WO2011058618A1 - ワーク計測装置、衝突防止装置および工作機械 - Google Patents

ワーク計測装置、衝突防止装置および工作機械 Download PDF

Info

Publication number
WO2011058618A1
WO2011058618A1 PCT/JP2009/069088 JP2009069088W WO2011058618A1 WO 2011058618 A1 WO2011058618 A1 WO 2011058618A1 JP 2009069088 W JP2009069088 W JP 2009069088W WO 2011058618 A1 WO2011058618 A1 WO 2011058618A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpiece
unit
measurement
shape
tool
Prior art date
Application number
PCT/JP2009/069088
Other languages
English (en)
French (fr)
Inventor
直人 川内
祐一 佐々野
伸 浅野
賢二 久良
裕一 松下
昭彦 松村
優 樋口
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020117029414A priority Critical patent/KR101327571B1/ko
Priority to US13/376,803 priority patent/US8805570B2/en
Priority to EP09851252A priority patent/EP2500688A1/en
Priority to PCT/JP2009/069088 priority patent/WO2011058618A1/ja
Priority to CN200980160005.8A priority patent/CN102472617B/zh
Publication of WO2011058618A1 publication Critical patent/WO2011058618A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/20Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring contours or curvatures, e.g. determining profile
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/20Arrangements for observing, indicating or measuring on machine tools for indicating or measuring workpiece characteristics, e.g. contour, dimension, hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/22Arrangements for observing, indicating or measuring on machine tools for indicating or measuring existing or desired position of tool or work
    • B23Q17/2208Detection or prevention of collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/24Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves
    • B23Q17/2452Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces
    • B23Q17/2471Arrangements for observing, indicating or measuring on machine tools using optics or electromagnetic waves for measuring features or for detecting a condition of machine parts, tools or workpieces of workpieces
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/406Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by monitoring or safety
    • G05B19/4061Avoiding collision or forbidden zones
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM

Definitions

  • the present invention relates to a workpiece measurement device, a collision prevention device, and a machine tool, and more particularly to a workpiece measurement device, a collision prevention device, and a machine tool that are suitable for use when performing three-dimensional machining on a workpiece.
  • NC numerical control device
  • the NC program (NC data for machining) describing the movement of the tool of the machine tool is debugged. Yes. That is, a workpiece to be machined is set in advance on a table of a machine tool, and an operator runs the NC program step by step to verify the NC program.
  • a part of a machine tool such as a tool or a ram may be damaged due to a human error such as an NC program failure or an erroneous operation by an operator (for example, patent document). 1).
  • the operation speed is set to be high in order to increase the work efficiency.
  • a control method for stopping the tool or the like before the collision with the workpiece is also known.
  • this control method it is necessary to grasp in advance the three-dimensional data (3D-CAD data) of the workpiece shape such as the workpiece size, dimensions, and shape and the position of the workpiece on the table.
  • the three-dimensional data of the workpiece shape before machining is often not grasped in advance, and it is necessary to grasp the workpiece by a method such as measuring the workpiece.
  • a non-contact measurement method is known as a method for grasping 3D data of a workpiece shape.
  • a digitizer that converts a three-dimensional object into digital data is known (see, for example, Non-Patent Document 1).
  • a technique for measuring a fine surface shape such as a machining mark (cutting mark) using a non-contact displacement meter is also known (see, for example, Patent Documents 2 and 3). By attaching this displacement meter to the ram instead of the tool and scanning the workpiece, the shape of the workpiece can be detected with high accuracy.
  • Patent Document 4 As a method for expressing the three-dimensional data obtained in this way, a three-dimensional bitmap technique is known (see, for example, Patent Document 4). Furthermore, as described above, a technique for automatically exchanging a workpiece detection device in the same manner as a tool is also known (see, for example, Patent Document 5).
  • the method using a sensor for detecting contact between the workpiece and the tool described above has a problem that the operation speed of the tool or the like cannot be increased because of the contact, resulting in poor efficiency. Furthermore, there has been a problem that contact with a workpiece cannot be detected depending on a portion in contact with the workpiece, such as when the ram contacts the workpiece.
  • Non-Patent Document 1 there is a problem that it is necessary to match the coordinate system when setting a workpiece, and it takes a lot of time for measurement. Furthermore, there is a problem that a region where the shape of the workpiece cannot be measured by the sensor, that is, a blind spot occurs. Another problem was the high price.
  • Patent Documents 2 and 3 described above have a problem that the obtained three-dimensional shape data is too detailed for use in avoiding a collision between a workpiece and a tool. Since the sensor is scanned on all surfaces of the workpiece using the operation axis of the machine tool, there is a problem that the efficiency of acquiring the three-dimensional data is deteriorated. Since it is necessary to scan the sensor in accordance with the shape of the workpiece, there has been a problem that interference between the workpiece and a part of the machine tool, a sensor cable, or the like occurs when acquiring three-dimensional data.
  • the present invention has been made to solve the above-described problem, and can easily acquire three-dimensional data of a workpiece shape used when preventing a workpiece and a part of a machine tool from colliding with each other. It aims at providing a measuring device, a collision prevention device, and a machine tool.
  • a workpiece measuring apparatus is provided with a measuring unit that is attached to a main shaft to which a tool for machining a workpiece to be machined is attached, scans and measures the distance to the workpiece in a non-contact manner, and a space
  • a three-dimensional mesh structure formed by dividing the polyhedron into a polyhedron, and based on the measured distance information to the workpiece, the measurement point coordinates of the workpiece are calculated, and one unit of the three-dimensional mesh structure
  • the measurement shape map assumes that the unit is the shape of the workpiece.
  • the accuracy of the measurement shape map that is the three-dimensional data of the workpiece is ensured. can do.
  • the measurement accuracy of the measurement shape map is less likely to be affected by the measurement accuracy of the measurement unit and the distance from the measurement unit to the workpiece, and the accuracy of the measurement shape map is easily ensured.
  • the accuracy of the measurement shape map is facilitated by adjusting the number of scans and threshold values that measure the distance to the workpiece that can be easily changed. Can be adjusted.
  • the measurement unit is attached to the main shaft, it is easy to ensure the accuracy of the measurement shape map as compared with the case where the measurement unit is attached to other parts. That is, since the measurement unit is attached to the spindle controlled with high positional accuracy because it is used for workpiece processing, the arrangement position of the measurement unit can be grasped with high accuracy. As a result, the arrangement position of the workpiece with respect to the machine tool including the spindle is grasped with high accuracy, and it is easy to ensure the position accuracy of the measurement shape map with respect to the machine tool.
  • the measuring unit measures the distance to the workpiece, it is possible to prevent the occurrence of a blind spot in the unmeasured area of the workpiece, that is, the workpiece as viewed from the measuring portion. Since the measurement unit is attached to the spindle as described above, the accuracy of the measurement shape map is ensured even if a plurality of measurement points are set and the measurement unit is moved between the plurality of points. In addition, by measuring the distance from the measurement unit to the workpiece at a plurality of points, the occurrence of an unmeasured area in the workpiece can be prevented, and the entire workpiece can be measured.
  • the distance from the measuring unit attached to the spindle to the workpiece is measured at the same time, including a table on which the workpiece is placed and a fixing jig for fixing the workpiece to the table. . Therefore, a measurement shape map including a table and a fixing jig is created.
  • the measurement shape map includes a table, a fixing jig, and the like as compared with the case where the three-dimensional design data of the workpiece is used as the measurement shape map. For example, the collision between the workpiece and a part of the machine tool is included. It becomes a measurement shape map suitable for prevention.
  • the dimension of one side in the unit is based on the distance between the tool and the spindle approaching the workpiece and shifting to the machining of the workpiece, and the workpiece. It is desirable to set.
  • the size of one side in one unit of the three-dimensional mesh structure based on the distance between the point at which the tool approaching the workpiece shifts to the workpiece machining and the workpiece. The contact between the workpiece and the tool or the like during the period in which the tool and the spindle are moving at high speed is prevented.
  • the interval between the machining transition point and the measurement shape map is ensured. Furthermore, since the dimension of one side in one unit in the measurement shape map is set based on the distance between the above-described processing transition point and the workpiece, there is a gap less than the above-mentioned distance between the measurement shape map and the workpiece. Exists. Therefore, the distance between the actual machining transition point and the workpiece is the sum of the above-described interval and the above-described gap, and contact between the workpiece and the tool or the like during the period in which the tool and the spindle are moving at high speed is prevented.
  • the measurement unit includes a sensor head that scans and measures a distance to the workpiece, a transmission unit that transmits distance information measured by the sensor head, the sensor head, and the sensor head.
  • a battery for supplying power to the transmitter, and a receiver for receiving the distance information transmitted from the transmitter and outputting the distance information received by the shape recognizer. It is desirable that
  • the measurement unit measures the distance to the workpiece without using a wiring for supplying power or transmitting distance information, and outputs the measured distance information to the shape recognition unit.
  • the sensor head measures the distance to the workpiece using the power supplied from the battery, and the transmission unit transmits the distance information obtained by the measurement to the shape recognition unit via the reception unit. There is no need to use wiring or the like for supplying or transmitting distance information.
  • the measuring unit it is easy to attach and remove the measuring unit to / from the spindle, and the measuring unit can be replaced by an automatic exchange device such as an auto tool changer. Furthermore, since the wiring etc. which connect between a measurement part and a shape recognition part are unnecessary, interference with wiring etc. and a workpiece
  • the measurement unit is provided with an attachment unit that receives power supply through the main shaft and outputs the measurement information to the shape recognition unit through the main shaft. Is desirable.
  • the measurement unit measures the distance to the workpiece without using a wiring for supplying power or transmitting distance information, and outputs the measured distance information to the shape recognition unit.
  • the measuring unit receives power supplied through the main shaft and the mounting unit, measures the distance to the workpiece, and distance information obtained by the measurement is transmitted to the shape recognition unit through the main shaft and the mounting unit.
  • a collision prevention apparatus includes a workpiece measurement apparatus according to the present invention, a determination unit that determines at least interference between the spindle or the tool and the measurement shape map, And a controller that controls movement of the spindle based on the determination result.
  • At least a collision between the spindle or the tool and the workpiece can be prevented based on the measurement shape map created by the workpiece measuring device of the present invention.
  • the collision between the workpiece smaller than the measurement shape map and the spindle or the like is surely prevented.
  • a machine tool is provided with a table on which a workpiece to be machined is installed, a spindle to which a tool for machining the workpiece is attached, and the collision preventing device of the present invention. Yes.
  • the third aspect it is possible to prevent a collision between at least the spindle or the tool and the workpiece, the table, or the like based on the measurement shape map created by the workpiece measuring device of the present invention.
  • the collision between the workpiece and table etc. smaller than the measurement shape map and the spindle and the like is surely prevented.
  • the collision preventing device since the measurement shape map of the workpiece is created based on the ratio of the number of measurement points included in one unit with respect to the number of scans, There is an effect that it is possible to easily acquire the three-dimensional data of the workpiece shape used when preventing the collision with the part.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the machine tool according to the present embodiment.
  • FIG. 2 is a block diagram illustrating a control unit in the machine tool of FIG.
  • the machine tool 1 includes a workpiece measuring device 2 that creates a measurement shape map MP based on a workpiece W and the like, and a collision prevention that prevents a collision between the ram 13 or the tool of the machine tool 1 and the workpiece W or the like.
  • a five-face processing machine that includes the apparatus 3 and processes the workpiece W to be processed from five directions, and the operation of which is controlled by the NC. As shown in FIGS.
  • the machine tool 1 includes a table 11 that moves in the X-axis direction, a saddle 12 that moves in the Y-axis direction, a ram (main shaft) 13 that moves in the Z-axis direction, a ram 13, a measuring unit 15 that measures the distance to the workpiece W, and a machine tool control unit 16 that performs NC control of the movement of the table 11, the saddle 12, and the ram 13 are provided.
  • the table 11 is a table on which the workpiece W is fixed, and is arranged so as to be movable along the X-axis direction as shown in FIG. As shown in FIG. 2, the movement of the table 11 in the X-axis direction is controlled by the movement control unit 26 of the machine tool control unit 16.
  • the saddle 12 is provided with a beam portion 14 ⁇ / b> A in which a ram 13 is disposed and extends along the Y-axis direction of a support portion 14 that is formed in a portal shape and straddles the table 11. It is arranged and can be moved along the Y-axis direction. As shown in FIG. 2, the movement of the saddle 12 in the Y-axis direction is controlled by the movement control unit 26.
  • the ram 13 is provided with a measuring unit 15 at the end on the table 11 side when measuring the shape of the workpiece W, and with a tool when cutting the workpiece W. Further, the ram 13 is disposed on the saddle 12 and is movable along the Z-axis direction. As shown in FIG. 2, the movement of the ram 13 in the Z-axis direction is controlled by the movement control unit 26.
  • FIG. 3 is a partially enlarged view illustrating the configuration of the measurement unit and the ram in FIG.
  • the measurement unit 15 is a laser distance sensor used when creating the measurement shape map MP of the workpiece W, and is attached to the end of the ram 13 on the table 11 side as shown in FIGS. It is. As shown in FIG. 3, the measurement unit 15 performs two-dimensional scanning (scanning) by changing the emission angle ⁇ of the laser beam used for distance measurement. Further, by rotating the ram 13 around the central axis L, the measurement unit 15 performs a three-dimensional scan. The distance information from the workpiece W, the table 11 and the like measured by the measurement unit 15 to the measurement unit 15 is input to the shape recognition unit 23 as shown in FIG.
  • the machine tool control unit 16 creates a measurement shape map MP of the workpiece W before cutting the workpiece W, and based on the created measurement shape map MP when debugging the NC program describing the movement of the tool for cutting the workpiece W
  • the collision between the ram 13 and the tool and the workpiece W is prevented, and the movement of the table 11, the saddle 12 and the ram 13 is controlled when the workpiece W is cut.
  • the machine tool control unit 16 includes a program storage unit 21 and a program interpretation unit 22 that generate a signal for controlling the movement of the tool when machining the workpiece W, and a measurement shape map of the workpiece W. Controls the movement of the shape recognition unit 23 that creates the MP, the shape storage unit 24 that stores the shape of the tool attached to the spindle, the interference determination unit (determination unit) 25, the table 11, the saddle 12, and the ram 13. A movement control unit (control unit) 26 is provided.
  • the workpiece measuring device 2 includes a measuring unit 15 and a shape recognizing unit 23, and the collision prevention device 3 includes a workpiece measuring device 2, an interference determining unit 25, and a movement control unit 26.
  • the program storage unit 21 stores an NC program describing a moving path of a tool for cutting the workpiece W. As shown in FIG. 2, the program storage unit 21 is connected to the program interpretation unit 22, and the NC program stored in the program storage unit 21 is output to the program interpretation unit 22.
  • the program interpretation unit 22 creates information related to the moving amount and moving speed of the tool based on the NC program. As shown in FIG. 2, the program interpretation unit 22 is connected to the interference determination unit 25 and the movement control unit 26. Is output to the unit 26.
  • the shape recognizing unit 23 creates a measurement shape map MP used for preventing the collision between the ram 13, the tool, and the work W when debugging the NC program. As shown in FIG. 2, the shape recognition unit 23 is connected to the measurement unit 15 and the interference determination unit 25. The distance information measured by the measuring unit 15 is input to the shape recognizing unit 23, and the information of the measured shape map MP is output from the shape recognizing unit 23 to the interference determining unit 25. A method for creating the measurement shape map MP in the shape recognition unit 23 will be described later.
  • the shape storage unit 24 stores the ram 13 that may collide when approaching the workpiece W, the shape of a tool attached to the ram 13, and the like. As shown in FIG. 2, the shape storage unit 24 is connected to the interference determination unit 25. The shape of the ram 13 or the like stored in the shape storage unit 24 is output to the interference determination unit 25.
  • the interference determination unit 25 prevents collision between the ram 13 or the tool and the workpiece W by determining interference between the measurement shape map MP and the ram 13 or the like when debugging the NC program.
  • the interference determination unit 25 is connected to a shape recognition unit 23, a shape storage unit 24, a program interpretation unit 22, and a movement control unit 26.
  • the interference determination unit 25 receives the measurement shape map MP from the shape recognition unit 23, the shape such as the ram 13 from the shape storage unit 24, and the information related to the amount of movement of the tool and the like from the program interpretation unit 22. ing.
  • the determination result of the presence or absence of interference in the interference determination unit 25 is output to the movement control unit 26.
  • the movement control unit 26 controls the movement amount and movement speed of a tool or the like attached to the end of the ram 13 by controlling the movement of the table 11, the saddle 12 and the ram 13. Further, when it is determined that the measurement shape map MP interferes with the ram 13 or the like during NC program debugging, the movement of the table 11, the saddle 12 and the ram 13 is stopped. As shown in FIG. 2, the movement control unit 26 is connected to the program interpretation unit 22 and the interference determination unit 25. Information such as the amount of movement of the tool or the like is input from the program interpretation unit 22 to the movement control unit 26, and a determination result of the presence or absence of interference between the measurement shape map MP and the ram 13 is input from the interference determination unit 25. . On the other hand, control signals for controlling the movement of the table 11, the saddle 12 and the ram 13 created in the movement control unit 26 are output to the table 11, the saddle 12 and the ram 13, respectively.
  • work W in the machine tool 1 which consists of said structure is demonstrated.
  • the workpiece W is fixed on the table 11 using the fixing jig J (see FIG. 5).
  • the NC program is output from the program storage unit 21 to the program interpretation unit 22 in units of one block (one movement unit, for example, one line segment).
  • the program interpretation unit 22 creates information on the moving amount and moving speed of the tool from the NC program and outputs the information to the movement control unit 26.
  • the movement control unit 26 decomposes the input information into the movement amounts and movement speeds of the table 11, the saddle 12 and the ram 13, and sends control signals for controlling the movement amounts and movement speeds of the table 11, the saddle 12 and the ram 13, respectively. Output.
  • the table 11, the saddle 12 and the ram 13 to which the control signal is input from the movement control unit 26 are driven based on the control signal input by the motor included therein, and the workpiece W is processed.
  • a method of creating the measurement shape map MP of the workpiece W which is a feature of the present embodiment, and a method of preventing a collision between the workpiece W using the created measurement shape map MP and a part of the machine tool 1 explain.
  • the creation of the measurement shape map MP of the workpiece W and the collision prevention control described here are, for example, the debugging of the NC program in the previous stage of machining the workpiece W, that is, the workpiece W and the ram 13 or tool. This is done when checking for interference.
  • FIG. 4 is a flowchart illustrating a method for creating a measurement shape map.
  • FIG. 5 is a schematic diagram for explaining the distance measurement from the measurement unit to the workpiece.
  • the workpiece W is set on the table 11 (step S1).
  • the workpiece W is fixed to the table 11 by the fixing jig J.
  • the measurement unit 15 is attached to the end of the ram 13 (step S2).
  • the measurement unit 15 and the shape recognition unit 23 of the machine tool control unit 16 can supply power to the measurement unit 15 and input distance information measured by the measurement unit 15 to the shape recognition unit 23 using, for example, a cable. Connected (see FIG. 2).
  • the measurement unit 15 moves to the first measurement position P1, and the distance from the measurement unit 15 to the workpiece W is measured (step S3).
  • the measurement unit 15 emits laser light while changing the scan angle ⁇ , and measures the distance r from the measurement unit 15 to the workpiece W. In other words, a two-dimensional scan is performed.
  • the distance from the measurement unit 15 to the table 11 and the distance from the measurement unit 15 to the fixing jig J are also measured.
  • the ram 13 is rotated around the central axis L, and the two-dimensional scanning is performed again by changing the scanning direction of the laser beam by the measuring unit 15. Thereby, a three-dimensional scan of the workpiece W is performed.
  • the second measurement position P2 is a position at which a blind spot BA generated when the measuring unit 15 performs a three-dimensional scan of the workpiece W from the first measurement position P1, in other words, a non-measurement area can be measured.
  • measurement positions for example, five locations above the workpiece W (Z-axis positive direction), front (X-axis positive direction), rear (X-axis negative direction), and both sides (Y-axis positive direction and negative direction). Can be mentioned. Note that the number and location of measurement positions are not particularly limited because they vary depending on the arrangement position and shape of the workpiece W, the reflectance of the laser light emitted from the measurement unit 15, and the like.
  • the distance r and the scan angle ⁇ measured by the measurement unit 15 are input to the shape recognition unit 23 as shown in FIG. Further, the position (Xr, Yr, Zr) of the ram 13 at the time when the distance r is measured and the rotation angle ⁇ of the ram 13 are also input to the shape recognition unit 23. Based on the input information, the shape recognition unit 23 calculates the coordinates (Xm, Ym, Zm) of the measurement point of the workpiece W at which the distance r is measured based on the following calculation formula (step S4).
  • FIG. 6 is a diagram for explaining the shape of the measurement shape map defined by the shape recognition unit.
  • the shape recognition unit 23 divides the measurement space into hexahedral three-dimensional mesh regions, that is, generates a three-dimensional mesh structure, and the three-dimensional mesh structure including the coordinates (Xm, Ym, Zm) of the measurement points described above. Vote for one unit (hereinafter referred to as “voxel”) and define the measurement shape map MP (step S5).
  • each time a two-dimensional scan is performed by the measurement unit 15 a vote, for example, “1” is registered in the voxel including the coordinates of the measurement point. This process is performed for all secondary scans. As a result, each voxel is voted as many times as the number of two-dimensional scans is performed, and when it is the smallest, it is not voted once.
  • the shape recognition unit 23 determines whether or not the work W is included in each voxel according to the number of votes for the total number of secondary scans. That is, when the ratio of the number of votes to the total number of secondary scans is higher than a predetermined threshold, the work W is included in the voxel, and when the ratio is lower than the predetermined threshold, the work is included in the voxel. It is determined that W is not included.
  • the value of the predetermined threshold varies depending on the measurement accuracy of the measurement unit 15, the reflectance of the workpiece W, and the like, and is not particularly limited.
  • the dimensions of one side of the above-mentioned voxel are such as a tool and a ram 13 when switching from the approach mode in which the tool approaches the workpiece W to the machining mode in which the workpiece W is cut by the tool when the machine tool 1 is machined. It is set based on the distance between the part of the machine 1 and the workpiece W. This distance is set in consideration of items such as the performance and application of the machine tool 1, workpiece specifications, operator workability, and measurement processing speed. For this reason, the dimension of one side of the voxel can be exemplified by a value of about 1 mm to about 40 mm, but is not particularly limited because it is a value that varies depending on the above items.
  • the NC program is debugged. First, a tool such as an end mill used for machining the workpiece W is attached to the end of the ram 13.
  • the NC program is output from the program storage unit 21 to the program interpretation unit 22 block by block according to an operator's instruction, and information from the program interpretation unit 22 on the amount of movement of the tool etc. 25 is output.
  • the interference determination unit 25 is based on the input information on the movement amount of the tool, the measurement shape map MP input from the shape recognition unit 23, and the tool and the shape of the ram 13 input from the shape storage unit 24. The presence or absence of interference is determined.
  • the shape of the tool and the ram 13 input to the interference judgment unit 25 is stored in the shape storage unit 24 in advance, and the tool and the ram 13 attached to the machine tool 1 when performing a debugging operation or the like. Shape.
  • the interference determination unit 25 determines whether the tool or the ram 13 interferes with the measurement shape map MP when the tool and the ram 13 are moved based on the information on the movement amount of the tool or the like, and the determination result is determined. Output to the movement control unit 26.
  • the movement control unit 26 stops the execution of the NC program in which interference occurs, and the collision between the tool or ram 13 and the workpiece W is prevented.
  • the movement control unit 26 controls the table 11, the saddle 12 and the ram 13 based on the input information on the movement amount of the tool and the like. Is output.
  • the measurement shape map MP of the workpiece W is created based on the ratio of the number of times the measurement point is included in the voxel with respect to the number of two-dimensional scans, the measurement shape map MP that is three-dimensional data of the workpiece W Accuracy can be ensured. Therefore, the three-dimensional data of the workpiece W shape used when preventing the workpiece W from colliding with the ram 13 or the like of the machine tool 1 can be easily acquired.
  • the measurement shape map MP is obtained using distance information obtained by one scan. Compared with the case of creating, it is less affected by the measurement accuracy of the measurement unit 15 and the distance r from the measurement unit 15 to the workpiece W, and the accuracy of the measurement shape map MP can be ensured.
  • the accuracy of the measurement shape map MP can be easily adjusted by adjusting the number of two-dimensional scans, threshold values, and the like that can be easily changed, compared to a method of replacing the measurement unit 15 with a different measurement accuracy. .
  • the accuracy of the measurement shape map MP can be easily ensured as compared with the case where the measurement unit 15 is attached to other parts. That is, since the measurement unit 15 is attached to the ram 13 that is controlled with high positional accuracy because it is used for machining the workpiece W, the arrangement position of the measurement unit 15 is grasped with high accuracy. As a result, the arrangement position of the workpiece W with respect to the machine tool 1 including the ram 13 is also grasped with high accuracy, and the position accuracy of the measurement shape map MP with respect to the machine tool 1 can be easily ensured.
  • the measuring unit 15 By setting a plurality of points where the measuring unit 15 measures the distance r to the workpiece W, it is possible to prevent the occurrence of a blind spot BA in the unmeasured area in the workpiece W, that is, the workpiece W viewed from the measuring unit. Since the measurement unit 15 is attached to the ram 13, the accuracy of the measurement shape map MP is ensured even if a plurality of measurement points are set and the measurement unit 15 is moved between the plurality of points. In addition, by measuring the distance r from the measurement unit 15 to the workpiece W at a plurality of points P1 and P2, the occurrence of a blind spot BA in the workpiece W is prevented, and the entire workpiece W can be measured.
  • the measurement unit 15 includes Are measured simultaneously. Therefore, a measurement shape map MP including the table 11 and the fixing jig J is created.
  • the measurement shape map MP includes the table 11 and the fixing jig J as compared with the case where the three-dimensional design data of the workpiece W is used as the measurement shape map MP.
  • the measurement shape map MP is suitable for preventing the collision with the ram 13 and the like.
  • the tool and the ram 13 are moving at high speed. The contact between the workpiece W and the tool or the like during the period can be prevented.
  • the interval between the machining transition point and the measurement shape map MP is ensured. Furthermore, since the dimension of one side in the voxel of the measurement shape map MP is set based on the distance between the processing transition point and the workpiece W, the distance between the measurement shape map MP and the workpiece W is set as described above. There are less than gaps. Therefore, the distance between the actual processing transition point and the workpiece W is the sum of the above-described interval and the above-described gap, and the contact between the workpiece W and the tool or the like during the period in which the tool and the ram 13 are moving at high speed can be prevented. .
  • FIG. 7 is an overall view illustrating the configuration of the machine tool of the present embodiment.
  • FIG. 8 is a block diagram illustrating the configuration of the measurement unit in FIG.
  • symbol is attached
  • the machine tool 101 is attached to a table 11 that moves in the X-axis direction, a saddle 12 that moves in the Y-axis direction, a ram 13 that moves in the Z-axis direction, and a ram 13.
  • a measuring unit 115 that measures the distance to the workpiece W and a machine tool control unit 116 that performs NC control of the movement of the table 11, the saddle 12 and the ram 13 are provided.
  • the measurement unit 115 is a laser distance sensor used when creating the measurement shape map MP of the workpiece W, and is attached to the end of the ram 13 on the table 11 side as shown in FIG. Further, the measuring unit 115 is attached to and detached from the end of the ram 13 by an auto tool changer of the machine tool 101, like a tool for machining the workpiece W. As shown in FIG. 8, the measurement unit 115 is provided with a sensor head 121, a sensor control unit 122, a transmission unit 123, and a battery 124.
  • the sensor head 121 performs two-dimensional scanning (scanning) by changing the emission angle ⁇ of the laser beam used for distance measurement. As shown in FIG. 8, the sensor head 121 is connected to the sensor control unit 122 and the battery 124. A control signal is input to the sensor head 121 from the sensor control unit 122 and power is supplied from the battery 124. On the other hand, the distance information measured by the sensor head 121 is output to the sensor control unit 122.
  • the sensor control unit 122 controls the emission of the laser light from the sensor head 121 and the scan angle ⁇ . As shown in FIG. 8, the sensor control unit 122 is connected to the sensor head 121, the transmission unit 123, and the battery 124. Distance information measured from the sensor head 121 is input to the sensor control unit 122, and power is supplied from the battery 124. On the other hand, a control signal is output from the sensor control unit 122 to the sensor head 121, and distance information is output to the transmission unit 123.
  • the transmission unit 123 wirelessly transmits the distance information measured by the sensor head 121 to the reception unit 131 of the machine tool control unit 116. As shown in FIG. 8, the transmission unit 123 is connected to the sensor control unit 122 and the battery 124. The transmission unit 123 receives distance information from the sensor control unit 122 and is supplied with power from the battery 124. The distance information input to the transmission unit 123 is transmitted to the reception unit 131 by radio.
  • the battery 124 supplies power to the sensor head 121, the sensor control unit 122, and the transmission unit 123. As shown in FIG. 8, the battery 124 is connected to the sensor head 121, the sensor control unit 122, and the transmission unit 123 so that power can be supplied.
  • the machine tool control unit 116 creates a measurement shape map MP of the workpiece W before cutting the workpiece W, and based on the created measurement shape map MP when debugging the NC program describing the movement of the tool for cutting the workpiece W
  • the collision between the ram 13 and the tool and the workpiece W is prevented, and the movement of the table 11, the saddle 12 and the ram 13 is controlled when the workpiece W is cut.
  • FIG. 9 is a block diagram illustrating the configuration of the machine tool control unit of FIG.
  • the machine tool control unit 116 includes a reception unit 131 that receives distance information transmitted from the measurement unit 115, a program storage unit 21 and a program interpretation unit 22, a shape recognition unit 23, and a shape A storage unit 24, an interference determination unit 25, and a movement control unit 26 are provided.
  • the reception unit 131 receives distance information wirelessly transmitted from the transmission unit 123 of the measurement unit 115. As shown in FIG. 9, the reception unit 131 is connected to the shape recognition unit 23, and outputs the received distance information to the shape recognition unit 23.
  • the measuring unit 115 is automatically attached to and detached from the ram 13 by an auto tool changer in the same manner as a tool for processing the workpiece W.
  • a control signal is output from the sensor control unit 122 to the sensor head 121, and a measurement laser is output from the sensor head 121.
  • the distance information measured by the sensor head 121 is output from the sensor head 121 to the sensor control unit 122 and is output from the sensor control unit 122 to the transmission unit 123.
  • the transmission unit 123 wirelessly transmits the input distance information to the machine tool control unit 116.
  • the distance information transmitted wirelessly is received by the reception unit 131 and is output from the reception unit 131 to the shape recognition unit 23. Since the subsequent operation is the same as that of the first embodiment, the description thereof is omitted.
  • the measurement unit 115 measures the distance to the workpiece W without using a wiring for supplying power or transmitting distance information, and outputs the measured distance information to the shape recognition unit 23. can do. That is, the sensor head 121 measures the distance to the workpiece W using the power supplied from the battery 124, and the transmission unit 123 transmits the distance information obtained by the measurement to the shape recognition unit via the reception unit 131. Therefore, it is not necessary to use wiring for supplying power or transmitting distance information.
  • the measuring unit 115 can be exchanged by an automatic exchange device such as an auto tool changer. Furthermore, since the wiring etc. which connect between the measurement part 115 and the shape recognition part 23 are unnecessary, interference with wiring etc. and the workpiece
  • FIG. 10 is an overall view illustrating the configuration of the machine tool of the present embodiment.
  • symbol is attached
  • the machine tool 201 includes a table 11 that moves in the X-axis direction, a saddle 12 that moves in the Y-axis direction, a ram 13 that moves in the Z-axis direction, and a measurement unit attached to the ram 13. 215 are provided.
  • the measurement unit 215 is provided with a measurement unit 15 that measures the distance to the workpiece W and an attachment unit 216 that is attached to the ram 13.
  • the attachment portion 216 is an attachment provided with the measurement portion 15 and configured to be detachable from the ram 13.
  • the mounting portion 216 is provided with an interface (not shown) through which electric power is supplied to the ram 13 and signals such as control signals and distance information are transmitted.
  • the description is applied to the mounting portion 216 configured to extend in the Z-axis direction from the end portion of the ram 13 and support the measurement unit 15 in a direction in which the central axis extends along the Z-axis, but is limited to this configuration.
  • the measurement unit 15 may be supported so that the central axis is parallel to the XY plane, or the direction of the central axis of the measurement unit 15 can be arbitrarily controlled. It is not a thing.
  • the measurement unit 215 is attached to the ram 13 when debugging an NC program or the like.
  • the attaching operation is automatically performed in the same manner as the attachment for processing, using an exchange device (not shown) used for replacing the attachment used for processing the workpiece W.
  • the measuring unit 215 is not used, such as when processing the workpiece W, it is stored in an automatic replacement storage box (not shown) provided in the machine tool 201, similarly to the processing attachment.
  • the measurement unit 15 measures the distance to the workpiece W without using a wiring for supplying power, transmitting distance information, and the like, and outputs the measured distance information to the shape recognition unit 23. can do.
  • the measurement unit 15 receives power supplied through the ram 13 and the attachment unit 216 and measures the distance to the workpiece W, and the distance information obtained by the measurement is recognized as a shape through the ram 13 and the attachment unit 216. Since it is transmitted to the unit 23, it is not necessary to separately provide wiring or the like for supplying power or transmitting distance information. Therefore, since the wiring etc. which connect between the measurement part 15 and the shape recognition part 23 are unnecessary, interference with wiring etc. and the workpiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Automation & Control Theory (AREA)
  • Optics & Photonics (AREA)
  • Numerical Control (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

 ワークと工作機械の一部との衝突を防止する際に用いるワーク形状の3次元データを容易に取得することができるワーク計測装置、衝突防止装置および工作機械を提供する。加工対象であるワークを加工する工具が取り付けられる主軸に取り付けられ、非接触で前記ワークまでの距離を走査して測定する測定部(15)と、空間を多面体状に分割して形成された3次元メッシュ構造を生成し、測定された前記ワークまでの距離情報に基づいて、ワークの測定点座標を算出し、3次元メッシュ構造の一単位と対応するワークの位置を走査した回数に対する、算出した測定点が一単位に含まれる回数の比率が所定の閾値以上のときに、一単位は前記ワークの形状であるとして測定形状マップを作成する形状認識部(23)と、が設けられている。

Description

ワーク計測装置、衝突防止装置および工作機械
 本発明は、ワーク計測装置、衝突防止装置および工作機械、特にワークに対して3次元加工を行う際に用いて好適なワーク計測装置、衝突防止装置および工作機械に関する。
 一般に数値制御装置(以下、「NC」と表記する。)により工作機械を制御して加工を行うときには、工作機械の工具の移動を記述したNCプログラム(加工用NCデータ)のデバッグが行われている。つまり、事前に加工対象であるワークを、工作機械のテーブルに設置し、操作者がNCプログラムをステップごとに流して、NCプログラムの検証を行っている。
 この際、NCプログラムの不良や、操作者による誤操作など、といった人為的ミスにより、工具やラムなどの工作機械の一部がワークと接触して破損してしまう恐れがあった(例えば、特許文献1参照。)。
 特に、ワークの切削加工をしない工具の位置決め作業などでは、作業効率を上げるために動作速度を速く設定することが行われている。このような状態でNCプログラムのデバッグを行う場合、工作機械の一部がワークに接触しそうな時に、操作者の判断で瞬時に工作機械の主軸動作を停止することは困難であった。
 上述のようなワークとの接触による工作機械の破損を防止するため、様々な技術が提案されている。
 例えば、ワークと工具との接触を検出するセンサが知られており、このセンサを利用して工具と、ワークとの接触の有無を確認することが行われている。
 一方、ワークと工具等との衝突を回避するために、ワークとの衝突前に工具等を停止させる制御方法等も知られている。この制御方法を実施する場合には、事前にワークのサイズ・寸法・形状と、テーブル上でのワークの位置などのワーク形状の3次元データ(3D-CADデータ)を把握する必要があった。
 しかしながら、加工前のワーク形状の3次元データは、事前に把握できていないことが多く、ワークを計測するなどの方法により把握する必要があった。
 ワーク形状の3次元データを把握する方法として、非接触で計測する方法が知られている。例えば、立体物をデジタルデータ化するデジタイザが知られている(例えば、非特許文献1参照。)。
 非接触変位計を利用して加工条痕(切削痕)のような微細な表面形状を計測する技術も知られている(例えば、特許文献2および3参照。)。この変位計を工具の代わりにラムに取り付け、ワークを走査することにより、ワークの形状を高い精度で検出することができる。
 このようにして得られた3次元データの表現方法としては、3次元ビットマップ手法が知られている(例えば、特許文献4参照。)。
 さらに、上述のようにワークの検出装置を工具と同様に自動交換する技術も知られている(例えば、特許文献5参照。)。
特開2007-048210号公報 特開2004-012430号公報 特開2004-012431号公報 国際公開第02/023408号パンフレット 特開平4-089513号公報
"3-Dデジタイザ「Danaeシリーズ」の製品強化について"、15行目から16行目まで、[online]、2005年6月20日、[平成20年3月7日検索]、インターネット<URL:http://www.nec-eng.co.jp/press/050620press.html>
 上述のワークと工具との接触を検出するセンサを用いる方法では、接触を伴うため工具などの動作速度を上げられず効率が悪いという問題があった。さらに、ラムがワークに接触した場合など、ワークと接触する部位によっては、ワークとの接触が検出できないという問題があった。
 上述の非特許文献1に記載の技術では、ワークを設置する際に座標系を合わせる必要があり、計測に手間がかかるという問題があった。さらに、センサによってワークの形状が計測できない領域、つまり死角が発生するという問題があった。その他にも、価格が高いという問題があった。
 上述の特許文献2および3に記載の技術では、ワークと工具等との衝突回避に用いるには、得られる3次元形状のデータが詳細すぎるという問題があった。工作機械の動作軸を利用して、センサをワークの全ての面に対して走査させるため、3次元データを取得する効率が悪くなるという問題があった。ワークの形状に合わせてセンサを走査させる必要があるため、3次元データを取得する際に、ワークと工作機械の一部や、センサのケーブル等と、の干渉が発生するという問題があった。
 本発明は、上記の課題を解決するためになされたものであって、ワークと工作機械の一部との衝突を防止する際に用いるワーク形状の3次元データを容易に取得することができるワーク計測装置、衝突防止装置および工作機械を提供することを目的とする。
 上記目的を達成するために、本発明は、以下の手段を提供する。
 本発明の第1の態様に係るワーク計測装置は、加工対象であるワークを加工する工具が取り付けられる主軸に取り付けられ、非接触で前記ワークまでの距離を走査して測定する測定部と、空間を多面体状に分割して形成された3次元メッシュ構造を生成し、測定された前記ワークまでの距離情報に基づいて、前記ワークの測定点座標を算出し、前記3次元メッシュ構造の一単位と対応する前記ワークの位置を走査した回数に対する、前記算出した測定点が前記一単位に含まれる回数の比率が所定の閾値以上のときに、前記一単位は前記ワークの形状であるとして測定形状マップを作成する形状認識部と、が設けられている。
 上記第1の態様によれば、走査回数に対する一単位に測定点が含まれる回数の比率に基づいてワークの測定形状マップを作成するため、ワークの3次元データである測定形状マップの精度を確保することができる。
 つまり、走査回数に対する一単位に測定点が含まれる回数の比率に基づいてワークの測定形状マップを作成することにより、1回の走査で得られた距離情報などで測定形状マップを作成する場合と比較して、測定部の測定精度や、測定部からワークまでの距離などの影響を受けにくく、測定形状マップの精度が確保しやすい。
 さらに、測定精度の異なる測定部に交換する方法などと比較して、変更が容易なワークまでの距離を測定する走査の回数や閾値の値などを調整することにより、測定形状マップの精度を容易に調整することができる。
 一方、測定部を主軸に取り付けるため、他の部分に測定部を取り付ける場合と比較して、測定形状マップの精度確保が容易となる。
 つまり、測定部を、ワークの加工に用いられるため高い位置精度で制御される主軸に取り付けるため、測定部の配置位置が高い精度で把握される。その結果、上記主軸を備える工作機械などに対するワークの配置位置も高い精度で把握され、工作機械などに対する測定形状マップの位置精度の確保が容易となる。
 言い換えると、測定形状マップの作成と、工作機械などに対する測定形状マップの配置位置測定と、を同時に行うため、ワークの3次元設計データを測定形状マップとして使用する方法と比較して、工作機械などに対する測定形状マップの配置位置測定つまりキャリブレーションを別途行う必要がなく、測定形状マップの作成が容易となる。
 測定部がワークまでの距離を測定する地点を複数設定することができるため、ワークにおける未測定領域、つまり、測定部から見たワークにおける死角の発生を防止できる。
 上述のように測定部を主軸に取り付けるため、測定する地点を複数設定して、複数の地点の間で測定部を移動させても測定形状マップの精度は確保される。その上で、複数の地点において測定部からワークまでの距離を測定することで、ワークにおける未測定領域の発生が防止され、ワーク全体について測定することができる。
 さらに、主軸に取り付けた測定部からワークまでの距離を測定するため、例えば、ワークを載せるテーブルや、ワークをテーブルに固定する固定治具なども含めて、測定部からの距離が同時に測定される。そのため、テーブルや固定治具なども含まれた測定形状マップが作成される。この測定形状マップは、ワークの3次元設計データを測定形状マップとして使用する場合と比較して、テーブルや固定治具なども含まれているため、例えば、ワークと工作機械の一部との衝突の防止に適した測定形状マップとなる。
 上記第1の態様においては、前記一単位における一辺の寸法は、前記工具および前記主軸が前記ワークに接近して、前記ワークの加工に移行する地点と、前記ワークとの間の距離に基づいて設定されることが望ましい。
 上記第1の態様によれば、3次元メッシュ構造の一単位における一辺の寸法を、ワークに接近してきた工具がワークの加工に移行する地点と、ワークとの間の距離に基づいて設定するため、工具および主軸が高速で移動している期間におけるワークと工具等との接触が防止される。
 つまり、測定形状マップに基づいて工具および主軸の移動を制御することにより、上述の加工移行地点と測定形状マップとの間隔が確保される。
 さらに、測定形状マップにおける一単位における一辺の寸法を、上述の加工移行地点とワークとの距離に基づいて設定しているため、測定形状マップとワークとの間には、上述の距離未満の隙間が存在する。そのため、実際の加工移行地点とワークとの距離は、上述の間隔および上述の隙間の和となり、工具および主軸が高速で移動している期間におけるワークと工具等との接触が防止される。
 上記第1の態様においては、前記測定部には、前記ワークまでの距離を走査して測定するセンサヘッドと、該センサヘッドにより測定された距離情報を送信する送信部と、前記センサヘッドおよび前記送信部に電力を供給するバッテリと、が設けられ、さらに、前記送信部から送信された前記距離情報を受信し、前記形状認識部に受信した前記距離情報を出力する受信部と、が設けられていることが望ましい。
 上記第1の態様によれば、測定部は、電力の供給や距離情報の送信などを行う配線などを用いることなくワークまでの距離の測定を行い、測定した距離情報を形状認識部に出力することができる。つまり、センサヘッドは、バッテリから供給される電力を用いてワークまでの距離を測定し、送信部は、受信部を介して測定により得られた距離情報を形状認識部に送信するため、電力の供給や距離情報の送信などを行う配線などを用いる必要がない。
 そのため、主軸への測定部の取り付けや取り外しが容易となり、例えば、オートツールチェンジャなどの自動交換装置により測定部の交換を行うことができる。
 さらに、測定部と形状認識部との間を接続する配線等が不要なため、配線等とワークとの干渉を防止できる。
 上記第1の態様においては、前記測定部には、前記主軸を介して電力の供給を受けるとともに、前記主軸を介して前記測定情報を前記形状認識部に出力する取付部が設けられていることが望ましい。
 上記第1の態様によれば、測定部は、電力の供給や距離情報の送信などを行う配線などを用いることなくワークまでの距離の測定を行い、測定した距離情報を形状認識部に出力することができる。つまり、測定部は、主軸および取付部を介して電力の供給を受けてワークまでの距離を測定し、測定により得られた距離情報は主軸および取付部を介して形状認識部に送信されるため、電力の供給や距離情報の送信などを行う配線などを別途設ける必要がない。
 そのため、測定部と形状認識部との間を接続する配線等が不要なため、配線等とワークとの干渉を防止できる。
 本発明の第2の態様に係る衝突防止装置は、上記本発明のワーク計測装置と、少なくとも前記主軸または前記工具と前記測定形状マップとの間の干渉を判断する判断部と、該判断部の判断結果に基づいて、前記主軸の移動を制御する制御部と、が設けられている。
 本発明の第2の態様によれば、上記本発明のワーク計測装置により作成された測定形状マップに基づいて、少なくとも主軸または工具とワークとの間の衝突を防止できる。
 つまり、ワークよりも大きな測定形状マップと、主軸等との間の干渉を判断することにより、測定形状マップよりも小さなワークと主軸等との衝突が確実に防止される。
 本発明の第3の態様に係る工作機械は、加工対象であるワークが設置されるテーブルと、前記ワークを加工する工具が取り付けられる主軸と、上記本発明の衝突防止装置と、が設けられている。
 上記第3の態様によれば、上記本発明のワーク計測装置により作成された測定形状マップに基づいて、少なくとも主軸または工具と、ワークやテーブル等との間の衝突を防止できる。
 つまり、ワークおよびテーブル等よりも大きな測定形状マップと、主軸等との間の干渉を判断することにより、測定形状マップよりも小さなワークおよびテーブル等と主軸等との衝突が確実に防止される。
 本発明のワーク計測装置、衝突防止装置および工作機械によれば、走査回数に対する一単位に測定点が含まれる回数の比率に基づいてワークの測定形状マップを作成するため、ワークと工作機械の一部との衝突を防止する際に用いるワーク形状の3次元データを容易に取得することができるという効果を奏する。
本発明の第1の実施形態に係る工作機械の全体構成を説明する模式図である。 図1の工作機械における制御部を説明するブロック図である。 図1の測定部およびラムの構成を説明する部分拡大図である。 測定形状マップの作成方法を説明するフローチャートである。 測定部からワークまでの距離測定を説明する模式図である。 形状認識部により定義された測定形状マップの形状を説明する図である。 本発明の第2の実施形態の工作機械の構成を説明する全体図である。 図7の測定部の構成を説明するブロック図である。 図8の工作機械制御部の構成を説明するブロック図である。 本発明の第3の実施形態の工作機械の構成を説明する全体図である。
〔第1の実施形態〕
 以下、本発明の第1の実施形態に係る工作機械ついて図1から図5を参照して説明する。
 図1は、本実施形態に係る工作機械の全体構成を説明する模式図である。図2は、図1の工作機械における制御部を説明するブロック図である。
 本実施形態の工作機械1は、ワークW等に基づいて測定形状マップMPを作成するワーク計測装置2、および、工作機械1のラム13や工具等とワークW等との衝突を防止する衝突防止装置3を備えるとともに、加工対象であるワークWを5方向から加工する五面加工機であって、NCによって動作が制御されるものである。
 工作機械1には、図1および図2に示すように、X軸方向に移動するテーブル11と、Y軸方向に移動するサドル12と、Z軸方向に移動するラム(主軸)13と、ラム13に取り付けられワークWまでの距離を測定する測定部15と、テーブル11,サドル12およびラム13の移動をNC制御する工作機械制御部16と、が設けられている。
 テーブル11はワークWが固定される台であって、図1に示すように、X軸方向に沿って移動可能に配置されたものである。テーブル11は、図2に示すように、工作機械制御部16の移動制御部26によりX軸方向への移動が制御されている。
 サドル12は、図1に示すように、ラム13が配置されるものであって、門型に形成されテーブル11を跨いで配置された支持部14のY軸方向に沿って延びる梁部14Aに配置され、Y軸方向に沿って移動可能とされたものである。サドル12は、図2に示すように、移動制御部26によりY軸方向への移動が制御されている。
 ラム13は、ワークWの形状測定時には、図1に示すように、テーブル11側の端部に測定部15が取り付けられ、ワークWの切削加工時には工具が取り付けられるものである。さらに、ラム13はサドル12に配置され、Z軸方向に沿って移動可能とされたものである。ラム13は、図2に示すように、移動制御部26によりZ軸方向への移動が制御されている。
 図3は、図1の測定部およびラムの構成を説明する部分拡大図である。
 測定部15は、ワークWの測定形状マップMPを作成する際に使用されるレーザ距離センサであって、図1および図3に示すように、ラム13におけるテーブル11側の端部に取り付けられるものである。
 測定部15は、図3に示すように、距離測定に用いるレーザ光の出射角θを変更して2次元スキャン(走査)を行うものである。さらに、上述のラム13を中心軸線Lまわりに回転させることにより、測定部15により3次元スキャンが行われる。
 測定部15により計測されたワークWやテーブル11等から測定部15までの距離情報は、図2に示すように、形状認識部23に入力されている。
 工作機械制御部16は、ワークWの切削加工前にワークWの測定形状マップMPを作成し、ワークWを切削する工具の移動を記述したNCプログラムのデバッグ時には、作成した測定形状マップMPに基づいてラム13や工具とワークWとの衝突を防止し、ワークWの切削加工時には、テーブル11、サドル12およびラム13の移動を制御するものである。
 工作機械制御部16には、図2に示すように、ワークWの加工を行う際の工具の移動を制御する信号を生成するプログラム記憶部21およびプログラム解釈部22と、ワークWの測定形状マップMPを作成する形状認識部23と、主軸に取り付けられた工具の形状を記憶する形状記憶部24と、干渉判断部(判断部)25と、テーブル11,サドル12およびラム13の移動を制御する移動制御部(制御部)26と、が設けられている。
 ここで、ワーク計測装置2は測定部15および形状認識部23から構成され、衝突防止装置3はワーク計測装置2、干渉判断部25および移動制御部26から構成されている。
 プログラム記憶部21は、ワークWの切削加工を行う工具の移動経路を記述したNCプログラムを記憶するものである。
 プログラム記憶部21は、図2に示すように、プログラム解釈部22と接続され、プログラム記憶部21に記憶されたNCプログラムはプログラム解釈部22に出力されている。
 プログラム解釈部22は、NCプログラムに基づいて工具の移動量および移動速度に関する情報を作成するものである。
 プログラム解釈部22は、図2に示すように、干渉判断部25および移動制御部26と接続され、プログラム解釈部22により作成された工具等の移動量等に関する情報は干渉判断部25および移動制御部26に出力されている。
 形状認識部23は、NCプログラムのデバッグを行う際に、ラム13や工具等と、ワークWとの衝突防止に用いられる測定形状マップMPを作成するものである。
 形状認識部23は、図2に示すように、測定部15および干渉判断部25と接続されている。形状認識部23には、測定部15により測定された距離情報が入力され、形状認識部23から干渉判断部25に測定形状マップMPの情報が出力されている。
 なお、形状認識部23における測定形状マップMPの作成方法については後述する。
 形状記憶部24は、ワークWに接近した際に衝突する可能性のあるラム13や、ラム13に取り付けられる工具の形状等を記憶するものである。
 形状記憶部24は、図2に示すように、干渉判断部25と接続されている。形状記憶部24に記憶されたラム13等の形状は干渉判断部25に出力されている。
 干渉判断部25は、NCプログラムのデバッグ時に、測定形状マップMPとラム13等との干渉を判断することにより、ラム13や工具等とワークWとの衝突を防止するものである。
 干渉判断部25は、図2に示すように、形状認識部23、形状記憶部24、プログラム解釈部22および移動制御部26と接続されている。干渉判断部25には、形状認識部23から測定形状マップMPが入力され、形状記憶部24からラム13等の形状が入力され、プログラム解釈部22から工具等の移動量等に関する情報が入力されている。一方、干渉判断部25における干渉の有無の判断結果は、移動制御部26に出力されている。
 移動制御部26は、テーブル11、サドル12およびラム13の移動を制御することによりラム13の端部に取り付けられた工具等の移動量や移動速度を制御するものである。さらに、NCプログラムのデバッグ時に、測定形状マップMPとラム13等とが干渉すると判断された場合には、テーブル11、サドル12およびラム13の移動を停止させるものである。
 移動制御部26は、図2に示すように、プログラム解釈部22および干渉判断部25と接続されている。移動制御部26には、プログラム解釈部22から工具等の移動量等の情報が入力され、干渉判断部25から測定形状マップMPとラム13等との干渉の有無の判断結果が入力されている。一方、移動制御部26において作成されたテーブル11、サドル12およびラム13の移動を制御する制御信号は、それぞれテーブル11、サドル12およびラム13に出力されている。
 次に、上記の構成からなる工作機械1におけるワークWの加工方法について説明する。
 工作機械1によりワークWを加工する場合には、まず、テーブル11の上に固定治具Jを用いてワークWが固定される(図5参照。)。
 その後、図2に示すように、プログラム記憶部21からNCプログラムが1ブロック(1つの移動単位、例えば1線分)単位でプログラム解釈部22に出力される。
 プログラム解釈部22は、NCプログラムから工具等の移動量および移動速度に関する情報を作成し、移動制御部26に出力する。移動制御部26は、入力された情報をテーブル11、サドル12およびラム13の移動量および移動速度に分解し、それぞれテーブル11、サドル12およびラム13の移動量および移動速度を制御する制御信号を出力する。
 移動制御部26から制御信号が入力されたテーブル11、サドル12およびラム13は、それぞれが備えるモータにより入力された制御信号に基づいて駆動され、ワークWの加工が行われる。
 次に、本実施形態の特長であるワークWの測定形状マップMPの作成方法、および、作成された測定形状マップMPを用いたワークWと、工作機械1の一部との衝突の防止方法について説明する。
 ここで説明するワークWの測定形状マップMPの作成、および、衝突防止制御は、例えば、上述のワークWの加工を行う前段階におけるNCプログラムのデバッグ、つまり、ワークWとラム13や工具との干渉の有無のチェックの際に行われている。
 図4は、測定形状マップの作成方法を説明するフローチャートである。図5は、測定部からワークまでの距離測定を説明する模式図である。
 まず、図5に示すように、テーブル11の上にワークWが設置される(ステップS1)。このとき、ワークWは固定治具Jによりテーブル11に固定される。
 その後、図3に示すように、ラム13の端部に測定部15が取り付けられる(ステップS2)。測定部15と工作機制御部16の形状認識部23とは、例えばケーブルなどにより、測定部15への電力の供給や、測定部15により測定された距離情報を形状認識部23へ入力可能に接続されている(図2参照。)。
 測定部15がラム13に取り付けられると、図5に示すように、測定部15は第1の測定位置P1に移動し、測定部15からワークWまでの距離が測定される(ステップS3)。
 測定部15は、図3に示すように、スキャン角度θを変えながらレーザ光を出射し、測定部15からワークWまでの距離rを測定する。言い換えると2次元スキャンを行う。このとき同時に、測定部15からテーブル11までの距離、および、測定部15から固定治具Jまでの距離も測定される。さらに、ラム13を中心軸線L周りに回転させて、測定部15によるレーザ光のスキャン方向を変えて再び2次元スキャンを行う。これにより、ワークWの3次元スキャンが行われる。
 第1の測定位置P1における3次元スキャンが終了すると、次に、測定部15を第2の測定位置P2に移動させて、再びワークWの3次元スキャンを行う。この第2の測定位置P2は、測定部15が第1の測定位置P1からワークWを3次元スキャンした際に発生した死角BA、言い換えると未計測領域を測定できる位置である。
 これらの測定位置としては、例えば、ワークWの上方(Z軸正方向)、前方(X軸正方向)、後方(X軸負方向)、両側方(Y軸正方向および負方向)の5箇所を挙げることができる。なお、測定位置の数および場所は、ワークWの配置位置や形状、測定部15から出射されるレーザ光の反射率などにより変わるものであるため、特に限定するものではない。
 測定部15により測定された距離r、および、スキャン角度θは、図2に示すように、形状認識部23に入力される。さらに、距離rを測定した時点でのラム13の位置(Xr,Yr,Zr)、および、ラム13の回転角度φも形状認識部23に入力される。
 形状認識部23では、これら入力された情報に基づき、距離rが測定されたワークWの測定点の座標(Xm,Ym,Zm)が以下の計算式に基づいて算出される(ステップS4)。
  Xm=Xr+r・sinθ
  Ym=Yr+r・sinφ
  Zm=Zr-r・cosφ・cosθ
 図6は、形状認識部により定義された測定形状マップの形状を説明する図である。
 形状認識部23は計測空間を六面体状の3次元メッシュ領域に分割し、つまり、3次元メッシュ構造を生成し、上述の測定点の座標(Xm,Ym,Zm)が含まれる3次元メッシュ構造の一単位(以下、「ボクセル」と表記する。)に投票し、計測形状マップMPを定義する(ステップS5)。
 具体的には、測定部15による2次元スキャンが行われるごとに、測定点の座標が含まれるボクセルに投票、例えば「1」が登録される。この処理を全ての2次スキャンについて行う。
 その結果、各ボクセルには、最も多くて2次元スキャンを行った回数だけ投票され、最も少ない場合には1回も投票されない。
 形状認識部23は、2次スキャンを行った総数に対する投票回数に応じて、各ボクセル内にワークWが含まれるか否かを判断する。つまり、2次スキャンを行った総数に対する投票回数の比率が所定の閾値よりも高い場合には、そのボクセル内にワークWが含まれ、所定の閾値よりも低い場合には、そのボクセル内にワークWが含まれていないと判断する。
 なお、所定の閾値の値は、測定部15の測定精度や、ワークWの反射率などに応じて変化するものであり、特に限定するものではない。
 一方、上述のボクセルの一辺の寸法は、工作機械1の加工時に、工具をワークWに接近させる接近モードから、工具によるワークWの切削加工を行う加工モードに切り替わるときの工具やラム13など工作機械1の部位と、ワークWとの距離に基づいて設定される。
 この距離は、工作機械1の性能や用途や、ワークの仕様や、操作者の作業性や、計測の処理速度等の項目を総合的に勘案して設定される。このため、ボクセルの一辺の寸法としては、1mm程度から40mm程度の値を例示することができるが、上記項目を考慮することにより変動する値であるため、特に限定するものではない。
 形状認識部23により測定形状マップMPが作成されると、次に、NCプログラムのデバッグ作業が行われる。
 まず、ラム13の端部にワークWの加工に用いられるエンドミルなどの工具が取り付けられる。
 そして、図2に示すように、操作者の指示によりプログラム記憶部21から1ブロックずつNCプログラムがプログラム解釈部22に出力され、プログラム解釈部22から工具等の移動量等に情報が干渉判断部25に出力される。
 干渉判断部25では、入力された工具等の移動量等に関する情報と、形状認識部23から入力された測定形状マップMPと、形状記憶部24から入力された工具およびラム13の形状に基づいて、干渉の有無が判断される。
 干渉判断部25に入力される工具およびラム13の形状は、予め形状記憶部24に記憶されたものであって、デバッグ作業等を行う際に工作機械1に取り付けられている工具およびラム13の形状である。
 干渉判断部25は、工具等の移動量等に関する情報に基づいて工具およびラム13を移動させた際に、工具またはラム13が測定形状マップMPと干渉するか否かを判断し、判断結果を移動制御部26に出力する。
 干渉判断部25において干渉が発生すると判断された場合には、移動制御部26は、干渉が発生するNCプログラムの実行を中止し、工具またはラム13とワークWとの衝突が防止される。
 一方、干渉判断部25において干渉が発生しないと判断された場合には、移動制御部26は、入力された工具等の移動量等に関する情報に基づいてテーブル11、サドル12およびラム13に制御信号を出力する。
 上記の構成によれば、2次元スキャン回数に対するボクセルに測定点が含まれる回数の比率に基づいてワークWの測定形状マップMPを作成するため、ワークWの3次元データである測定形状マップMPの精度を確保することができる。そのため、ワークWと工作機械1のラム13等との衝突を防止する際に用いるワークW形状の3次元データを容易に取得することができる。
 つまり、2次元スキャン回数に対するボクセルに測定点が含まれる回数の比率に基づいてワークWの測定形状マップMPを作成することにより、1回の走査で得られた距離情報などで測定形状マップMPを作成する場合と比較して、測定部15の測定精度や、測定部15からワークWまでの距離rなどの影響を受けにくく、測定形状マップMPの精度を確保できる。
 さらに、測定精度の異なる測定部15に交換する方法などと比較して、変更が容易な2次元スキャンの回数や閾値の値などを調整することにより、測定形状マップMPの精度を容易に調整できる。
 一方、測定部15をラム13に取り付けるため、他の部分に測定部15を取り付ける場合と比較して、測定形状マップMPの精度を容易に確保できる。
 つまり、測定部15を、ワークWの加工に用いられるため高い位置精度で制御されるラム13に取り付けるため、測定部15の配置位置が高い精度で把握される。その結果、ラム13を備える工作機械1に対するワークWの配置位置も高い精度で把握され、工作機械1に対する測定形状マップMPの位置精度を容易に確保できる。
 言い換えると、測定形状マップMPの作成と、工作機械1に対する測定形状マップMPの配置位置測定と、を同時に行うため、ワークWの3次元設計データを測定形状マップMPとして使用する方法と比較して、工作機械1に対する測定形状マップMPの配置位置測定つまりキャリブレーションを別途行う必要がなく、測定形状マップMPを容易に作成できる。
 測定部15がワークWまでの距離rを測定する地点を複数設定することにより、ワークWにおける未測定領域、つまり、測定部から見たワークWにおける死角BAの発生を防止できる。
 測定部15をラム13に取り付けるため、測定する地点を複数設定して、複数の地点の間で測定部15を移動させても測定形状マップMPの精度は確保される。その上で、複数の地点P1,P2において測定部15からワークWまでの距離rを測定することで、ワークWにおける死角BAの発生が防止され、ワークWの全体について測定することができる。
 さらに、ラム13に取り付けた測定部15からワークWまでの距離rを測定するため、ワークWを載せるテーブル11や、ワークWをテーブルに固定する固定治具Jなども含めて、測定部15からの距離が同時に測定される。そのため、テーブル11や固定治具Jなども含まれた測定形状マップMPが作成される。この測定形状マップMPは、ワークWの3次元設計データを測定形状マップMPとして使用する場合と比較して、テーブル11や固定治具Jなども含まれているため、ワークWと工作機械1のラム13等との衝突の防止に適した測定形状マップMPとなる。
 ボクセルにおける一辺の寸法を、ワークWに接近してきた工具がワークWの加工に移行する地点と、ワークWとの間の距離に基づいて設定するため、工具およびラム13が高速で移動している期間におけるワークWと工具等との接触を防止できる。
 つまり、測定形状マップMPに基づいて工具およびラム13の移動を制御することにより、上述の加工移行地点と測定形状マップMPとの間隔が確保される。
 さらに、測定形状マップMPのボクセルにおける一辺の寸法を、上述の加工移行地点とワークWとの距離に基づいて設定しているため、測定形状マップMPとワークWとの間には、上述の距離未満の隙間が存在する。そのため、実際の加工移行地点とワークWとの距離は、上述の間隔および上述の隙間の和となり、工具およびラム13が高速で移動している期間におけるワークWと工具等との接触を防止できる。
〔第2の実施形態〕
 次に、本発明の第2の実施形態について図7から図9を参照して説明する。
 本実施形態の工作機械の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、測定部および工作機械制御部の構成が異なっている。よって、本実施形態においては、図7から図9を用いて測定部および工作機械制御部の周辺のみを説明し、同一の構成要素等の説明を省略する。
 図7は、本実施形態の工作機械の構成を説明する全体図である。図8は、図7の測定部の構成を説明するブロック図である。
 なお、第1の実施形態と同一の構成要素には同一の符号を付して、その説明を省略する。
 工作機械101には、図7および図8に示すように、X軸方向に移動するテーブル11と、Y軸方向に移動するサドル12と、Z軸方向に移動するラム13と、ラム13に取り付けられワークWまでの距離を測定する測定部115と、テーブル11,サドル12およびラム13の移動をNC制御する工作機械制御部116と、が設けられている。
 測定部115は、ワークWの測定形状マップMPを作成する際に使用されるレーザ距離センサであって、図7に示すように、ラム13におけるテーブル11側の端部に取り付けられるものである。
 さらに、測定部115は、ワークWを加工する工具等と同様に、工作機械101のオートツールチェンジャによりラム13の端部に着脱されるものである。
 測定部115には、図8に示すように、センサヘッド121と、センサ制御部122と、送信部123と、バッテリ124と、が設けられている。
 センサヘッド121は、距離測定に用いるレーザ光の出射角θを変更して2次元スキャン(走査)を行うものである。
 センサヘッド121は、図8に示すように、センサ制御部122およびバッテリ124と接続されている。センサヘッド121には、センサ制御部122から制御信号が入力されているとともに、バッテリ124から電力が供給されている。一方、センサヘッド121により計測された距離情報は、センサ制御部122に出力されている。
 センサ制御部122は、センサヘッド121からレーザ光の出射およびスキャン角度θを制御するものである。
 センサ制御部122は、図8に示すように、センサヘッド121,送信部123およびバッテリ124と接続されている。センサ制御部122には、センサヘッド121から測定された距離情報が入力され、バッテリ124から電力が供給されている。一方、センサ制御部122からセンサヘッド121に制御信号が出力され、送信部123に距離情報が出力されている。
 送信部123は、センサヘッド121により測定された距離情報を工作機械制御部116の受信部131に無線送信するものである。
 送信部123は、図8に示すように、センサ制御部122およびバッテリ124と接続されている。送信部123には、センサ制御部122から距離情報が入力され、バッテリ124から電力が供給されている。送信部123に入力された距離情報は、無線により受信部131に送信されている。
 バッテリ124は、センサヘッド121、センサ制御部122および送信部123に電力を供給するものである。バッテリ124は、図8に示すように、センサヘッド121、センサ制御部122および送信部123と電力が供給可能に接続されている。
 工作機械制御部116は、ワークWの切削加工前にワークWの測定形状マップMPを作成し、ワークWを切削する工具の移動を記述したNCプログラムのデバッグ時には、作成した測定形状マップMPに基づいてラム13や工具とワークWとの衝突を防止し、ワークWの切削加工時には、テーブル11、サドル12およびラム13の移動を制御するものである。
 図9は、図8の工作機械制御部の構成を説明するブロック図である。
 工作機械制御部116には、図9に示すように、測定部115から送信された距離情報を受信する受信部131と、プログラム記憶部21およびプログラム解釈部22と、形状認識部23と、形状記憶部24と、干渉判断部25と、移動制御部26と、が設けられている。
 受信部131は、測定部115の送信部123から無線送信された距離情報を受信するものである。
 受信部131は、図9に示すように、形状認識部23と接続され、受信した距離情報を形状認識部23に出力するものである。
 次に、本実施形態の送信部123および工作機械制御部116の作用について説明する。
 本実施形態に係る測定部115は、ワークWを加工する工具と同様にオートツールチェンジャによりラム13に自動的に着脱される。
 測定部115からワークWまでの距離を測定する際には、センサ制御部122からセンサヘッド121に制御信号が出力され、センサヘッド121から測定用レーザが出力される。センサヘッド121により測定された距離情報は、センサヘッド121からセンサ制御部122に出力され、センサ制御部122から送信部123に出力される。
 送信部123は、図8および図9に示すように、入力された距離情報を無線により工作機械制御部116に送信する。無線で送信された距離情報は受信部131に受信され、受信部131から形状認識部23に出力される。
 以後の作用は第1の実施形態と同様であるので、その説明を省略する。
 上記の構成によれば、測定部115は、電力の供給や距離情報の送信などを行う配線などを用いることなくワークWまでの距離の測定を行い、測定した距離情報を形状認識部23に出力することができる。つまり、センサヘッド121は、バッテリ124から供給される電力を用いてワークWまでの距離を測定し、送信部123は、受信部131を介して測定により得られた距離情報を形状認識部に送信するため、電力の供給や距離情報の送信などを行う配線などを用いる必要がない。
 そのため、ラム13への測定部115の取り付けや取り外しが容易となり、例えば、オートツールチェンジャなどの自動交換装置により測定部115の交換を行うことができる。
 さらに、測定部115と形状認識部23との間を接続する配線等が不要なため、配線等とワークWとの干渉を防止できる。
〔第3の実施形態〕
 次に、本発明の第3の実施形態について図10を参照して説明する。
 本実施形態の加工機械の基本構成は、第1の実施形態と同様であるが、第1の実施形態とは、ラムと測定部と取り付け方法が異なっている。よって、本実施形態においては、図10を用いてラムおよび測定部周辺のみを説明し、同一の構成要素等の説明を省略する。
 図10は、本実施形態の工作機械の構成を説明する全体図である。
 なお、第1の実施形態と同一の構成要素には同一の符号を付して、その説明を省略する。
 工作機械201には、図10に示すように、X軸方向に移動するテーブル11と、Y軸方向に移動するサドル12と、Z軸方向に移動するラム13と、ラム13に取り付けられる測定ユニット215と、が設けられている。
 測定ユニット215は、ワークWまでの距離を測定する測定部15と、ラム13に取り付けられる取付部216と、が設けられている。
 取付部216は測定部15が設けられ、ラム13に着脱可能に構成されたアタッチメントである。
 取付部216には、ラム13との間で電力の供給や、制御信号や距離情報などの信号が伝送されるインターフェイス(図示せず)が設けられている。
 本実施形態では、ラム13の端部からZ軸方向に延びるとともに、中心軸線がZ軸に沿う方向に測定部15を支持する構成の取付部216に適用し説明するが、この構成に限られることなく、例えば、中心軸線がX-Y平面と平行となるように測定部15を支持する構成や、測定部15の中心軸線の方向を任意に制御できる構成であってもよく、特に限定するものではない。
 測定ユニット215は、第1および第2の実施形態と同様に、NCプログラムのデバッグなどを行う際に、ラム13に取り付けられる。
 取り付け作業は、ワークWの加工に用いられるアタッチメントの交換作業に用いられる交換装置(図示せず)を用いて、加工用アタッチメントと同様に自動的に行われる。ワークWの加工時などのように、測定ユニット215が使用されない場合には、加工用アタッチメントと同様に、工作機械201に設けられた自動交換用収納箱(図示せず)に収納されている。
 上記の構成によれば、測定部15は、電力の供給や距離情報の送信などを行う配線などを用いることなくワークWまでの距離の測定を行い、測定した距離情報を形状認識部23に出力することができる。つまり、測定部15は、ラム13および取付部216を介して電力の供給を受けてワークWまでの距離を測定し、測定により得られた距離情報はラム13および取付部216を介して形状認識部23に送信されるため、電力の供給や距離情報の送信などを行う配線などを別途設ける必要がない。
 そのため、測定部15と形状認識部23との間を接続する配線等が不要なため、配線等とワークWとの干渉を防止できる。
 1,101 工作機械
 2,102 ワーク計測装置
 3,103 衝突防止装置
 13 ラム(主軸)
 15,115 測定部
 23 形状認識部
 25 干渉判断部(判断部)
 26 移動制御部(制御部)
 121 センサヘッド
 123 送信部
 124 バッテリ
 216 取付部
 W ワーク
 MP 測定形状マップ

Claims (6)

  1.  加工対象であるワークを加工する工具が取り付けられる主軸に取り付けられ、非接触で前記ワークまでの距離を走査して測定する測定部と、
     空間を多面体状に分割して形成された3次元メッシュ構造を生成し、
     測定された前記ワークまでの距離情報に基づいて、前記ワークの測定点座標を算出し、
     前記3次元メッシュ構造の一単位と対応する前記ワークの位置を走査した回数に対する、前記算出した測定点が前記一単位に含まれる回数の比率が所定の閾値以上のときに、前記一単位は前記ワークの形状であるとして測定形状マップを作成する形状認識部と、
    が設けられているワーク計測装置。
  2.  前記一単位における一辺の寸法は、前記工具および前記主軸が前記ワークに接近して、前記ワークの加工に移行する地点と、前記ワークとの間の距離に基づいて設定される請求項1記載のワーク計測装置。
  3.  前記測定部には、前記ワークまでの距離を走査して測定するセンサヘッドと、該センサヘッドにより測定された距離情報を送信する送信部と、前記センサヘッドおよび前記送信部に電力を供給するバッテリと、が設けられ、
     さらに、前記送信部から送信された前記距離情報を受信し、前記形状認識部に受信した前記距離情報を出力する受信部と、が設けられている請求項1または2に記載のワーク計測装置。
  4.  前記測定部には、前記主軸を介して電力の供給を受けるとともに、前記主軸を介して前記測定情報を前記形状認識部に出力する取付部が設けられている請求項1または2に記載のワーク計測装置。
  5.  請求項1から請求項4に記載のワーク計測装置と、
     少なくとも前記主軸または前記工具と前記測定形状マップとの間の干渉を判断する判断部と、
     該判断部の判断結果に基づいて、前記主軸の移動を制御する制御部と、
    が設けられている衝突防止装置。
  6.  加工対象であるワークが設置されるテーブルと、
     前記ワークを加工する工具が取り付けられる主軸と、
     請求項5に記載の衝突防止装置と、
    が設けられている工作機械。
PCT/JP2009/069088 2009-11-10 2009-11-10 ワーク計測装置、衝突防止装置および工作機械 WO2011058618A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020117029414A KR101327571B1 (ko) 2009-11-10 2009-11-10 워크 계측 장치, 충돌 방지 장치 및 공작기계
US13/376,803 US8805570B2 (en) 2009-11-10 2009-11-10 Workpiece measuring device, collision preventing device, and machine tool
EP09851252A EP2500688A1 (en) 2009-11-10 2009-11-10 Workpiece measuring device, collision preventing device, and machine tool
PCT/JP2009/069088 WO2011058618A1 (ja) 2009-11-10 2009-11-10 ワーク計測装置、衝突防止装置および工作機械
CN200980160005.8A CN102472617B (zh) 2009-11-10 2009-11-10 工件测量装置、防止碰撞装置和机床

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/069088 WO2011058618A1 (ja) 2009-11-10 2009-11-10 ワーク計測装置、衝突防止装置および工作機械

Publications (1)

Publication Number Publication Date
WO2011058618A1 true WO2011058618A1 (ja) 2011-05-19

Family

ID=43991297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069088 WO2011058618A1 (ja) 2009-11-10 2009-11-10 ワーク計測装置、衝突防止装置および工作機械

Country Status (5)

Country Link
US (1) US8805570B2 (ja)
EP (1) EP2500688A1 (ja)
KR (1) KR101327571B1 (ja)
CN (1) CN102472617B (ja)
WO (1) WO2011058618A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111958323A (zh) * 2020-07-31 2020-11-20 沈阳马卡智工科技有限公司 一种基于工件装夹的刀具路线规划及自动避让控制系统

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101535305B1 (ko) * 2009-10-09 2015-07-08 두산인프라코어 주식회사 선삭 가공 시스템에서의 공구 경로 생성 방법
CN102445147A (zh) * 2010-10-06 2012-05-09 鸿富锦精密工业(深圳)有限公司 影像量测机台测头模拟系统及方法
WO2012159123A2 (en) 2011-05-19 2012-11-22 Alec Rivers Automatically guided tools
EP2590142B1 (en) 2011-11-03 2018-03-14 Dassault Systèmes Designing a modeled volume represented by dexels
EP2590143B1 (en) * 2011-11-03 2018-10-24 Dassault Systèmes Simulation of the machining of a workpiece
EP2590144B1 (en) 2011-11-03 2018-10-24 Dassault Systèmes Designing a modeled volume represented by dexels
EP2852868B1 (en) 2012-04-26 2021-12-01 Shaper Tools, Inc. Systems and methods for performing a task on a material, or locating the position of a device relative to the surface of the material
CN103377300A (zh) * 2012-04-27 2013-10-30 鸿富锦精密工业(深圳)有限公司 探针校准路径模拟系统及方法
JP6175249B2 (ja) * 2013-02-26 2017-08-02 三菱重工工作機械株式会社 工作機械の衝突回避システム
JP6144596B2 (ja) * 2013-09-30 2017-06-07 Dmg森精機株式会社 表示装置
CN104570940A (zh) * 2013-10-24 2015-04-29 鸿富锦精密工业(深圳)有限公司 Cnc加工调机系统及方法
JP6280805B2 (ja) * 2014-04-30 2018-02-14 平田機工株式会社 ワーク形状測定システム及び制御方法
JP5977290B2 (ja) * 2014-07-30 2016-08-24 ファナック株式会社 誤加工防止機能を備えたワイヤ放電加工機
JP6062915B2 (ja) * 2014-12-26 2017-01-18 ファナック株式会社 工作機械への切削液供給システム
EP3040797B1 (en) 2014-12-31 2020-10-28 Dassault Systèmes Simulating the machining of a workpiece
JP6162745B2 (ja) * 2015-05-13 2017-07-12 ファナック株式会社 加工開始穴を使用したワーク設置誤差補正機能を備えた数値制御装置
WO2016183390A1 (en) 2015-05-13 2016-11-17 Taktia Llc Systems, methods and apparatus for guided tools
CN104848829B (zh) * 2015-05-21 2018-07-24 上海神机软件有限公司 组合模板检测系统及方法
JP2017039189A (ja) * 2015-08-20 2017-02-23 株式会社東芝 配置検出装置およびピッキング装置
DE102015119806A1 (de) * 2015-11-16 2017-05-18 Grob-Werke Gmbh & Co. Kg Verfahren zur Darstellung der Bearbeitung in einer Werkzeugmaschine
CN105843158B (zh) * 2016-05-11 2019-02-12 惠州市德赛电池有限公司 一种基于激光形状测量传感器的定位方法和装置
CN106041644A (zh) * 2016-08-07 2016-10-26 张民胜 一种带有碰撞检测器的数控机床
AU2017313211B2 (en) 2016-08-19 2023-01-12 Shaper Tools, Inc. Systems, methods and apparatus for sharing tool fabrication and design data
CN107116554B (zh) * 2017-05-25 2021-05-04 北京理工大学 一种仿生灵巧手确定目标物体形状和位置的装置与方法
CN111629862B (zh) * 2017-12-25 2023-04-04 株式会社尼康 加工系统、形状测定探针、形状算出装置及存储介质
WO2020070884A1 (ja) * 2018-10-05 2020-04-09 三菱電機株式会社 工作装置
JP7272848B2 (ja) * 2019-04-09 2023-05-12 株式会社Ihi 荷揚げ装置
CN113551613A (zh) * 2021-06-24 2021-10-26 储信(北京)科技发展有限公司 一种区域内指定物品最优摆放位置的方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489513A (ja) 1990-07-31 1992-03-23 Mitsubishi Electric Corp 位置検出装置及びその検出動作制御方式
JP3170345B2 (ja) * 1992-05-13 2001-05-28 日本電信電話株式会社 3次元情報抽出方法
WO2002023408A1 (fr) 2000-09-18 2002-03-21 Hitachi, Ltd. Procede de description de profiles pleins et dispositif associe et systeme d'aide a la conception de profiles pleins les utilisant
JP2004012430A (ja) 2002-06-11 2004-01-15 Heizaburo Nakagawa 非接触測定方法及び測定装置
JP2004012431A (ja) 2002-06-11 2004-01-15 Heizaburo Nakagawa 非接触測定方法及び測定装置
JP3571564B2 (ja) * 1999-02-15 2004-09-29 独立行政法人 科学技術振興機構 表示方法及び表示プログラムを記録したコンピュータ読み取り可能な記録媒体及び表示装置
JP2006102923A (ja) * 2004-10-08 2006-04-20 Nakamura Tome Precision Ind Co Ltd 工作機械稼働部の衝突防止方法
JP2007048210A (ja) 2005-08-12 2007-02-22 Nakamura Tome Precision Ind Co Ltd 工作機械稼動部の衝突防止方法
JP2009258058A (ja) * 2008-04-21 2009-11-05 National Institute Of Advanced Industrial & Technology 3次元物体位置計測装置
JP2009265023A (ja) * 2008-04-28 2009-11-12 Mitsubishi Heavy Ind Ltd ワーク計測装置、衝突防止装置および工作機械

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2895316B2 (ja) 1992-05-25 1999-05-24 三菱重工業株式会社 工作機械の衝突防止装置
US5675720A (en) * 1993-09-14 1997-10-07 Fujitsu Limited Method of searching for points of closest approach, and preprocessing method therefor
JP2838968B2 (ja) * 1994-01-31 1998-12-16 日本電気株式会社 半導体デバイスシミュレータのメッシュ生成方法
JPH07295619A (ja) 1994-04-25 1995-11-10 Mitsubishi Electric Corp 工作機械の数値制御装置
IT232119Y1 (it) 1996-12-06 1999-09-10 Bacchiocchi Alberto Gruppo di aspirazione per cappe, forni e simili, avvalentesi di una carcassa formata da due coclee affiancate e distanziate tra loro
JP3199231B2 (ja) * 1997-05-27 2001-08-13 日本アイ・ビー・エム株式会社 3次元形状モデルへの情報の埋め込み方法及びシステム
JPH11108633A (ja) 1997-09-30 1999-04-23 Peteio:Kk 3次元形状計測装置及びそれを用いた3次元彫刻装置
US6260000B1 (en) * 1997-11-04 2001-07-10 Minolta Co., Ltd. Three-dimensional shape data processing apparatus
GB0114157D0 (en) * 2001-06-11 2001-08-01 Canon Kk 3D Computer modelling apparatus
GB2378337B (en) * 2001-06-11 2005-04-13 Canon Kk 3D Computer modelling apparatus
JP3657252B2 (ja) 2002-09-25 2005-06-08 株式會社明輝 ワーク形状測定装置を用いた形状測定システム
US7287939B2 (en) 2003-01-29 2007-10-30 Josef Koch Method for controlling relative displacements of a tool against a workpiece
US7333105B2 (en) * 2004-03-02 2008-02-19 Siemens Medical Solutions Usa, Inc. Active polyhedron for 3D image segmentation
KR100632535B1 (ko) * 2004-12-29 2006-10-11 엘지전자 주식회사 이동통신단말기용 삼차원 그래픽 엔진 및 그래픽 제공 방법
US20070132757A1 (en) * 2005-05-16 2007-06-14 Tal Hassner Constrained model composition
JP4959508B2 (ja) 2007-11-05 2012-06-27 三菱重工業株式会社 工作機械のワーク加工方法及び挙動計測装置
KR101697184B1 (ko) * 2010-04-20 2017-01-17 삼성전자주식회사 메쉬 생성 장치 및 그 방법, 그리고, 영상 처리 장치 및 그 방법

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489513A (ja) 1990-07-31 1992-03-23 Mitsubishi Electric Corp 位置検出装置及びその検出動作制御方式
JP3170345B2 (ja) * 1992-05-13 2001-05-28 日本電信電話株式会社 3次元情報抽出方法
JP3571564B2 (ja) * 1999-02-15 2004-09-29 独立行政法人 科学技術振興機構 表示方法及び表示プログラムを記録したコンピュータ読み取り可能な記録媒体及び表示装置
WO2002023408A1 (fr) 2000-09-18 2002-03-21 Hitachi, Ltd. Procede de description de profiles pleins et dispositif associe et systeme d'aide a la conception de profiles pleins les utilisant
JP2004012430A (ja) 2002-06-11 2004-01-15 Heizaburo Nakagawa 非接触測定方法及び測定装置
JP2004012431A (ja) 2002-06-11 2004-01-15 Heizaburo Nakagawa 非接触測定方法及び測定装置
JP2006102923A (ja) * 2004-10-08 2006-04-20 Nakamura Tome Precision Ind Co Ltd 工作機械稼働部の衝突防止方法
JP2007048210A (ja) 2005-08-12 2007-02-22 Nakamura Tome Precision Ind Co Ltd 工作機械稼動部の衝突防止方法
JP2009258058A (ja) * 2008-04-21 2009-11-05 National Institute Of Advanced Industrial & Technology 3次元物体位置計測装置
JP2009265023A (ja) * 2008-04-28 2009-11-12 Mitsubishi Heavy Ind Ltd ワーク計測装置、衝突防止装置および工作機械

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111958323A (zh) * 2020-07-31 2020-11-20 沈阳马卡智工科技有限公司 一种基于工件装夹的刀具路线规划及自动避让控制系统
CN111958323B (zh) * 2020-07-31 2021-05-28 沈阳马卡智工科技有限公司 一种基于工件装夹的刀具路线规划及自动避让控制系统

Also Published As

Publication number Publication date
KR101327571B1 (ko) 2013-11-12
US8805570B2 (en) 2014-08-12
CN102472617A (zh) 2012-05-23
US20120089247A1 (en) 2012-04-12
EP2500688A1 (en) 2012-09-19
CN102472617B (zh) 2014-07-02
KR20120025512A (ko) 2012-03-15

Similar Documents

Publication Publication Date Title
WO2011058618A1 (ja) ワーク計測装置、衝突防止装置および工作機械
JP4727689B2 (ja) ワーク計測装置、衝突防止装置および工作機械
JP6126067B2 (ja) 工作機械及びロボットを備えた協働システム
CN101913104B (zh) 利用多坐标机械加工机床对工件进行检测的方法
US9205525B2 (en) System and method for offsetting measurement of machine tool
CN102430961B (zh) 基于多传感器集成测量的自由曲面类零件加工系统
JP6496338B2 (ja) 工作機械の制御システム
JP4663673B2 (ja) 工具測定方法、及び工具測定機能を備えた工作機械
JP5547948B2 (ja) 研削加工ワークの補正研削加工方法
EP2898984A1 (en) Interface system of industrial machine
JP2008073813A (ja) マシニングセンタによる加工方法
CN110209120A (zh) 机床的加工模拟装置
WO2013067364A1 (en) System and method for machining and inspecting a workpiece
JPH0852638A (ja) 干渉チェック方法および加工プログラムチェック方法および加工適否チェック方法
Jiang et al. Machining tests for identification of location errors on five-axis machine tools with a tilting head
JP4180469B2 (ja) 工作機械の加工適否チェック方法
CN102601683B (zh) 一种加工超硬刀具的在线检测系统及检测方法
JP6474450B2 (ja) 工作機械の制御システム
TWI392984B (zh) Workpiece measuring device, collision prevention device and working machine
JP5324260B2 (ja) 機上測定システム
Subagio et al. Three axis deviation analysis of CNC milling machine
CN202317181U (zh) 一种自由曲面类零件加工装置
WO2022149322A1 (ja) 工作機械、工具にかかる力の推定方法、および工具にかかる力の推定プログラム
Xu et al. Monitoring and source tracing of machining error based on built-in sensor signal
WO2020008891A1 (ja) 数値制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160005.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851252

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13376803

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117029414

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 9821/DELNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009851252

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP