WO2011054735A1 - Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff - Google Patents
Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff Download PDFInfo
- Publication number
- WO2011054735A1 WO2011054735A1 PCT/EP2010/066382 EP2010066382W WO2011054735A1 WO 2011054735 A1 WO2011054735 A1 WO 2011054735A1 EP 2010066382 W EP2010066382 W EP 2010066382W WO 2011054735 A1 WO2011054735 A1 WO 2011054735A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- particles
- iron
- copper
- range
- catalyst
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 139
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 52
- 239000001257 hydrogen Substances 0.000 title claims abstract description 24
- 229910052739 hydrogen Inorganic materials 0.000 title claims abstract description 24
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 20
- 150000001336 alkenes Chemical class 0.000 title claims abstract description 18
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 title claims abstract description 17
- 229910002091 carbon monoxide Inorganic materials 0.000 title claims abstract description 17
- 239000010949 copper Substances 0.000 title claims abstract description 16
- 239000002638 heterogeneous catalyst Substances 0.000 title claims abstract description 14
- 229910052802 copper Inorganic materials 0.000 title claims abstract description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 title claims abstract description 8
- 238000004519 manufacturing process Methods 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000003054 catalyst Substances 0.000 claims abstract description 52
- 239000011164 primary particle Substances 0.000 claims abstract description 33
- 239000002245 particle Substances 0.000 claims abstract description 30
- 239000011163 secondary particle Substances 0.000 claims abstract description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims abstract description 18
- 239000005749 Copper compound Substances 0.000 claims abstract description 7
- 150000001880 copper compounds Chemical class 0.000 claims abstract description 7
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- 238000001354 calcination Methods 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 6
- 150000002431 hydrogen Chemical class 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims description 34
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 28
- 230000015572 biosynthetic process Effects 0.000 claims description 25
- 238000003786 synthesis reaction Methods 0.000 claims description 21
- 239000011148 porous material Substances 0.000 claims description 18
- 239000007789 gas Substances 0.000 claims description 17
- 239000001569 carbon dioxide Substances 0.000 claims description 14
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 14
- 238000002360 preparation method Methods 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 10
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical group [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 claims description 9
- 230000003647 oxidation Effects 0.000 claims description 9
- 238000007254 oxidation reaction Methods 0.000 claims description 9
- 150000001879 copper Chemical class 0.000 claims description 7
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 7
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 claims description 3
- 239000012266 salt solution Substances 0.000 claims description 3
- 229910052783 alkali metal Inorganic materials 0.000 claims description 2
- 229910001413 alkali metal ion Inorganic materials 0.000 claims description 2
- 150000001340 alkali metals Chemical class 0.000 claims description 2
- 150000001341 alkaline earth metal compounds Chemical class 0.000 claims description 2
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 claims description 2
- 229940116318 copper carbonate Drugs 0.000 claims description 2
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 claims description 2
- 229910001414 potassium ion Inorganic materials 0.000 claims description 2
- 229910001415 sodium ion Inorganic materials 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 abstract description 6
- 239000002184 metal Substances 0.000 abstract description 6
- 150000001875 compounds Chemical class 0.000 abstract description 3
- 238000010301 surface-oxidation reaction Methods 0.000 abstract 1
- 239000000047 product Substances 0.000 description 11
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 10
- 229930195733 hydrocarbon Natural products 0.000 description 10
- 150000002430 hydrocarbons Chemical class 0.000 description 10
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000011261 inert gas Substances 0.000 description 7
- 239000008188 pellet Substances 0.000 description 7
- 229910052700 potassium Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 6
- QQONPFPTGQHPMA-UHFFFAOYSA-N Propene Chemical compound CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 5
- 229910052786 argon Inorganic materials 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000005470 impregnation Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000011591 potassium Substances 0.000 description 5
- 241000196324 Embryophyta Species 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- 238000000354 decomposition reaction Methods 0.000 description 4
- 238000011049 filling Methods 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- FGIUAXJPYTZDNR-UHFFFAOYSA-N potassium nitrate Chemical compound [K+].[O-][N+]([O-])=O FGIUAXJPYTZDNR-UHFFFAOYSA-N 0.000 description 4
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- HGINCPLSRVDWNT-UHFFFAOYSA-N Acrolein Chemical compound C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000012018 catalyst precursor Substances 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 2
- 229910052753 mercury Inorganic materials 0.000 description 2
- 239000002923 metal particle Substances 0.000 description 2
- 229910052754 neon Inorganic materials 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229910052756 noble gas Inorganic materials 0.000 description 2
- 150000002835 noble gases Chemical class 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000004323 potassium nitrate Substances 0.000 description 2
- 235000010333 potassium nitrate Nutrition 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 150000008360 acrylonitriles Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- JZQOJFLIJNRDHK-CMDGGOBGSA-N alpha-irone Chemical compound CC1CC=C(C)C(\C=C\C(C)=O)C1(C)C JZQOJFLIJNRDHK-CMDGGOBGSA-N 0.000 description 1
- 239000012300 argon atmosphere Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 1
- ZKXWKVVCCTZOLD-UHFFFAOYSA-N copper;4-hydroxypent-3-en-2-one Chemical compound [Cu].CC(O)=CC(C)=O.CC(O)=CC(C)=O ZKXWKVVCCTZOLD-UHFFFAOYSA-N 0.000 description 1
- QYCVHILLJSYYBD-UHFFFAOYSA-L copper;oxalate Chemical compound [Cu+2].[O-]C(=O)C([O-])=O QYCVHILLJSYYBD-UHFFFAOYSA-L 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000004209 hair Anatomy 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 229910052566 spinel group Inorganic materials 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/74—Iron group metals
- B01J23/745—Iron
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/005—Spinels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/72—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/78—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
- B01J35/45—Nanoparticles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
- B01J37/082—Decomposition and pyrolysis
- B01J37/086—Decomposition of an organometallic compound, a metal complex or a metal salt of a carboxylic acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/12—Oxidising
- B01J37/14—Oxidising with gases containing free oxygen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
- C07C1/0435—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof
- C07C1/044—Catalysts; their physical properties characterised by the composition containing a metal of group 8 or a compound thereof containing iron
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2/00—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon
- C10G2/30—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen
- C10G2/32—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts
- C10G2/33—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used
- C10G2/331—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals
- C10G2/332—Production of liquid hydrocarbon mixtures of undefined composition from oxides of carbon from carbon monoxide with hydrogen with the use of catalysts characterised by the catalyst used containing group VIII-metals of the iron-group
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/02—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the alkali- or alkaline earth metals or beryllium
- C07C2523/04—Alkali metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/72—Copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/74—Iron group metals
- C07C2523/745—Iron
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/84—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- C07C2523/85—Chromium, molybdenum or tungsten
- C07C2523/88—Molybdenum
- C07C2523/885—Molybdenum and copper
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/20—C2-C4 olefins
Definitions
- the present invention relates to a ferrous and copper-containing heterogeneous catalyst, a process for its preparation and a process for the preparation of olefins by reacting carbon monoxide with hydrogen in the presence of the iron and copper-containing heterogeneous catalyst.
- This reaction is also called Fischer-Tropsch synthesis.
- this area of product distribution can be characterized by the so-called Anderson-Schulz-Flory distribution.
- M. Janardanarao Ind. Eng. Chem. Res. 1990, 29, pages 1735-53.
- composition of the hydrocarbons formed in the Fischer-Tropsch process can be greatly influenced by the choice of catalysts used, the reactor types and the reaction conditions.
- the main problem here is the formation of large amounts of undesirable methane (CH 4 ).
- the required iron oxides as starting material for the catalyst are difficult to reduce.
- WO 07/060186 A1 (BASF AG) teaches processes for the preparation of olefins from synthesis gas using Fischer-Tropsch catalysts in a reaction column.
- WO 09/013174 A2 (BASF SE) relates to a process for the preparation of short-chain, gaseous olefins by reacting carbon monoxide with hydrogen in the presence of an iron-containing heterogeneous catalyst, wherein the catalyst used is carbonyl iron powder with spherical primary particles. Promoters in iron catalysts for Fischer-Tropsch syntheses are, for. As described in the aforementioned WO 09/013174 A2 and in M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, pages 1735 to 1753, and CD. Frohning et al. in "Chemierohstoffe from coal", 1977, pages 219-299.
- the catalyst may, for. B. one or more of the elements potassium, vanadium, copper, nickel, cobalt, manganese, chromium, zinc, silver, gold, calcium, sodium, lithium, cesium, platinum, palladium, ruthenium, sulfur, each in e- lementarer form or in ionic form, contained.
- 08164085.6 (BASF SE) of 10.09.08 describes an integrated process, wherein in a plant A pure carbonyl iron powder (CEP) is prepared by decomposition of pure iron pentacarbonyl (EPC), in the decomposition of the EPC released carbon monoxide (CO ) is used for the production of further CEP from iron in Appendix A or a connected plant B is supplied to the production of synthesis gas or a connected plant C for the production of hydrocarbons from synthesis gas is fed, and the CEP prepared in Appendix A as a catalyst or catalyst component in a connected plant C for the production of hydrocarbons from synthesis gas from Appendix B.
- EPC pure carbonyl iron powder
- CO carbon monoxide
- the process should in particular provide as selectively as possible lower olefins (for example C 2 -C 6 -olefins, especially C 2 -C 4 -olefins), in particular ethene, propene and 1-butene, with at the same time the lowest possible attack of methane, carbon dioxide, alkanes (eg B. C2-C6 - alkanes, especially C2-C4 - alkanes) and higher hydrocarbons, ie hydrocarbons with z. B. seven or more carbon atoms (C7 + fraction), especially five or more carbon atoms (C5 + fraction).
- Components of the catalyst should not be volatile under the reaction conditions.
- the catalyst should be characterized by a shortened activation phase.
- the run-in time known from the Fischer-Tropsch synthesis until the desired product spectrum is achieved should be shortened.
- the catalyst should have improved durability and increased mechanical stability.
