採用する。そして主トランジスタS1が導通した時点から所定期間経過した時に電流IL1が未だ零に至っていない場合は、差SUB1よりも大きい差SUB2を採用する。
 これによれば、位相差が所望の値からずれたときには、より大きい差SUB2を採用している。よって、電流IL2が零に至る期間が短縮されて、早期に位相差を所望の値に戻すことができる。一方、位相差が所望の値であるときにはより小さい差SUB1を採用している。よって、電流IL2のピークを高めることができ、ひいてはダイオード整流回路3を流れる電流の平均電流を高めることができる。
 なお、図2から図4では図示を省略していたが、実際には電流IL1,IL2がそれぞれ零に至った後は、それぞれ主ダイオードD11及び従ダイオードD21の逆回復特性に起因して、出力端P3側から入力端P1側へと主リアクトルL1及び従リアクトルL2に電流が流れる。図5の例示では、かかる電流IL1,IL2が負の電流として示されている。
 本制御方法によれば電流IL2の最小値は電流IL1の最小値よりも小さい。図5の例示では、電流IL1の最小値は-0.32Aであって、電流IL2の最小値は-0.40Aである。このような電流IL1,IL2の最小値の大小関係は以下の理由によると考察される。
 主トランジスタS1が非導通から導通へと切り替わるときには主トランジスタS1の両端電圧は低下してほぼ零に至る。これにより、主ダイオードD11には大きな逆電圧が印加される。かかる逆電圧によって主ダイオードD11の内部に蓄積されたキャリヤが移動する量が増える。よって、移動可能なキャリヤが尽きて逆回復電流は低下に向かう。
 同じく、従トランジスタS2が非導通から導通へと切り替わるときには従トランジスタS2の両端電圧は低下してほぼ零に至る。これにより、従ダイオードD21には大きな逆電圧が印加される。かかる逆電圧によって従ダイオードD21の内部に蓄積されたキャリヤが移動する量が増える。よって、移動可能なキャリヤが尽きて逆回復電流は低下に向かう。
 以上のように、電流IL1,IL2が低下から増大へと転じる時点は、それぞれ主トランジスタS1及び従トランジスタS2が導通する時点にも依存する。
 主トランジスタS1は電流IL1が零に至ったときに、そのゲート端子にスイッチ信号が入力され、従トランジスタS2は電流IL2が零に至った後に、そのゲート端子にスイッチ信号が入力される。よって、電流IL2が零に至ってから電流IL2が低下から増大へと転じるまでの期間は、電流IL1が零に至ってから電流IL1が低下から増大へと転じるまでの期間よりも長い。よって電流IL2の最小値は電流IL1の最小値よりも小さい。
 電流IL2が増大するとき、従リアクトルL2には従ダイオードD21側を低電位とし、入力端P1側を高電位とする誘導起電圧が生じる。これにより、従ダイオードD22が設けられていなければ、電流IL2が最小値から零に至るまでの期間にわたって、従トランジスタS2には、コレクタ端子を低電位とし、エミッタ端子を高電位とする逆電圧が印加される。なお、電流IL2が零以上のときには従リアクトルL2と従トランジスタS2とに電流が流れるので従トランジスタS2には逆電圧は印加されない。
 電流IL1が最小値から零に至るまでの期間においては、主トランジスタS1にも逆電圧が生じ得るものの、電流IL1の最小値が電流IL2の最小値よりも小さいので、電流IL1が最小値から零に至るまでの期間は電流IL2が最小値から零に至るまでの期間よりも短い。よって、従トランジスタS2に比して主トランジスタS1には逆電圧が印加される期間が短い。
 本スイッチング電源回路では、より逆電圧が長期間にわたって印加され得る従トランジスタS2に対して、従ダイオードD22が逆並列で設けられる。図6には、本スイッチング電源回路についてのタイミングチャートの一例が示されている。
