WO2011054113A1 - Procédés et appareils pour la préparation de poudres sphéroïdales - Google Patents

Procédés et appareils pour la préparation de poudres sphéroïdales Download PDF

Info

Publication number
WO2011054113A1
WO2011054113A1 PCT/CA2010/001814 CA2010001814W WO2011054113A1 WO 2011054113 A1 WO2011054113 A1 WO 2011054113A1 CA 2010001814 W CA2010001814 W CA 2010001814W WO 2011054113 A1 WO2011054113 A1 WO 2011054113A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
atomization
rod
end portion
heat source
Prior art date
Application number
PCT/CA2010/001814
Other languages
English (en)
Inventor
Michel Drouet
Original Assignee
Ap&C Advanced Powders & Coatings Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ap&C Advanced Powders & Coatings Inc. filed Critical Ap&C Advanced Powders & Coatings Inc.
Publication of WO2011054113A1 publication Critical patent/WO2011054113A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present disclosure relates to the field of production of spheroidal powders such as metal (or alloy) spheroidal powders or ceramic spheroidal powders. More particularly, it relates to methods and apparatuses for preparing metal, alloy and ceramic powders by means of an atomization process.
  • Satellites are known to be very fine particles such as metal dust particles that are produced during atomization of the metals and which agglomerate to the desired spheroidal metal powders. These satellites considerably affect some of the characteristics of the desired metal powders such as fluidity of the powders.
  • a method for preparing a spheroidal powder comprising: feeding an apparatus effective for atomizing a material chosen from metals, alloys and ceramics, the apparatus being fed with the material that is preheated by an electrical current; submitting an end portion of the material to a heat source and to at least one electric arc generated between the end portion and at least one electrode, so as to melt the material contained into the end portion;
  • a method for preparing a spheroidal powder comprising: contacting a material chosen from metals, alloys and ceramics with at least one plasma jet of at least one plasma torch adapted to atomize the material,
  • the material comprises a plurality of portions disposed one after the other, each of the portions being submitted to the at least one plasma jet one after the other, when a given portion is substantially completely atomized, the subsequent portion is then submitted to the at least one plasma jet, and wherein each of the portions, prior to contact the at least one plasma jet or its atomization zone, is preheated at a temperature below the melting point of the material.
  • a continuous method for producing a spheroidal powder comprising atomizing a material by means of at least one plasma torch, the improvement wherein the material is heated at a temperature below the melting point of the material before contacting the plasma jet of the at least one plasma torch or its atomization zone.
  • a continuous method for producing a spheroidal powder comprising atomizing a material by means of at least two plasma torches, the improvement wherein the material is heated in such a manner that melting of the material is reached at an apex generated by the jets of the at least two torches whereat there is substantially no contact between the material and other particles generated during the process.
  • an apparatus for producing a spheroidal powder comprising:
  • an electric power supply for preheating a material chosen from metals and alloys by means of an electric current
  • a heat source for heating the material and at least one electrode adapted to generate at least one electric arc with the material to thereby heat the material, the combination of heat provided by the electric power supply, the heat source and the at least one electric arc being effective to melt the material;
  • atomization means effective for atomizing the molten material; a chamber adapted for receiving and cooling droplets of the atomized material;
  • optionally separating means for substantially preventing other particles generated during the preparation of the spheroidal powder or other materials from contacting the material before, during, and after atomization of the material.
  • an apparatus for producing a spheroidal powder comprising:
  • At least one plasma torch adapted to produce a plasma jet sufficient so as to cause atomization of the material
  • a feeder for continuously providing the plasma torch with the material; a chamber adapted for receiving and cooling the droplets of the atomized material;
  • separating means for substantially preventing other particles generated during the preparation of the spheroidal powder or other materials from contacting the material before, during, and after atomization of the material.
  • FIG. 1 is a schematic representation of an apparatus for preparing a spheroidal powder according to one example
  • Fig. 2 is a Scanning Electron Miscroscope (SEM) image of a sample of titanium powder (0-45 ⁇ ) produced with the apparatus of Fig. 1 ;
  • FIG. 3 is a schematic representation of an example of apparatus for preparing a spheroidal powder as found in the prior art
  • atomization zone refers to a zone in which the material is atomized into droplets of the material.
  • the person skilled in the art will understand that the dimensions of the atomization zone will vary according to various parameters such as temperature of the atomizing means, velocity of the atomizing means, power of the atomizing means, temperature of the material before entering in the atomization zone, nature of the material, dimensions of the material, electrical resistivity of the material etc.
  • an atomization zone of the apparatus can be fed with the material.
  • the material can be comprised within a wire or rod.
  • an end portion of the wire or rod disposed in the atomization zone can be submitted to the heat source and the at least one electrode.
  • the at least one electrode can be disposed adjacently to the atomization zone.
  • the at least one electrode can be disposed inside the atomization zone.
  • the material can comprise at least one metal chosen from titanium, molybdenum, silver, copper, niobium, tantalum, tungsten, rhenium, osmium, iridium, hafnium, vanadium, chromium zirconium, and mixtures thereof.
  • the material can thus be a metal or an alloy.
  • the material can comprise a metal chosen from titanium, molybdenum and silver.
  • the material can comprise titanium.
  • the material can be a titanium alloy.
  • the material can be an alloy chosen from nitinol and inconel.
  • the material can be an alloy comprising at least two metals chosen from titanium, molybdenum, silver, copper, niobium, tantalum, tungsten, rhenium, osmium, iridium, hafnium, vanadium, chromium, zirconium, and mixtures thereof.
  • the material can be an alloy comprising at least two metals chosen from titanium, molybdenum and silver.
  • the material can be an alloy chosen from nitinol and inconel.
  • the material can be a metal chosen from titanium, molybdenum, silver, copper, niobium, tantalum, tungsten, rhenium, osmium, iridium, hafnium, vanadium, chromium and zirconium.
  • the material can be titanium, molybdenum or silver.
  • the material can be titanium.
  • the material can be a ceramic chosen from boron nitride, silicon nitride, silicon dioxide, aluminum oxide zirconium oxide, and mixtures thereof.
  • the heat source can comprise at least one, at least two or at least three plasma jet(s) or a hot gas jet(s).
  • the temperature of the plasma jet(s) can be about 350°C to about 5000°C.
  • the atomization means can comprise at least one, at least two or at least three fluid jet(s).
  • the fluid can be a hot gas.
  • the temperature of the gas can be about 350°C to about 1200°C.
  • the atomization means can comprise at least one, at least two or at least three plasma jet(s).
  • the atomization means and the heat source can be the same or different.
  • the atomization means and the heat source can be the same and can be at least two or at least three plasma jets.
  • the end portion can contact the at least two plasma jets and the at least two jets can converge into an apex and the end portion can be contacting the at least two jets at the apex.
  • At least two electric arcs can be generated between the end portion and at least two electrodes, one electric arc being generated between the end portion and each of the electrodes.
  • At least three electric arcs can be generated between the end portion and at least three electrodes, one electric arc being generated between the end portion and each of the electrodes.
  • portions of the wire or rod, before contacting the atomization zone can be progressively preheated from room temperature to a temperature below the melting point of the material.
  • the wire or rod and the at least one electrode can be connected to a DC electric power supply in such a manner that the wire or rod can act as a cathode and the at least one electrode can act as an anode.
  • the wire or rod and the at least one electrode can be connected to a DC electric power supply in such a manner that the wire or rod can act as an anode and the at least one electrode can act as a cathode.
  • preheating the wire or rod can be carried out while feeding the atomization zone.
  • the wire or rod can be preheated in such a manner that, for a given portion of the wire or rod, its temperature increases as it approaches from the atomization zone.
  • the temperature of the wire or rod can be maintained below the melting point of the material in order to substantially minimize contamination of the material with at least one contaminant generated during preparation of the powder.
  • the material can be preheated in such a manner that when the end portion of the wire or rod enters in the atomization zone, its temperature increases and reaches the melting point of the material and then, atomization of the end portion occurs, thereby substantially minimizing contacts between the molten material and the at least one contaminant generated during preparation of the powder.
  • the atomized material can be in the form of fine droplets of the material.
  • a shielding gas can be injected in order to substantially prevent the droplets from being contaminated by at least one contaminant.
  • the methods and apparatuses of the present disclosure can further comprise substantially preventing at least one contaminant from contacting the molten material, atomized particles or the obtained spheroidal powder.
  • the methods and apparatuses can comprise continuously sucking or vacuuming at least one contaminant generated so as to substantially minimize contamination of the desired spheroidal powder with at least one contaminant.
  • at least one contaminant can be sucked by means of a vacuum generated by the action of the at least one plasma jet and/or by means of a pump.
  • the methods and apparatuses of the present disclosure can further comprise cooling a gas recovered by means of the vacuum.
  • the methods and apparatuses of the present disclosure can further comprise filtering the gas recovered by means of the vacuum.
  • the gas can be recycled and reused as a shielding gas.
  • the at least one contaminant can comprise dust particles generated during the method.
  • the spheroidal powder can be a spherical powder.
  • the methods and apparatuses of the present disclosure can be continuous or semi-continuous.
  • the improvement can comprise that the material is heated at a temperature below the melting point of the material before contacting an atomization zone of the plasma jet.
  • the improvement can comprise that the material is heated in such a manner that melting of the material is reached at an apex generated by the jets of the at least two torches whereat there is substantially no contact between the material and other particles generated during the method.
  • the material can be preheated in such a manner that when a portion of the material enters in the atomization zone of the at least one plasma jet, the temperature of the material reaches the melting point of the material and then, atomization of the portion occurs, thereby substantially minimizing contacts between the molten material and the at least one contaminant generated during the process.
  • the material can contact at least two plasma jets generated by at least two plasma torches, the at least two jets converging into an apex and the material can be contacting the at least two jets at the apex.
  • the material can contact at least three plasma jets generated by at least three plasma torches, the at least three plasma jets converging into an apex and the material can be contacting the at least three jets at the apex.
  • each of the given portions of the material, before contacting the at least one plasma jet can be progressively preheated, from room temperature to a temperature below the melting point of the material.
  • the material can be preheated by means of an electrical current.
  • the material can be in the form of a wire or a rod.
  • the atomized material can be in the form of fine droplets of the material.
  • a shielding gas can be injected in order to substantially prevent the droplets from being contaminated by the at least one contaminant.
  • the methods and the apparatus of the present disclosure can further comprise substantially preventing the at least one contaminant from contacting the molten material, the atomized particles or the obtained spheroidal powder.
  • the methods and apparatus can also further comprise continuously sucking the at least one contaminant generated during the process so as to substantially minimize contamination of the desired spheroidal powder with the at least one contaminant.
  • the at least one contaminant can be sucked by means of a vacuum generated by the action of the at least one plasma jet and/or by means of a pump.
  • the methods and aspparatus can also further comprise cooling a gas recovered by means of the vacuum and/or filtering the gas recovered by means of the vacuum. The gas can be recycled and reused as a shielding gas.
  • the at least one contaminant can comprise dust particles generated during the methods or during use of the apparatus.
  • the spheroidal powders can be spherical powders.
  • the spheroidal powders can be at least substantially free of satellites.
  • the portion of material which enters in the atomization zone of the at least one plasma jet is an end portion of the material.
  • the apparatus can comprise at least two plasma torches or at least three plasma torches.
  • the separating means can comprise a separator including an aperture, the separator defining at least a portion of a reaction chamber whereat the material atomized by the at least one plasma torch, and a cooling chamber whereat the atomized material is cooled so as to obtain the desired spheroidal powder.
  • the aperture can define a passage between the chambers.
  • the separating means can further comprise means for injecting a shielding gas through the aperture from the reaction chamber to the cooling chamber so as to substantially prevent the other particles or materials from entering into the reaction chamber.
  • the separating means can also further comprise vacuum means for collecting the other particles or materials present in the cooling chamber.
  • the vacuum means can comprise at least two collecting orifices for receiving the other particles or materials.
  • the vacuum means can also comprise a cooler adapted for cooling gases recovered from the cooling chamber and/or a filter adapted for filtering gases recovered from the cooling chamber.
  • the other particles or materials can be dust particles generated during preparation of the powder.
  • the methods and apparatuses of the present disclosure can comprise the separating means.
  • portions of a wire or rod comprising the material, before contacting an atomization zone disposed adjacently to the heat source and the at least one electrode, can be progressively preheated, from room temperature to a temperature below the melting point of the material.
  • a wire or rod comprising the material and the at least one electrode can be connected to a DC electric power supply in such a manner that the wire or rod acts as a cathode and the at least one electrode acts as an anode.