- the increased stability is particularly advantageous when using the catalyst in a fluidized bed or in slurry reactors or in bubble columns. According to the following aspects have been recognized, among others:
- the metallic secondary particles formed in step II under at least partial agglomeration, especially in a fluidizable fraction with particle diameters in the range of 10-250 ⁇ m (see below), are ideal catalyst precursors for the synthesis of lower olefins from CO 2 due to their chemical composition. rich synthesis gases. Additionally advantageous is the low surface area of the particles, which is preferably below 2 m 2 / g (see below).
- step II Treatment of carbonyl iron powder obtained in step I with hydrogen, the metallic spherical primary particles at least partially agglomerating,
- step III Contacting the particles of step III with an aqueous solution of a copper compound,
- the proportion of spherical primary particles obtained in step I in the carbonyl iron powder is preferably> 90% by weight, in particular> 95% by weight, very particularly> 98% by weight.
- the spherical primary particles obtained in step I preferably have a diameter in the range from 0.01 to 50 ⁇ m, in particular in the range from 0.1 to 20 ⁇ m, very particularly in the range from 0.5 to 15 ⁇ m, more particularly in the range from 0 , 7 to 10 ⁇ , more particularly in the range of 1 to 10 ⁇ , on.
- the iron content of the spherical primary particles is preferably> 97% by weight, in particular> 99% by weight, in particular> 99.5% by weight.
- the iron is preferably present in its thermodynamically most stable modification (alpha-iron).
- the spherical primary particles are free of pores.
- the carbonyl iron powder is distinguished in particular by the fact that, apart from the spherical primary particles, there are no filamentary primary particles, in particular those described in DE-A1 -29 19 921 and .Fachberichte für heatntechnik, July / August 1970, pages 145 to 150, (see above). disclosed iron whisker containing.
- Figures 1 to 3 show SEM images of preferably used carbonyl iron powder with spherical primary particles before the hydrogen treatment according to step II.
- the carbonyl iron powder with spherical primary particles is obtained by thermal decomposition of gaseous iron pentacarbonyl (Fe [CO] s), which has been previously purified, in particular by distillation.
- the product obtained in step I is treated with hydrogen in step II.
- This treatment of the primary particles with hydrogen is preferably carried out at a temperature in the range of 300 to 600 ° C.
- the residual content of carbon, nitrogen and also oxygen in the CEP is lowered.
- the spherical primary particles are at least partially, z. B. to 25 to 95 wt .-%, agglomerated.
- the secondary metal particles formed in step II under at least partial agglomeration preferably have particle diameters in the range from 10 to 250 ⁇ m, particularly preferably between 50 and 150 ⁇ m. Such vortexable particle fractions can be obtained by appropriate sieving.
- step II the formation of metallic secondary particles with BET surfaces (DIN ISO 9277) of preferably less than 2 m 2 / g, in particular from 0.2 to 1, 9 m 2 / g.
- BET surfaces DIN ISO 9277
- Figures 4 and 5 show, by way of example, agglomerates obtained after hydrotreating.
- iron oxide is formed on the surface of the particles.
- the oxidation, also called passivation, is preferably carried out by means of oxygen.
- the oxygen can be used in the form of oxygen-containing (02-containing) water.
- the oxidation is preferably carried out at temperatures below 150 ° C, especially at a temperature below 50 ° C, in particular at a temperature in the range of 20 to 45 ° C, z. B. in inert gas diluted with inert gas, oxygen-containing inert gas or by contacting the particles with oxygen-containing water, in this case preferably with stirring.
- Suitable inert gases are nitrogen or noble gases, such as He, Ne, in particular argon.
- the superficially oxidized (passivated) particles are preferably contacted with an aqueous copper salt solution, especially an aqueous solution of copper nitrate, copper carbonate or an organic copper salt, also called impregnation or impregnation.
- compounds may be added to the aqueous copper salt solutions which reduce the surface tension of the impregnation solution, such as. B. surfactants.
- Particularly preferred copper salt is copper nitrate.
- organic copper salts are copper acetate, copper oxalate and copper acetylacetonate.
- step V the drying takes place in the presence of oxygen, preferably under air, in particular at a temperature in the range of 50 to 150 ° C, preferably between 55 and 120 ° C.
- calcination is carried out in the absence of oxygen (O 2), preferably under inert gas (i.e., in an inert gas atmosphere), especially at a temperature in the range of 500 to 800 ° C, especially 600 to 750 ° C.
- inert gases i.e., in an inert gas atmosphere
- Suitable inert gases do not react with the iron and the dopants under the conditions.
- the formula Cu x Fe3 x 04 formed by reaction of the oxygen-containing copper compounds with iron oxide mixed oxides, in particular spinels, the formula Cu x Fe3 x 04, wherein the value x in the range> 0 to ⁇ 1, in particular in the range> 0.25 to ⁇ 1, is located.
- the doping of the catalyst obtained in step V with Cu is preferably in the
- the particles are additionally calculated with a total of in the range of 0.01 to 1 wt .-%, particularly 0.05 to 0.5 wt .-%, (in each case based on iron and in each case as an element in the oxidation state 0 ) are doped with alkali metal ions and / or alkaline earth metal ions, in particular potassium ions and / or sodium ions.
- This additional doping takes place in particular after step V by contacting, further in particular in step V between the drying and the calcination by contacting, preferably in step IV by, preferably simultaneous, bringing into contact bring the particles ( Secondary particles and possibly still existing primary particles) with an aqueous solution of an alkali metal and / or alkaline earth metal compound.
- steps IIa and IIb are additionally carried out between steps II and III.
- the agglomerates are preferably brought into contact with liquid or gaseous iron pentane carbonyl. Particular preference is given to liquid iron pentacarbonyl.
- the metallic secondary particles z. B. filled in a container inertized with argon and at elevated temperature, such as. B. 70 to 150 ° C, in particular z. B. at a container internal temperature of 105 ° C, dried.
- iron pentacarbonyl is added in portions (eg 5 vol.% Based on the amount of carbonyl iron powder) z.
- the alternative contacting with gaseous iron pentacarbonyl may, for. B. in a fluidized bed, especially at a temperature in the range of 120 to 175 ° C. It is preferably carried out at an EPC partial pressure (absolute) in the range of 0.7 to 1 bar.
- step IIb the thermal decomposition of iron pentacarbonyl is preferably carried out at a temperature in the range of 150 to 350 ° C, especially in the range of 150 to 200 ° C.
- the vessel in which the material from step III is heated to an internal temperature in the range of preferably 150 to 180 ° C and the decomposition reaction of the applied EPC preferably followed with an IR spectrometer. If the CO content of the exhaust gas has exceeded its maximum, the vessel is returned to z. B. 105 ° C cooled. Depending on the desired filling degree of the pores, the procedure of the two steps IIa and IIb is repeated.
- step IIb predominantly pore- and void-free secondary particles are obtained.
- the secondary particles obtained in step II have gapped pores between the spherical primary particles (pore diameter in particular ⁇ 4000 nm).
- the gusseted pores, in particular the gusseted pores with diameters ⁇ 4000 nm thus represent intraparticulate pores ( Figures 5 and 7), while the measured pores with diameters in particular> 4000 nm can be interpreted as interparticle pores (resulting from the grafting volume of the secondary particles).
- the secondary particles By treating the secondary particles with iron pentacarbonyl, it is possible to fill the interstitial pores between the spherical primary particles, in particular with diameters in the range ⁇ 4000 nm.
- predominantly pore-free and void-free secondary particles are obtained, which are characterized in particular by the fact that the differential pore volume with pore diameters in the range ⁇ 4000 nm contributes to ⁇ 10%, in particular embodiment ⁇ 5%, to the measured integral pore volume of the secondary particles.
- the amount of iron pentacarbonyl, which is necessary for filling the pores with a diameter in particular of ⁇ 4000 nm, is preferably determined by means of pore volume measurement by means of mercury porosimetry (DIN 66133).
- Particles obtained in step IIb are shown by way of example in FIG.
- the iron- and copper-containing catalyst according to the invention is particularly preferably not applied to a carrier material.
- the optionally doped, iron- and copper-containing heterogeneous catalyst can be used in the form of pellets.
- the pellets are obtained by methods known to those skilled in the art. Preferred forms of the pellets are tablets and rings.
- the pellets can also be comminuted again before use in the process according to the invention, for. B. by grinding.
- the catalyst can be converted into a synthesis-active state by treatment with hydrogen and / or carbon monoxide at elevated temperature, in particular at temperatures above 300 ° C., before it is used in the process according to the invention.
- this additional activation is not essential.
- the reactants carbon monoxide and hydrogen are preferably used in the form of synthesis gas.
- the synthesis gas may be prepared by well-known methods (such as described in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pages 15 to 24), such as by reacting coal or methane with water vapor , or produced by partial oxidation of methane.
- the synthesis gas has a molar ratio of carbon monoxide to hydrogen in the range of 3: 1 to 1: 3.
- a synthesis gas is used which has a mixing molar ratio of carbon monoxide to hydrogen in the range from 2: 1 to 1: 2.
- the synthesis gas contains carbon dioxide (CO2).
- CO2 carbon dioxide
- the content of CO2 is preferably in the range of 1 to 50 wt .-%.
- the inventive method is preferably carried out at a temperature in the range of 200 to 500 ° C, especially 300 to 400 ° C.
- the absolute pressure is preferably in the range of 1 to 100 bar, especially 5 to 50 bar.
- the WHSV Weight Hourly Space Velocity
- the WHSV is preferably in the range of 100 to
- Preferred reactors for carrying out the process according to the invention are: fluidized bed reactor, fixed bed reactor, slurry reactor, microreactor.
- the catalyst is preferably used in powder form.
- the powder can also be obtained by grinding previously prepared pellets.
- the catalyst is used as a shaped body, preferably in the form of pellets.
- the use of such reactors for the Fischer-Tropsch synthesis is z. B. described in CD. Frohning et al. in "Chemierharstoffe aus Kohle", 1977, pages 219 to 299, or B.H. Davis, Topics in Catalysis, 2005, 32 (3-4), pages 143 to 168.
- the process according to the invention provides a product mixture comprising olefins having an olefin-carbon selectivity, in particular an ⁇ -olefin-carbon
- Selectivity for the C2-C4 range of preferably at least 30%, e.g. B. in the area from 30 to 50%.
- carbon dioxide formed is not taken into account (ie excluding CO2).
- a product mixture containing olefins having an olefin-carbon selectivity for the C2-C4 range of at least 30%, for. B. in the range of 30 to 50%, of which at least 30% in turn account for at least 90% ethene, propene, 1-butene.
- formed carbon dioxide is not taken into account (i.e., excluding CO2).
- formed carbon dioxide is not taken into account (i.e., excluding CO2).
- olefins are z. B. used in processes for the preparation of polyolefins, epoxies, oxo products, acrylonitriles, acrolein, styrene. See also: Weisermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, pp. 145-192 and 267-312.
- the aqueous potassium / copper nitrate solution was prepared by dissolving 3.87 g of copper nitrate (x 2.5 H2O, 99%, Riedel de Haen) and 0.66 g of potassium nitrate (99%, Riedel de Haen) in 1 liter of demineralized water , The impregnated catalyst was dried at 120 ° C for 4 h. The resulting catalyst contained 0.23 wt% K and 0.86 wt% Cu.
- ambient conditions room temperature, normal pressure
- the aqueous potassium / copper nitrate solution was prepared by dissolving 5.56 g of copper nitrate (x 2.5 H2O, 99%, Riedel de Haen) and 0.79 g of potassium nitrate (99%, Riedel de Haen) in 16.5 ml of demineralized water produced.
- the impregnated catalyst was dried for 4 h at 120 ° C in a rotary ball furnace under an air flow of 100 Nl / h. Subsequently, the catalyst is calcined under an argon flow of 100 Nl / h at 650 ° C for 10 h.
- the catalyst obtained contained 0.17 wt% K and 0.99 wt% Cu.
- the amount of iron pentacarbonyl which is necessary for filling the pores with a diameter of in particular ⁇ 4000 nm was determined by means of mercury porosimetry (DIN 66133).
- 200 ml carbonyl iron material with a particle size distribution of the secondary particles such that 90 wt .-% have a diameter in the range of 50 to 100 ⁇ , see Figure 4, was starting from carbonyl iron powder type CN, BASF AG or now BASF SE, by treatment with hydrogen produced at at least 300 ° C.
- the carbonyl iron material was dried in a stirred vessel under argon atmosphere at 105 ° C for 5 h. Thereafter, 10 ml of iron pentacarbonyl were added. Subsequently, the vessel was heated to about 165 ° C internal temperature. The decomposition was carried out at 165 ° C with stirring of the particles.
- the reaction was complete when no iron pentacarbonyl or free carbon monoxide was detected in the exhaust gas stream. These steps were repeated 13 times. After completion of the synthesis, the product was purged with argon at 100 ° C for at least 12 h until the CO or Fe (CO) s content in the exhaust gas was ⁇ 0.1 ppm by volume.
- WHSV weight hourly space velocity
- formed carbon dioxide is not considered (i.e., without CO2). It can be seen that according to the invention the methane formation is lowered and at the same time the yield of C 2 -C 4 -olefins is increased.
- the product streams were sampled via heated stream selectors and lines after condensing the long-chain hydrocarbons in a hot separator (about 160 ° C, 25 bar) and fed to an online gas chromatograph (GC).
- a hot separator about 160 ° C, 25 bar
- GC gas chromatograph
- WLD Injector 200 ° C, split ratio 10: 1, carrier gas argon, column Carboxen 1010 (length 30 m, ID 0.53 mm), detector 210 ° C.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Eisen- und kupferhaltiger Heterogenkatalysator und Verfahren zu seiner Herstellung, umfassend folgende Schritte: I. Thermische Zersetzung von gasförmigem Eisenpentacarbonyl unter Erhalt von Carbonyleisenpulver mit sphärischen Primärpartikeln, II. Behandlung von in Schritt I erhaltenem Carbonyleisenpulver mit Wasserstoff, wobei die metallischen sphärischen Primärpartikel zumindest teilweise agglomerieren, III. oberflächliche Oxidation der Eisenpartikel aus Schritt Il (Agglomerate = Sekundärpartikel, sowie ggf. noch vorhandene Primärpartikel) unter Eisenoxidbildung, IV. In-Kontakt-bringen der Partikel aus Schritt III mit einer wässrigen Lösung einer Kupferverbindung, V. Trocknung in Gegenwart von Sauerstoff und nachfolgende Kalzination in Abwesenheit von Sauerstoff, wobei zunächst sauerstoffhaltige Kupferverbindungen auf den Partikeln resultieren, die schließlich mit dem Eisenoxid zu einem Mischoxid der Formel CuxFe3-xO4 reagieren, mit 0 < x ≤ 1. Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines Katalysators, wobei man als Katalysator den o.g. eisen- und kupferhaltigen Heterogenkatalysator einsetzt.
Description
Eisen- und kupferhaltiger Heterogenkatalysator und Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff
Beschreibung
Die vorliegende Erfindung betrifft einen eisen- und kupferhaltigen Heterogenkatalysator, ein Verfahren zu seiner Herstellung und ein Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart des eisen- und kupferhaltigen Heterogenkatalysators.
Es ist bekannt, dass niedrigere Olefine aus Kohlenmonoxid (CO) und Wasserstoff (H2) an Metallkatalysatoren, z. B. Eisen- oder Kobalt-Katalysatoren, hergestellt werden können. Als Katalysatorvorläufer werden üblicherweise Eisenoxide eingesetzt.
Solche Katalysatoren sind z. B. in US 4,544,674, US 5,100,856, US 5,1 18,715, US 5,248,701 , US 2004/0127582 A1 , HP. Withers et al., Ind. Eng. Chem. Res. 1990, 29, Seiten 1807 bis 1814, und M.E. Dry et al., Stud. Surf. Sei. Catal., Vol. 152, 2004, Seiten 533 bis 600, beschrieben.
Diese Umsetzung wird auch Fischer-Tropsch-Synthese genannt.
Herkömmliche Verfahren zur Fischer-Tropsch-Synthese produzieren Kohlenwasserstoffe in einem breiten Bereich der Produktverteilung.
Grundsätzlich kann dieser Bereich der Produktverteilung durch die sog. Anderson- Schulz-Flory-Verteilung charakterisiert werden. Vergl. auch: M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, Seiten 1735-53.
Ebenso ist bekannt, dass die Zusammensetzung der beim Fischer-Tropsch-Prozess gebildeten Kohlenwasserstoffe durch die Wahl der eingesetzten Katalysatoren, der Reaktortypen und der Reaktionsbedingungen stark beeinflusst werden kann.
Z. B. ist bekannt, dass die Produktverteilung durch Anwendung von hohen Temperaturen in Gegenwart modifizierter Eisenkatalysatoren in Richtung niedrigere Olefine verschoben werden kann: B. Büssemeier et al., Hydrocarbon Processing, Nov. 1976, Seiten 105 bis 1 12.
Hauptproblem ist hier die Bildung großer Mengen an unerwünschtem Methan (CH4). Darüber hinaus sind die erforderlichen Eisenoxide als Ausgangsstoff für den Katalysator schwierig zu reduzieren.
DE 28 22 656 A1 (Inst. Fr. du Petrole) offenbart ein Fischer-Tropsch-Verfahren, wobei man den Katalysator durch Niederschlagen eines metallorganischen Eisen- und/oder Kobalt- und/oder Nickel-Aggregats auf einem anorganischen Träger erhält. Das Niederschlagen des Aggregats auf dem Träger wird durch Imprägnieren des Trägers mit einer Lösung des Aggregats bewirkt. Nach diesem Verfahren sollen selektiv C2-C4-
Olefine („niedere Olefine") und nur geringe Mengen an Methan entstehen. Der Hauptnachteil dieser Katalysatoren besteht darin, dass die aktiven Katalysatorbestandteile unter den Reaktionsbedingungen flüchtig sein können, was einen Metallverlust bedeutet, und dass sie toxisch sind.
DE 29 19 921 A1 (Vielstich et al.) beschreibt ein weiteres Fischer-Tropsch-Verfahren, in dem man Katalysatoren einsetzt, die als wesentliche Katalysatorkomponente polykristalline Eisenwhisker enthalten. Diese Eisenwhisker werden durch thermische Zersetzung von Eisenpentacarbonyl im magnetischen Feld erhalten. Die Eisenwhisker werden bevorzugt als Pellets eingesetzt. Gemäß der Lehre dieser DE-Schrift werden unter polykristallinen Whiskern feine Eisenfäden mit mikroskopisch kleinen Einkristallbereichen verstanden (Seite 5, 3. Absatz). Die fadenförmigen Primärpartikel resultieren in ihrer Form aus dem Wachstum im magnetischen Feld. Die Fäden haben eine Länge von z. B. 0,06 bis 1 mm.
Die beiden Bilder in .Fachberichte für Oberflächentechnik, Juli/August 1970, Seite 146, zeigen SEM-Aufnahmen von solchem Carbonyleisenpulver mit fadenförmigen Primärpartikeln.
In .Fachberichte für Oberflächentechnik, Juli/August 1970, Seiten 145 bis 150, werden diese Eisenwhisker auch als Metallhaare beschrieben, die aus einem Kristallwachstum vom Metall in Fadenform, entgegen einem normalen Kristallwachstum, resultieren (Seite 145, 2. Absatz). In den polykristallinen Eisenwhiskern beträgt das Verhältnis von Länge zu Durchmesser z. B. > 10.
Solche polykristallinen Eisenwhisker sind auch beschrieben in H.G.F. Wilsdorf et al., Z. Metallkde. 69 (1 1 ), 1978, Seiten 701 bis 705.
DE 25 07 647 A1 (Kölbel et al.) beschreibt zur Herstellung von Kohlenwasserstoffen und sauerstoffhaltigen Verbindungen aus CO und H2 die Verwendung von Katalysatoren die Mangan und optional Eisen enthalten. US 2,417,164 (Standard Oil Comp.) betrifft Verfahren zur Synthese von flüssigen Kohlenwasserstoffen aus CO und H2 in Gegenwart von Metallkatalysatoren, darunter Carbonyleisenpulver.
WO 07/060186 A1 (BASF AG) lehrt Verfahren zur Herstellung von Olefinen aus Syn- thesegas unter Einsatz von Fischer-Tropsch-Katalysatoren in einer Reaktionskolonne.
WO 09/013174 A2 (BASF SE) betrifft ein Verfahren zur Herstellung von kurzkettigen, gasförmigen Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines eisenhaltigen Heterogenkatalysators, wobei man als Katalysator Carbo- nyleisenpulver mit sphärischen Primärpartikeln einsetzt.
Promotoren in Eisenkatalysatoren für Fischer-Tropsch-Synthesen sind z. B. beschrieben in der o. g. WO 09/013174 A2 und in M. Janardanarao, Ind. Eng. Chem. Res. 1990, 29, Seiten 1735 bis 1753, und CD. Frohning et al. in„Chemierohstoffe aus Kohle", 1977, Seiten 219 bis 299.
Als geeignete Promotoren kann der Katalysator z. B. eines oder mehrere der Elemente Kalium, Vanadium, Kupfer, Nickel, Kobalt, Mangan, Chrom, Zink, Silber, Gold, Calcium, Natrium, Lithium, Caesium, Platin, Palladium, Ruthenium, Schwefel, jeweils in e- lementarer Form oder in ionischer Form, enthalten. Die EP-Patentanmeldung Nr. 08164085.6 (BASF SE) vom 10.09.08 beschreibt ein integriertes Verfahren, wobei in einer Anlage A reines Carbonyleisenpulver (CEP) durch Zersetzung von reinem Eisenpentacarbonyl (EPC) hergestellt wird, bei der Zersetzung des EPC freiwerdendes Kohlenmonoxid (CO) zur Herstellung von weiterem CEP aus Eisen in Anlage A eingesetzt wird oder einer verbundenen Anlage B zur Her- Stellung von Synthesegas zugeführt wird oder einer verbundenen Anlage C zur Herstellung von Kohlenwasserstoffen aus Synthesegas zugeführt wird, und man das in Anlage A hergestellte CEP als Katalysator oder Katalysatorkomponente in einer verbundenen Anlage C zur Herstellung von Kohlenwasserstoffen aus Synthesegas aus Anlage B einsetzt.
Zwei parallele europäische Patentanmeldungen mit gleichem Anmeldetag (alle BASF SE) betreffen bestimmte eisenhaltige Heterogenkatalysatoren und ihre Verwendung in Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, unter Umgehung von Nachteilen des Stands der Technik, einen verbesserten Katalysator und ein verbessertes wirtschaftliches Verfahren zur Herstellung von Olefinen aufzufinden. Das Verfahren sollte insbesondere möglichst selektiv niedere Olefine (z. B. C2-C6 - Olefine, besonders C2- C4 - Olefine), besonders Ethen, Propen und 1 -Buten liefern, bei gleichzeitig möglichst geringem Anfall von Methan, Kohlenstoffdioxid, Alkanen (z. B. C2-C6 - Alkanen, besonders C2-C4 - Alkanen) und höheren Kohlenwasserstoffen, also Kohlenwasserstoffen mit z. B. sieben oder mehr C-Atomen (C7+ Fraktion), besonders fünf oder mehr C- Atomen (C5+ Fraktion). Bestandteile des Katalysators sollten unter den Reaktionsbe- dingungen nicht flüchtig sein.
Weiterhin sollte sich der Katalysator durch eine verkürzte Aktivierungsphase auszeichnen. Die aus der Fischer-Tropsch Synthese bekannte Einlaufzeit bis das gewünschte Produktspektrum erreicht wird, sollte verkürzt werden.
Der Katalysator sollte eine verbesserte Standzeit und erhöhte mechanische Stabilität aufweisen. Die erhöhte Stabilität ist insbesondere vorteilhaft bei Einsatz des Katalysators in einer Wirbelschicht oder in Slurryreaktoren oder auch in Blasensäulen.
Erfindungsgemäß wurden u. a. folgende Aspekte erkannt:
Die im Schritt II unter zumindest teilweiser Agglomerierung entstehenden metallischen Sekundärpartikel, besonders in einer wirbelfähigen Fraktion mit Partikeldurchmessern im Bereich von 10 - 250 μηη (siehe unten), sind aufgrund ihrer chemischen Zusammen- setzung ideale Katalysator-Prekursoren für die Synthese niederer Olefine aus CO- reichen Synthesegasen. Zusätzlich vorteilhaft ist die geringe Oberfläche der Partikel, die bevorzugt unter 2 m2/g liegt (siehe unten).
Insbesondere von Vorteil ist der geringe Sauerstoffgehalt der metallischen Sekundärpartikel, wodurch eine Reduktion - und somit Aktivierung des Katalysators - sehr ver- einfacht ist.
Demgemäß wurde ein eisen- und kupferhaltiger Heterogenkatalysator und ein Verfahren zu seiner Herstellung gefunden, welches dadurch gekennzeichnet ist, dass es folgende Schritte umfasst:
I. Thermische Zersetzung von gasförmigem Eisenpentacarbonyl unter Erhalt von Car- bonyleisenpulver mit sphärischen Primärpartikeln,
II. Behandlung von in Schritt I erhaltenem Carbonyleisenpulver mit Wasserstoff, wobei die metallischen sphärischen Primärpartikel zumindest teilweise agglomerieren,
III. oberflächliche Oxidation der Eisenpartikel aus Schritt II (d.h. Agglomerate = Sekun- därpartikel, sowie ggf. noch vorhandene Primärpartikel) unter Eisenoxidbildung,
IV. In-Kontakt-bringen der Partikel aus Schritt III mit einer wässrigen Lösung einer Kupferverbindung,
V. Trocknung in Gegenwart von Sauerstoff und nachfolgende Kalzination in Abwesenheit von Sauerstoff, wobei zunächst sauerstoffhaltige Kupferverbindungen auf den Par- tikeln resultieren, die schließlich mit dem Eisenoxid zu einem Mischoxid der Formel CuxFe3-x04 reagieren, mit 0 < x < 1 .
Weiter wurde demgemäß ein Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines Katalysators gefunden, wel- ches dadurch gekennzeichnet ist, dass man als Katalysator den o. g. eisen- und kup- ferhaltigen Heterogenkatalysator einsetzt.
Der Anteil an im Schritt I erhaltenen sphärischen Primärpartikeln im Carbonyleisenpulver beträgt bevorzugt > 90 Gew.-%, besonders > 95 Gew.-%, ganz besonders > 98 Gew.-%.
Die im Schritt I erhaltenen sphärischen Primärpartikel weisen bevorzugt einen Durchmesser im Bereich von 0,01 bis 50 μηη, besonders im Bereich von 0,1 bis 20 μηη, ganz besonders im Bereich von 0,5 bis 15 μηη, weiter besonders im Bereich von 0,7 bis 10 μηη, weiter besonders im Bereich von 1 bis 10 μηη, auf.
Der Eisengehalt der sphärischen Primärpartikel beträgt bevorzugt > 97 Gew.-%, besonders > 99 Gew.-%, insbesondere > 99,5 Gew.-%.
Das Eisen liegt bevorzugt in seiner thermodynamisch stabilsten Modifikation (alpha- Eisen) vor.
Bevorzugt sind die sphärischen Primärpartikel frei von Poren.
Das Carbonyleisenpulver zeichnet sich im Besonderen dadurch aus, dass es neben den sphärischen Primärpartikeln keine fadenförmigen Primärpartikel, insbesondere nicht die in DE-A1 -29 19 921 und .Fachberichte für Oberflächentechnik, Juli/August 1970, Seiten 145 bis 150, (siehe oben) offenbarten Eisenwhisker, enthält.
Die Abbildungen 1 bis 3 zeigen SEM-Aufnahmen von bevorzugt eingesetztem Carbonyleisenpulver mit sphärischen Primärpartikeln vor der Wasserstoffbehandlung gemäß Schritt II.
Im erfindungsgemäßen Verfahren einsetzbares Carbonyleisenpulver mit sphärischen Primärpartikeln ist z. B. unter der Bezeichnung„Carbonyleisenpulver CN" von BASF AG bzw. jetzt BASF SE, D-67056 Ludwigshafen, erhältlich.
Das Carbonyleisenpulver mit sphärischen Primärpartikeln wird durch thermische Zersetzung von gasförmigem Eisenpentacarbonyl (Fe[CO]s), welches besonders durch Destillation zuvor aufgereinigt wurde, erhalten. Das im Schritt I erhaltene Produkt wird in Schritt II mit Wasserstoff behandelt.
Diese Behandlung der Primärpartikel mit Wasserstoff erfolgt bevorzugt bei einer Temperatur im Bereich von 300 bis 600 °C. Durch diese Behandlung wird der Restgehalt an Kohlenstoff, Stickstoff und auch Sauerstoff im CEP erniedrigt. (DE 528 463 C1 , 1927). Hierbei werden die sphärischen Primärpartikel zumindest teilweise, z. B. zu 25 bis 95 Gew.-%, agglomeriert.
Die im Schritt II unter zumindest teilweiser Agglomerierung entstehenden metallischen Sekundärpartikel weisen bevorzugt Partikeldurchmesser im Bereich von 10 bis 250 μηη, besonders bevorzugt zwischen 50 und 150 μηη, auf. Solche wirbelfähigen Partikel- fraktionen können durch entsprechendes Sieben erhalten werden.
In Schritt II erfolgt die Ausbildung von metallischen Sekundärpartikeln mit BET- Oberflächen (DIN ISO 9277) von bevorzugt kleiner 2 m2/g, insbesondere von 0,2 bis 1 ,9 m2/g.
Abbildung 4 und 5 zeigen beispielhaft nach der Wasserstoffbehandlung erhaltene Agglomerate.
In Schritt III werden die Eisenpartikel aus Schritt II (das heißt die Agglomerate = Sekundärpartikel, sowie ggf. noch vorhandene Primärpartikel) kontrolliert oberflächlich anoxidiert (passiviert). Bei dieser Oxidation bildet sich an der Oberfläche der Partikel Eisenoxid. Die Oxidation, auch Passivierung genannt, erfolgt bevorzugt mittels Sauerstoff. Der Sauerstoff kann in Form von sauerstoffhaltigem (02-haltigem) Wasser eingesetzt werden.
Die Oxidation erfolgt bevorzugt bei Temperaturen unter 150 °C, besonders bei einer Temperatur kleiner 50 °C, insbesondere bei einer Temperatur im Bereich von 20 bis 45 °C, z. B. in mit Inertgas verdünnter Luft, sauerstoffhaltigem Inertgas oder durch In- Kontakt-bringen der Partikel mit sauerstoffhaltigem Wasser, hierbei bevorzugt unter Rühren. Geeignete Inertgase sind Stickstoff oder Edelgase, wie He, Ne, insbesondere Argon. In Schritt IV werden die oberflächlich anoxidierten (passivierten) Partikel bevorzugt mit einer wässrigen Kupfersalzlösung, besonders einer wässrigen Lösung von Kupfernitrat, Kupfercarbonat oder eines organischen Kupfersalzes, in Kontakt gebracht, auch Imprägnierung oder Tränkung genannt. In einer besonderen Ausführungsform können den wässrigen Kupfersalzlösungen Verbindungen zugesetzt werden, die die Oberflächenspannung der Tränklösung herabsetzen, wie z. B. Tenside.
Besonders bevorzugtes Kupfersalz ist Kupfernitrat. Beispiele für organische Kupfersal- ze sind Kupferacetat, Kupferoxalat und Kupferacetylacetonat.
In Schritt V erfolgt die Trocknung in Gegenwart von Sauerstoff, bevorzugt unter Luft, insbesondere bei einer Temperatur im Bereich von 50 bis 150 °C, bevorzugt zwischen 55 und 120 °C.
Anschließend wird eine Kalzination in Abwesenheit von Sauerstoff (O2), bevorzugt unter Inertgas (d.h. in einer Inertgasatmosphäre), besonders bei einer Temperatur im Bereich von 500 bis 800 °C, insbesondere 600 bis 750 °C, durchgeführt. Geeignete Inertgase gehen unter den Bedingungen keine Reaktion mit dem Eisen und den Do- tierstoffen ein und sind z. B. Edelgase, wie He, Ne, insbesondere Ar.
Dabei bilden sich durch Reaktion der gebildeten sauerstoffhaltigen Kupferverbindungen mit Eisenoxid Mischoxide, insbesondere Spinelle, der Formel CuxFe3-x04, wobei der Wert x im Bereich > 0 bis < 1 , insbesondere im Bereich > 0,25 bis < 1 , liegt. Die Dotierung des im Schritt V erhaltenen Katalysators mit Cu beträgt bevorzugt im
Bereich von 0,5 bis 4 Gew.-%, besonders bevorzugt 0,6 bis 2 Gew.-%, ganz besonders
bevorzugt 0,7 bis 1 ,5 Gew.-%, z. B. 0,8 bis 1 ,3 Gew.-%, jeweils bezogen auf Eisen und jeweils als Element in der Oxidationsstufe 0 berechnet.
In einer besonderen Variante werden die Partikel zusätzlich mit insgesamt im Bereich von 0,01 bis 1 Gew.-%, besonders 0,05 bis 0,5 Gew.-%, (jeweils bezogen auf Eisen und jeweils als Element in der Oxidationsstufe 0 berechnet) an Alkalimetallionen und/oder Erdalkalimetallionen, insbesondere Kaliumionen und/oder Natriumionen, dotiert. Diese zusätzliche Dotierung erfolgt besonders nach Schritt V durch In-Kontakt-bringen, weiter besonders in Schritt V zwischen der Trocknung und der Kalzination durch In- Kontakt-bringen, bevorzugt in Schritt IV durch, bevorzugt simultanes, In-Kontakt- bringen der Partikel (Sekundärpartikel und ggf. noch vorhandene Primärpartikel) mit einer wässrigen Lösung einer Alkalimetall- und/oder Erdalkalimetallverbindung.
In einer besonderen Ausgestaltung der Erfindung werden zwischen den Schritten II und III zusätzlich die folgenden Schritte IIa und IIb durchgeführt.
In Schritt IIa werden die Agglomerate bevorzugt mit flüssigem oder gasförmigem Ei- senpentacarbonyl in Kontakt gebracht. Besonders bevorzugt ist flüssiges Eisenpenta- carbonyl.
Dazu werden die metallischen Sekundärpartikel z. B. in einen mit Argon inertisierten Behälter eingefüllt und bei erhöhter Temperatur, wie z. B. 70 bis 150 °C, insbesondere z. B. bei einer Behälter-Innentemperatur von 105 °C, getrocknet.
Danach wird Eisenpentacarbonyl portionsweise (z. B. 5 Vol.% bezogen auf die Menge an Carbonyleisenpulver) z. B. durch ein Einleitungsrohr flüssig zudosiert.
Das alternative In-Kontakt-bringen mit gasförmigem Eisenpentacarbonyl kann z. B. in einer Wirbelschicht erfolgen, besonders bei einer Temperatur im Bereich von 120 bis 175 °C. Es erfolgt bevorzugt bei einem EPC-Partialdruck (absolut) im Bereich von 0,7 bis 1 bar.
In Schritt IIb erfolgt die thermische Zersetzung von Eisenpentacarbonyl bevorzugt bei einer Temperatur im Bereich von 150 bis 350 °C, besonders im Bereich von 150 bis 200 °C.
Z. B. wird das Gefäß, in dem sich das Material aus Schritt III befindet, auf eine Innentemperatur im Bereich von bevorzugt 150 bis 180 °C geheizt und die Zersetzungsreaktion des aufgebrachten EPCs bevorzugt mit einem IR-Spektrometer verfolgt. Hat der CO-Gehalt des Abgases sein Maximum überschritten, wird das Gefäß wieder auf z. B. 105 °C abgekühlt.
Je nach gewünschtem Verfüllungsgrad der Poren wird die Prozedur der beiden Schritte IIa und IIb wiederholt.
Im Schritt IIb werden überwiegend poren- und hohlraumfreie Sekundärpartikel erhalten. Die in Schritt II erhaltenen Sekundärpartikel weisen Zwickelporen zwischen den sphärischen Primärpartikeln auf (Porendurchmesser insbesondere < 4000 nm). Die Zwickelporen, insbesondere die Zwickelporen mit Durchmessern < 4000 nm, stellen somit intrapartikuläre Poren dar (Abbildung 5 und 7), während die gemessenen Poren mit Durchmessern insbesondere > 4000 nm als interpartikuläre Poren interpretiert werden können (resultierend aus dem Zwickelvolumen der Sekundärpartikel).
Durch die Behandlung der Sekundärpartikel mit Eisenpentacarbonyl gelingt es, die Zwickelporen zwischen den sphärischen Primärpartikeln, insbesondere mit Durchmessern im Bereich < 4000 nm, zu verfüllen. Man erhält somit überwiegend poren- und hohlraumfreie Sekundärpartikel, die besonders dadurch gekennzeichnet sind, dass das differentielle Porenvolumen mit Porendurchmessern im Bereich < 4000 nm zu < 10 %, in besonderer Ausführung zu < 5 %, zu dem gemessenen integralen Porenvolumen der Sekundärpartikel beiträgt.
Die Menge an Eisenpentacarbonyl, die zur Verfüllung der Poren mit einem Durchmesser insbesondere von < 4000 nm notwendig ist, wird bevorzugt mittels Porenvolumen- messung per Quecksilber Porosimetrie (DIN 66133) bestimmt.
Im Schritt IIb erhaltene Partikel sind beispielhaft in Abbildung 6 zu sehen.
Der erfindungsgemäße eisen- und kupferhaltige Katalysator ist besonders bevorzugt nicht auf einem Trägermaterial aufgebracht.
Im erfindungsgemäßen Verfahren kann der, ggf. dotierte, eisen- und kupferhaltige Heterogenkatalysator in Form von Pellets eingesetzt werden. Die Pellets werden durch dem Fachmann bekannte Methoden erhalten. Bevorzugte Formen der Pellets sind Tabletten und Ringe.
Die Pellets können vor ihrem Einsatz im erfindungsgemäßen Verfahren auch wieder zerkleinert werden, z. B. durch Mahlung.
Der Katalysator kann vor seinem Einsatz im erfindungsgemäßen Verfahren durch Behandlung mit Wasserstoff und/oder Kohlenmonoxid bei erhöhter Temperatur, insbesondere bei Temperaturen oberhalb von 300 °C, in einen syntheseaktiveren Zustand überführt werden. Diese zusätzliche Aktivierung ist jedoch nicht unbedingt erforderlich.
Im erfindungsgemäßen Verfahren werden die Edukte Kohlenmonoxid und Wasserstoff bevorzugt in Form von Synthesegas eingesetzt.
Das Synthesegas kann nach allgemein bekannten Verfahren (wie z. B. beschrieben in Weissermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, Seiten 15 bis 24), wie beispielsweise durch Umsetzung von Kohle oder Methan mit Wasser- dampf, oder durch partielle Oxidation von Methan hergestellt werden. Vorzugsweise weist das Synthesegas ein Molverhältnis von Kohlenmonoxid zu Wasserstoff im Bereich von 3 : 1 bis 1 : 3 auf. Besonders bevorzugt wird ein Synthesegas eingesetzt, das ein Mischungs-Molverhältnis von Kohlenmonoxid zu Wasserstoff im Bereich von 2 : 1 bis 1 : 2 aufweist.
In einer besonderen Ausführungsform des erfindungsgemäßen Verfahrens enthält das Synthesegas Kohlendioxid (CO2). Der Gehalt an CO2 liegt bevorzugt im Bereich von 1 bis 50 Gew.-%. Das erfindungsgemäße Verfahren wird bevorzugt bei einer Temperatur im Bereich von 200 bis 500 °C, besonders 300 bis 400 °C, durchgeführt.
Der Absolutdruck liegt bevorzugt im Bereich von 1 bis 100 bar, besonders 5 bis 50 bar. Die WHSV (Weight Hourly Space Velocity) liegt bevorzugt im Bereich von 100 bis
10000, besonders bevorzugt 300 bis 5000, Volumenteile Feed-Strom pro Masseanteil Katalysator und Stunde (l/kg»h).
Bevorzugte Reaktoren zur Durchführung des erfindungsgemäßen Verfahrens sind: Wirbelschichtreaktor, Festbettreaktor, Suspensionsreaktor, Mikroreaktor.
Im Wirbelschicht-, Mikro- und Suspensionsreaktor wird der Katalysator bevorzugt in Pulverform eingesetzt. Das Pulver kann auch erhalten werden durch Mahlung von zuvor hergestellten Pellets.
Im Festbettreaktor wird der Katalysator als Formkörper, bevorzugt in Form von Pellets, eingesetzt. Der Einsatz solcher Reaktoren für die Fischer-Tropsch-Synthese ist z. B. beschrieben in CD. Frohning et al. in„Chemierohstoffe aus Kohle", 1977, Seiten 219 bis 299, oder B.H. Davis, Topics in Catalysis, 2005, 32 (3-4), Seiten 143 bis 168.
Das erfindungsgemäße Verfahren liefert ein Produktgemisch enthaltend Olefine mit einer Olefin-Kohlenstoff-Selektivität, insbesondere einer oc-Olefin-Kohlenstoff-
Selektivität, für den C2-C4 - Bereich von bevorzugt mindestens 30 %, z. B. im Bereich
von 30 bis 50 %. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. exklusive CO2).
In einer besonderen Ausführungsform erhält man ein Produktgemisch enthaltend Ole- fine mit einer Olefin-Kohlenstoff-Selektivität für den C2-C4 - Bereich von mindestens 30 %, z. B. im Bereich von 30 bis 50 %, wobei von diesen mindestens 30 % wiederum mindestens 90 % auf Ethen, Propen, 1 -Buten entfallen. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. exklusive CO2). In einer besonders bevorzugten Ausführungsform erhält man ein Produktgemisch enthaltend Olefine mit einer Olefin-Kohlenstoff-Selektivität für den C2-C4 - Bereich von mindestens 35 %, z. B. im Bereich von 35 bis 50 %, wobei von diesen mindestens 35 % wiederum mindestens 90 % auf Ethen, Propen, 1 -Buten entfallen. Bei der Selektivitätsangabe wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. exklusive CO2).
Die erhaltenen Olefine werden z. B. in Verfahren zur Herstellung von Polyolefinen, Epoxiden, Oxoprodukten, Acrylnitrilen, Acrolein, Styrol eingesetzt. Siehe auch: Weis- sermel et al., Industrial Organic Chemistry, Wiley-VCH, Weinheim, 2003, Seiten 145 bis 192 und 267 bis 312.
Alle Druckangaben beziehen sich auf den Absolutdruck. Beispiele Beispiel 1 (Vergleichskatalysator)
Herstellung von K- / Cu-dotiertem Carbonyleisenkatalysator durch Imprägnierung
100 g Carbonyleisenmatenal mit einer Korngrößenverteilung der Sekundärpartikel derart, dass 90 Gew.-% einen Durchmesser im Bereich von 50 bis 100 μηη aufweisen, siehe Abbildung 4, wurde ausgehend von Carbonyleisenpulver Typ CN, BASF AG bzw. jetzt BASF SE, durch Behandlung mit Wasserstoff bei mindestens 300 °C hergestellt und unter Umgebungsbedingungen (Raumtemperatur, Normaldruck) mit 1 1 ml wässri- ger Kalium- / Kupfernitratlösung getränkt. Die wässrige Kalium- / Kupfernitratlösung wurde durch Auflösen von 3,87 g Kupfernitrat (x 2,5 H2O, 99 %, Riedel de Haen) und 0,66 g Kaliumnitrat (99 %, Riedel de Haen) in 1 1 ml entmineralisiertem Wasser hergestellt. Der getränkte Katalysator wurde 4 h bei 120 °C getrocknet. Der erhaltene Katalysator enthielt 0,23 Gew.-% K und 0,86 Gew.-% Cu.
Beispiel 2 (erfindungsgemäß)
Herstellung von K- / Cu-dotiertem Carbonyleisenkatalysator (Mischoxid) durch Imprägnierung
150 g Carbonyleisenmaterial mit einer Korngrößenverteilung der Sekundärpartikel derart, dass 90 Gew.-% einen Durchmesser im Bereich von 50 bis 100 μηη aufweisen, siehe Abbildung 4, wurde ausgehend von Carbonyleisenpulver Typ CN, BASF AG bzw. jetzt BASF SE, durch Behandlung mit Wasserstoff bei mindestens 300 °C hergestellt und mit 5 Vol.% Luft in Stickstoff in einem Drehkugelofen bei einer Temperatur bis maximal 35 °C kontrolliert passiviert. Das oberflächlich passivierte Carbonyleisenpulver wurde unter Umgebungsbedingungen (Raumtemperatur, Normaldruck) mit 16,5 ml wässriger Kalium- / Kupfernitratlösung getränkt. Die wässrige Kalium- / Kupfernitratlösung wurde durch Auflösen von 5,56 g Kupfernitrat (x 2,5 H2O, 99 %, Riedel de Haen) und 0,79 g Kaliumnitrat (99 %, Riedel de Haen) in 16,5 ml entmineralisiertem Wasser hergestellt. Der getränkte Katalysator wurde 4 h bei 120 °C im Drehkugelofen unter einem Luftstrom von 100 Nl/h getrocknet. Anschließend wird der Katalysator unter einem Argonstrom von 100 Nl/h bei 650 °C für 10 h kalziniert.
Der erhaltene Katalysator enthielt 0,17 Gew.-% K und 0,99 Gew.-% Cu.
Beispiel 3
Porenverfüllung von reinem, agglomeriertem Carbonyleisenpulver (Sekundärpartikel) aus Schritt II mit Eisenpentacarbonyl gemäß Schritt IIa und IIb.
Die Menge an Eisenpentacarbonyl, die zur Verfüllung der Poren mit einem Durchmes- ser von insbesondere < 4000 nm notwendig ist, wurde mittels Quecksilber Porosimetrie (DIN 66133) bestimmt.
200 ml Carbonyleisenmaterial mit einer Korngrößenverteilung der Sekundärpartikel derart, dass 90 Gew.-% einen Durchmesser im Bereich von 50 bis 100 μηη aufweisen, siehe Abbildung 4, wurde ausgehend von Carbonyleisenpulver Typ CN, BASF AG bzw. jetzt BASF SE, durch Behandlung mit Wasserstoff bei mindestens 300 °C hergestellt. Das Carbonyleisenmaterial wurde in einem Rührgefäß unter Argonatmosphäre bei 105 °C für 5 h getrocknet. Danach wurden 10 ml Eisenpentacarbonyl zudosiert. Anschließend wurde das Gefäß auf ca. 165 °C Innentemperatur erwärmt. Die Zersetzung erfolgte bei 165 °C unter Rühren der Partikel. Die Reaktion war beendet, wenn im Abgasstrom kein Eisenpentacarbonyl bzw. kein freies Kohlenmonoxid detektiert wurde. Diese Schritte wurden 13 mal wiederholt. Nach beendeter Synthese wurde das Produkt mindestens 12 h mit Argon bei 100 °C gespült, bis der CO- bzw. Fe(CO)s-Gehalt im Abgas < 0,1 Vol.-ppm betrug.
Vergleich:
Performance des erfindungsgemäßen Katalysators (Beispiel 2) und des Vergleichskatalysators (Beispiel 1 ) im erfindungsgemäßen Verfahren mit vorheriger identischer Aktivierung
Es wurde eine Reihe von vergleichenden Leistungstests mit je etwa 2,0 g Katalysator (Bsp. 1 , 2; WHSV = 500 Nl/kg«h), und Inertmaterialverdünnung (Katalysator : Silizium-
carbid = 1 : 3 (Gewichtsverhältnis)) durchgeführt. Die Katalysatoren wurden in einen Festbettreaktor eingetragen und in H2:N2 (9:1 ) (molar) 4 h bei 380 °C voraktiviert. Dann wurde Synthesegas mit einer Rate von ungefähr 0,9 Nl/h bei 25 bar in den Reaktor eingetragen und die Temperatur auf 340 °C gesenkt. Als interner Standard für spätere analytische Tests wurde zusätzlich 0,1 Nl/h Stickstoffgas eingeleitet. Die Ergebnisse der über einen Zeitraum von mindestens 75 h durchgeführten Versuche sind nachstehend für die jeweiligen Katalysatorsysteme gezeigt.
(Nl = Normliter = auf Normalbedingungen umgerechnetes Volumen,
WHSV = weight hourly space velocity).
Bei den Selektivitätsangaben in den Beispielen wird gebildetes Kohlendioxid nicht berücksichtigt (d.h. ohne CO2). Man erkennt, dass erfindungsgemäß die Methanbildung gesenkt und gleichzeitig die Ausbeute an C2-C4-Olefinen gesteigert wird.
Zur Analytik der Reaktionsprodukte:
Die Produktströme wurden über beheizte Streamselektoren und Leitungen nach Aus- kondensieren der langkettigen Kohlenwasserstoffe in einem Heißabscheider (ca. 160 °C, 25 bar) beprobt und einem online-Gaschromatograph (GC) zugeführt.
GC: Agilent 6890N mit FID und WLD Detektor.
Vorsäulen: CP-Poraplot Q, Länge 12,5 m, ID 0,53 mm, Filmdicke 20 μηη
FID:
Injektor 250 °C, Splitverhältnis 50:1 , Trägergas Helium, Säule Durabond DB-1 (Länge 60 m, ID 0,32 mm, Filmdicke 3 μηη), Detektor 280 °C.
WLD:
Injektor 200 °C, Splitverhältnis 10:1 , Trägergas Argon, Säule Carboxen 1010 (Länge 30 m, ID 0,53 mm), Detektor 210 °C.
Temperaturprogramm: 40 °C-5 min - 7 °C/min - 250 °C-5 min, Trägergas, Helium. Folgende Abbildungen 1 bis 3:
Erfindungsgemäß in Schritt II einsetzbares Carbonyleisenpulver (CEP) mit sphärischen Primärpartikeln.
Claims
Patentansprüche
Verfahren zur Herstellung eines eisen- und kupferhaltigen Heterogenkatalysators, dadurch gekennzeichnet, dass es folgende Schritte umfasst:
I. Thermische Zersetzung von gasförmigem Eisenpentacarbonyl unter Erhalt von Carbonyleisenpulver mit sphärischen Primärpartikeln,
II. Behandlung von in Schritt I erhaltenem Carbonyleisenpulver mit Wasserstoff, wobei die metallischen sphärischen Primärpartikel zumindest teilweise agglomerieren,
III. oberflächliche Oxidation der Eisenpartikel aus Schritt II (Agglomerate = Sekundärpartikel, sowie ggf. noch vorhandene Primärpartikel) unter Eisenoxidbildung,
IV. In-Kontakt-bringen der Partikel aus Schritt III mit einer wässrigen Lösung einer Kupferverbindung,
V. Trocknung in Gegenwart von Sauerstoff und nachfolgende Kalzination in Abwesenheit von Sauerstoff, wobei zunächst sauerstoffhaltige Kupferverbindungen auf den Partikeln resultieren, die schließlich mit dem Eisenoxid zu einem Mischoxid der Formel CuxFe3-x04 reagieren, mit 0 < x < 1 .
Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass in Schritt III die Oxidation mittels Sauerstoff erfolgt.
Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass in Schritt IV die Partikel mit einer wässrigen Kupfersalz-Lösung in Kontakt gebracht werden.
Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass es sich bei dem Kupfersalz um Kupfernitrat oder Kupfercarbonat handelt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Schritt V die Trocknung der Partikel bei einer Temperatur im Bereich von 50 bis 150 °C und die Kalzination der Partikel bei einer Temperatur im Bereich von 500 bis 800 °C erfolgt.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die im Schritt I erhaltenen sphärischen Primärpartikel einen Durchmesser im Bereich von 0,01 bis 50 μηη aufweisen.
Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die in Schritt III eingesetzten Sekundärpartikel (= Agglomerate) einen Durchmesser im Bereich von 10 bis 250 μηη aufweisen.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die im Schritt I erhaltenen Primärpartikel einen Eisengehalt von größer als 97 Gew.-% aufweisen. 9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die im Schritt I erhaltenen Primärpartikel porenfrei sind.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das im Schritt I erhaltene Carbonyleisenpulver keine fadenförmigen Primär- partikel enthält.
1 1 . Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierung des im Schritt V erhaltenen Katalysators mit Cu insgesamt im Bereich von 0,5 bis 4 Gew.-% (bezogen auf Eisen) beträgt.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikel zusätzlich mit insgesamt im Bereich von 0,01 bis 1 Gew.-% (bezogen auf Eisen) an Alkalimetallionen und/oder Erdalkalimetallionen dotiert werden.
13. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Partikel zusätzlich mit insgesamt im Bereich von 0,01 bis 1 Gew.-% (bezogen auf Eisen) an Kaliumionen und/oder Natriumionen dotiert werden. 14. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das die Dotierung in Schritt IV durch In-Kontakt-bringen der Partikel (Sekundärpartikel und ggf. noch vorhandene Primärpartikel) mit einer wässri- gen Lösung einer Alkalimetall- und/oder Erdalkalimetallverbindung erfolgt. 15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es zwischen den Schritten II und III zusätzlich die folgenden Schritte IIa und IIb umfasst:
IIa. In-Kontakt-bringen der Agglomerate (= Sekundärpartikel) mit Eisenpentacar- bonyl,
IIb. Thermische Zersetzung des in Schritt III aufgebrachten Eisenpentacarbonyls unter Erhalt von zumindest überwiegend poren- und hohlraumfreien Sekundärpartikeln.
16. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass in Schritt IIa die Agglomerate mit flüssigem oder gasförmigem Eisenpentacarbo- nyl in Kontakt gebracht werden.
17. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Schritt IIb die thermische Zersetzung des Eisenpentacarbonyls bei einer Temperatur im Bereich von 150 bis 350 °C erfolgt. 18. Eisen- und kupferhaltiger Heterogenkatalysator, erhältlich durch ein Verfahren nach einem der vorhergehenden Ansprüche.
19. Verfahren zur Herstellung von Olefinen durch Umsetzung von Kohlenmonoxid mit Wasserstoff in Gegenwart eines Katalysators, dadurch gekennzeichnet, dass man als Katalysator einen eisen- und kupferhaltigen Heterogenkatalysator gemäß dem vorhergehenden Anspruch einsetzt.
Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass man die Umsetzung bei einer Temperatur im Bereich von 200 bis 500 °C durchführt.
21 . Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass man die Umsetzung bei einem Absolutdruck im Bereich von 1 bis 100 bar durchführt.
Verfahren nach einem der drei vorhergehenden Ansprüche zur Herstellung C2-C4-Olefinen.
23. Verfahren nach einem der vier vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass für die Umsetzung Kohlenmonoxid und Wasserstoff im Form von
Synthesegas eingesetzt werden.
24. Verfahren nach einem der fünf vorhergehenden Ansprüche, dadurch gekennzeichnet, dass Kohlenmonoxid und Wasserstoff in einem Molverhältnis im Be- reich von 2 : 1 bis 1 : 2 eingesetzt werden.
25. Verfahren nach einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Synthesegas Kohlendioxid (CO2) enthält.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080055081.5A CN102665899B (zh) | 2009-11-06 | 2010-10-28 | 含铁和铜的多相催化剂和通过用氢气转化一氧化碳制备烯烃的方法 |
EP10771739A EP2496346A1 (de) | 2009-11-06 | 2010-10-28 | Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP09175224.6 | 2009-11-06 | ||
EP09175224 | 2009-11-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2011054735A1 true WO2011054735A1 (de) | 2011-05-12 |
Family
ID=43425814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2010/066382 WO2011054735A1 (de) | 2009-11-06 | 2010-10-28 | Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
Country Status (4)
Country | Link |
---|---|
US (1) | US8614164B2 (de) |
EP (1) | EP2496346A1 (de) |
CN (1) | CN102665899B (de) |
WO (1) | WO2011054735A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8410018B2 (en) | 2009-11-06 | 2013-04-02 | Basf Se | Iron-comprising heterogeneous catalyst and process for preparing olefins by reaction of carbon monoxide with hydrogen |
US8608824B2 (en) | 2008-09-10 | 2013-12-17 | Basf Se | Integrated method for producing carbonyl iron powder and hydrocarbons |
US8614164B2 (en) | 2009-11-06 | 2013-12-24 | Basf Se | Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US8618016B2 (en) | 2009-11-06 | 2013-12-31 | Basf Se | Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011076718A1 (de) | 2009-12-22 | 2011-06-30 | Basf Se | Isomerisierung von linearen alpha-olefinen |
GB201018338D0 (en) | 2010-10-29 | 2010-12-15 | Asa Energy Conversions Ltd | Conversion of natural gas |
GB201220691D0 (en) * | 2012-11-16 | 2013-01-02 | Univ Bath | A catalyst |
US11198074B2 (en) | 2015-05-27 | 2021-12-14 | Newsouth Innovations Pty Limited | Method for assisting thermally-induced changes |
US10596519B1 (en) * | 2019-05-08 | 2020-03-24 | Toyota Motor Engineering & Manufacturing North America, Inc. | Modified ferrite catalysts for direct no decomposition and a method of making and using a catalyst |
CN111871414A (zh) * | 2020-07-17 | 2020-11-03 | 广东工业大学 | 一种纳米含铜磁铁矿以及高效降解唑类杀菌剂的方法 |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE528463C (de) | 1927-09-11 | 1931-06-27 | I G Farbenindustrie Akt Ges | Verfahren zur Gewinnung eines Eisenpulvers von grosser Reinheit |
US2417164A (en) | 1944-11-23 | 1947-03-11 | Standard Oil Co | Hydrocarbon synthesis |
DE2507647A1 (de) | 1975-02-19 | 1976-09-09 | Koelbel Herbert | Verfahren zur herstellung von kohlenwasserstoffen und sauerstoffhaltigen verbindungen |
DE2822656A1 (de) | 1977-05-26 | 1978-12-07 | Inst Francais Du Petrol | Verfahren zur herstellung von leichten olefinischen kohlenwasserstoffen durch umsetzung von wasserstoff mit kohlenmonoxid in gegenwart eines katalysators |
DE2919921A1 (de) | 1979-05-17 | 1980-11-20 | Vielstich Wolf | Verfahren zur herstellung von gasfoermigen olefinen aus kohlenmonoxid und katalysatoren dafuer |
US4544674A (en) | 1983-12-14 | 1985-10-01 | Exxon Research And Engineering Co. | Cobalt-promoted fischer-tropsch catalysts |
US5100856A (en) | 1990-10-01 | 1992-03-31 | Exxon Research And Engineering Company | Iron-zinc based catalysts for the conversion of synthesis gas to alpha-olefins |
US5118715A (en) | 1983-12-20 | 1992-06-02 | Exxon Research And Engineering Company | Selective fixed-bed fischer-tropsch synthesis with high surface area Cu and K promoted, iron/manganese spinels |
US5248701A (en) | 1991-08-05 | 1993-09-28 | Exxon Research And Engineering Company | Substituted cobalt catalysts for Fischer-Tropsch synthesis |
US20040127582A1 (en) | 2002-12-27 | 2004-07-01 | Gabor Kiss | Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst |
WO2007060186A1 (de) | 2005-11-28 | 2007-05-31 | Basf Se | Verfahren zur herstellung von olefinen aus synthesegas in einer reaktionskolonne |
WO2009013174A2 (de) | 2007-07-20 | 2009-01-29 | Basf Se | Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397057A (en) * | 1966-09-26 | 1968-08-13 | Int Nickel Co | Method for producing flowable metal powders |
US3994734A (en) * | 1974-04-22 | 1976-11-30 | Scm Corporation | High density infiltrating paste |
FR2515983A1 (fr) * | 1981-11-06 | 1983-05-13 | Ammonia Casale Sa | Catalyseurs de syntheses heterogenes, procede de leur preparation et leur utilisation pour la production de melanges d'alcools |
US4604375A (en) * | 1983-12-20 | 1986-08-05 | Exxon Research And Engineering Co. | Manganese-spinel catalysts in CO/H2 olefin synthesis |
US4618597A (en) * | 1983-12-20 | 1986-10-21 | Exxon Research And Engineering Company | High surface area dual promoted iron/managanese spinel compositions |
US4833040A (en) * | 1987-04-20 | 1989-05-23 | Trw Inc. | Oxidation resistant fine metal powder |
DE4100741A1 (de) * | 1991-01-12 | 1992-07-16 | Basf Ag | Verfahren zur abtrennung von edleren metallionen als eisen aus prozess- und abwaessern |
TW550307B (en) * | 2000-04-19 | 2003-09-01 | Getters Spa | A process for the purification of organometallic compounds or heteroatomic organic compounds with hydrogenated getter alloys |
WO2009071463A2 (de) | 2007-12-03 | 2009-06-11 | Basf Se | Oxidative methankopplung via membranreaktor |
CN102149463B (zh) | 2008-09-10 | 2013-05-22 | 巴斯夫欧洲公司 | 制备羰基铁粉末和烃的一体化方法 |
WO2011054735A1 (de) | 2009-11-06 | 2011-05-12 | Basf Se | Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
WO2011054738A1 (de) | 2009-11-06 | 2011-05-12 | Basf Se | Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
EP2496348B1 (de) | 2009-11-06 | 2016-01-06 | Basf Se | Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
-
2010
- 2010-10-28 WO PCT/EP2010/066382 patent/WO2011054735A1/de active Application Filing
- 2010-10-28 EP EP10771739A patent/EP2496346A1/de not_active Withdrawn
- 2010-10-28 CN CN201080055081.5A patent/CN102665899B/zh not_active Expired - Fee Related
- 2010-11-04 US US12/939,281 patent/US8614164B2/en not_active Expired - Fee Related
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE528463C (de) | 1927-09-11 | 1931-06-27 | I G Farbenindustrie Akt Ges | Verfahren zur Gewinnung eines Eisenpulvers von grosser Reinheit |
US2417164A (en) | 1944-11-23 | 1947-03-11 | Standard Oil Co | Hydrocarbon synthesis |
DE2507647A1 (de) | 1975-02-19 | 1976-09-09 | Koelbel Herbert | Verfahren zur herstellung von kohlenwasserstoffen und sauerstoffhaltigen verbindungen |
DE2822656A1 (de) | 1977-05-26 | 1978-12-07 | Inst Francais Du Petrol | Verfahren zur herstellung von leichten olefinischen kohlenwasserstoffen durch umsetzung von wasserstoff mit kohlenmonoxid in gegenwart eines katalysators |
DE2919921A1 (de) | 1979-05-17 | 1980-11-20 | Vielstich Wolf | Verfahren zur herstellung von gasfoermigen olefinen aus kohlenmonoxid und katalysatoren dafuer |
US4544674A (en) | 1983-12-14 | 1985-10-01 | Exxon Research And Engineering Co. | Cobalt-promoted fischer-tropsch catalysts |
US5118715A (en) | 1983-12-20 | 1992-06-02 | Exxon Research And Engineering Company | Selective fixed-bed fischer-tropsch synthesis with high surface area Cu and K promoted, iron/manganese spinels |
US5100856A (en) | 1990-10-01 | 1992-03-31 | Exxon Research And Engineering Company | Iron-zinc based catalysts for the conversion of synthesis gas to alpha-olefins |
US5248701A (en) | 1991-08-05 | 1993-09-28 | Exxon Research And Engineering Company | Substituted cobalt catalysts for Fischer-Tropsch synthesis |
US20040127582A1 (en) | 2002-12-27 | 2004-07-01 | Gabor Kiss | Linear alpha olefins from natural gas-derived synthesis gas over a nonshifting cobalt catalyst |
WO2007060186A1 (de) | 2005-11-28 | 2007-05-31 | Basf Se | Verfahren zur herstellung von olefinen aus synthesegas in einer reaktionskolonne |
WO2009013174A2 (de) | 2007-07-20 | 2009-01-29 | Basf Se | Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff |
Non-Patent Citations (14)
Title |
---|
B. BÜSSEMEIER ET AL., HYDROCARBON PROCESSING, November 1976 (1976-11-01) |
B.H. DAVIS, TOPICS IN CATALYSIS, vol. 32, no. 3-4, 2005, pages 143 - 168 |
BILDER, FACHBERICHTE FÜR OBERFLÄCHENTECHNIK, July 1970 (1970-07-01), pages 146 |
C.D. FROHNING ET AL., CHEMIEROHSTOFFE AUS KOHLE, 1977, pages 219 - 299 |
FACHBERICHTE FÜR OBERFLÄCHENTECHNIK, July 1970 (1970-07-01), pages 145 - 150 |
G.POURROY ET AL.: "Synthesis of Cu(0)/Cu(II) substituted magnetite nanocomposites in aqueous media", JOURNAL OF ALLOYS AND COMPOUNDS, vol. 327, 2001, pages 267 - 269, XP002616757 * |
H.G.F. WILSDORF ET AL., Z. METALLKDE., vol. 69, no. 11, 1978, pages 701 - 705 |
H.P. WITHERS ET AL., IND. ENG. CHEM. RES., vol. 29, 1990, pages 1807 - 1814 |
M. JANARDANARAO, IND. ENG. CHEM. RES., vol. 29, 1990, pages 1735 - 1753 |
M. JANARDANARAO, IND. ENG. CHEM. RES., vol. 29, 1990, pages 1735 - 53 |
M.E. DRY ET AL., STUD. SURF. SCI. CATAL., vol. 152, 2004, pages 533 - 600 |
V.P.KLEVTSOVA ET AL.: "The synthesis of hydrocarbons and oxygen-containing compounds from carbon monoxide and hydrogen over iron-copper catalysts", CHEMISTRY AND TECHNOLOGY OF FUELS AND OILS, vol. 1, no. 6, June 1965 (1965-06-01), pages 424 - 429, XP002616756 * |
WEISSERMEL ET AL.: "Industrial Organic Chemistry", 2003, WILEY-VCH, pages: 145 - 192,267- |
WEISSERMEL ET AL.: "Industrial Organic Chemistry", 2003, WILEY-VCH, pages: 15 - 24 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8608824B2 (en) | 2008-09-10 | 2013-12-17 | Basf Se | Integrated method for producing carbonyl iron powder and hydrocarbons |
US8410018B2 (en) | 2009-11-06 | 2013-04-02 | Basf Se | Iron-comprising heterogeneous catalyst and process for preparing olefins by reaction of carbon monoxide with hydrogen |
US8614164B2 (en) | 2009-11-06 | 2013-12-24 | Basf Se | Iron- and copper-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US8618016B2 (en) | 2009-11-06 | 2013-12-31 | Basf Se | Iron- and manganese-comprising heterogeneous catalyst and process for preparing olefins by reacting carbon monoxide with hydrogen |
US9156026B2 (en) | 2009-11-06 | 2015-10-13 | Basf Se | Iron-comprising heterogeneous catalyst and process for preparing olefins by reaction of carbon monoxide with hydrogen |
Also Published As
Publication number | Publication date |
---|---|
CN102665899A (zh) | 2012-09-12 |
US20110112203A1 (en) | 2011-05-12 |
EP2496346A1 (de) | 2012-09-12 |
US8614164B2 (en) | 2013-12-24 |
CN102665899B (zh) | 2015-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2496348B1 (de) | Eisen- und manganhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff | |
WO2011054735A1 (de) | Eisen- und kupferhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff | |
EP2496347B1 (de) | Eisenhaltiger heterogenkatalysator und verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff | |
DE60123753T2 (de) | Verfahren zur herstellung von siliziumdioxid geträgerten kobaltkatalysatoren und deren verwendung | |
DE60120692T2 (de) | Katalysatoren mit hoher kobaltoberfläche | |
DE69208559T2 (de) | Katalysator für das Fischer-Tropsch-Verfahren | |
DE69920379T2 (de) | Palladium-Ceroxid-Trägerkatalysator und Verfahren zur Herstellung von Methanol | |
DE4422227C2 (de) | Katalysator zur Reduktion von Kohlendioxid | |
DE10393935T5 (de) | Fischer-Tropsch-Katalysatoren auf Eisen-Basis und Herstellungs- und Anwendungsverfahren | |
EP3209416A1 (de) | Hochtemperatursynthese von aluminaten durch flammen-sprühpyrolyse | |
DE112013000754T5 (de) | Behandlung eines Katalysatorträgers | |
EP2326417A1 (de) | Integriertes verfahren zur herstellung von carbonyleisenpulver und von kohlenwasserstoffen | |
DE3042686C2 (de) | Verfahren zur Herstellung eines Kupferoxid, Zinkoxid und Aluminiumoxid sowie gegebenenfalls Boroxid enthaltenden Katalysators | |
WO2009013174A2 (de) | Verfahren zur herstellung von olefinen durch umsetzung von kohlenmonoxid mit wasserstoff | |
DE60123791T2 (de) | Verfahren für die herstellung eines kobalt-trägerkatalysators und dessen vorläufer und die verwendung des trägerkatalysators | |
WO2000009259A2 (de) | Au/Fe2O3-KATALYSATORMATERIALIEN, VERFAHREN ZU DEREN HERSTELLUNG UND DEREN VERWENDUNG | |
DE1470580C3 (de) | Verfahren zum Reformieren von Kohlenwasserstoffen mit Wasserdampf | |
DE102012012510B4 (de) | Graphithaltiger Katalysatorformkörper, dessen Herstellverfahren sowie Verwendung | |
DE2541306A1 (de) | Verfahren zur herstellung von katalysatoren und deren verwendung | |
DE69900457T2 (de) | Verfahren zur Fischer-Tropsch-Synthese in Gegenwart eines Katalysators mit vorbestimmter Grösse der Metall- partikel | |
DE3636900A1 (de) | Katalysator fuer die kohlenwasserstoff-synthese, verfahren zu dessen herstellung sowie synthese-verfahren von kohlenwasserstoffen | |
DE3103207C2 (de) | ||
WO2018091342A1 (de) | Verfahren zur herstellung mechanisch stabiler katalysatoren zur hydrierung von carbonylverbindungen, ebendiese katalysatoren und hydrierverfahren | |
DE69319625T2 (de) | Verfahren zur entschweflung eines gases | |
CN118851875A (zh) | 合成1,4-丁烯二醇的方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080055081.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10771739 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2010771739 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010771739 Country of ref document: EP |