WO2011055208A1 - 電力融通システム - Google Patents

電力融通システム Download PDF

Info

Publication number
WO2011055208A1
WO2011055208A1 PCT/IB2010/002781 IB2010002781W WO2011055208A1 WO 2011055208 A1 WO2011055208 A1 WO 2011055208A1 IB 2010002781 W IB2010002781 W IB 2010002781W WO 2011055208 A1 WO2011055208 A1 WO 2011055208A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
amount
electric power
consumers
electricity
Prior art date
Application number
PCT/IB2010/002781
Other languages
English (en)
French (fr)
Inventor
真明 寺野
義孝 一井
Original Assignee
パナソニック電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック電工株式会社 filed Critical パナソニック電工株式会社
Priority to EP10827987.8A priority Critical patent/EP2498367A4/en
Priority to US13/508,122 priority patent/US8990114B2/en
Publication of WO2011055208A1 publication Critical patent/WO2011055208A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/008Circuit arrangements for ac mains or ac distribution networks involving trading of energy or energy transmission rights
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/06Buying, selling or leasing transactions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S50/00Market activities related to the operation of systems integrating technologies related to power network operation or related to communication or information technologies
    • Y04S50/10Energy trading, including energy flowing from end-user application to grid

Definitions

  • the present invention relates to a power interchange system in which power consumers create power generated by power consumers among power consumers who receive power supply from a power supply system.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2 0 0 6-2 8 8 1 6 2
  • the present invention has been made in view of such circumstances, and provides an electric power interchange system that can accommodate electric power among electric power consumers without going through a general management device.
  • the electric power sold by the electric power consumers A power interchange group in which power consumers are members, and the amount of power demanded by other power consumers as the amount of power sold is the amount of power purchased.
  • Each power consumer is provided with a power control device that manages the power of the power generation device, and the power control device includes power sale power amount information indicating the power sale power amount and power purchase power amount information indicating the power purchase power amount.
  • the power consumers share the sold power amount information and the purchased power amount information within the power interchange group, and buy and sell each other's power through the power control device.
  • Such power trading Since it is executed by a power control device provided in the power consumer, power can be interchanged between the power consumers without going through a management device that manages and manages these power consumers.
  • the power control apparatus further includes a setting function for setting power trading conditions between specific power consumers in advance, and performs power trading between specific power consumers based on the set power trading conditions. Also good.
  • a preset setting is made without going through the process of establishing a power transaction between a power consumer who sells power and a power consumer who purchases power. Since power trading can be performed based on the power trading conditions, it is possible to respond quickly to power demands.
  • each power consumer further includes a storage battery that stores the amount of power generated by the power generation device, and determines the amount of power sold based on the amount of power stored in the storage battery exceeding a threshold value. It is also possible to do.
  • the storage battery functions as a buffer. Power can be interchanged stably.
  • the difference between the power generation amount and the power consumption amount may be used as the power sale power amount.
  • a basic power amount measuring device that measures the amount of basic power flowing to the main part is provided in the main part upstream of the power supply branch part to each electric power consumer, When reverse tide is detected by the basic power amount measuring device, power trading by the power control device may be restricted.
  • FIG. 1 is a block diagram showing a schematic configuration of an embodiment embodying a power interchange system of the present invention.
  • FIG. 2 is a block diagram showing a schematic configuration of the power supply system of the power consumer according to the embodiment. Lock figure.
  • FIG. 3 is a table showing the relationship between the amount of power purchased and sold and the amount of distributed power for each power consumer in the embodiment.
  • FIG. 4 is a flowchart showing a processing procedure for “power selling processing” executed by the power control apparatus of the embodiment.
  • FIG. 5 is a flowchart showing a processing procedure for “power purchase processing” executed by the power control apparatus of the embodiment.
  • FIG. 6 is a flowchart showing a processing procedure for “power trading processing” executed by the power control apparatus of the embodiment.
  • FIG.7 Regarding the transition of the charging level of each power consumer in the same embodiment, (a) is the transition of the charging level on the power selling side before the power trading execution, and (b) is the power purchasing side before the power trading execution. Changes in charge level, (c) is a change in charge level on the power selling side during power trading, and (d) is a timing chart showing changes in charge level on the power buying side after power trading.
  • the power supply system 1 1 0 includes a commercial AC power source 2, a main power trunk line 1 1 1 that transmits power from the commercial AC power source 2, and a sub branch from the main power trunk line 1 1 1.
  • Power trunk lines 1 1 2 are provided.
  • the electric power 1 1 3 is wired from the secondary power trunk 1 1 2 to a plurality of power consumers 60, and AC power is supplied to each power consumer 60.
  • the power consumers 60 who receive power from the secondary power trunk 1 1 2 form a power interchange group G for mutual power interchange.
  • Power interchange group G's power consumers 60 buy and sell electricity to each other.
  • One member of the power interchange group G is required to receive power from the same secondary power trunk 1 1 2.
  • the distance between the wires 1 1 3 connected to each other is long, and power interchange Such a condition is set.
  • Each power consumer 60 of the power interchange group G is connected to a network N such as the Internet, and the power information of each power consumer 60 is shared through the network N. For this reason, the power consumer 60 can view the power information of other power consumers 60 in the power interchange group G.
  • a backbone power measuring device that measures the amount of power flowing in the backbone and the direction of the current is provided in the backbone upstream of the power supply branch to each power consumer 60. 1 2 0 is provided.
  • the backbone energy measuring device 120 determines whether a reverse power flow occurs from the direction of current.
  • the main energy measuring device 1 2 0 is connected to the network N and shows the main electric energy. The power amount information and the reverse power information are transmitted to each power consumer 60.
  • the power supply system 1 that supplies power to various devices installed in the home (lighting devices, air conditioners, home appliances, audio and video devices, etc.) is installed in the homes of power supply consumers.
  • the power supply system 1 also provides various types of power for the solar cell 3 that generates power using solar light and the fuel cell 4 that generates power using fuel. Supply to equipment.
  • the power supply system 1 supplies power not only to the DC device 5 that operates by inputting a DC power source (DC power source) but also to the AC device 6 that operates by inputting a commercial AC power source 2.
  • the power supply system 1 is provided with a control unit 7 and a DC distribution board (with built-in DC breaker) 8.
  • the power supply system 1 is provided with a control unit 9 and a release unit 10 as devices for controlling the operation of the DC device 5 in the house.
  • the control unit 7 is connected to an AC distribution board 11 1 for branching AC power via an AC power line 12.
  • the control unit 7 is connected to the commercial AC power supply 2 via the AC distribution board 11 and connected to the solar cell 3 via the DC power line 1 3 a and via the DC power line 1 3 b.
  • the control unit 7 takes in AC power from the AC distribution board 11 and also takes in DC power from the solar cell 3 and the fuel cell 4, and converts these powers into predetermined DC power as a device power source.
  • the control unit 7 then outputs the converted DC power to the DC distribution board 8 via the DC power line 14 and to the storage battery 16 via the DC power line 15. .
  • the control unit 7 not only captures AC power but also converts DC power from the solar cell 3 and storage battery 16 to AC power and supplies it to the AC distribution board 11.
  • the control unit 7 exchanges data with the DC distribution board 8 via the signal line 17.
  • the DC distribution board 8 is a type of breaker that supports DC power.
  • the DC distribution board 8 branches the DC power input from the control unit 7 and outputs the DC power after branching to the control unit 9 via the DC power line 18 or the DC power line 1 9 Or output to relay unit 10 via.
  • the DC distribution board 8 exchanges data with the control unit 9 via the signal line 20 and exchanges data with the relay unit 10 via the signal line 21.
  • a plurality of DC devices 5 are connected to the control unit 9. These DC devices 5 are connected to a control unit 9 via a DC supply line 22 that carries both DC power and data.
  • the DC supply line 22 is a so-called power line carrier communication that superimposes a communication signal that transmits data with a high-frequency carrier wave on the DC voltage that serves as the power source for the DC device 5. Transport to 5.
  • the control unit 9 acquires the DC power of the DC device 5 through the DC power line 18 and the operation control mode of the DC device 5 based on the operation command obtained from the DC distribution board 8 through the signal line 20. To grasp. Then, the control unit 9 outputs the DC voltage and the operation command to the instructed DC device 5 through the DC supply line 22, and the DC device Control the operation of 5.
  • the control unit 9 is connected to a switch 2 3 that is operated when switching the operation of the DC device 5 in the home via the DC supply line 2 2. Further, for example, a sensor 24 that detects a radio wave transmitted from an infrared remote controller is connected to the control unit 9 via a DC supply line 22. Therefore, the DC device 5 is controlled not only by the operation instruction from the DC distribution board 8 but also by the operation of the switch 23 3 and the detection of the sensor 24 4 by the communication signal transmitted through the DC supply line 22.
  • a plurality of DC devices 5 are connected to the relay unit 10 via individual DC power lines 25, respectively.
  • the relay unit 10 obtains the DC power supply of the DC device 5 through the DC system power line 19 and, based on the operation command obtained from the DC distribution board 8 through the signal line 21, either DC device 5 is Know what to do. Then, the relay unit 10 controls the operation of the DC device 5 by turning on and off the power supply to the DC power line 25 with the built-in relay with respect to the instructed DC device 5. Also, the relay unit 10 is connected to a plurality of switches 26 for manually operating the DC device 5. By operating the switches 26, the power supply to the DC power line 25 is released. DC device 5 is controlled by turning on and off at.
  • the DC distribution board 8 is connected to a DC outlet 27, which is built in a house in the form of a wall outlet or a floor outlet, for example, via a DC power line 28. If the plug (not shown) of DC device 5 is inserted into this DC outlet 27, DC power can be directly supplied to this device.
  • the AC distribution board 11 is connected to a power meter 29 that can remotely measure the amount of commercial AC power 2 used, for example.
  • the power meter 29 is equipped not only with the function of remote meter reading of commercial AC power consumption, but also with the function of power line carrier communication and wireless communication, for example.