 なお、図6において、従ダイオードD21を流れる電流ID2と、電流IL2と、従トランジスタS2及び従ダイオードD22の一組を流れる電流ISD2と、従トランジスタS2の両端電圧VS2とが同じ座標に示されている。この座標において、縦軸を電流と見なすときにはその1ブロックの高さが5Aを示し、縦軸を電圧と見なすときにはその1ブロックの高さが200Vを示す。また図中上から順に配置された横軸A,B,Cはそれぞれ電流ISD2、IL2、IS2の電流値が零であることを示し、図中下から2番目の横軸Dは両端電圧VS2の電圧値が零であることを示している。また電流ID2については、従リアクトルL2から出力端P3へと向かう方向を正とし、電流ISD2については従電源線LH2から電源線LLへと向かう方向を正としている。
 図6に例示するように、従トランジスタS2に逆電圧が印加され得るときには、電流ISD2が電源線LLから従電源線LH2側へ向かって流れる。即ち、従ダイオードD22を流れるので、これと並列接続される従トランジスタS2の両端電圧VS2はほぼ0である。よって従トランジスタS2に逆電圧が印加されることを回避できる。
 なお、電流臨界モードをより確実としつつも、位相差を所望の値に戻すという効果を招来するためには、電流IL2が零に至ったことを条件の一つとして従トランジスタS2が導通する事項が必要である。しかしながら、上述した逆回復電流に起因する従トランジスタS2に印加される逆電圧については、上記事項は必須の要件ではない。要するに、主リアクトルL1と従リアクトルL2とのインダクタンスが互いに同じであって、導通期間t2が導通期間t1より短ければよい。
 また図7に示すように、主回路1は主ダイオードD12を更に有していてもよい。主ダイオードD12はアノードを電源線LL側に、カソードを主電源線LH1側にそれぞれ向けて、主トランジスタS1と並列に接続されている。主ダイオードD12によって、主トランジスタS1に印加される逆電圧をも解消することができる。
 また主トランジスタS1の非導通から導通への切り替え(ターンオン)又は導通から非導通の切り替え(ターンオフ)によって、各部に存在する寄生容量による充放電電流が流れ得る。かかる充放電電流は主回路1のみならず、従回路2をも流れて従回路2の動作へと悪影響を与え得る。従トランジスタS2のターンオン又はターンオフによっても、充放電電流が流れ、主回路1へと悪影響を与え得る。またかかる充放電電流の影響を受けて、電流IL1,IL2が零になったことを検知し損ねる可能性がある。
 そこで、コンデンサC2の静電容量を0.5μF以上とすることが望ましい。これによって充放電電流を低減することができる。ひいては、主回路1及び従回路2の相互に作用する悪影響、及び電流IL1,IL2の零電流検出の失敗を回避又は抑制できる。
 なお、本実施の形態では、本スイッチング電源回路が一つの主回路1と一つの従回路2とを備えていた。しかしながら、複数の従回路2を備えていてもよい。スイッチング電源回路が2つの従回路2を備えていれば、一つの従回路2は主回路1に対して第1所定期間(例えば3分の1周期)遅れて動作し、他の一つの従回路2は主回路1に対して第2所定期間(例えば3分の2周期)遅れて動作する。
 この発明は詳細に説明されたが、上記した説明は、すべての局面において、例示であって、この発明がそれに限定されるものではない。例示されていない無数の変形例が、この発明の範囲から外れることなく想定され得るものと解される。
 1 主回路
 2 従回路
 C2 コンデンサ
 D11,D12,D21,D22 ダイオード
 L1,L2 リアクトル
 LH1,LH2,LL 電源線
 S1,S2 絶縁ゲートバイポーラトランジスタ

Claims (5)

  1.  低電源線(LL)と、
     いずれも前記低電源線よりも高い電位が印加される主電源線及び従電源線(LH1,LH2)と、
     前記主電源線及び前記従電源線の上にそれぞれ設けられ、互いに等しいインダクタンスを有する主リアクトル及び従リアクトル(L1、L2)と、
     前記主電源線及び前記従電源線の上でそれぞれ前記主リアクトル及び前記従リアクトルと直列に接続され、アノードをそれぞれ前記主リアクトル及び前記従リアクトル側に向けて設けられた第1の主ダイオード及び第1の従ダイオード(D11,D21)と、
     前記主リアクトルと前記主ダイオードとの間の点と、前記低電源線との間で、エミッタを前記低電源線に向けて設けられ、前記主リアクトルを流れる電流が零に至ることを以って導通し、第1期間(t1)経過後に非導通する主絶縁ゲートバイポーラトランジスタ(S1)と、
     前記従リアクトルと前記従ダイオードとの間の点と、前記低電源線との間で、エミッタを前記低電源線に向けて設けられ、前記主絶縁ゲートバイポーラトランジスタが導通した時点から、次に導通するまでの期間よりも短い一定期間を経過したことを条件の一つとして導通し、前記第1期間よりも短い第2期間(t2)経過後に非導通する従絶縁ゲートバイポーラトランジスタ(S1)と、
     前記従絶縁ゲートバイポーラトランジスタ(S2)と並列に接続され、アノードを前記前記低電源線に向けて設けられた第2の従ダイオード(D22)と
    を備える、スイッチング電源回路。
  2.  前記主絶縁ゲートバイポーラトランジスタ(S1)と並列に接続され、アノードを前記主電源線(LH1)に向けて設けられた第2の主ダイオード(D12)を更に有する、請求項1に記載のスイッチング電源回路。
  3.  一端が前記低電位線(LL)と、他端が、前記主リアクトル(L1)に対して前記第1の主ダイオード(D11)とは反対側で前記主電源線(LH1)と、前記従リアクトル(L2)に対して前記第1の従ダイオード(D21)とは反対側で前記従電源線(LH2)とに共通して接続され、静電容量が0.5μF以上であるコンデンサ(C2)を更に備える、請求項1又は2に記載のスイッチング電源回路。
  4.  前記条件と、前記従リアクトル(L2)を流れる電流が零に至る第2条件との両方を満足するときに前記従絶縁ゲートバイポーラトランジスタ(S2)を導通させる、請求項1又は2に記載のスイッチング電源回路。
  5.  前記条件と、前記従リアクトル(L2)を流れる電流が零に至る第2条件との両方を満足するときに前記従絶縁ゲートバイポーラトランジスタ(S2)を導通させる、請求項3に記載のスイッチング電源回路。
PCT/JP2010/069305 2009-11-12 2010-10-29 スイッチング電源回路 WO2011058892A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
ES10829852T ES2875422T3 (es) 2009-11-12 2010-10-29 Circuito de alimentación de conmutación
US13/498,596 US8952667B2 (en) 2009-11-12 2010-10-29 Switching power supply circuit
EP10829852.2A EP2501027B1 (en) 2009-11-12 2010-10-29 Switching power supply circuit
CN201080051217.5A CN102640407B (zh) 2009-11-12 2010-10-29 开关电源电路
AU2010319195A AU2010319195B2 (en) 2009-11-12 2010-10-29 Switching power supply circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-258565 2009-11-12
JP2009258565A JP4853568B2 (ja) 2009-11-12 2009-11-12 スイッチング電源回路

Publications (1)

Publication Number Publication Date
WO2011058892A1 true WO2011058892A1 (ja) 2011-05-19

Family

ID=43991551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/069305 WO2011058892A1 (ja) 2009-11-12 2010-10-29 スイッチング電源回路

Country Status (7)

Country Link
US (1) US8952667B2 (ja)
EP (1) EP2501027B1 (ja)
JP (1) JP4853568B2 (ja)
CN (1) CN102640407B (ja)
AU (1) AU2010319195B2 (ja)
ES (1) ES2875422T3 (ja)
WO (1) WO2011058892A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2341605B1 (en) * 2009-12-31 2018-03-07 Nxp B.V. A power factor correction stage
US8912775B2 (en) * 2011-04-12 2014-12-16 Infineon Technologies Ag Power factor correction circuit having multiple switched-mode converter circuits
JP5584826B2 (ja) 2011-04-26 2014-09-03 ルネサスエレクトロニクス株式会社 Pfc信号生成回路、それを用いたpfc制御システム、及びpfc制御方法
CN104641543B (zh) * 2012-09-21 2016-04-27 大金工业株式会社 直接型电力变换装置的控制方法
KR101420516B1 (ko) * 2012-10-30 2014-07-16 삼성전기주식회사 역률 개선 회로 및 역률 개선 제어 방법
KR101412821B1 (ko) * 2012-10-31 2014-06-27 삼성전기주식회사 역률 보정 회로 및 이를 포함하는 전원 장치
KR101496810B1 (ko) 2012-12-05 2015-02-27 삼성전기주식회사 역률 보정 장치, 전원 장치 및 모터 구동 장치
EP2985897B1 (en) * 2013-04-12 2019-10-02 Mitsubishi Electric Corporation Power conversion device
WO2015001617A1 (ja) * 2013-07-02 2015-01-08 三菱電機株式会社 逆流防止装置、電力変換装置、モータ駆動装置及び冷凍空気調和装置
JP5794273B2 (ja) * 2013-10-07 2015-10-14 ダイキン工業株式会社 直接形電力変換装置の制御方法
CN104167918B (zh) * 2014-06-30 2017-06-13 阳光电源股份有限公司 一种高变压比的直流‑直流变换器
JP5930108B2 (ja) * 2014-09-25 2016-06-08 ダイキン工業株式会社 電力変換装置
WO2017091998A1 (en) 2015-12-03 2017-06-08 Abb Beijing Drive Systems Co., Ltd. Chopper assembly and controlling method thereof
WO2018038362A1 (ko) * 2016-08-22 2018-03-01 데스틴파워 주식회사 벅 부스트 컨버터
US10291111B1 (en) * 2018-03-23 2019-05-14 Hamilton Sundstrand Corporation Feedback control for parallel power converter synchronization
JP2021058039A (ja) * 2019-10-01 2021-04-08 シャープ株式会社 整流回路および電源装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223025A (ja) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Dc/dcコンバータ
JP2007195282A (ja) * 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091233A (en) * 1999-01-14 2000-07-18 Micro Linear Corporation Interleaved zero current switching in a power factor correction boost converter
JP4098299B2 (ja) * 2004-11-18 2008-06-11 本田技研工業株式会社 Dc/dcコンバータ
US7304461B2 (en) 2004-11-18 2007-12-04 Honda Motor Co., Ltd. DC/DC converter
JP2007252177A (ja) 2006-02-20 2007-09-27 Toshiba Kyaria Kk 電力変換装置
JP4963068B2 (ja) 2007-02-06 2012-06-27 新電元工業株式会社 力率改善回路
JP2009159727A (ja) * 2007-12-26 2009-07-16 Toshiba Corp コンバータ電源回路およびコンバータ電源駆動方法
JP5085397B2 (ja) * 2008-04-11 2012-11-28 ルネサスエレクトロニクス株式会社 電源装置および半導体集積回路装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223025A (ja) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Dc/dcコンバータ
JP2007195282A (ja) * 2006-01-17 2007-08-02 Renesas Technology Corp 電源装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAMORU KITAMURA: "1.5kW no Tei-noise Ko-choha Taisaku Dengen o Tsukureru Rinkai Mode/ Interleave PFC IC R2A20112", TRANSISTOR GIJUTSU, May 2008 (2008-05-01), pages 176 - 184, XP008160209 *
See also references of EP2501027A4 *

Also Published As

Publication number Publication date
AU2010319195B2 (en) 2014-02-06
AU2010319195A1 (en) 2012-04-26
EP2501027A4 (en) 2017-10-18
JP2011103753A (ja) 2011-05-26
US20120187929A1 (en) 2012-07-26
EP2501027A1 (en) 2012-09-19
JP4853568B2 (ja) 2012-01-11
CN102640407B (zh) 2015-01-21
ES2875422T3 (es) 2021-11-10
US8952667B2 (en) 2015-02-10
CN102640407A (zh) 2012-08-15
EP2501027B1 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
JP4853568B2 (ja) スイッチング電源回路
US8724348B2 (en) Power-supply unit, hard-disk drive, and switching method of the power-supply unit
JP5590124B2 (ja) Dc−dcコンバータ
AU2013342516B2 (en) Switching Power Supply Circuit Control Method
US20150002108A1 (en) Bridgeless power factor correction boost converter
AU2011230323A1 (en) Switching power supply circuit, and method for control of switching power supply circuit
JPWO2012176403A1 (ja) 昇降圧型ac/dcコンバータ
WO2018061286A1 (ja) 電力変換装置
CN112134474A (zh) 半导体装置
JP5482358B2 (ja) スイッチング電源回路の制御方法
KR20190064962A (ko) Dc-dc 변환 시스템
US20200067413A1 (en) Dc/dc converter
JP5987423B2 (ja) 電力変換装置
JP6458235B2 (ja) スイッチング電源装置
WO2015178106A1 (ja) 電源装置
JP5578234B2 (ja) スイッチング電源装置およびこれを用いた電源システム、電子装置
WO2021028990A1 (ja) Dc-dcコンバータ
JP2013110785A (ja) 三相整流装置
JP6052221B2 (ja) 電力変換装置
JP6191017B2 (ja) ハーフブリッジ回路及びハーフブリッジ回路から構成されるフルブリッジ回路及び3相インバータ回路
WO2024043124A1 (ja) 電力変換装置
US9312749B2 (en) Driver device for power factor correction circuit
JP2018093610A (ja) 電力変換回路
JP2020022299A (ja) 電源装置
JP2014200173A (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080051217.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829852

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 684/KOLNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010829852

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13498596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010319195

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010319195

Country of ref document: AU

Date of ref document: 20101029

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE