WO2011057537A1 - 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法 - Google Patents

一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法 Download PDF

Info

Publication number
WO2011057537A1
WO2011057537A1 PCT/CN2010/078312 CN2010078312W WO2011057537A1 WO 2011057537 A1 WO2011057537 A1 WO 2011057537A1 CN 2010078312 W CN2010078312 W CN 2010078312W WO 2011057537 A1 WO2011057537 A1 WO 2011057537A1
Authority
WO
WIPO (PCT)
Prior art keywords
igneous rock
ore
igneous
crystal glass
glass
Prior art date
Application number
PCT/CN2010/078312
Other languages
English (en)
French (fr)
Inventor
刘华武
杨宗彬
戴洪明
Original Assignee
Liu Huawu
Yang Zongbin
Dai Hongming
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Liu Huawu, Yang Zongbin, Dai Hongming filed Critical Liu Huawu
Priority to AU2010317231A priority Critical patent/AU2010317231B2/en
Priority to CN201080049103.7A priority patent/CN102753496B/zh
Publication of WO2011057537A1 publication Critical patent/WO2011057537A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C1/00Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
    • C03C1/02Pretreated ingredients
    • C03C1/022Purification of silica sand or other minerals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to a mineral glass material preparation technology, in particular to a method for preparing a crystal glass material by using acidic, neutral, alkaline or super alkaline igneous rock and a formulation thereof.
  • Glass is an amorphous solid that is quenched by the melt.
  • the earth lava cools rapidly and becomes a glassy Igneous rock ore body, commonly known as crystal or agate (such as Obsidian, black jade fire jade), which slowly forms a non-glassy ordinary igneous rock ore.
  • Natural igneous rock glass is called crystal (or agate) to distinguish it from ordinary glass.
  • the mineral material prepared by using igneous rock is also called crystal glass (or agate).
  • Igneous rocks account for about 95% of the Earth's lithosphere, with more than 700 species.
  • the igneous rock which is the skeleton of the earth, is naturally characterized by high strength and stable chemical properties.
  • the main skeleton components of igneous rocks are silica, alumina and iron oxide. According to the amount of silica (ie acid-base strength), igneous rocks are divided into four categories: 1. Acid (Felsic), Silica Content >65%, such as granite, rhyolite, Yingan rock, perlite and obsidian; 2. Neutral (intermediate), silica content 52-65%, such as diorite, andesite and basaltic andesite; 3.
  • Alkaline (Mafic), silica content 45-52%, such as basalt, gabbro and diabase; 4. Ultra-alkali (Ultramafic), silica content ⁇ 45%, such as peridotite Komati rock, etc., is usually a trace of associated gemstones.
  • Traditional igneous rock casting products are mainly glass ceramics crystallized from basalt glass, and other foundry products are rare in the market.
  • Patent WO2003016232 reports a method of casting a foam insulation glass material by adding 15% caustic soda and limestone flux to pearlite powder or expanded perlite powder (an acid igneous rock product). Since the thermal insulation properties and cost of the material are not as good as the expanded perlite powder as a raw material, it has not been promoted.
  • the patent US 3557575 first used this ceramic material made of basalt glass, called Basaltic glass-ceramic, and suggested melting under an oxidizing atmosphere, annealing in a non-strong oxidizing atmosphere, to this basalt glass.
  • the ceramic process is basically shaped.
  • the glass ceramic production process was introduced to China, and its products were also called Devitrified glass.
  • the mineral glass ceramics were called Cast Stone.
  • the melting temperature of basalt ore is 1350-1500 °C (CN1789187, 2004).
  • Fe 2 O 3 /FeO>0.5 in the ore component the glass casting can form crystallite under specific annealing conditions and become glass ceramic.
  • the crystal nucleus of the crystal is mainly Fe 2 O 3 and FeO in the melt.
  • the Fe 2 0 3 /FeO ratio of the igneous rock ore is less than 0.5, so the smelting requires an oxidizing atmosphere to convert FeO into Fe 2 0 3 . Usually, it can be melted in air to make Fe 2 O 3 /F e O>0.5. It is also possible to further add an oxidizing agent such as NH 4 N0 3 or Mn0 2 to the raw material to achieve this goal (Cheng Jinshu et al., "Mertiglass", Chemical Industry Press, Beijing, 2006). In order to reduce costs, basalt glass ceramics usually use basalt, or basalt and industrial waste as raw materials, and are smelted, cast or calendered at high temperature, and then crystallization of glass nucleation. The main indicator of mechanical properties is bending strength. Generally between 30-80MPa.
  • a typical basalt glass ceramic production process is to add 4% ammonium nitrate as an oxidant. After the glass is melted, it is kept at 650 ° C for 4 hours, 880 ° C for 1 hour to produce crystallites, and then annealed to room temperature. (Cheng Jinshu et al., "Microcrystalline Glass", Chemical Industry Press, Beijing, 2006). The 5 hour heat preservation process of the process doubles the production energy consumption.
  • Basalt glass will increase rapidly with decreasing temperature in the forming zone (ie, short material and fast curing). In addition, the melt forming zone and the crystallization zone are very close, especially easy to devitrify and become slag. Shaped waste.
  • the basalt glass with high crystallization tendency is more susceptible to crystallization and scrapping. Therefore, the glass must be rapidly cooled and passed over the crystallization zone (the upper crystallization temperature is about 1260-1270 °C) to avoid devitrification.
  • Basalt glass has a large coefficient of thermal expansion, and rapid cooling in the process of forming glass causes cracks or even breakage due to excessive thermal stress, thereby causing waste.
  • the basalt glass composition is complex and the content fluctuation is much larger than that of ordinary glass.
  • the main component of fluorite is CaF 2 , which is contaminated by fluorine compounds and is not recommended for use in the glass industry.
  • Conventional basalt glass-ceramic processes produce crystallites that require Fe 2 O 3 / FeO > 0.5 and increase this ratio by melting in air or by using a strong oxidizing atmosphere (ie adding oxidant, or inputting oxygen).
  • the smaller the ratio of F e2 0 3 /FeO of basalt glass the better the mechanical properties of the material (Li Ping, Ou Zhi, correctly understanding basalt fiber, glass fiber, 2008 (3): 35-41; US4009015, 1977 ).
  • the increase in mechanical properties brought about by the microcrystals is largely offset by the increase in the F e2 0 3 /FeO ratio.
  • the glass-ceramic process can increase the strength of ordinary glass, for basalt glass ceramics, the increase in strength is first offset by local cracking or devitrification, which is offset by the deterioration of the glass properties by the flux, and then by Fe 2 0
  • the 3 /FeO ratio is offset by an increase in the loss.
  • the main cause of the decrease in glass strength is the flaw of the glass itself, especially the crack on the surface. When the surface layer of the glass is removed, the tensile strength can be increased by more than 10 times (Loewenstein, "Continuous Glass Fiber Manufacturing Process", China Standard Press, 2008 ).
  • the main causes of surface cracks in basalt glass are the high stress gradient caused by quenching and high thermal expansion coefficient and the glass strength reduced by conventional techniques.
  • the technical problem to be solved by the present invention is to provide an igneous rock crystal glass material, a manufacturing method thereof and an auxiliary material adding scheme, which adopts anti-crystallization and optimized modification technology.
  • the flux and the strong oxidizing smelting atmosphere which deteriorate the properties of the material and increase the crystallization tendency of the glass are not used, and the basalt glass annealing crystallization process is not used, the yield of the finished product is high, the product performance is excellent, the appearance is beautiful, the applicability is wide, and the cost is low.
  • the technical solution of the present invention to solve the technical problem is to design a manufacturing method of igneous rock crystal glass material, which comprises the following process steps in sequence: ore pretreatment, auxiliary material mixing, mixture smelting and finished product preparation;
  • the igneous rock can be crushed according to the size of the ore particles, and the particle size of the crushed ore after the ore is broken is 0.1-5 mm ;
  • the crushed ore pretreatment adopts a method of washing with water or pickling and washing with water;
  • the acid for pickling is a hydrochloric acid, nitric acid or sulfuric acid having a mass concentration of 1 to 50%, and the pickling and soaking time is 0.5 to 24 hours;
  • the auxiliary material mixing process The auxiliary material is at least one of Si0 2 , A1 2 0 3 , MgO, B 2 0 3 , Zr0 2 , La 2 0 3 and Y 2 0 3 , and the auxiliary material is added in an amount of 1 to 30% of the mass of
  • the formulation used is composed of igneous rock and an auxiliary material, the auxiliary material is added in an amount of 1 to 30% by mass of the igneous rock, and the igneous rock is pretreated by washing with water or pickling and washing with water.
  • the igneous rock crystal material is prepared by the method of the present invention, and comprises the following components according to the mass percentage: Si0 2 45-90%, A1 2 0 3 5-25%, Fe 2 0 3 l-15%, FeO 1-15%, MgO 1-15%, CaO 1-15%, Na 2 0 1-15%, K 2 0 1-15%, Ti0 2 0-5%, B 2 0 3 0-5%, Zr0 2 0-5% , La 2 0 3 0-5%, Y 2 O 3 0-5%.
  • the manufacturing method of the present invention uses an anti-crystallization formula and a process, and no longer uses a flux for increasing the crystallization tendency, lowering the mechanical properties, and a strong oxidizing smelting atmosphere (inputting oxygen or using an oxidizing agent), thereby having The glass can be slowly cooled and molded to reduce the temperature gradient and thermal stress gradient. Because the auxiliary material with lower thermal expansion coefficient is used, the flux with increased thermal expansion coefficient is no longer used, which has the characteristics of reducing the thermal stress intensity of the glass; The strength and formula of the glass strength, thereby improving the glass's own crack resistance.
  • the three measures of the present invention greatly improve the yield and mechanical properties of the material, eliminating the need for crystallization to modify the glass ceramics, thereby improving the appearance and reducing energy consumption.
  • the flexural strength of the sample obtained in Example 1 of the present invention was about twice that of the current market basalt glass ceramics.
  • the igneous rock crystal glass and the traditional basalt deep processing products have five major differences in form, appearance, composition, application range and yield: 1
  • the traditional ore casting final product is ceramic made of mineral glass, and the final product of the invention is glass; 2 basalt casting The stone looks like a stone or a tile, and the crystal glass of the present invention looks like black crystal and black agate; 3 the traditional basalt cast stone adopts a high crystallization formula, and an auxiliary material which utilizes crystallization is added, and the Fe 2 0 3 is improved by the oxidizing atmosphere. /Fe0 ratio.
  • the invention adopts anti-crystallization auxiliary material and anti-fracture auxiliary material, and adopts a melting atmosphere which does not increase or decrease Fe 2 O 3 /Fe0, and the composition of the product is greatly different; 4 the traditional basalt deep processing method is only applicable to the alkaline igneous rock, and This technology is applicable to all acidic, neutral, alkaline and super alkaline igneous rocks, which greatly improves the resource utilization rate. 5 The traditional cast stone is too slow to form powder, too fast to burst, and the scrap rate is extremely high, and the igneous rock crystal can be Slowly cooled and formed, basically no waste. DRAWINGS
  • FIG. 1 is a schematic view showing a process flow of a method for manufacturing a igneous rock crystal glass material according to the present invention
  • Example 2 is a photograph of a continuous filament made of a modified neutral igneous rock crystal glass material obtained by the method for producing a igneous rock crystal glass material according to the present invention (Example 1);
  • Example 3 is a photograph of a method for producing a igneous rock crystal glass material according to the present invention (Example 2) (3a is a natural obsidian crystal bracelet, and 3b is a igneous crystal plate product);
  • Example 4 is a photograph of a powder of an acid igneous crystal glass material (crystal) obtained by the method for producing a igneous crystal glass material according to the present invention (Example 3);
  • Figure 5 is a diagram showing the X-RAY test curve of the modified neutral igneous rock crystal glass material obtained by the method for producing the igneous rock crystal glass material of the present invention (Example 1);
  • FIG. 6 is a graph showing a thermal expansion coefficient of a sample obtained in Example 1 of the present invention (unit: 10- 6 /° C.) ;
  • FIG. 7 is a sample dielectric constant ⁇ ′ and a dielectric loss ⁇ obtained in Example 1 of the manufacturing method of the present invention.
  • Test graph; Fig. 8 is a test curve of magnetic permeability ⁇ ' and magnetic loss ⁇ " of the sample obtained in Example 1 of the manufacturing method of the present invention.
  • the manufacturing method of the igneous rock crystal glass material designed by the present invention (refer to the manufacturing method for short, see FIG. 1-8), the manufacturing method comprises the following process steps in sequence: ore crushing 1, crushing ore pretreatment 2, auxiliary material mixing 3, mixing material melting 4 And finished product preparation 5 (see Fig.
  • the ore is igneous rock, the size of the crushed ore is in the range of 0.1-5 mm; the crushed ore pretreatment is washed by water or pickling plus water; the acid for pickling For hydrochloric acid, nitric acid or sulfuric acid, the acid concentration of the pickling solution is 1 to 50%, and the pickling and soaking time is 0.5 to 24 hours;
  • the auxiliary materials of the auxiliary material mixing process are Si0 2 , A1 2 0 3 , MgO, B 2 At least one of 0 3 , Zr0 2 , La 2 0 3 and Y 2 0 3 , the auxiliary material is added in an amount of 1 to 30% by mass of the ore;
  • the melting temperature of the mixture melting process is the melting temperature of the ore t melt + 50 ° C ⁇ ore boiling point temperature t boil -50 ° C, the smelting environment uses a non-strong oxidizing atmosphere (ie no oxygen, no oxidant added), including reducing atmosphere, n
  • the igneous rock described in the manufacturing method of the present invention includes all four types of igneous rocks of acidity, neutrality, alkalinity and superbasicity.
  • the particle size of the ore crushing is generally designed to be 0.1-5 mm.
  • the large amount of crushed ore particles not only melts slowly, but also may cause the formation of stones in the finished product because the melting is not completely formed, and it is easy to pass the powdery auxiliary materials in the auxiliary material mixing process.
  • the gap between the ore leaks to the bottom, causing the mixture to be unchecked, which affects the quality of the product.
  • the particle size of the crushed ore according to the present invention is 0.1 mm or more, and the particle size of the crushed ore for the pool furnace is 0.25 mm or more.
  • the invention preferably has a stone yard waste ore with a particle diameter of less than 5 mm, which has a lower price and less smelting energy consumption, in particular, the ore crushing process can be omitted, the efficiency is further improved, and the cost is reduced; or/and the particle size is selected to be slightly larger than 5 mm. Stone yard waste ore, easy to smash, can also improve efficiency and reduce costs.
  • the pretreated ore is washed with water, or with pickling and water washing.
  • the purpose of pickling is to more effectively remove impurities and remove alkali metal oxides that damage the glass structure.
  • the pickling acid is hydrochloric acid, nitric acid or sulfuric acid, the acid solution has a mass concentration of 1 to 50%, and the pickling and soaking time is 0.5 to 24 hours.
  • the pretreatment process in the prior art basalt deep processing preparation method is generally washed with water or alkali, in order to retain the alkaline component of the basalt (CN101263090, 2008).
  • the present invention employs a pretreatment method of appropriate pickling to reduce the content of alkaline substances and crystal nucleating agents in the ore.
  • Acid pickling also removes volatile substances and other impurities, increases melt viscosity, and reduces the tendency to crystallize and improve the physical and chemical properties of the material.
  • the manufacturing method of the invention adds auxiliary materials Si0 2 , A1 2 0 3 , MgO, B 2 0 3 , Zr0 2 , La 2 0 3 and according to the product design requirement according to the product design requirement in a proportion of 1 to 30% of the ore mass. At least one of Y 2 0 3 is used to improve the anti-crystallization property, mechanical properties, corrosion resistance and thermal stability of the glass material.
  • the A1 2 0 3 , MgO and ZnO in the excipients are anti-crystallization components, which can reconnect the broken silicon tetrahedrons, thus reducing the crystallization ability; and A1 2 0 3 , B 2 0 3 in the excipients And Ga 2 0 3 can reduce the accumulation of extra-network ions with large electric field strength, thereby reducing the tendency of crystallization, wherein the anti-crystallization effect of A1 2 0 3 is most remarkable, which is preferred for the examples.
  • Basalt is a common alkaline igneous rock. Basalt glass contains a large amount of alkali metal oxides, and has a high thermal expansion coefficient, which is easy to cause cracking.
  • the auxiliary materials may be Si0 2 , A1 2 0 3 , Zr0 2 , B 2 0 3 , MgO, At least one of Zn0 3 is used for pickling to remove alkali metal oxides, lowering the coefficient of thermal expansion and improving its thermal stability.
  • Zr0 2 , Sn0 2 and La 2 0 3 in the excipients are important alkali-resistant modified auxiliary materials.
  • Zr0 2 has good chemical stability, and is resistant to alkali and acid, but the added amount should not exceed 5% of the quality of crushed ore. Otherwise, the crystallization tendency will increase;
  • Zr0 2 , A1 2 0 3 and ZnO in the auxiliary materials are important acid-resistant modified auxiliary materials, but the acid igneous rock ore is generally rich in A1 2 0 3 , which is an excellent acid-resistant material and generally does not need to be used. Additional acid resistant excipients are added. During the process operation, the added auxiliary materials are thoroughly mixed in the mixer and then put into the furnace.
  • the manufacturing method of the present invention is in a mixture smelting process in which the melting temperature is between the melting point temperature and the boiling point temperature of the igneous rock.
  • the ore begins to melt at t mdt .
  • Reach t b ⁇ 1 It will cause a large increase in volatilization and ineffective energy consumption, and may cause melt overflow. Therefore, the smelting interval should be between the ore melting temperature and the boiling point temperature, that is, the ore melting point temperature t melt +50 °C ⁇ the ore boiling point temperature t b ⁇ Ml -5 (TC.
  • the smelting atmosphere adopts a non-strong oxidizing atmosphere, including at least one of a reducing atmosphere, a nitriding atmosphere, a vacuum environment, a closed environment, and smelting in air, but does not include input oxygen or / And an atmosphere of adding an oxidizing agent.
  • the reducing atmosphere refers to the input of hydrogen, carbon monoxide or an inert gas, or the use of a reducing agent such as carbon powder (or a carbohydrate powder oxidizable to carbon powder), potassium tartrate, tin powder, strontium powder or aluminum powder, or an electrode made of graphite. , ⁇ , or both methods are used at the same time.
  • the reducing atmosphere can convert Fe 2 O 3 into FeO, thereby reducing the ratio of Fe 2 O 3 /FeO, achieving the purpose of preventing crystallization, and at the same time improving the mechanical properties of the material.
  • Embodiments of the present invention achieve a reducing atmosphere by using a carbon powder having an ore quality of 1 to 3%, or/and using graphite crucibles, or/and using a graphite electrode.
  • the nitriding atmosphere refers to the input of nitrogen gas N 2 or ammonia gas NH 3 , or the addition of a nitride such as Si 3 N 4 , A1N, Li 3 N, or the like, or both.
  • the present invention suitably employs a nitriding atmosphere in the preparation of igneous rock mineral glass (see Example 3).
  • This nitriding atmosphere is not used in conventional igneous rock smelting processes (because the nitriding atmosphere prevents the crystallization of basalt glass ceramics and increases the difficulty of basalt forming).
  • the nitriding atmosphere process used in the present invention is to blow nitrogen gas for 2 to 16 hours, or / and add at least one of Si 3 N 4 , A1N and Li 3 N having an ore mass of 1 to 3% to realize a nitriding atmosphere.
  • oxygen in the glass material is replaced by nitrogen, oxygen-nitrogen glass is formed, which improves the elastic modulus, corrosion resistance and wear resistance of the glass.
  • the vacuum environment, the enclosed environment or the smelting in the air is not a strong oxidizing atmosphere because no oxygen is supplied, and no oxidizing agent is added, so the Fe 2 0 3 /FeO ratio is not greatly increased. It is not easy to devitrify in glass (such as low Fe 2 0 3 /FeO ratio, low iron content, acid pickling pretreatment, anti-devitrification component added) and no fear of glass cracking (such as thinner or In the case of powder), the three smelting environments can be flexibly used according to the condition of the furnace. For example, the furnace can be closed, the graphite crucible can be vacuumed, and the kiln can be smelted in the air.
  • the melt can be melted, clarified, cast by a mold, calendered or blown to form a glass device, or the clarified melt can be poured into the water to be quenched. After being crushed (crushed), it is made into a powder.
  • the method has wide adaptability and can ensure the product quality is relatively stable under the fluctuation of raw material composition, and the product type is more abundant than basalt glass ceramics (ie cast stone).
  • the modified neutral igneous continuous filament obtained by the manufacturing method of the present invention (for example, Example 1) is dark gray (see Fig. 2), which is different from the conventional golden or brown red basalt (i.e., alkaline igneous rock) glass fiber.
  • the casting method prepared by the manufacturing method of the present invention (for example, Example 2) has no coarse pores on the surface, and the appearance is as luxurious as the natural obsidian crystal (Obsidian) and black onyx (Firejade) (see Fig. 3).
  • Manufacturing method of the invention (example)
  • the acid igneous (perlite) powder prepared as in Example 3 can be seen in Figure 4.
  • a neutral igneous rock (Anshan basalt) is used as a raw material to manufacture a neutral igneous crystal glass, which realizes the anti-crystallization process and the preparation of neutral mineral glass, and detects the basic mechanical, thermal and electromagnetic properties of the conventional igneous crystal glass material.
  • Example 1 Main components of Anshan basalt ore of neutral igneous rock
  • the ore igneous rock (Anshan basalt) ore described in Table 1 was used, and was broken into particles having a particle diameter of 5 mm or less, and then immersed in a 20% by mass sulfuric acid solution for 0.5 hour, and rinsed in clean water for 0.5 hour. Add 1% of O0 2 ore, 2% of Zr0 2 and 3% of A1 2 0 3 . After mixing the excipients and crushed ore, put them into a closed kiln heated by natural gas and slowly heat up to 800 °C from 800 °C.
  • melt casting is formed into a sheet material in a cast iron mold preheated to 600 ° C, and no cracking or crystallization of the product occurs.
  • Flexural strength is one of the weakest mechanical properties of igneous glass and glass ceramics and is therefore used to characterize improvements in mechanical properties.
  • the flexural strength of basalt glass ceramics is generally not less than 65MPa, and the average value is about 67MPa (see Xiao Guoping, "Application of basalt cast stone technology in blast furnace slag ditch", Shandong Metallurgy, 25 (6) : 68-69 , 2003; Xu Zhaoheng, "The manufacture of cast stone", Today Science and Technology, 1990 (3): 13, 1990).
  • the bending strength of the modified igneous crystal glass of the embodiment 1 of the invention is 131.19 MPa, which is about twice the bending strength of the ordinary basalt glass ceramic.
  • Embodiment 1 illustrates that the conventional glass-ceramic process is abandoned and the manufacturing method of the present invention is employed, not only The process is simple, the energy consumption is reduced, the space for improving the mechanical properties of the igneous rock castings is expanded, and the appearance of the product is improved and the quality is improved.
  • the coefficient of thermal expansion is the main indicator for measuring the thermal stability.
  • the test shows that the thermal expansion coefficients of the sample of Example 1 are 6.0688, 6.6979, 7.1705, 7.4581 (10" 6 / °C, respectively, at temperature T at 100, 300, 500, 700 °C. See Figure 6), which shows that the coefficient of thermal expansion increases with increasing temperature T.
  • the linear regression equation is:
  • the dielectric loss tangent is greater than 0.01, it is called a dielectric loss material (Liu Shunhua et al., "Electromagnetic wave shielding and absorbing materials", Chemical Industry Press, 2006).
  • the test shows the dielectric loss of the igneous glass obtained in Example 1. An angle of more than 0.01 is a weak dielectric loss material (see Table 3).
  • Igneous rock glass is known for its excellent thermal insulation properties.
  • the sample of test example 1 found that its thermal conductivity is 0.033 Wm ⁇ .K" 1 , which is a thermal insulation material.
  • igneous rock deep processing products are also a good one.
  • Heat-resistant sound absorbing material (CN1884164, 2006), therefore, igneous rock glass has both infrared stealth and sonar invisible function.
  • Electromagnetic detection found that the dielectric constant and dielectric loss of the sample of Example 1 decreased with increasing frequency, and the permeability The rate and magnetic loss increase with increasing frequency, and the quadratic curve of its electromagnetic performance is (see Figure 7-8): It shows that the sample of Example 1 is a radar invisible material, does not reflect radar waves, and also has a slight absorbing wave. The characteristic is a rare material with radar stealth, infrared stealth and sonar invisibility. The military has broad prospects.
  • the calculation formulas of dielectric constant, dielectric loss, magnetic permeability and magnetic loss are as follows:
  • Example 2 is a black crystal glass plate prepared using an alkaline igneous rock ore (basalt).
  • Example 2 was used to estimate the lowest cost, while showing the lower mechanical properties of the igneous crystal glass with the least amount of framework material.
  • the sample will be used to prepare black crystal crafts, which are cut into a certain shape, then ground and shaped, or put into a mold, and heated and pressed.
  • the basalt ore described in Table 4 is a waste material with a particle size of 5 mm or less.
  • an acid igneous rock (perlite) ore is sampled to prepare a modified igneous rock powder. It realizes the preparation of acid mineral glass powder, and tests the product formulation, reduction and nitriding atmosphere process for improving strength.
  • the powder material will be used as a filler for anti-corrosion coatings, and as a filler for cement corrosion, insulation, and waterproofing.
  • Example 3 Material is cleaned perlite powder, ore material added mass (with I) 1% 1% Zr0 2 and La 2 0 3, which enhance corrosion resistance, while adding 3% by mass ore B 2 0 3 increases material
  • the strength is lowered by the expansion coefficient; graphite crucible is protected by nitrogen gas (with nitrogen gas for 10 hours while adding 1% of ore mass of Si 3 N 4 ), and heated to 1800 ° C for melting. The melt flows into circulating cooling water to be quenched and then pulverized into a powder. It was found that the sample of Example 3 can be well compounded with cement and is a highly active cement-based gel auxiliary material (see Table 7). Table 7. Activity Index of Example 3 as Cement Filler
  • Example 4 is a black crystal glass block prepared using an alkaline igneous rock ore (basalt). This embodiment adopts an energy-free annealing method to provide low-cost black crystal materials for art glass and art crystal manufacturers.
  • Example 4 Main components of basalt ore of alkaline igneous rock
  • the basalt ore described in Table 8 is a quarry waste having a particle size of 5 mm or less.
  • the mixture was immersed in a 20% by mass sulfuric acid solution for 2 hours, and rinsed in clean water for 0.5 hour; after drying, 1% by mass of carbon powder was added, and it was placed in a closed furnace for melting and clarification, and the melting temperature was 1,450 °C.
  • the melt is cast into a four-column column in a preheated mold and immediately embedded in expanded perlite powder and annealed for 7 days.
  • the Mohs hardness of the obtained product is 6.5, which is better than the Mohs hardness of obsidian of 5.5, which is equivalent to the Mohs hardness of ordinary black glass.
  • Example 5 uses an alkaline igneous rock ore (basalt) and adds 3% by weight of Si0 2 , 1% Zr0 2 , 0.8% Y 2 0 3 and 1% MgO to increase the elastic modulus of the basalt fiber.
  • the ore was stirred and soaked in a 20% by mass sulfuric acid solution for 24 hours, and rinsed in clean water for 0.5 hour.
  • the mixture was smelted, clarified, and drawn at 1500 ° C, and the obtained fiber product had an elastic modulus of 98.21.
  • Quantitative analysis determined the fiber product composition as shown in the following table: Table 9.
  • Example 5 Percentage of important components of alkaline igneous rock crystal fiber

Description

一种用于制备火成岩水晶玻璃材料的组合物、 火成岩水晶玻璃材料及
其制造方法
技术领域
本发明涉及矿物玻璃材料制备技术, 具体为一种利用酸性、 中性、 碱性或超碱性火成 岩制备水晶玻璃材料的方法及使用的配方。 背景技术
玻璃是一种非晶态固体, 由熔体急冷而成。 地球熔岩迅速冷却, 就成为玻璃态的火成 岩 (Igneous rocks)矿体, 俗称水晶或玛瑙 (如黑曜石水晶 Obsidian、 黑玛瑙 fire jade), 缓慢 冷却就形成非玻璃态的普通火成岩矿石。人们把天然火成岩玻璃称为水晶(或玛瑙), 以区 别于普通玻璃, 据此本发明用火成岩制备的矿物材料也称为水晶玻璃 (或玛瑙)。
火成岩约占地球岩石圈的 95%, 约有 700多个品种。 作为地球骨架的火成岩, 天然具 有强度高、 化学性能稳定等特点。 火成岩的主要骨架组分是二氧化硅、 氧化铝和氧化铁, 依据二氧化硅含量的多寡 (即酸碱性强弱) 火成岩依次分为四大类: 1.酸性 (Felsic), 二 氧化硅含量 >65%, 如花岗岩、流纹岩、英安岩, 珍珠岩和黑曜石等; 2.中性(Intermediate), 二氧化硅含量 52-65%, 如闪长岩、 安山岩和玄武安山岩等; 3.碱性 (Mafic), 二氧化硅含 量 45-52%, 如玄武岩、 辉长岩和辉绿岩等; 4.超碱性 (Ultramafic), 二氧化硅含量 <45%, 如橄榄岩和科马提岩等, 一般是微量伴生宝石。 传统火成岩铸件产品主要是玄武岩玻璃晶 化而成的玻璃陶瓷, 其他铸造产品少见于市场。 专利 WO2003016232号报道了一种在珍珠 岩粉或膨胀珍珠岩粉 (一种酸性火成岩产品) 中添加 15%烧碱和石灰石助熔剂后, 铸成泡 沫保温玻璃材料的方法。 由于该材料保温性能及成本均不及作为原料的膨胀珍珠岩粉, 因 而未能推广。
1914年,法国 Francois Ribbe首次发现矿物玻璃退火到 500°C之前,重新加热到 800°C, 在退火炉中保温 0.5-1.5 小时, 能在玻璃中生成大量微晶, 从而提高玻璃的强度和韧性 (US1108007) 。 1933年, US1893382号专利进一步报道了氧化和还原气氛下生产玻璃陶 瓷的工艺条件。 1956年, Dr. Stooky又把这项技术扩展到普通玻璃领域 (US2920971 ) 。 1969年, 专利 US3557575号首次把这种用玄武岩玻璃制成的陶瓷材料, 称为玄武岩玻璃 陶瓷 (Basaltic glass-ceramic), 并建议在氧化气氛下熔炼, 在非强氧化气氛下退火, 至此 玄武岩玻璃陶瓷工艺基本定型。 1956 年玻璃陶瓷生产工艺被引入中国, 其产品也被称为 微晶玻璃 (Devitrified glass), 矿物玻璃陶瓷则被称为铸石 (Cast stone)。 玄武岩矿石的熔化温度为 1350-1500°C ( CN1789187 , 2004 ) ,当矿石组分中 Fe2O3/FeO>0.5 时, 玻璃铸件就能在特定退火条件下生成微晶, 成为玻璃陶瓷, 其结晶体 的晶核主要是熔体中的 Fe203和 FeO。通常火成岩矿石 Fe203/FeO比值小于 0.5, 因此熔炼 需要采用氧化气氛, 使得 FeO转化为 Fe203。 通常在空气中熔制即可使 Fe2O3/FeO>0.5, 也可以进一步在原料中添加氧化剂如 NH4N03或 Mn02实现这一目标 (程金树等, "微晶 玻璃", 化学工业出版社, 北京, 2006) 。 为了降低成本, 玄武岩玻璃陶瓷通常利用玄武 岩, 或玄武岩和工业废渣为主原料, 经高温熔炼、 铸造或压延成型, 然后将玻璃成核晶化 而成, 表征其力学性能的主要指标是弯曲强度, 一般在 30-80MPa之间。
制备传统高 Fe203/FeO比值(>0.5 )、 高析晶倾向的火成岩玻璃, 及其晶化成玻璃陶瓷 的工艺有如下缺陷:
1.成本高: 一个典型的玄武岩玻璃陶瓷生产工艺为添加 4%作为氧化剂的硝酸铵, 玻璃 熔制后在 650°C保温 4小时, 880°C保温 1小时生产微晶, 然后再退火到室温(程金树等, "微晶玻璃", 化学工业出版社, 北京, 2006) 。 该工艺 5个小时的保温过程, 成倍加大了 生产能耗。
2.废品多: 玄武岩玻璃在成型区间随着温度下降粘度会迅速增加(即料性短, 固化快), 此外熔体成型区间和析晶区间非常接近, 特别容易析晶失透, 成为粉渣状废料。 而高析晶 倾向的玄武岩玻璃, 更易析晶报废。 所以玻璃浇铸时必须迅速冷却越过析晶区 (析晶上限 温度约在 1260-1270°C左右) 避免析晶失透。 玄武岩玻璃的热膨胀系数大, 在成玻璃的过 程中迅速冷却又会因为热应力过大而产生裂纹、 甚至炸碎, 从而造成废品。 玄武岩玻璃组 分复杂、含量波动也远大于普通玻璃, 成晶过程比普通微晶玻璃更难控制。退火结晶过程, 易于再次产生废品。 中国建材网报道大量玻璃陶瓷企业合格率都在 60%以下, 已成为行业 发展的瓶颈。 此外玻璃陶瓷板硬度高, 铺贴后的翘曲难以整平, 磨平后会出现许多粗毛细 孔, 目前尚无法处理, 建材市场难以接受 (中国建材网报道, www.bmlink.com/news/)。 而 传统玄武岩铸件, 更容易析晶、 更容易炸裂、 结晶化控制更加困难, 其玻璃陶瓷合格率更 低。 玄武岩玻璃陶瓷外观陋如瓦器, 市场较普通玻璃陶瓷更加局限, 主要应用于耐腐蚀管 道。
3.品质劣化: 为了降低粘度和熔点, 人们在玄武岩矿石中添加石灰石、 碳酸钠、 碎玻 璃和萤石等助熔剂(程金树等, "微晶玻璃", 化学工业出版社, 北京, 2006; 李平、 欧智, "正确认识玄武岩纤维, 玻璃纤维", 2008 (3 ): 35-41; US4009015 , 1977), 在提高析晶 倾向的同时, 也带来很多负面影响。石灰石中的钙离子能在增加析晶倾向的同时增加玻璃 脆性、缩短料性、提高炸裂倾向。碳酸钠中的钠离子则破坏玻璃微观结构, 降低热稳定性、 化学稳定性、 和机械强度。 碎玻璃会提高成本、 降低强度、 增加脆性。 萤石主要组分是 CaF2, 氟化合物挥发后污染大气, 玻璃行业已不建议使用。 传统玄武岩玻璃陶瓷工艺生成 微晶, 要求 Fe2O3/FeO>0.5, 并利用在空气中熔炼或采用强氧化气氛 (即添加氧化剂、 或 输入氧气)来提高这一比例。 但近年来发现玄武岩玻璃 Fe203/FeO比值越小, 反而材料的 力学性能越好(李平、欧智,正确认识玄武岩纤维,玻璃纤维, 2008 (3 ): 35-41; US4009015, 1977)。 微晶带来的力学性能的提高, 被 Fe203/FeO比值增加而大部分抵消。
4.局限大: 传统高 Fe203/FeO 比值、 高析晶倾向玄武岩玻璃及玻璃陶瓷的制备方法, 其提高成晶率的添加剂劣化了材料的若干理化性能, 限制了材料性能改进的空间, 同时也 不适用于酸性和中性火成岩矿石。 因为酸性和中性矿石中骨架材料 Si02和 A1203的比例大 大提高, 从而提高了熔体的粘度, 也降低了材料成晶倾向。
尽管玻璃陶瓷工艺能提高普通玻璃的强度, 但是对于玄武岩玻璃陶瓷而言, 强度的提 高先被局部裂纹或失透所抵消,再被助熔剂对玻璃性能的破坏而抵消,然后还被 Fe203/FeO 比值增加所抵消, 失大于得。 造成玻璃强度下降的主要原因是玻璃本身的瑕疵, 特别是表 面的裂纹, 当去除玻璃表层之后, 拉伸强度可以提高 10倍以上 (Loewenstein,"连续玻璃 纤维制造工艺", 中国标准出版社, 2008) 。 而造成玄武岩玻璃表面裂纹的主要原因就是 急冷和高热膨胀系数导致的高应力梯度和被传统技术降低了的玻璃强度。近年来, 陶瓷企 业一直在致力开发玻璃陶瓷 (即微晶玻璃) 产品。 "但是时至今日, 如何攻克表面气孔多 的难关、 提高产品质量、 增加花色品种、 降低生产成本, 仍然是一道难以逾越的关口 (中 国建材网, www.bmlink.com/news/ message/ 160393.html)。 " 玄武岩玻璃陶瓷行业, 更是 面临市场萎缩的困境。 发明内容
针对现有技术存在的不足, 本发明拟解决的技术问题是: 提供一种火成岩水晶玻璃材 料及其制造方法和辅料添加方案, 该制造方法和配方采用抗析晶和优化改性技术。 不使用 劣化材料性能和提高玻璃析晶倾向的助熔剂和强氧化熔炼气氛,不采用玄武岩玻璃退火晶 化工艺, 成品合格率高、 产品性能优良, 外观美丽, 适用性广, 成本较低。
本发明解决所述技术问题的技术方案是, 设计一种火成岩水晶玻璃材料的制造方法, 该制造方法依次包括以下工艺步骤: 矿石预处理、 辅料混合、 混合料熔炼和成品制备; 所 述矿石为火成岩,可根据矿石颗粒的大小进行破碎,矿石破碎后的碎矿石粒径是 0.1-5mm; 所述碎矿石预处理采用水洗或酸洗加水洗的方法; 酸洗用酸为质量浓度 1〜50%的盐酸、 硝酸或硫酸,酸洗搅拌浸泡时间为 0.5〜24小时;所述辅料混合工艺的辅料为 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种, 辅料的加入量为碎矿石质量的 1〜30%; 所述混合料熔炼工艺的熔炼温度为矿石熔点温度 +50°C〜矿石沸点温度一 50°C, 熔炼环境 为非强氧化气氛, 包括还原气氛、 氮化气氛、 真空环境、 封闭环境和在空气中熔炼中的至 少一种; 所述成品制备工艺包括模具浇铸、 压延或吹制成型, 或者熔体激冷破碎后制成粉 末。
在本发明的制备方法中, 使用的配方由火成岩和辅料组成, 所述辅料的加入质量为火 成岩质量的 1〜30%, 所述火成岩通过水洗或酸洗加水洗进行预处理, 所述辅料为 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种。
利用本发明的方法制备火成岩水晶材料, 按照质量百分比包括下述组分: Si02 45-90%、 A1203 5-25%, Fe203l-15%、 FeO 1-15%, MgO 1-15%, CaO 1-15%, Na20 1-15%, K20 1-15%, Ti02 0-5%, B203 0-5%, Zr020-5%, La2030-5%, Y2O3 0-5%。
与现有技术相比, 本发明制造方法因为采用了抗析晶配方和工艺, 不再使用提高析晶 倾向、 降低力学性能的助熔剂和强氧化熔炼气氛 (输入氧气或使用氧化剂) ,从而具有可 以让玻璃缓慢冷却成型, 降低温度梯度及热应力梯度的特点; 因为采用了降低热膨胀系数 的辅料, 不再采用增加热膨胀系数的助熔剂, 从而具有降低玻璃热应力强度的特点; 因为 采用了增强玻璃强度的配方和工艺, 从而提高了玻璃自身抗裂能力。本发明这三个措施大 大提高了材料的成品率和力学性能, 不再需要采用晶化为玻璃陶瓷的改性措施, 因此也改 善了外观, 降低了能耗。本发明实施例 1所得样品的抗弯强度约为目前市场玄武岩玻璃陶 瓷的两倍。
火成岩水晶玻璃和传统玄武岩深加工产品有形态、 外观、 组分、 适用范围、 成品率 5 大差异: 1 传统矿石铸件最终产品是矿物玻璃制成的陶瓷, 而本发明最终产品是玻璃; 2 玄武岩铸石外观如同石头、 瓦块, 而本发明的水晶玻璃外观如同黑水晶、 黑玛瑙; 3传统 玄武岩铸石采用高析晶配方, 添加了有利用析晶的辅料, 同时通过氧化气氛提高了 Fe203/Fe0比值。本发明采用抗析晶辅料,抗破裂辅料, 同时采用了不提高或降低 Fe203/Fe0 的熔炼气氛, 产品的组分大不相同; 4传统玄武岩深加工方法只适用于碱性火成岩, 而本 技术适用于全部酸性、 中性、 碱性和超碱性火成岩, 使得资源利用率大大提高; 5 传统铸 石降温太慢则成粉、 太快则炸裂, 废品率极高, 而火成岩水晶可以缓慢降温成型, 基本无 废品。 附图说明
图 1 为本发明火成岩水晶玻璃材料的制造方法工艺流程示意图;
图 2为本发明火成岩水晶玻璃材料的制造方法 (实施例 1 ) 所得的改性中性火成岩水 晶玻璃材料制造的连续长丝照片图;
图 3为本发明火成岩水晶玻璃材料的制造方法 (实施例 2) 所得的碱性火成岩水晶玻 璃材料制品的照片图 (3a为天然黑曜石水晶手链, 3b为火成岩水晶板制品);
图 4为本发明火成岩水晶玻璃材料的制造方法 (实施例 3 ) 所得的酸性火成岩水晶玻 璃材料 (水晶) 粉末照片图;
图 5为本发明火成岩水晶玻璃材料的制造方法 (实施例 1 ) 所得的改性中性火成岩水 晶玻璃材料样品未见明显析晶 X-RAY测试曲线图;
图 6 为本发明制造方法实施例 1所得样品热膨胀系数测试曲线图 (单位: 10-6/°C ); 图 7 为本发明制造方法实施例 1所得样品介电常数 ε'、 介电损耗 ε"测试曲线图; 图 8 为本发明制造方法实施例 1所得样品磁导率 μ'、 磁损耗 μ"测试曲线图。 具体实施方式
下面结合实施例及其附图进一步叙述本发明:
本发明设计的火成岩水晶玻璃材料的制造方法 (简称制造方法, 参见图 1一 8), 该制 造方法依次包括以下工艺步骤: 矿石破碎 1、 碎矿石预处理 2、 辅料混合 3、 混合料熔炼 4 和成品制备 5(参见图 1); 所述矿石为火成岩, 碎矿石粒径范围是 0.1-5mm; 所述的碎矿石 预处理采用水洗或酸洗加水洗的方法; 所述酸洗的用酸为盐酸、 硝酸或硫酸, 酸洗溶液的 质量浓度为 1〜50%,酸洗搅拌浸泡时间为 0.5〜24小时;所述辅料混合工艺的辅料为 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种, 辅料的加入量为矿石质量的 1〜 30%; 所述混合料熔炼工艺的熔炼温度为矿石熔点温度 tmelt+50°C〜矿石沸点温度 tboil-50°C , 熔炼环境采用非强氧化气氛 (即不输入氧气, 不添加氧化剂), 包括还原气氛、 氮化气氛、 真空环境、 封闭环境和在空气中熔炼中的至少一种; 所述成品制备工艺包括模 具浇铸、 压延或吹制成型, 或者熔体激冷破碎后制作粉末。
本发明制造方法所述的火成岩包括酸性、 中性、 碱性和超碱性全部四大类火成岩。 在 矿石破碎工艺中, 矿石破碎的粒径一般设计为 0.1-5mm。 碎矿石颗粒大不仅熔化慢, 而且 可能因为熔化不完全在成品中形成结石, 同时在辅料混合工艺中也容易使粉状辅料通过碎 矿石间的空隙漏向底部, 造成混料不勾, 影响产品质量。 虽然碎矿石越小, 熔化越快, 能 耗越低, 但过细的石粉容易飞扬、 结块, 造成粉尘和混合不勾。 本发明碎矿石的粒径在 0.1mm以上, 池炉用碎矿石粒径在 0.25mm以上。 本发明优选粒径小于 5mm的石场废料 碎矿石, 其价格较低, 熔炼耗能较少, 特别是可以省略矿石破碎工艺, 进一步提高效率, 降低成本; 或 /和选择粒径略大于 5mm的石场废料碎矿石, 粉碎容易, 也可提高效率, 降 低成本。
本发明制造方法在预处理工艺中, 采用水洗、 或酸洗加水洗预处理碎矿石。 采用酸洗 的目的是更有效地去除杂质和去除破坏玻璃结构的碱金属氧化物。 所述酸洗的用酸为盐 酸、 硝酸或硫酸, 酸液的质量浓度为 1〜50%, 酸洗搅拌浸泡时间为 0.5〜24小时。 现有 技术的玄武岩深加工制备方法中的预处理工艺一般采用清水冲洗或碱洗, 目的在于保留玄 武岩的碱性组分 (CN101263090, 2008)。 为了降低析晶倾向, 本发明采用了适当酸洗的 预处理方法, 以降低矿石中的碱性物质和晶核剂的含量。 酸洗的同时还可以清除挥发性物 质和其他杂质, 提高熔体粘度, 起到降低成晶倾向和提高材料理化性能的效果。
本发明制造方法在辅料混合工艺中, 根据产品设计需要, 按碎矿石质量 1〜30%的比 例加入辅料 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种, 以提高玻璃 材料的抗析晶性能、 力学性能、 耐腐蚀性能和热稳定性能。 辅料中的 A1203、 MgO和 ZnO 为抗析晶组分, 它可以使断裂的硅氧四面体重新连接, 从而使析晶能力下降; 而辅料中的 A1203、 B203和 Ga203可以降低电场强度较大的网络外离子积聚, 从而减少析晶倾向, 其 中 A1203抗析晶效果最为显著, 为实施例优选。 玄武岩是一种常见碱性火成岩, 玄武岩玻 璃含有大量碱金属氧化物, 热膨胀系数较高, 容易造成炸裂, 因此添加辅料可以为 Si02、 A1203、 Zr02、 B203、 MgO、 Zn03中的至少一种, 并用酸洗去除碱金属氧化物, 降低热膨 胀系数, 提高其热稳定性能。 近年来研究发现, 在玻璃材料组成中引入 La203、 Y203和 / 或 Ti02可以有效提高玻璃弹性模量, 增加玻璃的韧性, 而引入 Si02、 A1203和 /或 B203可 以提高玻璃的强度。 辅料中的 Zr02、 Sn02和 La203为重要耐碱改性辅料, 特别是 Zr02 有良好的化学稳定性, 既耐碱也耐酸, 但添加量不宜超过碎矿石质量的 5%, 否则会增加 析晶倾向; 辅料中的 Zr02、 A1203、 ZnO为重要耐酸改性辅料, 但酸性火成岩矿石一般富 含 A1203, 已经是一种优异的耐酸材料, 一般不需要额外添加耐酸辅料。 工艺操作时, 所 添加的辅料在混料机中充分混合后, 投入熔炉中。
本发明制造方法在混合料熔炼工艺中, 熔炼温度在火成岩的熔点温度与沸点温度之 间。 矿石在 tmdt开始熔化, 温度越高, 熔化越快, 同时对炉体的腐蚀就越大。 达到 tb∞1还 会造成较大的挥发和无效能耗增加, 并且有可能导致熔体溢出。 因此熔炼区间应在矿石熔 化温度和沸点温度之间, 即矿石熔点温度 tmelt+50 °C〜矿石沸点温度 tb<Ml-5(TC。
本发明制造方法的混合料熔炼工艺中, 熔炼气氛采用非强氧化气氛, 包括还原气氛、 氮化气氛、 真空环境、 封闭环境和在空气中熔炼中的至少一种, 但不包括输入氧气或 /和 添加氧化剂的气氛。 还原气氛是指输入氢气、一氧化碳或惰性气体, 或使用还原剂如炭粉 (或可氧化成碳粉的碳水化合物粉末) , 酒石酸钾、 锡粉、 锑粉或铝粉, 或使用石墨制作 的电极、 坩埚, 或同时使用两种以上所述方法。 还原气氛可以把 Fe203转化为 FeO, 从而 降低 Fe203/FeO的比值, 达到阻止析晶的目的, 同时还可以提高材料的力学性能。本发明 实施例采用添加矿石质量 1〜3%的碳粉, 或 /和使用石墨坩埚, 或 /和使用石墨电极, 实现 还原气氛。
所述的氮化气氛是指输入氮气 N2或氨气 NH3, 或者添加氮化物, 如 Si3N4, A1N, Li3N等, 或两者同时使用。本发明首次在火成岩矿物玻璃制备中适当使用了氮化气氛(参 见实施例 3 ) 。 这种氮化气氛在传统火成岩熔炼工艺均不采用 (因为氮化气氛会阻止玄武 岩玻璃陶瓷结晶化, 也会增加玄武岩成丝的难度) 。 本发明采用的氮化气氛工艺是吹入氮 气 2〜16小时, 或 /和添加矿石质量 1〜3%的 Si3N4, A1N和 Li3N中至少一种, 实现氮化 气氛。 玻璃材料中的氧被氮取代后, 会形成氧氮玻璃, 提高玻璃的弹性模量、 耐腐蚀和耐 磨性能。
所述的真空环境、 封闭环境或在空气中熔炼因为没有输入氧气, 且不添加氧化剂, 也 属于非强氧化气氛, 因此不会大幅度提高 Fe203/FeO 比值。 在玻璃不容易析晶 (如低 Fe203/FeO比值、 低铁含量、 已酸洗预处理、 已添加抗析晶组分) 和不担心玻璃炸裂的情 况下 (如成品较薄或为粉末) 的情况下, 所述三种熔炼环境可以根据熔炉情况灵活采用, 例如, 罐炉可以采用封闭环境、 石墨坩埚可以采用真空环境、 池窑可以在空气中熔炼。
本发明制造方法的成品制备工艺中, 根据需要, 可以采用熔体勾化、 澄清后利用模具 浇铸、 压延或吹制成成型, 制成玻璃器件, 也可以把澄清后的熔体浇入水中急冷炸碎 (激 碎) 后, 制成粉末。
该方法适应性广, 在原料成分波动情况下, 可保证产品质量相对稳定, 同时产品种类 较玄武岩玻璃陶瓷 (即铸石) 更加丰富。 本发明制造方法 (例如实施例 1 ) 所得的改性中 性火成岩连续长丝为黑灰色(参见图 2),不同于传统金黄或棕红色玄武岩(即碱性火成岩) 玻璃纤维。 本发明制造方法 (例如实施例 2) 制备的铸件表面无粗毛细孔, 外观和天然黑 曜石水晶(Obsidian)、 黑玛瑙(Firejade) 同样华贵美丽(参见图 3 )。 本发明制造方法(例 如实施例 3 ) 制备的酸性火成岩 (珍珠岩) 粉末可参见图 4。
本发明未述及之处适用于现有技术。
下面给出本发明的具体实施例。具体实施例仅用于进一步详细说明本发明, 不构成对 本发明权利要求的限制。
实施例 1
本实施例采用中性火成岩(安山玄武岩)为原料制造中性火成岩水晶玻璃, 实现抗析 晶工艺和中性矿物玻璃的制备, 并检测常规火成岩水晶玻璃材料的力学、 热学、 电磁学基 本性能。
表 1.实施例 1中性火成岩之安山玄武岩矿石主要组分
Figure imgf000010_0001
采用表 1所述中性火成岩 (安山玄武岩) 矿石, 破碎为粒径 5mm以下的颗粒, 然后 在 20%质量比浓度的硫酸溶液中搅拌浸泡 0.5小时, 在清水中冲洗 0.5小时。 添加矿石质 量 1%的 Si02、 2%的 Zr02和 3%的 A1203, 均勾混合辅料和碎矿石后, 投入天然气加热的 封闭窑炉中, 自 800°C缓慢升温到 1500°C, 保持在 1500°C直至完全熔化; 澄清一小时, 然后在一个小时内把炉温均勾降低到 1000°C, 缓慢越过析晶区 (检测表明未见明显析晶, 参见图 5 ); 熔体浇铸在预热到 600°C的铸铁模具中成型为板材, 产品无炸裂或析晶报废发 生。
这批矿样组分中, 含有大量晶核剂, 同时 Fe2O3/FeO=1.13»0.5,但在采用酸洗、 添加 少量 A1203 (降低析晶倾向、 增加强度) 禾 B Si02、 Zr02 (提高粘度、 增加强度、 降低热膨 胀系数) 之后, 析晶可以忽略不计 (见图 5 ), 说明本发明抗析晶的措施是可行、 易行的。
弯曲强度是火成岩玻璃和玻璃陶瓷最弱的一项力学性能, 因此被用于表征力学性能的 改进。 玄武岩玻璃陶瓷合格品弯曲强度一般不小于 65MPa, 平均值约在 67MPa左右 (参 见肖国平等, "玄武岩铸石技术在高炉冲渣沟中的应用",山东冶金, 25 (6) : 68-69, 2003; 徐昭恒, "铸石的制造", 今日科技, 1990 ( 3 ) : 13, 1990)。 本发明实施例 1改性火成岩 水晶玻璃的弯曲强度为 131.19MPa, 约是普通玄武岩玻璃陶瓷弯曲强度的两倍。 如果采用 电加热保温模具, 而非采用普通铸铁模具浇铸, 并延长退火时间, 火成岩水晶玻璃弯曲强 度还会有明显提高。 实施例 1说明, 放弃传统玻璃陶瓷工艺而采用本发明制造方法, 不仅 工艺简单, 降低了能耗,扩展了火成岩铸件力学性能改善的空间,而且也改善了产品外观, 提高了质量。
表 2.实施例 1中性火成岩水晶玻璃力学性能测试数据
Figure imgf000011_0001
热膨胀系数是衡量热稳定性能的主要指标, 测试表明温度 T在 100、 300、 500、 700°C 时, 实施例 1样品热膨胀系数分别为 6.0688、 6.6979、 7.1705、 7.4581 ( 10"6/°C , 参见图 6), 表明热膨胀系数随温度 T的提高而增加。 其线性回归方程为:
热膨胀系数 (10-6/°C ) =0.0023T+5.9207 (R2=0.9736, Te l00-700°C) (公式 1) 通常将体积电阻率大于 109Q.cm的物质, 称为绝缘材料, 而实施例 1火成岩玻璃体积 电阻率为 0.4 - 3.8xl012Q.cm, 因此是一种良好的绝缘材料 (参见表 3 )。 当介电损失角正 切大于 0.01时, 称其为介电损耗材料(刘顺华等, "电磁波屏蔽及吸波材料", 化学工业出 版社, 2006), 测试表明实施例 1所得火成岩玻璃的介电损失角均大于 0.01, 是一种弱介 电损耗材料 (参见表 3 )。
表 3. 实施例 1中性火成岩水晶玻璃基础电学性能
火成岩玻璃以其优异的保温性能著称,测试实施例 1样品发现,其热传导系数为 0.033 W.m^.K"1, 属于绝热材料。 除了保温隔热性能优异之外, 火成岩深加工产品也是一种良 好的耐热吸声材料 (CN1884164,2006), 因此火成岩玻璃兼具红外隐形、 声纳隐形功能。 电磁学检测发现, 实施例 1样品的介电常数和介电损耗随着频率增加而下降, 磁导率和磁 损耗随着频率增加而提高, 其电磁性能二次拟合曲线为(参见图 7-8): 说明实施例 1样品 是一种雷达隐形材料, 不反射雷达波, 还具有微量吸波的特征, 是一种难得的兼具雷达隐 形、 红外隐形、 声纳隐形三项功能的材料, 军用前景广阔。 所述的介电常数、 介电损耗、 磁导率和磁损耗计算公式如下:
介电常数 ε'= -0.0247(GHz)2+0.1431(GHz)+7.6958 (R2=0.9987, GHze8.2-12.4) (公式 2); 介电损耗 s〃=-0.0133(GHz)2+0.2269(GHz)-0.5974 (R2=0.9571, GHze 8.2-12.4) (公式 3); 磁导率 '=0.0089(GHz)2-0.1341(GHz)+1.3605 (R2=0.9985, GHze 8.2-12.4) (公式 4); 磁损耗 μ〃= 0.0026(GHz)2-0.0481(GHz)+0.2388 (R2=0.9692, GHze 8.2-12.4) (公式 5)。 实施例 2
实施例 2为采用碱性火成岩矿石(玄武岩)制备的黑色水晶玻璃板。 实施例 2用于估 计最低成本, 同时显示骨架材料最少的火成岩水晶玻璃力学性能下限。样品将用于制备黑 水晶工艺品, 即切割成一定形状后磨刻成型, 或放入模具, 加热压制成型。
表 4. 实施例 2碱性火成岩之玄武岩矿石主要组分
Figure imgf000012_0001
表 4所述玄武岩矿石, 为石料厂粒径 5mm以下的废料。 在 20%质量比的硫酸溶液中 搅拌浸泡 8小时, 在清水中冲洗 0.5小时; 不添加任何辅料, 晾干后放入石英或刚玉坩埚, 在空气中加热到 1450°C熔炼、 澄清; 在烧热到 600°C铸铁模具中, 浇铸成厚度为 10mm的 玻璃板后, 立即放入马福炉退火 8小时, 退火上限温度为 840°C。
表 5.实施例 2碱性火成岩水晶玻璃力学性能测试数据
Figure imgf000012_0002
实施例 3
本实施例采样酸性火成岩(珍珠岩)矿石制备改性火成岩粉末。 它实现了酸性矿物玻 璃粉末的制备, 检验了提高强度的产品配方、 还原及氮化气氛工艺。 粉末材料将用做防腐 蚀涂料的填充料, 和水泥防腐蚀、 保温、 防水层的填充料。
表 6. 实施例 3酸性火成岩之珍珠岩矿石主要组分
Figure imgf000012_0003
原料为清洗过的珍珠岩粉, 添加矿石原料质量 (余同) 1%的 Zr02和 1%的 La203, 增 强其防腐蚀能力, 同时添加矿石质量 3% 的 B203增加材料强度降低膨胀系数; 使用氮气 保护 (吹入氮气 10小时, 同时添加矿石质量 1%的 Si3N4) 的石墨坩埚, 加热到 1800°C熔 炼。 熔体流入循环冷却水中急冷炸碎, 然后粉碎为粉末。 检测发现, 实施例 3样品能和水 泥很好的复合, 是活性较高的水泥基凝胶辅助材料 (参见表 7)。 表 7. 实施例 3样品作为水泥填充料的活性指数
Figure imgf000013_0001
实施例 4
实施例 4为采用碱性火成岩矿石(玄武岩)制备的黑水晶玻璃块料。 本实施例采用无 能耗退火方式, 可为艺术玻璃、 艺术水晶厂家提供低成本的黑水晶材料。
表 8. 实施例 4碱性火成岩之玄武岩矿石主要组分
Figure imgf000013_0002
表 8所述玄武岩矿石为粒径在 5mm以下的石场废料。 在 20%质量比的硫酸溶液中搅 拌浸泡 2小时, 在清水中冲洗 0.5小时; 晾干后添加质量 1%的碳粉, 放入封闭熔炉熔炼、 澄清, 熔炼温度为 1450°C。 熔体在已预热的模具中浇铸成四楞柱后立即埋入膨胀珍珠岩 粉中, 退火 7天即得。 采用金刚石、 刚玉、 石英等矿石刻划对比发现, 所得产品的莫氏硬 度为 6.5, 优于黑曜石的莫氏硬度 5.5, 和普通黑玻璃的莫氏硬度相当。 实施例 5
实施例 5采用碱性火成岩矿石(玄武岩)并添加矿石质量 3%的 Si02、 1%的 Zr02、 0.8% 的 Y203和 1%的 MgO, 以提高玄武岩纤维的弹性模量。 矿石在 20%质量比的硫酸溶液中 搅拌浸泡 24小时, 在清水中冲洗 0.5小时。 混合料在 1500°C熔炼、 澄清、 拉丝, 所得纤 维产品弹性模量为 98.21。 定量分析测得该纤维产品组分如下表所示: 表 9. 实施例 5碱性火成岩水晶纤维重要组分百分比
Zr02 Y203 Si02 A1203 MgO CaO Na20 K20 Fe203+FeO Ti02
0.93 0.75 51.02 12.38 9.42 6.56 2.45 1.02 11.01 2.21

Claims

权 利 要 求
1. 一种用于制备火成岩水晶玻璃的组合物, 其特征在于, 所述组合物由火成岩和辅 料组成, 所述火成岩可以是酸性、 中性、 碱性或超碱性火成岩石料; 所述辅料为 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种, 所述辅料的加入质量为火成岩 质量的 1〜30%。
2. 根据权利要求 1 所述的用于制备火成岩水晶玻璃的组合物, 其特征在于, 所述组 合物由中性火成岩和辅料组成, 所述辅料由 Si02、 A1203和 Zr02组成, 其中 Si02加入量 为中性火成岩质量的 1%、 A1203加入量为中性火成岩质量的 3%、 Zr02加入量为中性火成 岩质量的 2%。
3. 根据权利要求 1 所述的用于制备火成岩水晶玻璃的组合物, 其特征在于, 所述组 合物由酸性火成岩和辅料组成, 所述辅料由 La203和 Zr02组成, 其中 Zr02加入量为酸性 火成岩质量的 1%、 La203加入量为酸性火成岩质量的 1%。
4. 根据权利要求 1 所述的用于制备火成岩水晶玻璃的组合物, 其特征在于, 所述组 合物由碱性火成岩和辅料组成, 所述辅料由 Si02、 Zr02、 Y203和 MgO组成, 其中 Si02 加入量为碱性火成岩的 3%, Zr02加入量为碱性火成岩的 1%, Y203加入量为碱性火成岩 的 0.8%, MgO加入量为碱性火成岩的 1%。
5. 一种火成岩水晶玻璃材料的制造方法, 其特征在于, 按照下述工艺步骤进行: 先 对火成岩矿石进行预处理、 然后进行熔炼, 最后进行成品的制备;
所述火成岩矿石的预处理采用水洗或酸洗加水洗的方法;
所述熔炼工艺的熔炼温度为矿石熔点温度 +50°C〜矿石沸点温度一 50°C, 熔炼环境为 非强氧化气氛;
所述成品制备工艺为模具浇铸、 压延或吹制成型, 或者熔体激冷破碎后制作粉末。
6. 根据权利要求 5 所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 酸洗 用酸为质量浓度 1〜50%的盐酸、 硝酸或硫酸, 酸洗搅拌浸泡时间为 0.5〜24小时。
7. 根据权利要求 5 所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 所述 非强氧化气氛为还原气氛、 氮化气氛、 真空环境、 封闭环境或者空气气氛。
8. 根据权利要求 7 所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 所述 还原气氛是采用添加 1〜3%的碳粉, 或 /和使用石墨坩埚, 或 /和使用石墨电极。
9. 根据权利要求 7 所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 所述 氮化气氛是采用吹入氮气 2〜16小时, 或 /和添加 1〜3%的 Si3N4, A1N和 Li3N中至少一 种。
10. 根据权利要求 5-9所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 在 预处理之前, 先对火成岩矿石进行粉碎至矿石粒径为 0.1-5mm。
11.根据权利要求 5-10所述的一种火成岩水晶玻璃材料的制造方法, 其特征在于, 在 进行熔炼之前, 向预处理后的火成岩矿石中添加辅料进行混合均勾, 所述辅料为 Si02、 A1203、 MgO、 B203、 Zr02、 La203和 Y203中的至少一种, 辅料的加入量为火成岩矿石质 量的 1〜30%。
12.—种根据权利要求 5 的方法制备的火成岩水晶材料, 其特征在于, 按照质量百分 比包括下述组分: Si02 45-90% A1203 5-25%, Fe203l-15%、 FeO 1-15%, MgO 1-15%, CaO 1-15%, Na20 1-15%, K20 1-15%, Ti02 0-5%, B2030-5%, Zr020-5%, La2030-5%, Y2030-5%。
PCT/CN2010/078312 2009-11-16 2010-11-02 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法 WO2011057537A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2010317231A AU2010317231B2 (en) 2009-11-16 2010-11-02 Composition used to produce igneous rock crystal glass material, igneous rock crystal glass material and production method thereof
CN201080049103.7A CN102753496B (zh) 2009-11-16 2010-11-02 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009102282957A CN101723587B (zh) 2009-11-16 2009-11-16 一种火成岩水晶玻璃材料的制造方法
CN200910228295.7 2009-11-16

Publications (1)

Publication Number Publication Date
WO2011057537A1 true WO2011057537A1 (zh) 2011-05-19

Family

ID=42445235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/078312 WO2011057537A1 (zh) 2009-11-16 2010-11-02 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法

Country Status (3)

Country Link
CN (2) CN101723587B (zh)
AU (1) AU2010317231B2 (zh)
WO (1) WO2011057537A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101723587B (zh) * 2009-11-16 2012-01-25 戴洪明 一种火成岩水晶玻璃材料的制造方法
CN104973779B (zh) * 2015-06-02 2019-01-01 安徽鑫泰玻璃科技有限公司 一种黑色玻璃生产工艺
CN105366934A (zh) * 2015-12-08 2016-03-02 四川航天拓鑫玄武岩实业有限公司 用于制备连续火山岩纤维原料的预处理方法
CN109836118B (zh) * 2017-11-27 2022-03-18 辽宁省轻工科学研究院有限公司 一种以安山岩为主要原料的铸石板材制备方法
CN108358444A (zh) * 2018-04-20 2018-08-03 郑丹 一种利用岩棉制玉石玻璃的方法
CN109183195A (zh) * 2018-08-23 2019-01-11 深圳市正佳科建科技有限公司 硅铝铜镁增强纤维及制备方法与铝铜镁超塑合金基复合铝
CN109252249B (zh) * 2018-08-23 2020-06-16 深圳市正佳科建科技有限公司 一种非晶火成岩纤维及其制备方法
CN109371339B (zh) * 2018-12-15 2023-05-16 山东建筑大学 一种非晶火成岩陶瓷基纳米金刚石薄膜拉拔模具制备方法
CN111439755A (zh) * 2020-04-17 2020-07-24 中南林业科技大学 一种非晶火成岩及其制备方法
CN115140931A (zh) * 2022-08-12 2022-10-04 烟台华正科信新材科技有限公司 一种采用原矿制备玄武岩鳞片的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034704A (zh) * 1987-12-26 1989-08-16 中国科学院上海硅酸盐研究所 用鹅髓岩制造的微晶玻璃及其工艺
CN1159431A (zh) * 1996-03-11 1997-09-17 陈伟 微晶玻璃陶瓷花岗岩及制造方法
CN1182058A (zh) * 1996-11-08 1998-05-20 建平县平板玻璃厂 用珍珠岩尾砂制作的玻璃马赛克及墙地砖
WO2004028990A1 (en) * 2002-09-27 2004-04-08 Ppg Industries Ohio, Inc. Method for making float glass having reduced defect density
CN101723587A (zh) * 2009-11-16 2010-06-09 戴洪明 一种火成岩水晶玻璃材料的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2139259C1 (ru) * 1998-03-17 1999-10-10 Институт химии и технологии редких элементов и минерального сырья им.И.В.Тананаева Кольского научного центра РАН Глазурь
CN1172806C (zh) * 2001-10-16 2004-10-27 叶杰 石材表面处理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1034704A (zh) * 1987-12-26 1989-08-16 中国科学院上海硅酸盐研究所 用鹅髓岩制造的微晶玻璃及其工艺
CN1159431A (zh) * 1996-03-11 1997-09-17 陈伟 微晶玻璃陶瓷花岗岩及制造方法
CN1182058A (zh) * 1996-11-08 1998-05-20 建平县平板玻璃厂 用珍珠岩尾砂制作的玻璃马赛克及墙地砖
WO2004028990A1 (en) * 2002-09-27 2004-04-08 Ppg Industries Ohio, Inc. Method for making float glass having reduced defect density
CN101723587A (zh) * 2009-11-16 2010-06-09 戴洪明 一种火成岩水晶玻璃材料的制造方法

Also Published As

Publication number Publication date
CN101723587A (zh) 2010-06-09
CN102753496B (zh) 2015-08-05
CN102753496A (zh) 2012-10-24
AU2010317231A1 (en) 2012-06-07
CN101723587B (zh) 2012-01-25
AU2010317231B2 (en) 2014-07-31

Similar Documents

Publication Publication Date Title
WO2011057537A1 (zh) 一种用于制备火成岩水晶玻璃材料的组合物、火成岩水晶玻璃材料及其制造方法
CN102491641B (zh) 耐磨微晶玻璃板材及其制备方法
CN112321288B (zh) 一种具有可精细加工性的超白岩板及其制备方法
CN101792265A (zh) 利用陶瓷抛光砖污泥制备微晶玻璃的方法
CN115536361A (zh) 一种高强度陶瓷薄板及其制备方法
Luo et al. Recycling of granite powder and waste marble produced from stone processing for the preparation of architectural glass–ceramic
CN104071983A (zh) 一种利用萤石尾矿生产微晶玻璃板的烧结工艺方法
CN112876214B (zh) 一种微晶发泡陶瓷及其制备方法与应用
CN108117259B (zh) 一种高强度石英玻璃杯及其制备方法
Wang et al. Enhancement of pozzolanic activity of high-magnesium nickel slag via phase separation by adding CaO
CN1209306C (zh) 复合型粉煤灰建筑微晶玻璃制造方法
CN110590170A (zh) 一种粉煤灰基无机纤维及其制备方法
CN114394805B (zh) 一种镍铁渣基耐热混凝土组合物、镍铁渣基耐热混凝土及其制备方法
CN105271780A (zh) 一种镍渣粉煤灰泡沫玻璃及其制备方法
CN108751719A (zh) 一种基于改性硅灰石微晶玻璃的制备方法
CN112851123B (zh) 一种用镍铁渣制备顽火辉石/尖晶石复相微晶玻璃的方法
Karamanov et al. Sintering Behavior and Properties of Iron‐Rich Glass‐Ceramics
CN114230206A (zh) 一种高强度碱激发材料及其制备方法
CN107265868B (zh) 一种利用青石粉制备的微晶玻璃及其制备方法
CN115490429B (zh) 用于制备微晶玻璃的组合物、微晶玻璃及其制备方法和应用
CN110937811A (zh) 一种以石材粉为原料的微晶玻璃及其制备方法
CN110627474A (zh) 一种利用液态精炼锰渣制备人造火山石的方法
CN112500197B (zh) 一体化泡沫陶瓷保温板界面熔烧专用材料及其制备和应用
CN113548801B (zh) 一种利用飞灰制备微晶玻璃的方法
JP4275384B2 (ja) 低炭素高ジルコニア質電鋳耐火物とその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080049103.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10829501

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010317231

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010317231

Country of ref document: AU

Date of ref document: 20101102

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10829501

Country of ref document: EP

Kind code of ref document: A1