  • the power meter 29 sends the meter reading result to an electric power company or the like via power line carrier communication or wireless communication.
  • the power supply system 1 is provided with a network system 30 that enables various devices in the home to be controlled by network communication.
  • the network system 30 is provided with a home server 31 as a control unit of the system 30.
  • the in-home server 3 1 is connected to the management server 3 2 outside the home via the network N, and is connected to the in-home equipment 3 4 through the signal line 3 3.
  • the in-home server 31 is operated by DC power supplied from the DC distribution board 8 through the DC power line 35.
  • a control box 36 that manages operation control of various devices in the home through network communication is connected to the home server 31 via a signal line 37.
  • the control box 36 is connected to the control unit 7 and the DC distribution board 8 via the signal line 17 and directly controls the DC device 5 via the DC supply line 38.
  • a gas / water meter 39 that can remotely measure the amount of gas used or the amount of water used is connected to the control box 36, and an operation panel 40 of the network system 30 is connected to the control box 36.
  • Operation panel 4 For example, 0 is connected to a monitoring device 41 including a door phone slave unit, a sensor, and a camera.
  • the control box 3 6 When the home server 3 1 inputs operation commands for various devices in the home via the network N, the control box 3 6 notifies the control box 3 6 of the instructions so that the various devices operate in accordance with the operation commands. To work.
  • the home server 3 1 can provide various information acquired from the gas / water meter 39 to the management server 3 2 through the network N, and that the monitoring device 4 1 has detected an abnormality. When accepted from the operation panel 40, this is also provided to the management server 32 via the network N.
  • control unit will be further described.
  • the control unit 7 includes the commercial AC power amount M supplied from the AC power line 1 2, the solar power generation amount MA by the solar cell 3, the fuel power generation amount MB by the fuel cell 4, the power storage amount MG of the storage battery 1 6 and Manage charge level CL. In addition, the control unit 7 changes the power supply source for supplying power to the AC device 6 or the DC device 5 based on the commercial AC power MC, the solar power generation MA, the fuel power generation MB, and the charge level CL. .
  • a PC unit 50 is connected to the control unit 7. The PC terminal 50 displays the commercial AC power amount MC, the solar power generation amount MA, the fuel power generation amount MB of the fuel cell 4, and the charge level CL of the storage battery 16. The control unit 7 controls the power as follows.
  • the control unit 7 stores the solar power generation amount MA. Store in 1-6.
  • the charge level C L of the storage battery 16 is controlled by the control unit 7.
  • the control unit 7 prohibits charging.
  • the control unit 7 allows discharge from the storage battery 16 and supplies power to the AC device 6 or the DC device 5.
  • the control unit 7 prohibits discharging.
  • the first threshold C L B is set for the storage battery 16 to cover the amount of power used in the event of an emergency such as a power outage.
  • the control unit 7 cuts off the supply of AC power when the total value of the power consumption MD of each AC device 6 exceeds the value defined as the maximum power consumption. When the total power consumption M D of each DC device 5 exceeds the value specified as the maximum power consumption, supply of DC power is cut off.
  • control unit 7 includes the power consumption MD of the AC device 6 and the DC device 5, the commercial AC power MC received from the commercial AC power source 2, the power generation by the fuel cell 4 and the solar cell 3, and the storage battery. 1 Manage charge level CL of 6. The control unit 7 then calculates the amount of power that can be sold (hereinafter referred to as the amount of power sold) based on these amounts of power, or the amount of power required to purchase power (hereinafter referred to as the amount of power sold). Electricity purchased) is calculated.
  • control unit—unit 7 has information indicating the amount of electric power sold (hereinafter referred to as “electric power sale amount information”) and information indicating the amount of electric power purchased (hereinafter referred to as “electric power purchase amount information”) stored in the PC terminal 50.
  • electrical power sale amount information information indicating the amount of electric power sold
  • electric power purchase amount information information indicating the amount of electric power purchased
  • Electric power consumer A is a person who surpluses the amount of power generated in one day
  • electric power consumer B and electric power customer C use all of the generated power at a glance and receive power supply from commercial AC power supply 2.
  • the value shown in the figure is an index indicating the electric energy.
  • the indicator shows that the average value of stored electricity per day for a certain period of time for electric power consumers 60 is 100. Note that power trading control may be performed based on the actual amount of power, rather than using indicators.
  • the table in Fig. 3 shows the amount of electricity stored in each power consumer 60 at a given time, MG, the amount of power that can be sold, the amount of power sold and purchased, the relationship between the sale and sale, and the amount of power distributed by the power customer A. All of this information is shared among 60 electricity customers in the electricity interchange group G.
  • the storage amount MG is calculated from the charge level C L of the storage battery 16.
  • the amount of power that can be sold is obtained as the amount of power stored exceeding the second threshold C L C when the charge level C exceeds the second threshold C L C at a predetermined time.
  • the shortage with respect to the second threshold C L C is obtained as the amount of power required by the power consumer 60.
  • the second threshold value CLC is set as a judgment reference value for selling or buying electricity, and is set higher than the first threshold value CLB.
  • the second threshold value C L C is set based on the power consumption M D of the AC device 6 and the DC device 5 at night. According to such a setting, power is covered by the discharge of the storage battery 16 at night when the solar battery 3 does not generate power.
  • the power sale is distributed according to the ratio of the power purchased by the buyer.
  • electricity customer A is the seller of 80 electricity
  • electricity consumer B is the buyer of electricity 120
  • electricity customer C is the buyer of electricity 80. Yes.
  • the control unit 7 of the power consumer A who is the power seller issues a command to discharge the battery 16 to the electric wire 1 13.
  • the power buyers B and C of the power buyers start to charge by receiving power from the wires 1 1 3.
  • the control unit 7 calculates the amount of power sold, and the process of selling power to other power consumers 60 is performed. This process is repeatedly executed every predetermined calculation cycle.
  • step S 1 1 it is determined whether or not the processing time is a preset trading time. For example, for a power consumer 60 that is generating power from solar cells 3, the time at which the charge level CL of the storage battery 1 6 is expected to be maximized is set. Will be notified. When it is the trading time, the process proceeds to step S 1 2 0.
  • step S 1 2 it is determined whether the charge level C L exceeds the second threshold value C L C. Since the power cannot be sold when it is smaller than the second threshold value C LC, the process ends.
  • the power sales amount is calculated in step S 1 30.
  • the calculation of the amount of electric power sold is arbitrarily set. For example, 10 to 10% of the stored electricity amount MG stored in the storage battery 16 exceeding the second threshold value C L C is set as the amount of electric power sold.
  • step S 1 4 sold power amount information indicating the sold power amount is transmitted to each power consumer 60 through the network N.
  • the control unit 7 calculates the amount of power purchased. The process is repeatedly executed every predetermined calculation cycle.
  • step S 2 1 it is determined whether or not the processing time is a preset trading time. When it is time to buy / sell, the process proceeds to step S 2 20. In Step S 2 20, it is determined whether or not the charge level C L of the storage battery 16 is smaller than the second threshold value C L C.
  • step S 2 2 When an affirmative determination is made in step S 2 2 0, the amount of electric power purchased is calculated in step S 2 3 0.
  • the amount of electric power purchased is obtained, for example, as the difference between the full charge level C L A and the charge level C L at the time of processing.
  • step S 2 40 the purchased power amount information indicating the purchased power amount is transmitted to each power consumer 60 through the network N.
  • control unit 7 compares the amount of electric power sold and the amount of electric power to be purchased to establish electric power buying and selling. This process is repeatedly executed every predetermined calculation cycle.
  • step S 3 1 it is determined whether or not the processing time is a preset trading time. When it is time for buying and selling, the process proceeds to step S 3 2 0. In the same step S 3 2 0, it is determined whether or not both the sold power amount information and the purchased power amount information exist. When there is only one piece of information, the process ends because power trading is not possible.
  • a distributed power amount ME that distributes the sold power amount to the buyer is calculated in step S 3 3 0.
  • the amount of distributed energy ME is equivalent to the amount of purchased electricity.
  • the amount of distributed power ME is equivalent to the amount of power sold.
  • the amount of electricity sold is allocated according to the ratio of the amount of electricity purchased. For example, as shown in Figure 3, 4 8 is allocated to power customer B and 3 2 is allocated to power customer C.
  • step S 3 40 distributed power amount information indicating the distributed power amount M E is transmitted to each power consumer 60 through the network N.
  • step S 3 5 a command to discharge the storage battery 16 is issued from the control unit 60 of the power consumer 60 who is the seller.
  • the control unit 7 of the power consumer 60 who is the buyer issues a command to charge the storage battery 16.
  • the amount of electric power flowing through the electric wires 11 13 increases, and this electric amount flows into the storage battery 16 of the electric power consumer 60 who is the buyer.
  • reverse tide occurs during the period when electricity is discharged due to power trading, power trading is invalid, and the seller's power discharge and the buyer's storage battery 16 are charged. Will be suspended.
  • FIG. 7 the transition of the charge level C of each power consumer 60 before the power trading is executed, and the charging of each power consumer 60 when the power trading is executed. Compare the transition of level C and explain the power interchange through power trading.
  • This figure qualitatively shows an example of the transition of the charge level CL over 1 km when only the power generation of the solar cell 3 is being executed under a certain environment.
  • Fig. 7 (a) and Fig. 7 (b) show the transition of the charge level C L of the storage battery 16 of each electric power consumer 60 when power trading is not performed.
  • Fig. 7 (c) and Fig. 7 (d) show the transition of the charge level C L of the storage battery 16 of each electric power consumer 60 when power trading is performed.
  • Fig. 7 (a) shows the transition of the charge level CL of the storage battery 16 of the electric power consumer 60 who cannot use the amount of power generated by the solar battery 3 in the daytime. For example, this is the case for power customer A, who has few family members.
  • Time t 1 1 represents midnight.
  • the charge level C L is higher than the first threshold value C L B.
  • a part of the electric energy charged in the daytime is not consumed and remains as the surplus electric energy MF.
  • Time t 1 2 indicates the wake-up time.
  • the use of AC device 6 and DC device 5 etc. starts from time t 1 2 and the charge level C L decreases. Since there are few family members of electric power consumer A, the level of decrease in charge level C L is also small.
  • Time t 1 3 indicates the time when the decrease in the charge level C L stops. From time t 1 3 onwards for electric power customer A, the amount of electricity stored gradually increases as the amount of power generated by solar cell 3 increases compared to the amount of power consumed MD of AC device 6 and DC device 5. For this reason, the charge level C L gradually increases.
  • Time t 14 indicates the time when charge level CL reaches full charge level CLA. At this time Charging the pond 16 is prohibited. For this reason, the amount of electric power generated by the solar cell 3 cannot be stored. That is, the amount of power generated by the solar cell 3 is wasted during the period from time t 14 to the time until sunset.
  • Time t 1 5 indicates the time when the use of AC device 6 or DC device 5 is started in the home of power consumer A. At time t 15, the charge level C L starts to decrease. At time t 1 6, use of AC device 6 or DC device 5 is stopped. As shown in the figure, the amount of power stored in the daytime due to the generation of the solar cell 3 remains without being consumed.
  • Figure 7 (b) shows the transition of the charge level CL of the storage battery 16 of the power customer 60 who uses the amount of power generated by the solar cell 3 in the daytime and receives power from the commercial AC power source 2. Show. For example, this is the case for electricity customer B, who has many family members.
  • the charge level CL is at the same level as the first threshold value CLB. In other words, the entire amount of power charged in the daytime is consumed. Power consumption MD of AC equipment 6 driven at midnight MD is supplied from commercial AC power supply 2.
  • Time t22 indicates the wake-up time. Use of AC device 6 and DC device 5 starts at time t22. The amount of power consumed MD used during this time is also supplied from commercial AC power supply 2. In the figure, the period covered by commercial AC power supply 2 is shown as the commercial power usage period.
  • Time t 23 indicates the time when the amount of power generated by the solar cell 3 is greater than the power consumption MD of the power consumer B. Charging of the storage battery 16 starts at time t23. In the figure, the level of increase in the charge level C L is lower than that of the electricity consumer A. This shows that AC equipment 6 and DC equipment 5 are used by electricity customer B in the daytime.
  • Time t 24 indicates the time when the amount of power generated by the solar cell 3 becomes smaller than the power consumption M of the power consumer B.
  • the charge level C L starts to decrease. The level of this decrease level is increased.
  • the charge level CL reaches the first threshold value CLB, and discharging from the storage battery 16 is prohibited.
  • the power consumption MD of the AC device 6 or the DC device 5 is supplied from the commercial AC power source 2.
  • Figure 7 (c) shows the transition of the charge level CL of the battery 16 of the electric power customer A when electricity is being bought and sold.
  • Time t31 indicates midnight.
  • the charge level CL is higher than the first threshold value CLB.
  • the surplus power MF is less than the surplus power MF in Fig. 7 (a).
  • Time t32 indicates the wake-up time. Use of AC device 6 and DC device 5 etc. starts from time t 32, and charge level CL decreases. At time t33, the charge level CL starts to rise. In electric power customer A, since time t33, the amount of power stored in solar cell 3 has increased and the amount of stored electricity has gradually increased compared to the amount of power consumed by AC device 6 and DC device 5. For this reason, the charge level CL gradually increases.
  • Time t 3 4 indicates the time when power trading was established. At this time, the discharge from the storage battery 16 to the electric wire 1 13 is started, and the discharge of the electric power sold is completed at the time 35, and the discharge is prohibited. At the same time, charging of the power generation amount by the solar cell 3 is started.
  • Time t 3 6 indicates a time when power generation by the solar cell 3 is not performed, that is, a sunset time.
  • the charge level C L does not increase after time t 3 6.
  • the charging level C L gradually decreases due to the start of use of the AC device 6 or the DC device 5.
  • Fig. 7 (d) shows the transition of the charge level C L of the storage battery 16 of the electric power customer B during the period when electricity is being bought and sold.
  • Time t 4 1 represents midnight.
  • the charge level C L is higher than the first threshold value C L B.
  • a part of the electric energy charged in the daytime is not consumed and remains as the surplus electric energy MF.
  • Time t 4 2 represents the wake-up time. Use of AC device 6 and DC device 5 starts at time t 4 2. For this reason, the charge level C L gradually decreases, and at time t 43, the charge level C L reaches the first threshold value C L B. After time t 4 3, power consumption M D is supplied from commercial AC power supply 2.
  • the charge level C L starts to rise.
  • the amount of power generated by solar cell 3 is greater than the amount of power consumed M D by AC device 6 and DC device 5. For this reason, the charge level C L gradually increases.
  • Time t 4 5 indicates the time when power trading was established. That is, at the same time, power trading is established between power customer A, whose charge level CL is higher than the second threshold CLC, and power customer B, whose charge level CL is lower than the second threshold CLC. is doing. At this time, charging is started with power from the power supply system 110, and charging of the purchased electric energy is completed at time t46.
  • the charge level C gradually decreases due to the power supply from the storage battery 16 to the AC device 6 and the DC device 5.
  • the use of AC device 6 and DC device 5 is stopped, and the decrease in charge level CL is stopped.
  • the charge level CL of the electric power customer B is compared with the case where such electric power is not purchased. Can be raised. As a result, the period during which AC power from the commercial AC power source 2 is used is shortened. According to the power interchange system 100 of this embodiment, the following effects can be obtained.
  • the power interchange group consisting of 60 electric power consumers who exchange power —P
  • Each power consumer 60 of the power interchange group G is equipped with a control unit 7 that manages the power of the power generator.
  • the control unit 7 transmits / receives the sold power amount information indicating the sold power amount and the purchased power amount information indicating the purchased power amount to / from other power consumers 60 in the power interchange group G.
  • the control unit 7 establishes power trading between the power consumers 60 based on the information on the amount of power sold and the amount of power purchased, and the demand for power to be purchased with the power consumers 60 to sell.
  • a command is issued to discharge the amount of power sold by the power consumer 60 to the power supply system 110 based on the power trading conditions established with the house 60.
  • the electric power consumers 60 share electric power sales amount information and electric power purchase amount information within the electric power interchange group G, and buy and sell each other's electric power through the control unit.
  • Such power trading is executed by the control unit 7 provided in each power consumer 60. Therefore, the power consumer is not required to go through a management device that manages these power consumers 60 in an integrated manner. Power can be accommodated between 60.
  • Each electric power consumer 60 is provided with a storage battery 16 for storing the amount of power generated by the power generator.
  • the charge level C L of the storage battery 16 is stored exceeding the second threshold value C L C, the amount of power sold is determined based on the amount of power in the portion exceeding the second threshold value C L C.
  • the amount of power generated by the power generation device is temporarily stored in the storage battery 16 and then sold, and the storage battery 16 functions as a buffer. It is possible to stably supply power to 60 electric power consumers.
  • the power supply branching to each power consumer 60 is measured upstream of the main power supply part to the power supply branch part 60, and the main power flowing through the main part is measured.
  • a basic energy meter 1 2 0 is provided. When reverse power is detected by the main energy measuring device 1 2 0, power trading by the control unit 7 is restricted.
  • the embodiment of the present invention is not limited to the embodiment exemplified in the above embodiment, and the embodiment can be modified as shown below, for example. Further, the following modified examples are not applied only to the above-described embodiment, and different modified examples can be implemented in combination with each other.
  • Control Unit 7 performs power trading by matching power trading partners based on the information shown in the table in the figure.
  • Trading conditions may be set in advance, and power trading may be performed automatically on a daily basis under these conditions.
  • the control unit 7 is provided with a setting function for setting power trading conditions in advance between specific power consumers 60.
  • the control unit 7 performs power trading based on the power trading conditions. When the amount of power that can be sold is generated, it is possible to perform power trading based on preset power trading conditions without the establishment of power trading between the seller and the buyer. Can respond quickly.
  • the power trading of the power storage amount MG by the power generation of the solar cell 3 is described.
  • the power trading processing of the present invention is based on the power storage amount MG stored in the storage battery 16. This applies regardless of the type of power generation equipment that is the source.
  • the discharge from the storage battery 16 is executed when power trading is established, but this discharge is not limited to the discharge from the stored electricity amount MG.
  • the power from the photovoltaic power generation amount MA may be discharged to the power supply system 110 when power trading is established. According to this configuration, when the amount of photovoltaic power generation MA exceeds the amount of power consumption MD and surplus power is generated, power can be accommodated immediately for other power demands. It can respond quickly to demands.
  • the secondary power trunk line 1 1 2 to which the power consumer 60 of the power interchange group G is connected by providing the backbone power amount measuring device 1 2 0 upstream of the power supply system 1 1 0 Although management is performed so that power is not sold to the other sub power trunk line 1 1 2, such a main power measuring device 1 2 0 may be omitted.
  • the power consumer 60 with the power generation device is a member of the power interchange group G, but the power consumer 60 without the power generation device is also a component of the power interchange train. Can become a member. In this case, the power consumer 60 participates in the power trading as a buyer.
  • a general house is modeled as the power consumer 60, but the power consumer 60 is not limited to a house.
  • Electricity consumers 60 include those that receive power supply from one power supply system 110, such as schools, hospitals, and factories.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Finance (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Accounting & Taxation (AREA)
  • Theoretical Computer Science (AREA)
  • Marketing (AREA)
  • General Physics & Mathematics (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Human Resources & Organizations (AREA)
  • Power Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Development Economics (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 電力供給系から電力供給を受ける電力需要家の間で各自の発電装置による発電量を互いに融通し合う電力融通システムにおいて、前記電力需要家が売電する電力量を売電電力量とし、前記電力需要家が他の電力需要家に対して要求する電力量を買電電力量として、電力を融通し合う電力需要家が構成員とされる電力融通グループが形成され、各電力需要家は前記発電装置の電力を管理する電力制御装置を備え、前記電力制御装置は、前記売電電力量を示す売電電力量情報と前記買電電力量を示す買電電力量情報とを他の電力需要家に対して送受信し、前記売電電力量情報と前記買電電力量情報に基づいて電力需要家間での電力売買を成立させ、売電する電力需要家と買電する電力需要家との間で成立した電力売買条件に基づいて電力需要家の売電電力量を電力供給系に放電する旨の指令を出す電力融通システムが提供される。

Description

明細書 電力融通システム 技術分野
本発明は、 電力供給系から電力供給を受ける電力需要家間で電力需要家が創出する創出 電力量を互いに融通し合う電力融通システムに関する。 背景技術
近年、 太陽電池や燃料電池等により自家発電を行う電力需要家が増えてきている。 とこ ろで、 自家発電による電力量が消費電力量よりも上回る場合がある。 このような場合消費 電力量を上回る電力量が捨てられることになる。 そこで、 消費電力量を上回る余剰電力を 電力需要家間で融通しあう技術が提案されている (例えば、 特許文献 1 )。
【特許文献 1】 日本特開第 2 0 0 6— 2 8 8 1 6 2号公報
上記特許文献 1の技術においては、 電力需要家間の電力を融通し合うために、 各電力需 要家の売電可能な電力量と各電力需要家からの電力需要量とを統括的に管理する管理装置 が設けられている。 ところが、 一般の電力需要家が電力を創出するようになるにつれ、 こ のような管理装置を経由しないでも、 電力需要家間で簡単に電力を融通したいという要望 が出されている。 発明の概要
本発明はこのような実情に鑑みてなされたものであり、 統括的な管理装置を経由しない で電力需要家の間で電力を融通することができる電力融通システムを提供する。
本発明の一実施形態によれば、 電力供給系から電力供給を受ける電力需要家の間で各自 の発電装置による発電量を互いに融通し合う電力融通システムにおいて、 前記電力需要家 が売電する電力量を売電電力量とし、 前記電力需要家が他の電力需要家に対して要求する 電力量を買電電力量として、 電力を融通し合う電力需要家が構成員とされる電力融通グル ープが形成され、 各電力需要家は前記発電装置の電力を管理する電力制御装置を備え、 前 記電力制御装置は、 前記売電電力量を示す売電電力量情報と前記買電電力量を示す買電電 力量情報とを他の電力需要家に対して送受信し、 前記売電電力量情報と前記買電電力量情 報に基づいて電力需要家間での電力売買を成立させ、 売電する電力需要家と買電する電力 需要家との間で成立した電力売買条件に基づいて電力需要家の売電電力量を電力供給系に 放電する旨の指令を出す電力融通システムを提供する。
この構成によれば、 電力需要家は、 電力融通グループ内で売電電力量情報及び買電電力 量情報を共有し電力制御装置を通じて互いの電力を売買する。 このような電力売買は、 各 電力需要家に設けられた電力制御装置により実行されるため、 これら電力需要家を統括し て管理する管理装置を経由しないで電力需要家の間で電力を融通することができる。 前記電力制御装置は、 特定の電力需要家間で予め電力売買条件を設定する設定機能をさ らに備え、 この設定電力売買条件に基づいて特定の電力需要家同士の電力売買を行うこと にしても良い。
これによれば、 売電可能な電力量が生じたときに、 売電する電力需要家と買電する電力 需要家との間での電力売買の成立過程を経ることなく、 予め設定された設定電力売買条件 に基づいて電力売買を行うことができるため、 電力要求に対して迅速に対応することがで さる。
前記電力融通システムにおいて、 前記各電力需要家は前記発電装置による発電量を蓄電 する蓄電池をさらに備え、 前記蓄電池にて閾値を超えて蓄えている電力量に基づいて前記 売電電力量を求めることにすることも可能である。
これによれば、 発電装置により創出される発電量が一旦蓄電池に蓄えられてから売電さ れることになリ、 蓄電池がバッファとしての機能を果たすことになるため、 他の電力需要 者に対して安定的に電力を融通することができる。
また、 前記発電装置による発電量が前記電力需要家の消費する消費電力量よりも大きい ときに前記発電量と前記消費電力量との差を前記売電電力量としても良い。
この構成によれば、 余剰電力が生じるときに他の電力需要化に対して電力を融通するた め、 当該電力需要家が必要とする電力量を確保した上で、 他の電力需要家に対して電力を 融通することができる。
前記電力供給系のうちで前記各電力需要家への電力供給分岐部分よリも上流側の基幹部 には、 当該基幹部に流れる基幹電力量を計測する基幹電力量計測装置が設けられ、 前記基 幹電力量計測装置により逆潮が検出されたときには、 前記電力制御装置による電力売買を 制限することにしても良い。
各電力需要家に対して電力供給する電力供給系の上流側の基幹部において逆潮が生じて いるときは、 電力融通グループ全体としての電力融通の範囲を超えて、 外部に電力を供給 していることになる。 従って、 この構成によれば、 基幹電力量計測装置により逆潮が検出 されたときには、 電力制御装置による電力売買を制限するため、 このような逆潮を抑制す ることができる。 図面の簡単な説明
本発明の目的及び特徴は以下のような添付図面を参照する以後の好ましい実施例の説明 により明確になる。
【図 1】 本発明の電力融通システムを具体化した一実施形態について、 その概略構成を 示すブロック図。
【図 2】 同実施形態の電力需要家の電力供給システムについて、 その概略構成を示すブ ロック図。
【図 3】同実施形態の各電力需要家の売買電力量と分配電力量との関係を示すテーブル。
【図 4】 同実施形態の電力制御装置により実行される 「売電処理」 について、 その処理 手順を示すフローチヤ一ト。
【図 5】 同実施形態の電力制御装置により実行される 「買電処理」 について、 その処理 手順を示すフローチヤ一ト。
【図 6】 同実施形態の電力制御装置により実行される 「電力売買処理」 について、 その 処理手順を示すフローチヤ一ト。
【図 7】同実施形態の各電力需要家の充電レベルの推移について、 (a ) は電力売買実行 前の売電側の充電レベルの推移、 ( b )は電力売買実行前の買電側の充電レベルの推移、 ( c ) は電力売買実行中の売電側の充電レベルの推移、(d )は電力売買実行後の買電側の充電レ ベルの推移を示すタィミングチヤ一ト。 発明を実施するための形態
以下、 本発明の実施形態が本明細書の一部を成す添付図面を参照してよリ詳細に説明す る。 図面全体において同一又は類似する部分については同一参照符号を付して説明を省略 する。
図 1〜図 7を参照して、 本発明の実施形態について説明する。
図 1に示すように、 電力供給系 1 1 0には、 商用交流電源 2と、 商用交流電源 2からの 電力を送電する主電力幹線 1 1 1と、 主電力幹線 1 1 1から分岐する副電力幹線 1 1 2と が設けられている。 副電力幹線 1 1 2から複数の電力需要家 6 0に対して電線 1 1 3が配 線され、 各電力需要家 6 0に交流電力が供給されている。
副電力幹線 1 1 2から電力の供給を受けている電力需要家 6 0はお互いに電力を融通し 合うための電力融通グループ Gを形成している。 電力融通グループ Gの電力需要家 6 0は 互いに電力を売買する。 電力融通グループ Gのメンバ一は同一の副電力幹線 1 1 2から電 力供給を受けることを条件としている。 一副電力幹線 1 1 2の電力需要家 6 0と他の副電 力幹線 1 1 2の電力需要家 6 0との間では、 互いに接続する電線 1 1 3の距離が長く、 電 力の融通が困難となることからこのような条件が設定される。
電力融通グループ Gの各電力需要家 6 0はインタ一ネット等のネットワーク Nに接続さ れ、 各電力需要家 6 0の電力情報はネットワーク Nを通じて共有されている。 このため、 電力需要家 6 0は、 電力融通グループ G内の他の電力需要家 6 0の電力情報を閲覧するこ とができる。
電力供給系 1 1 0のうちで各電力需要家 6 0への電力供給分岐部分よりも上流側の基幹 部には、 当該基幹部に流れる電力量及び電流の向きを計測する基幹電力量計測装置 1 2 0 が設けられている。 基幹電力量計測装置 1 2 0は電流の向きから逆潮が生じているか判定 する。 同基幹電力量計測装置 1 2 0はネットワーク Nに接続され、 基幹電力量を示す基幹 電力量情報及び逆潮の情報を各電力需要家 6 0に送信する。
図 2を参照して、 各電力需要家の電力供給システムについて説明する。
電力供給需要家の住宅には、 宅内に設置された各種機器 (照明機器、 エアコン、 家電、 オーディオ及びビデオ機器等) に電力を供給する電力供給システム 1が設けられている。 電力供給システム 1は、 家庭用の商用交流電源 (A C電源) 2の電力の他に、 太陽光によ リ発電する太陽電池 3の電力や燃料によリ発電する燃料電池 4の電力をも各種機器に供給 する。 電力供給システム 1は、 直流電源 (D C電源) を入力して動作する D C機器 5の他 に、 商用交流電源 2を入力して動作する A C機器 6にも電力を供給する。
電力供給システム 1には、コントロールュニッ卜 7及び D C分電盤(直流ブレーカ内蔵) 8が設けられている。 また、 電力供給システム 1には、 住宅の D C機器 5の動作を制御す る機器として制御ュニット 9及びリレ一ュニット 1 0が設けられている。
コントロールユニット 7には、 交流電力を分岐させる A C分電盤 1 1が交流系電力線 1 2を介して接続されている。 コントロールユニット 7は、 A C分電盤 1 1を介して商用交 流電源 2に接続されるとともに、 直流系電力線 1 3 aを介して太陽電池 3に接続され、 直 流系電力線 1 3 bを介して燃料電池 4に接続されている。 コントロールユニット 7は、 A C分電盤 1 1から交流電力を取り込むとともに太陽電池 3及び燃料電池 4から直流電力を 取り込み、 これら電力を機器電源として所定の直流電力に変換する。 そして、 コント口一 ルユニット 7は、 この変換後の直流電力を、 直流系電力線 1 4を介して D C分電盤 8に出 力し、また直流系電力線 1 5を介して蓄電池 1 6に出力する。コントロールユニット 7は、 交流電力を取り込むのみならず、 太陽電池 3や蓄電池 1 6の直流電力を交流電力に変換し て A C分電盤 1 1に供給する。 コントロールユニット 7は、 信号線 1 7を介して D C分電 盤 8とデータやり取りを実行する。
D C分電盤 8は、 直流電力対応の一種のブレーカである。 D C分電盤 8は、 コント口一 ルユニット 7から入力した直流電力を分岐させ、 その分岐後の直流電力を、 直流系電力線 1 8を介して制御ュニット 9に出力したり、 直流系電力線 1 9を介してリレーュニット 1 0に出力したりする。 また、 D C分電盤 8は、 信号線 2 0を介して制御ユニット 9とデ一 タのやり取りをしたり、 信号線 2 1を介してリレーュニット 1 0とデータのやり取りをし たりする。
制御ユニット 9には、 複数の D C機器 5が接続されている。 これら D C機器 5は、 直流 電力及びデータの両方を搬送する直流供給線路 2 2を介して制御ュニット 9と接続されて いる。 直流供給線路 2 2は、 D C機器 5の電源となる直流電圧に、 高周波の搬送波により データを電送する通信信号を重畳する、 いわゆる電力線搬送通信により、 一対の線で電力 及びデータの両方を D C機器 5に搬送する。 制御ユニット 9は、 直流系電力線 1 8を介し て D C機器 5の直流電力を取得し、 D C分電盤 8から信号線 2 0を介して得る動作指令に 基づいて D C機器 5の動作制御態様について把握する。 そして、 制御ユニット 9は、 指示 された D C機器 5に直流供給線路 2 2を介して直流電圧及び動作指令を出力し、 D C機器 5の動作を制御する。
制御ュニット 9には、 宅内の D C機器 5の動作を切り換える際に操作するスィッチ 2 3 が直流供給線路 2 2を介して接続されている。 また、 制御ユニット 9には、 例えば赤外線 リモートコントローラからの発信電波を検出するセンサ 2 4が直流供給線路 2 2を介して 接続されている。 よって、 D C分電盤 8からの動作指示のみならず、 スィッチ 2 3の操作 やセンサ 2 4の検知によっても、 直流供給線路 2 2を通じて送信される通信信号により、 D C機器 5が制御される。
リレーュニット 1 0には、 複数の D C機器 5がそれぞれ個別の直流系電力線 2 5を介し て接続されている。 リレーユニット 1 0は、 直流系電力線 1 9を介して D C機器 5の直流 電源を取得し、 D C分電盤 8から信号線 2 1を介して得る動作指令に基づいて、 いずれの D C機器 5を動作させるのかについて把握する。 そして、 リレーユニット 1 0は、 指示さ れた D C機器 5に対し、 内蔵のリレーにて直流系電力線 2 5への電源供給をオンオフする ことにより、 D C機器 5の動作を制御する。 また、 リレーユニット 1 0には、 D C機器 5 を手動操作するための複数のスィツチ 2 6が接続されており、 スィッチ 2 6の操作によつ て直流系電力線 2 5への電源供給をリレ一にてオンオフすることにより、 D C機器 5が制 御される。
D C分電盤 8には、 例えば壁コンセントや床コンセン卜の態様で住宅に建て付けられた 直流コンセント 2 7が直流系電力線 2 8を介して接続されている。 この直流コンセント 2 7に D C機器 5のプラグ (図示略) を差し込めば、 同機器に直流電力を直接供給すること が可能である。
また、 A C分電盤 1 1には、 例えば商用交流電源 2の使用量を遠隔検針可能な電力メー タ 2 9が接続されている。 電力メータ 2 9には、 商用交流電源使用量の遠隔検針の機能の みならず、例えば電力線搬送通信や無線通信の機能が搭載されている。電力メータ 2 9は、 電力線搬送通信や無線通信等を介して検針結果を電力会社等に送信する。
電力供給システム 1には、 宅内の各種機器をネットワーク通信によって制御可能とする ネットワークシステム 3 0が設けられている。 ネットワークシステム 3 0には、 同システ ム 3 0のコントロールュニットとして宅内サーバ 3 1が設けられている。 宅内サーバ 3 1 は、 ネットワーク Nを介して宅外の管理サ一バ 3 2と接続されるとともに、 信号線 3 3を 介して宅内機器 3 4に接続されている。 また、 宅内サーバ 3 1は、 D C分電盤 8から直流 系電力線 3 5を通じて供給される直流電力により動作する。
宅内サーバ 3 1には、 ネットワーク通信による宅内の各種機器の動作制御を管理するコ ントロールボックス 3 6が信号線 3 7を介して接続されている。 コントロールボックス 3 6は、 信号線 1 7を介してコントロールュニット 7及び D C分電盤 8に接続されるととも に、 直流供給線路 3 8を介して D C機器 5を直接制御する。 コント口一ルボックス 3 6に は、 例えば使用したガス量や水道量を遠隔検針可能なガス 水道メータ 3 9が接続される とともに、 ネットワークシステム 3 0の操作パネル 4 0が接続されている。 操作パネル 4 0には、 例えばドアホン子器やセンサやカメラからなる監視機器 4 1が接続されている。 宅内サーバ 3 1は、 ネットワーク Nを介して宅内の各種機器の動作指令を入力すると、 コントロールボックス 3 6に指示を通知して、 各種機器が動作指令に準じた動作をとるよ うにコントロールボックス 3 6を動作させる。 また、 宅内サーバ 3 1は、 ガス/水道メ一 タ 3 9から取得した各種情報を、 ネットワーク Nを通じて管理サーバ 3 2に提供可能であ るとともに、 監視機器 4 1で異常検出があったことを操作パネル 4 0から受け付けると、 その旨もネットワーク Nを通じて管理サーバ 3 2に提供する。
ここで、 コントロールュニッ卜についてさらに説明する。
コントロールユニット 7は、 交流系電力線 1 2から供給される商用交流電力量 Mじと、 太陽電池 3による太陽光発電量 M Aと、 燃料電池 4による燃料発電量 M Bと、 蓄電池 1 6 の蓄電量 M G及び充電レベル C Lとを管理する。 また、 同コントロールユニット 7は、 商 用交流電力量 M Cと太陽光発電量 M Aと燃料発電量 M Bと充電レベル C Lに基づいて、 A C機器 6又は D C機器 5への電力供給の電力供給源を変更する。 コントロールュニット 7 には P C端末 5 0が接続されている。 P C端末 5 0には、 商用交流電力量 M C、 太陽光発 電量 M A、 燃料電池 4の燃料発電量 M B、 蓄電池 1 6の充電レベル C Lが表示される。 コントロールュニット 7は次のように電力を制御する。
D C機器 5及び A C機器 6による消費電力量 M Dが太陽電池 3の太陽光発電量 M Aより も小さくなって太陽光発電量 M Aが余剰するときは、 コントロールュニット 7は太陽光発 電量 M Aを蓄電池 1 6に蓄える。 蓄電池 1 6の充電レベル C Lはコントロールュニット 7 により管理されている。 蓄電池 1 6の充電レベル C Lが満充電レベル C L Aになったとき にはコントロールユニット 7は充電を禁止する。 また、 太陽電池 3による発電量が消費電 力量 M よりも小さいときには、コントロールュニット 7は蓄電池 1 6から放電を許容し、 A C機器 6または D C機器 5に電力を供給する。 蓄電池 1 6の充電レベル C Lが第 1閾値 C L Bに達したときには、コントロールュニット 7は放電を禁止する。第 1閾値 C L Bは、 停電等の非常時に使用する電力量を賄うために蓄電池 1 6に設定されている。
また、 コントロールユニット 7は、 各 A C機器 6の消費電力量 M Dの合計値が、 最大消 費電力量として規定された値を超えるときには、 交流電力の供給を遮断する。 各 D C機器 5の消費電力量 M Dの合計値が、 最大消費電力量として規定された値を超えるときには、 直流電力の供給を遮断する。
さらに、 コントロールユニット 7は、 A C機器 6及び D C機器 5の消費電力量 M Dと、 商用交流電源 2から供給を受ける商用交流電力量 M Cと、 燃料電池 4及び太陽電池 3によ る発電量と、 蓄電池 1 6の充電レベル C Lを管理する。 そして、 コント口一ルユニット 7 は、これらの電力量に基づいて、売電可能な電力量(以下、売電電力量という。)を算出し、 又は、 買電することが必要な電力量 (以下、 買電電力量) を算出する。 さらに、 コント口 —ルュニット 7は、 売電電力量を示す情報 (以下、 売電電力量情報という。) と、 買電電力 量を示す情報(以下、 買電電力量情報という。) を P C端末 5 0が接続されたネットワーク Nを介して電力融通グループ Gの他の電力需要家 6 0に送信し、 またこれら情報を他の電 力需要家 6 0から受信する。
図 3を参照して、 コントロールュニット 7が実行する電力売買制御についての一例を説 明する。 ここでは、 電力需要家 A、 B、 Cの売買電力量について説明する。 電力需要家 A は一日で発電量を余剰する者であリ、 電力需要家 Bと電力需要家 Cは一曰で発電量を全て 使用し且つ商用交流電源 2から電力供給を受けている者とする。 同図に示す値は、 電力量 を示す指標である。 指標は、 電力需要家 6 0において、 ある時期の一日あたりの蓄電電力 量の平均値を 1 0 0にしている。 なお、 電力売買制御については、 指標を用いるのではな く、 実際の電力量に基づいて行ってもよい。
図 3の表は所定時刻における各電力需要家 6 0の蓄電量 M G、 売電可能電力量、 売買電 力量、 売買成立関係、 電力需要家 Aの売電電力量の分配電力量を示している。 これらの情 報は全て電力融通グループ Gの電力需要家 6 0の間で共有されている。
蓄電量 M Gは、 蓄電池 1 6の充電レベル C Lから算出される。 売電可能電力量は、 所定 時刻において充電レベル Cしが第 2閾値 C L Cを超えている場合において、 この第 2閾値 C L Cを超えて蓄えられている電力量として求められる。 買電電力量は、 所定時刻におい て充電レベル C Lが第 2閾値 Cしじよりも低い場合に、 当該第 2閾値 C L Cに対する不足 分が当該電力需要家 6 0が必要とする電力量として求められる。
第 2閾値 C L Cは、 売電または買電の判定基準値として設定されるものであり、 第 1閾 値 C L Bよりも高く設定されている。 例えば、 第 2閾値 C L Cは、 夜間における A C機器 6及び D C機器 5の消費電力量 M Dに基づいて設定される。 このような設定によれば、 太 陽電池 3による発電が行われない夜間において蓄電池 1 6の放電により電力が賄われるよ うになる。
そして、 当該所定時刻において、 電力の売り手と買い手が存在するときには、 売電電力 を買い手が要求する買電電力量の比率に応じて分配する。 同図では、 電力需要家 Aが 8 0 の電力量を売り手であり、 電力需要家 Bが 1 2 0の電力量の買い手であり、 電力需要家 C が 8 0の電力量の買い手となっている。
このような電力売買が成立したときには、 電力の売り手の電力需要家 Aのコントロール ユニット 7は、 蓄電池 1 6から電線 1 1 3に放電する旨の指令を出す。 また同時期に、 電 力の買い手の電力需要家 B及び Cのコントロールユニットフは、 電線 1 1 3から電力を受 けて充電を開始する。
この放電の期間、 電力供給系 1 1 0のうち各電力需要家 6 0への電力供給分岐部分より も上流側の基幹部に流れる基幹電力量が基幹電力量計測装置 1 2 0によリ計測されている。 放電期間中に逆潮が生じているときは、 電力融通グループ Gが接続されている電力供給系 1 1 0以外の系に電力が漏れていることになり、 系内の電力収支が大幅に合わなくなるお それがあるため、 当該売買が無効とされ、 電線 1 1 3への放電及び電線 1 1 3からの充電 が中止される。 なお、 この逆潮の現象は、 ネットワーク N経由で各電力需要家 6 0のコン トロールュニットフに送信される。
図 4を参照して、 コントロールユニット 7が実行する売電処理について説明する。 ここ で説明する売電処理では、 コントロールユニット 7によリ売電電力量が計算されて、 他の 電力需要家 6 0に対して電力が売り出す処理が行われる。 なお同処理は所定の演算周期毎 に繰り返し実行される。
ステップ S 1 1 0では処理時刻が予め設定された売買時刻であるか否か判定される。 例 えば、 太陽電池 3による発電が行われている電力需要家 6 0にあっては、 蓄電池 1 6の充 電レベル C Lが最大になると予想される時刻が設定され、 事前に電力需要家 6 0に通知さ れる。 売買時刻となっているときには、 ステップ S 1 2 0に移行する。
ステップ S 1 2 0では充電レベル C Lが第 2閾値 C L Cを超えているか判定される。 第 2閾値 C L Cよりも小さいときには売電することができないため、 同処理は終了する。 充 電レベル C Lが第 2閾値 C L Cよりも大きいときは、 ステップ S 1 3 0にて売電電力量が 計算される。 売電電力量の計算は任意に設定される。 例えば、 蓄電池 1 6にて第 2閾値 C L Cを超えて蓄えている蓄電量 M Gの 1 0割〜数割が売電電力量として設定される。 次い で、 ステップ S 1 4 0にて売電電力量を示す売電電力量情報がネットワーク Nを通じて各 電力需要家 6 0に送信される。
図 5を参照して、 電力需要家 B及び Cのコントロールュニットフが実行する買電処理に ついて説明する買電処理では、 コントロールユニット 7によリ買電電力量を計算する。 な お同処理は所定の演算周期毎に繰リ返し実行される。
ステップ S 2 1 0にて処理時刻が予め設定された売買時刻であるか否か判定される。 売 買時刻となっているときには、 ステップ S 2 2 0に移行する。 同ステップ S 2 2 0では、 蓄電池 1 6の充電レベル C Lが第 2閾値 C L Cよりも小さいか否か判定される。
ステップ S 2 2 0で肯定判定されるときは、 ステップ S 2 3 0にて買電電力量が計算さ れる。 買電電力量は、 例えば、 満充電レベル C L Aと処理時の充電レベル C Lと差として 求められる。 次いで、 ステップ S 2 4 0にて買電電力量を示す買電電力量情報をネットヮ ーク Nを通じて各電力需要家 6 0に送信する。
図 6を参照して、 コントロールュニットフが実行する電力売買処理について説明する。 ここで説明する電力売買処理では、 コントロールュニット 7によリ売電電力量と買電電力 量とを比較して電力売買が成立させる処理が行われる。 なお同処理は所定の演算周期毎に 繰り返し実行される。
ステップ S 3 1 0にて処理時刻が予め設定された売買時刻であるか否か判定される。 売 買時刻となっているときには、 ステップ S 3 2 0に移行する。 同ステップ S 3 2 0では、 売電電力量情報及び買電電力量情報がともにあるか否か判定される。 一方の情報しかない ときは電力売買が成立しないため同処理は終了する。
ステップ S 3 2 0にて肯定判定されたときには、 ステップ S 3 3 0にて売電電力量を買 い手に配分する分配電力量 M Eを計算する。 例えば、 買い手が 1人のときで且つ売電電力 量よりも買電電力量が小さいときは、 分配電力量 M Eは買電電力量と同等量とされる。 買 い手が 1人のときで且つ売電電力量よりも買電電力量が大きいときは、 分配電力量 M Eは 売電電力量と同等量とされる。 買い手が 2人以上いるときには、 それぞれの買電電力量の 比率に対応させて売電電力量を配分する。 例えば、 図 3に示すように、 電力需要家 Bに 4 8を、 電力需要家 Cに 3 2を配分する。
次いで、 ステップ S 3 4 0にて分配電力量 M Eを示す分配電力量情報をネットワーク N を通じて各電力需要家 6 0に送信する。 ステップ S 3 5 0にて、 売り手である電力需要家 6 0のコントロールュニットフから蓄電池 1 6に対して放電する旨の指令が出される。 - 方、 同時刻にて、 買い手である電力需要家 6 0のコントロールユニット 7から蓄電池 1 6 に対して充電する旨の指令が出される。 このとき、 電線 1 1 3に流通する電力量が増大す るとともにこの電力量が買い手である電力需要家 6 0の蓄電池 1 6に流れ込むことになる。 なお、 上記したように、 電力売買による放電が行われている期間にて、 逆潮が生じている ときは電力売買が無効とされ、 売り手側の電力放電と買い手側の蓄電池 1 6への充電は中 止される。
図 7を参照して、 電力売買が実行される前における各電力需要家 6 0の蓄電池 1 6の充 電レベル Cしの推移と、 電力売買を実行したときの各電力需要家 6 0の充電レベル Cしの 推移とを比較し、 電力売買による電力の融通について説明する。 なお、 同図は、 ある環境 下で、 太陽電池 3の発電のみが実行されているときの 1曰にわたる充電レベル C Lの推移 の一例を定性的に示したものである。
図 7 ( a ) 及び同図 (b ) は電力売買を行っていない場合の各電力需要家 6 0の蓄電池 1 6の充電レベル C Lの推移を示している。 図 7 ( c ) 及び同図 (d ) は電力売買を行つ ている場合の各電力需要家 6 0の蓄電池 1 6の充電レベル C Lの推移を示し、
図 7 ( a ) は、 昼間における太陽電池 3の発電量を 1日で使用しきれない電力需要家 6 0の蓄電池 1 6の充電レベル C Lの推移を示す。 例えば、 家族構成員が少ない電力需要家 Aがこれに該当する。
時刻 t 1 1は深夜を示す。 時刻 t 1 1では、 充電レベル C Lが第 1閾値 C L Bよりも高 い状態にある。 すなわち、 昼間において充電された電力量の一部が消費されることなく余 剰電力量 M Fとして残っている。
時刻 t 1 2は起床時刻を示している。 時刻 t 1 2から A C機器 6及び D C機器 5等の使 用が開始され、 充電レベル C Lが低下する。 電力需要家 Aの家族構成員は少ないため、 充 電レベル C Lの低下の度合いも小さい。
時刻 t 1 3は充電レベル C Lの低下が停止する時刻を示す。 電力需要家 Aにおいては時 刻 t 1 3以降 A C機器 6及び D C機器 5の消費電力量 M Dに比べて、 太陽電池 3の発電量 が大きくなつて蓄電量が徐々に増加している。 このため、 充電レベル C Lが徐々に上昇す よつになる。
時刻 t 1 4は充電レベル C Lが満充電レベル C L Aに達した時刻を示す。 このとき蓄電 池 1 6の充電は禁止される。このため太陽電池 3の発電による電力量は蓄えられなくなる。 すなわち、 時刻 t 1 4以降日没するまでの時刻までの期間は太陽電池 3による発電量が無 駄となっている。
時刻 t 1 5は電力需要家 Aの宅内において AC機器 6又は DC機器 5の使用が開始され た時刻を示している。 時刻 t 1 5から充電レベル C Lが低下し始める。 時刻 t 1 6におい て、 AC機器 6又は DC機器 5の使用が停止される。 同図に示すように、 太陽電池 3の発 電により昼間に蓄えられた電力量が消費されずに残されている。
図 7 (b) は、 昼間における太陽電池 3の発電量を 1日で使用し、 且つ商用交流電源 2 からの電力供給を受けている電力需要家 60の蓄電池 1 6の充電レベル C Lの推移を示す。 例えば、 家族構成員が多い電力需要家 Bがこれに該当する。
時刻 t 21では、 充電レベル CLが第 1閾値 CLBと同等のレベルにある。 すなわち、 昼間において充電された電力量の全部が消費されている。 深夜に駆動する AC機器 6等の 消費電力量 MDは商用交流電源 2から賄われている。
時刻 t 22は起床時刻を示している。 時刻 t 22から AC機器 6及び DC機器 5等の使 用が開始される。 この時間帯に使用される消費電力量 MDも商用交流電源 2から賄われて いる。 同図では、 商用交流電源 2から賄われている期間を、 商用電力使用期間として示し ている。
時刻 t 23は、 太陽電池 3により発電量が電力需要家 Bの消費電力量 MDよりも大きく なった時刻を示す。 時刻 t 23から蓄電池 1 6の充電が開始される。 同図では、 充電レべ ル C Lの上昇程度は電力需要家 Aに比較して低くなつている。 これは、 電力需要家 Bでは 昼間にも A C機器 6及び D C機器 5が使用されている状況を示している。
時刻 t 24は太陽電池 3により発電量が電力需要家 Bの消費電力量 Mりよりも小さくな つた時刻を示す。 時刻 t 24から充電レベル C Lが低下し始める。 この低下レベルの程度 は大きくなる。 時刻 t 25において、 充電レベル CLが第 1閾値 CLBに達して、 蓄電池 1 6からの放電が禁止される。 時刻 t 25以降においては、 AC機器 6又は DC機器 5の 消費電力量 MDは商用交流電源 2から賄われている。
図 7 (c) は電力売買を行っている場合の電力需要家 Aの蓄電池 1 6の充電レベル CL の推移を示している。
時刻 t 31は深夜を示す。 時刻 t 31では、 充電レベル CLが第 1閾値 CLBよりも高 い状態にある。 すなわち、 昼間において充電された電力量の一部が消費されることなく余 剰電力量 MFとして残っている。 余剰電力量 MFは、 図 7 (a) の余剰電力量 MFよりも 少なくなつている。
時刻 t 32は起床時刻を示している。 時刻 t 32から AC機器 6及び DC機器 5等の使 用が開始され、 充電レベル C Lが低下する。 そして、 時刻 t 33において充電レベル C L が上昇し始める。 電力需要家 Aにおいては時刻 t 33以降 AC機器 6及び DC機器 5の消 費電力量 MDに比べて、太陽電池 3の発電量が大きくなつて蓄電量が徐々に増加している。 このため、 充電レベル C Lが徐々に上昇するようになる。
時刻 t 3 4は電力売買が成立した時刻を示す。 このとき、 蓄電池 1 6から電線 1 1 3へ の放電が開始され、 時刻 3 5において売電電力量の放電が完了し、 放電が禁止される。 また、 同時刻から太陽電池 3による発電量の充電が開始される。
時刻 t 3 6は太陽電池 3による発電が行われない時刻、すなわち日没時刻を示している。 時刻 t 3 6以降充電レベル C Lは上昇しない。 そして、 時刻 t 3 7にて、 A C機器 6又は D C機器 5の使用の開始により、 充電レベル C Lが徐々に低下する。
この例では、 蓄電池 1 6に蓄えられた電力量を売電しているため、 充電レベル C Lが満 充電レベル C L Aに達することが回避されている。 これにより、 図 7 ( a ) のように太陽 電池 3の発電量が無駄にされる期間が生じることが解消されるため、 太陽電池 3による発 電量が無駄にされずに蓄電池 1 6に蓄えられることになる。
図 7 ( d ) は電力売買を行っている時期の電力需要家 Bの蓄電池 1 6の充電レベル C L の推移を示している。
時刻 t 4 1は深夜を示す。 時刻 t 4 1では、 充電レベル C Lが第 1閾値 C L Bよりも高 い状態にある。 すなわち、 昼間において充電された電力量の一部が消費されることなく余 剰電力量 M Fとして残っている。
時刻 t 4 2は起床時刻を示している。 時刻 t 4 2から A C機器 6及び D C機器 5等の使 用が開始される。 このため、 充電レベル C Lは徐々に低下し、 時刻 t 4 3において充電レ ベル C Lは第 1閾値 C L Bに至る。 時刻 t 4 3以降、 消費電力量 M Dは商用交流電源 2か ら賄われている。
時刻 t 4 4において充電レベル C Lが上昇し始める。 電力需要家 Bにおいては時刻 t 4 4以降 A C機器 6及び D C機器 5による消費電力量 M Dよりも太陽電池 3の発電量が大き くなつている。 このため、 充電レベル C Lが徐々に上昇する。
時刻 t 4 5は電力売買が成立した時刻を示す。 すなわち、 同時刻において、 充電レベル C Lが第 2閾値 C L Cよりも高くなつている電力需要家 Aと、 充電レベル C Lが第 2閾値 C L Cよりも低い電力需要家 Bとの間で、 電力売買が成立している。 このとき、 電力供給 系 1 1 0からの電力により充電を開始し、 時刻 t 4 6において買電電力量の充電が完了す る。
時刻 t 4 6以降は蓄電池 1 6から A C機器 6及び D C機器 5への電力供給により、 充電 レベル Cしが徐々に低下する。 そして、 時刻 t 4 7において、 A C機器 6及び D C機器 5 の使用が停止されて、 充電レベル C Lの低下が停止する。
この例では、電力需要家 Aの売電に合わせて電線 1 1 3から電力量を買電しているため、 このような買電をしない場合と比較して、 電力需要家 Bの充電レベル C Lを高くすること ができる。 これにより、 商用交流電源 2からの交流電力を使用する期間が短くなる。 本実施形態の電力融通システム 1 0 0によれば、 以下の効果を奏することができる。
( 1 ) 本実施形態では、 電力を融通し合う電力需要家 6 0を構成員とする電力融通グル —プ Gに形成されている。 電力融通グループ Gの各電力需要家 6 0は、 発電装置の電力を 管理するコントロールユニット 7を備えている。 コントロールユニット 7は、 売電電力量 を示す売電電力量情報と買電電力量を示す買電電力量情報とを電力融通グループ G内の他 の電力需要家 6 0に対して送受信する。 また同コントロールユニット 7は、 売電電力量情 報と買電電力量情報に基づいて電力需要家 6 0間での電力売買を成立させて、 売電する電 力需要家 6 0と買電する電力需要家 6 0との間で成立した電力売買条件に基づいて電力需 要家 6 0の売電電力量を電力供給系 1 1 0に放電する旨の指令を出す。
この構成によれば、 電力需要家 6 0は、 電力融通グループ G内で売電電力量情報及び買 電電力量情報を共有するとともにコントロールュニットフを通じて互いの電力を売買する。 このような電力売買は、 各電力需要家 6 0に設けられたコントロールュニット 7により実 行されるため、 これら電力需要家 6 0を統括して管理する管理装置を経由しないで電力需 要家 6 0の間で電力を融通することができる。
( 2 ) 各電力需要家 6 0は発電装置による発電量を蓄電する蓄電池 1 6を備えている。 蓄電池 1 6の充電レベル C Lが第 2閾値 C L Cを超えて蓄えているときには、 同第 2閾値 C L Cを超える部分の電力量に基づいて売電電力量が求められる。
この構成によれば、 発電装置により創出される発電量が一旦蓄電池 1 6に蓄えられてか ら売電されることになリ、 蓄電池 1 6がバッファとしての機能を果たすことになるため、 他の電力需要家 6 0に対して安定的に電力を融通することができる。
( 3 ) 本実施形態では、 電力供給系 1 1 0のうちで各電力需要家 6 0への電力供給分岐 部分よリも上流側の基幹部には、 当該基幹部に流れる基幹電力量を計測する基幹電力量計 測装置 1 2 0が設けられている。 基幹電力量計測装置 1 2 0により逆潮が検出されたとき には、 コントロールュニット 7による電力売買が制限される。
この構成によれば、 各電力需要家 6 0に対して電力供給する電線 1 1 3の上流側の基幹 部において逆潮が生じているときは、 電力融通グループ G全体としての電力融通の範囲を 超えて、 外部に電力を供給していることになる。 本発明では、 基幹電力量計測装置 1 2 0 により逆潮が検出されたときには、 コントロールュニット 7による電力売買を制限するた め、 このような逆潮を抑制することができる。
(その他の実施形態)
なお、 本発明の実施態様は上記実施形態にて例示した態様に限られるものではなく、 こ れを例えば以下に示すように変更して実施することもできる。 また、 以下の変形例は、 上 記実施形態についてのみ適用されるものでなく、 異なる変形例同士を互いに組み合わせて 実施することもできる。
-上記実施形態では、 コントロールュニット 7は同図のテーブルに示される情報に基づ いて、 電力売買の相手がマッチングして電力売買を実行しているが、 売り手と買い手及び 売買条件 (設定電力売買条件) を予め設定して、 当該条件にて日々自動的に電力売買を実 行してもよい。 この場合、 コントロールユニット 7には、 特定の電力需要家 6 0間で予め電力売買条件 を設定する設定機能が設けられる。 同コントロールユニット 7は、 電力売買条件に基づい て電力売買を行う。 売電可能な電力量が生じたとき、 売り手と買い手との間での電力売買 の成立を経ることなく、 予め設定された設定電力売買条件に基づいて電力売買を行うこと ができるため、 電力要求に対して迅速に対応することができる。
■上記実施形態では、 図 7を参照して、 太陽電池 3の発電による蓄電量 M Gの電力売買 について説明しているが、 本発明の電力売買処理は、 蓄電池 1 6に蓄えられる蓄電量 M G の源となる発電装置の種別に関係なく、 適用される。
■上記実施形態では、 電力売買が成立したときに蓄電池 1 6からの放電が実行されてい るが、 この放電は、 蓄電量 M Gからの放電によるものに限られない。 例えば、 電力売買が 成立したときに太陽光発電量 M Aからの電力を電力供給系 1 1 0に放電してもよい。 この 構成によれば、 太陽光発電量 M Aが消費電力量 M Dを超えて余剰電力が生じるときに、 直 ちに、 他の電力需要化に対して電力を融通することができるため、 他の電力需要化の要求 に対して迅速に対応することができる。
■上記実施形態では、 電力供給系 1 1 0の上流側に基幹電力量計測装置 1 2 0を設ける ことにより、 電力融通グループ Gの電力需要家 6 0が接続されている副電力幹線 1 1 2か ら他の副電力幹線 1 1 2に向けて売電されないように管理しているが、 このような基幹電 力量計測装置 1 2 0を省略してもよい。
•上記実施形態では、 発電装置を備えている電力需要家 6 0が電力融通グループ Gの構 成員となっているが、 発電装置を備えていない電力需要家 6 0も電力融通クル一プの構成 員になることができる。 この場合は、 当該電力需要家 6 0は買い手として電力売買に参加 することになる。
-上記実施形態では、 電力需要家 6 0として一般の住宅をモデルにしているが、 電力需 要家 6 0は住宅に限定されない。 電力需要家 6 0としては、 学校、 病院、 工場等、 1つの 電力供給系 1 1 0から電力供給を受けるものが含まれる。
以上、 本発明の好ましい実施形態が説明されたが、 本発明はこれらの特定実施形態に限 定されず、 後続する請求範囲の 疇を超えず、 多様な変更及び修正が行われることが可能 であり、 それも本発明の範疇に属すると言える。

Claims

請求範囲
【請求項 1】
電力供給系から電力供給を受ける複数の電力需要家の間で各自の発電装置による発電量 を互いに融通し合う電力融通システムにおいて、
前記複数の電力需要家の各々は、 売電電力量を示す売電電力量情報と買電電力量を示す 買電電力量情報とを前記電力融通グループ内の他の電力需要家に対して送受信し、 前記売 電電力量情報と前記買電電力量情報に基づいて相手の電力需要家と電力を売買し、 電力売 買条件に基づいて売電電力量を電力供給系に放電する旨の指令を出す電力制御装置を備え る電力融通システム。
【請求項 2】
請求項 1に記載の電力融通システムにおいて、
前記複数の電力需要家から構成される電力融通グループが形成され、
前記複数の電力需要家の各々の電力制御装置は、 当該電力需要家内の前記発電装置の電 力を管理すると共に、 前記売電電力量情報と前記買電電力量情報とを前記電力融通グルー プ内の他の電力需要家に対して送受信し、 前記売電電力量情報と前記買電電力量情報に基 づいて電力需要家間での電力売買を成立させ、 売電する電力需要家と買電する電力需要家 との間で生成した前記電力売買条件に基づいて前記売電電力量を電力供給系に放電する旨 の指令を出す
電力融通システム。
【請求項 3】
請求項 2に記載の電力融通システムにおいて、
前記電力制御装置は、 特定の電力需要家間で予め電力売買条件を設定する設定機能をさ らに備え、 この設定電力売買条件に基づいて特定の電力需要家同士の電力売買を行う 電力融通システム。
【請求項 4】 .
請求項 2又は 3に記載の電力融通システムにおいて、
前記各電力需要家はさらに前記発電装置による発電量を蓄電する蓄電池を備え、 前記蓄電池にて閾値を超えて蓄えている電力量に基づいて前記売電電力量を求める 電力融通システム。
【請求項 5】
請求項 2乃至 4のいずれか一項に記載の電力融通システムにおいて、
前記発電装置による発電量が前記電力需要家の消費する消費電力量よりも大きいときに 前記発電量と前記消費電力量との差を前記売電電力量とする
電力融通システム。
【請求項 6】 請求項 2乃至 5のいずれか一項に記載の電力融通システムにおいて、 前記電力供給系のうちで前記各電力需要家への電力供給分岐部分よリも上流側の基幹部 には、 当該基幹部に流れる基幹電力量を計測する基幹電力量計測装置が設けられ、 前記基幹電力量計測装置によリ逆潮が検出されたときには、 前記電力制御装置による電 力売買を制限する
電力融通システム。
PCT/IB2010/002781 2009-11-06 2010-11-02 電力融通システム WO2011055208A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10827987.8A EP2498367A4 (en) 2009-11-06 2010-11-02 POWER EXCHANGE SYSTEM
US13/508,122 US8990114B2 (en) 2009-11-06 2010-11-02 Electric power interchange system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009255407A JP2011101534A (ja) 2009-11-06 2009-11-06 電力融通システム
JP2009-255407 2009-11-06

Publications (1)

Publication Number Publication Date
WO2011055208A1 true WO2011055208A1 (ja) 2011-05-12

Family

ID=43969627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/002781 WO2011055208A1 (ja) 2009-11-06 2010-11-02 電力融通システム

Country Status (4)

Country Link
US (1) US8990114B2 (ja)
EP (1) EP2498367A4 (ja)
JP (1) JP2011101534A (ja)
WO (1) WO2011055208A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121937A1 (ja) * 2014-02-13 2015-08-20 株式会社日立製作所 電力融通管理システムおよび電力融通管理方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101534A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 電力融通システム
CN102484384A (zh) * 2010-02-12 2012-05-30 松下电器产业株式会社 电力交易装置和电力交易装置的控制方法
JP5845815B2 (ja) * 2011-10-31 2016-01-20 ソニー株式会社 情報処理装置、サーバ装置、電力取引決済システム、電力取引の決済方法、及び情報処理方法
JP5710447B2 (ja) * 2011-11-01 2015-04-30 株式会社東芝 電力需給調整装置及び電力管理システム
KR101711219B1 (ko) * 2011-12-27 2017-03-02 한국전자통신연구원 실시간 변동 요금제를 위한 시간 동기화 기반 자동화된 전력 거래 장치, 시스템 및 방법
JP6025332B2 (ja) * 2012-01-10 2016-11-16 株式会社Nttファシリティーズ 電力供給システム、電力供給制御装置、電力供給方法及びプログラム
JP5797122B2 (ja) * 2012-01-27 2015-10-21 株式会社日立製作所 分散型電力管理システム
JP6187463B2 (ja) * 2012-07-30 2017-08-30 日本電気株式会社 グリッド統合制御装置、グリッド制御システム、グリッド制御装置、プログラム、及び制御方法
WO2014033800A1 (ja) * 2012-08-27 2014-03-06 株式会社日立製作所 需要家協調支援装置
JP6210068B2 (ja) * 2012-10-11 2017-10-11 日本電気株式会社 電力融通システム、電力融通方法及びプログラム
US9728964B2 (en) * 2013-03-15 2017-08-08 Vivint, Inc. Power production monitoring or control
JP6140521B2 (ja) * 2013-05-10 2017-05-31 学校法人慶應義塾 電力ネットワークシステム
JP6160957B2 (ja) * 2013-09-30 2017-07-12 パナソニックIpマネジメント株式会社 電力管理装置、電力管理方法、プログラム
JP6257461B2 (ja) * 2014-06-26 2018-01-10 三菱電機株式会社 エネルギーマネジメントシステム
US10879695B2 (en) * 2014-07-04 2020-12-29 Apparent Labs, LLC Grid network gateway aggregation
US11063431B2 (en) 2014-07-04 2021-07-13 Apparent Labs Llc Hierarchical and distributed power grid control
US20160087434A1 (en) 2014-07-04 2016-03-24 Stefan Matan Data aggregation with forward prediction for a distributed grid node
JP5858348B1 (ja) * 2014-08-20 2016-02-10 辰之 岩崎 料金プランシェアシステムおよび料金プランシェア方法
CN104217373B (zh) * 2014-08-29 2017-10-13 国网河南省电力公司电力科学研究院 一种基于电网拓扑的电能统计动态建模和优化控制方法
JP6137497B2 (ja) * 2014-10-23 2017-05-31 トヨタ自動車株式会社 電力供給管理システム
CN105279568B (zh) * 2014-12-25 2019-01-22 贵州电网公司电力调度控制中心 一种电力系统高频切机策略整定方法
CN104952155B (zh) * 2015-07-14 2016-07-20 国网天津宝坻供电有限公司 一种远程预付费短时快速送电系统及其方法
JP6147815B2 (ja) * 2015-07-14 2017-06-14 大和ハウス工業株式会社 電力融通システム及びそれを具備する住宅街区
CN105046825B (zh) * 2015-07-27 2018-03-20 中国南方电网有限责任公司 一种基于电能表费控技术的预付费电表购电系统及方法
JP6539169B2 (ja) * 2015-09-15 2019-07-03 積水化学工業株式会社 電力管理システム、電力管理方法及びプログラム
JP2017063554A (ja) * 2015-09-25 2017-03-30 良一 春日 電力融通システム
JP6613981B2 (ja) * 2016-03-22 2019-12-04 株式会社デンソー 住宅の電力管理システム
US11036192B2 (en) * 2016-06-08 2021-06-15 SaLisa Berrien COI optimizer
WO2019007504A1 (de) * 2017-07-05 2019-01-10 Siemens Aktiengesellschaft Verfahren zum handel mit elektrischer energie zwischen kleinerzeugern und endverbrauchern
JP6954832B2 (ja) * 2017-12-28 2021-10-27 アズビル株式会社 エネルギー管理装置およびエリア間非常時電力融通方法
JP7166143B2 (ja) * 2018-11-01 2022-11-07 東京瓦斯株式会社 電力取引装置、プログラム
JP7249166B2 (ja) * 2019-02-21 2023-03-30 積水化学工業株式会社 電力管理装置、電力管理方法及びプログラム
JP2021055436A (ja) * 2019-09-30 2021-04-08 ソニー株式会社 居住構造物
JP7260084B1 (ja) 2022-03-15 2023-04-18 株式会社Katoホールディングス 電力運用管理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324850A (ja) * 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 電力需給調整システムおよび電力需要家制御装置
WO2004073136A1 (ja) * 2003-02-13 2004-08-26 Vpec, Inc. 電力システム
JP2006288162A (ja) 2005-04-05 2006-10-19 Inst Of Research & Innovation 電力システムの電力量融通制御方法

Family Cites Families (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3244898A (en) * 1959-12-29 1966-04-05 Combustion Eng Power plant system and control therefor
AR216286A1 (es) * 1975-07-14 1979-12-14 Gutierrez Atencio F Conjunto hidromotriz transportatable
US8027809B2 (en) * 1992-11-17 2011-09-27 Health Hero Network, Inc. Home power management system
US8095340B2 (en) * 1992-11-17 2012-01-10 Health Hero Network, Inc. Home power management system
US5821742A (en) * 1994-11-30 1998-10-13 Utility Test Equipment Company Computerized solid state energy meter test system and method of testing
US7249027B1 (en) * 1996-01-04 2007-07-24 Efficient Auctions Llc Computer implemented methods and apparatus for auctions
JP4034397B2 (ja) * 1998-01-13 2008-01-16 中部電力株式会社 系統安定化装置
JP3966998B2 (ja) * 1998-05-20 2007-08-29 ゼファー株式会社 風力発電機による発電電力の供給接続装置
GB9926353D0 (en) * 1999-11-08 2000-01-12 Rolls Royce Plc Signal system
US20010053992A1 (en) * 2000-03-31 2001-12-20 Keisuke Eto Industrial complex, sevice center, method for managing industrial complex, service regulation system, and shared operational information regulation system
NO312145B1 (no) * 2000-04-13 2002-03-25 Karsten Aubert Fremgangsmåte og system for omsetning av vare, samt anvendelse
WO2002007365A2 (en) * 2000-07-13 2002-01-24 Nxegen System and method for monitoring and controlling energy usage
AU2001290827A1 (en) * 2000-09-15 2002-03-26 Vincero, Llc System and method for creating a cost-effective and efficient retail electric power exchange/energy service provider load optimization exchange and network therefor
WO2002029952A1 (en) * 2000-09-29 2002-04-11 Matsushita Electric Industrial Co., Ltd. Power supply/demand control system
JP3540760B2 (ja) * 2001-03-27 2004-07-07 三洋電機株式会社 分散発電システム
US20030074244A1 (en) * 2001-04-11 2003-04-17 Braxton Charles R. Distributed energy technology assurance
US20030028469A1 (en) * 2001-06-29 2003-02-06 International Business Machines Corporation Methods and apparatus for enabling an electronic information marketplace
JP2003032887A (ja) * 2001-07-12 2003-01-31 Nippon Telegr & Teleph Corp <Ntt> 広域電力融通取引方法および広域電力融通取引システム
US20030036820A1 (en) * 2001-08-16 2003-02-20 International Business Machines Corporation Method for optimizing energy consumption and cost
JP2003281231A (ja) * 2002-03-26 2003-10-03 Hitachi Ltd 電力売買管理方法及び電力売買管理システム
JP3950368B2 (ja) * 2002-06-05 2007-08-01 三菱重工業株式会社 分散電源システムおよびその運用方法、並びに運用プログラム
JP2004021444A (ja) * 2002-06-14 2004-01-22 Mitsubishi Electric Corp 電力売買取引支援システムおよび電力売買取引支援方法
JP3994910B2 (ja) * 2003-05-08 2007-10-24 株式会社日立製作所 電力売買支援システム
JP2005163624A (ja) * 2003-12-02 2005-06-23 Hitachi Ltd エンジンコージェネレーションシステム
JP2005218193A (ja) * 2004-01-28 2005-08-11 Osaka Gas Co Ltd コージェネレーションシステム
US20050234600A1 (en) * 2004-04-16 2005-10-20 Energyconnect, Inc. Enterprise energy automation
US7282003B2 (en) * 2004-07-29 2007-10-16 General Motors Corporation Powertrain including input disconnect and accessory drive system for an electrically variable transmission
JP2007128785A (ja) * 2005-11-04 2007-05-24 Kawamura Electric Inc 燃料電池発電システム
JP4696874B2 (ja) * 2005-11-28 2011-06-08 株式会社日立製作所 リソース予測装置及び方法
US7747739B2 (en) * 2006-08-10 2010-06-29 Gridpoint, Inc. Connection locator in a power aggregation system for distributed electric resources
US7986718B2 (en) * 2006-09-15 2011-07-26 Itron, Inc. Discovery phase in a frequency hopping network
US8415827B2 (en) * 2006-10-16 2013-04-09 Vpec, Inc. Electric power system
US20080177678A1 (en) * 2007-01-24 2008-07-24 Paul Di Martini Method of communicating between a utility and its customer locations
CA2690132C (en) * 2007-06-06 2019-04-09 Hunt Technologies, Llc Arbitration of memory transfers in a dsp system
JP2009020674A (ja) * 2007-07-11 2009-01-29 Chugoku Electric Power Co Inc:The 電力売買契約管理システム
US20090063228A1 (en) * 2007-08-28 2009-03-05 Forbes Jr Joseph W Method and apparatus for providing a virtual electric utility
US8249902B2 (en) * 2008-02-29 2012-08-21 Solarcity Corporation Methods of processing information in solar energy system
US8209992B2 (en) * 2008-07-07 2012-07-03 Alden Ray M High efficiency heat pump with phase changed energy storage
US8788415B2 (en) * 2008-09-29 2014-07-22 Battelle Memorial Institute Using one-way communications in a market-based resource allocation system
CA2739267A1 (en) * 2008-10-01 2010-04-08 Silver Spring Networks, Inc. Method and system of applying environmental incentives
US20110040666A1 (en) * 2009-08-17 2011-02-17 Jason Crabtree Dynamic pricing system and method for complex energy securities
US20100250590A1 (en) * 2009-03-30 2010-09-30 Galvin Brian R System and method for managing energy
US20100217651A1 (en) * 2009-02-26 2010-08-26 Jason Crabtree System and method for managing energy resources based on a scoring system
US20100293045A1 (en) * 2009-05-14 2010-11-18 James Moeller Burns Centralized Renewable Energy System With Fractional Ownership and a Method of Disaggregated Net Metering of its Renewable Energy Output Among Utility Customers Who Are Fractional Owners
US20110029461A1 (en) * 2009-07-31 2011-02-03 Invensys Systems Inc. Dynamic Electrical Power Pricing Communication Architecture
US20120326503A1 (en) * 2009-07-31 2012-12-27 Mogens Birkelund Method and apparatus for managing transmission of power in a power transmission network
EP2473958A1 (en) * 2009-09-03 2012-07-11 Essence Security International Ltd. Methods and systems for managing electricity delivery and commerce
JP4783453B2 (ja) * 2009-09-10 2011-09-28 力也 阿部 多端子型非同期連系装置、電力機器制御端末装置と電力ネットワークシステムおよびその制御方法
JP5520574B2 (ja) * 2009-11-06 2014-06-11 パナソニック株式会社 電力融通システム
JP2011101534A (ja) * 2009-11-06 2011-05-19 Panasonic Electric Works Co Ltd 電力融通システム
JPWO2011086806A1 (ja) * 2010-01-18 2013-05-16 ローム株式会社 電力システム
JP5101675B2 (ja) * 2010-09-09 2012-12-19 株式会社東芝 需給バランス制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003324850A (ja) * 2002-04-26 2003-11-14 Nippon Telegr & Teleph Corp <Ntt> 電力需給調整システムおよび電力需要家制御装置
WO2004073136A1 (ja) * 2003-02-13 2004-08-26 Vpec, Inc. 電力システム
JP2006288162A (ja) 2005-04-05 2006-10-19 Inst Of Research & Innovation 電力システムの電力量融通制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2498367A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015121937A1 (ja) * 2014-02-13 2015-08-20 株式会社日立製作所 電力融通管理システムおよび電力融通管理方法
JPWO2015121937A1 (ja) * 2014-02-13 2017-03-30 株式会社日立製作所 電力融通管理システムおよび電力融通管理方法
US10103575B2 (en) 2014-02-13 2018-10-16 Hitachi, Ltd. Power interchange management system and power interchange management method for maintaining a balance between power supply and demand

Also Published As

Publication number Publication date
US20120233060A1 (en) 2012-09-13
EP2498367A4 (en) 2013-08-07
JP2011101534A (ja) 2011-05-19
US8990114B2 (en) 2015-03-24
EP2498367A1 (en) 2012-09-12

Similar Documents

Publication Publication Date Title
WO2011055208A1 (ja) 電力融通システム
JP5520574B2 (ja) 電力融通システム
JP7101744B2 (ja) 電力供給システムおよび電力供給方法
JP5575457B2 (ja) 配電システム
JP6195206B2 (ja) 電力供給システム、電力変換装置、計測点切替装置
JP5072378B2 (ja) 電力貯蔵装置及びシステム
WO2011039604A1 (ja) 電力供給システムの蓄電池電力供給源監視装置
WO2013038458A1 (ja) 電力配分装置
JP6013076B2 (ja) エネルギー管理装置、エネルギー管理システムおよびエネルギー管理方法
JP2011083085A (ja) 電力管理システム
JP5574663B2 (ja) 電力供給システム及び電力供給システムの制御装置
WO2015200931A1 (en) Versatile site energy router
WO2011055186A1 (ja) 配電システム
WO2011042787A1 (ja) 電力分配システム
WO2015118845A1 (ja) コージェネレーション装置の制御装置、およびコージェネレーション装置の制御方法
JP2012147621A (ja) 停電救済システム
WO2015118844A1 (ja) エネルギー管理装置、およびエネルギー管理方法
WO2013057516A1 (en) Smart meter apparatus
JP6240009B2 (ja) 電力管理システム、電力管理方法及びプログラム
WO2015001701A1 (ja) 電力管理システム及び制御装置
WO2015104787A1 (ja) エネルギー管理装置、およびエネルギー管理システム
JP2015186276A (ja) 電力管理システム、電力管理方法及びプログラム
JP2011091983A (ja) 売電システム
JP2017163746A (ja) 電力供給システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827987

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2010827987

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010827987

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13508122

Country of ref document: US