  • a wire or rod comprising the material and the at least one electrode can be connected to a DC electric power supply in such a manner that the wire or rod acts as a anode and the at least one electrode acts as an cathode.
  • the separating means can comprise a separator including an aperture, the separator defining at least a portion of a reaction chamber whereat the material is atomized, and a cooling chamber whereat the atomized material is cooled so as to obtain the desired spheroidal powder, the aperture defining a passage between the chambers.
  • the separating means can further comprise means for injecting a shielding gas through the aperture from the reaction chamber to the cooling chamber so as to substantially prevent the other particles or materials from entering into the reaction chamber.
  • the separating means can further comprise vacuum means for collecting other particles or materials present in the cooling chamber.
  • the vacuum means can comprise at least two collecting orifices for receiving the other materials.
  • the vacuum means can comprise a cooler adapted for cooling gases recovered from the cooling chamber.
  • the vacuum means can comprise a filter adapted for filtering gases recovered from the cooling chamber.
  • the other particles or materials can be dust particles generated during manufacture of the powder.
  • the apparatus used for preparing a spheroidal powder can be a plasma atomization apparatus such as an apparatus comprising at least one plasma jet.
  • Fig. 3 illustrates a plasma atomization apparatus 10 used for an apparatus for preparing a spheroidal powder 18, as known in the prior art, for making powder from a rod or wire 11 , heated, melted and atomized by the plasma jets 12a and 12b of plasma torches 13a and 13b.
  • the atomization produces fines droplets of molten metal 14 which solidify as they travel downwardly to the bottom of the atomization chamber 15 so as to form the powder 18.
  • the high velocity plasma jets induce a reverse gas flow 16, which carries very fine dust particles 17. These dust particles collide and remain stuck on the surface of the just atomized and still hot droplets 14; this is well illustrated by the image of Fig. 4 which shows numerous large particles (about 30 to 50 prn) with satellites of about 5 ⁇ on their surface.
  • Fig. 1 illustrates a plasma atomization apparatus 20 used for preparing a spheroidal powder 18a substantially without satellites (or substantially free of satellites) such as shown on micrograph presented in Fig. 2.
  • the expression “substantially free of satellites refers to a powder that contains a quantity of satellites that is similar to the quantity of satellites present in Fig. 2.
  • the apparatus 20 comprises two chambers 21 and 22 connected by an aperture 23 through which a shielding gas, represented by arrows 24a and 24b, is injected to shield the just atomized and still hot droplets 14a from the upwards flowing dust.
  • a shielding gas represented by arrows 24a and 24b
  • chamber 21 there are two plasma torches 25a and 25b used to heat, melt and atomize the rod or wire 26.
  • Chamber 22 is provided with orifices 40 through which the dust laded gas (comprising dust particles 17a) is sucked to be treated in a device 27, which can be a cooler and/or a filter, before reintroduction in chamber 21 to be used for shielding the powder stream as discussed above. Additional cold shielding gas may be introduced through port 28.
  • the acceleration of the shielding gas is made possible by the sucking action of the plasma jets 28a and 28b through the orifice 23.
  • the injection of the gas through orifice 23 can be further accelerated by a pump (not shown) installed in pipe 29.
  • the cold shielding gas is used not only to shield the hot just atomized droplets 14a against the dust laded gas but also contributes to the rapid cooling of the droplets 14a that eventually provide the powder 18a.
  • Fig. 5 illustrates a device 130, which can be used in a plasma atomization apparatus as shown in Fig. 1 instead of the plasma torches assembly shown in Fig. 1.
  • the device 130 allows for an independently and simultaneously heat and even melt a rod or wire 131 prior to atomization of the latter by a plasma jet 135.
  • the rod or wire 131 is driven downwardly by a feeder (such as a set of wheels 132) which is also fed by an electrical current from a power supply 33 into the rod 131.
  • a feeder such as a set of wheels 132
  • the current flows from the power supply 133, through the set of wheels 32 down the rod 131 , into a plasma jet 135 produced by a plasma torch 136, through at least one electrode 138 (for example a water cooled electrode) and back to the power supply 133.
  • the electrode 138 can be considered as an auxiliary electrode.
  • a single electrode can be present, at least one, at least two or at least three electrodes can alternatively be present.
  • Fig. 5 only one electrode is shown for illustrative purposes.
  • the electrodes can be of various shapes such as cylindrical, disc shape, ring shape etc.
  • An electric arc 140 is formed between the rod or wire 131 and the electrode 138.
  • a first arc will be generated between the rod or wire and the first electrode and a second arc will be generated between the rod or wire and the second electrode.
  • the device 130 is shown with a single plasma jet for illustration purposes but this device can also be provided with at least one, at least two, or at least three plasma jets.
  • the rod or wire 131 is preheated by the electric current.
  • the heating occurs over the length of the rod or wire 131.
  • the temperature reached by the rod or wire 131 before getting into the atomization zone depends upon various parameters such as the rod or wire traveling speed, the nature of the material, the electrical current, etc. The values of these parameters may be adjusted in order to have melting of the rod as it enters the atomization zone.
  • the rod or wire 131 is also heated by the heat transferred from the plasma jet 135 produced by the plasma torch as well as by the electric arc 140 generated between the end portion of the wire or rod 131 and the electrode 138 (see Fig. 5).
  • the combination of the electric current heating (preheating), heating source heating (plasma jet in the present example) and electric arc is effective for melting the material contained in the rod or wire 131.
  • Such a preheating is done in such a manner that the melting point of the material in rod or wire 131 is reached only in the atomization zone.
  • the atomizing means (plasma jet in the present example) is effective to atomize the material and produce the droplets that will eventually be cooled down to obtain the desired powder.
  • the power supply 133 which supplies the current to the rod 131 is different than the power supply 137 which energizes the plasma torch 136.
  • Such a configuration allows for independent adjustments of both the rod or wire 131 temperature and the power in the plasma jet 135 to maximize the powder rate of production and obtain the desired characteristics for the powder.
  • the power source supplying the rod or wire 131 and the plasma torch 136 can be the same.
  • the electric current used for both the electrical arc heating and the preheating (wheels 132) (Joule heating) flows into the wire or rod 131 itself from the power supply 133 (which can be a DC or AC power supply) and back through the end portion of the wire or rod 131 and the electrode 138 connected to the other terminal of the power supply 133.
  • the atomization performance and the powder produced can depend upon the fact that the wire or rod 131 is connected to the positive or the negative polarity of the power supply i.e. the wire or rod is acting as an anode or a cathode (and vice versa for the electrode 138).
  • the wire or rod is acting as an anode or a cathode (and vice versa for the electrode 138).
  • various parameters can have to be adjusted in order to optimize the atomization process.
  • the feed rate of the wire or rod 131 can vary according to certain parameters.
  • the feed rate can depend upon:
  • atomizing means power for example torch power and temperature
  • gas flow for example plasma jet velocity
  • heating current for example wire or rod subjected to that current flow.
  • Fig. 5 shows a method and device that can be used for simultaneously passing an electric current through a piece of a conductive material (for example a piece of metal) while melting a portion of the piece, for example an end portion of the piece.
  • a method and device can be used for heating up to a temperature just below the melting temperature of any type of metals or conductive materials in various applications.
  • such a method and device can be used in the metallurgic industry or in any applications in which it is desirable to simultaneously heat and even melt if required a piece of metal or of conductive material.
  • the person skilled in the art would also understand that such a method and device can be used for heating up to the welding or forging temperature of any type of metals or conductive materials in various applications.
  • the methods, devices and apparatuses of the present disclosure also encompass wire or rod displaced in any other directions.
  • the wire or rod can also be upwardly displaced, horizontally displaced, or displaced at a particular angle. In such alternative configurations, the other component would be displaced accordingly.
  • the wire or rod used in the methods, devices and apparatuses of the present disclosure can be of various shapes. It can be for example, of cylindrical shape or a parallelepiped shape.
  • a plasma torch for simultaneously melting the portion with a plasma jet thereof and conducting an electrical current through the plasma jet.
  • the plasma jet conducts electrical current between the conductive material and a power supply.
  • Such methods, apparatuses, and devices that can simultaneously heat and melt a conductive material offer several advantages over the prior art methods and apparatuses such like those which imply several steps involving molten metal.
  • the methods, apparatuses, and devices described in the present disclosure can, for example, maintain the temperature of the material below its melting point until the material reaches the atomization zone or region of the plasma jet(s). They allow a considerable economy of energy. In fact, by avoiding to involve a molten material over long periods of time or through several steps, thermal losses are considerably avoided.
  • the methods, apparatuses, and devices described in the present disclosure permit to avoid situations in which considerable amounts of energy are stocked as molten metal.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

L'invention concerne un procédé destiné à produire une poudre sphéroïdale sensiblement exempte de contaminants par atomisation au plasma, comportant une étape consistant à préchauffer un matériau sous forme de fil ou de baguette jusqu'à une température inférieure au point de fusion du matériau préalablement à la fusion et à l'atomisation du matériau. Le procédé améliore la productivité de la poudre sphéroïdale. L'appareil comporte un moyen de chauffe destiné à préchauffer le matériau, un moyen de fusion et d'atomisation comprenant un arc électrique et un jet de gaz à l'état de plasma ou un jet de gaz chaud, et un moyen de séparation destiné à minimiser le contact entre la poudre atomisée et les contaminants générés au cours du processus.
PCT/CA2010/001814 2009-11-05 2010-11-05 Procédés et appareils pour la préparation de poudres sphéroïdales WO2011054113A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US25823309P 2009-11-05 2009-11-05
US61/258,233 2009-11-05

Publications (1)

Publication Number Publication Date
WO2011054113A1 true WO2011054113A1 (fr) 2011-05-12

Family

ID=43969537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA2010/001814 WO2011054113A1 (fr) 2009-11-05 2010-11-05 Procédés et appareils pour la préparation de poudres sphéroïdales

Country Status (1)

Country Link
WO (1) WO2011054113A1 (fr)

Cited By (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374386A1 (en) * 2013-06-21 2014-12-25 Samsung Electro-Mechanics, Co., Ltd. Method and device for forming nano particle
CN105562699A (zh) * 2016-03-02 2016-05-11 沈倩友 一种高精度微细金属球体成型机
CN105855560A (zh) * 2016-05-27 2016-08-17 广州纳联材料科技有限公司 球形金属粉末及其制备方法
CN105903973A (zh) * 2016-04-27 2016-08-31 龙岩紫荆创新研究院 一种球形钒粉的等离子体制备方法
KR20160131060A (ko) * 2014-03-11 2016-11-15 테크나 플라즈마 시스템 인코포레이티드 세장형 부재 형태의 공급 재료를 미립화시켜 분말 입자들을 제조하는 공정 및 장치
WO2016191854A1 (fr) 2015-06-05 2016-12-08 Pyrogenesis Canada Inc. Appareil à plasma pour la production de poudres sphériques de haute qualité à haute capacité
WO2017011900A1 (fr) 2015-07-17 2017-01-26 Ap&C Advanced Powders & Coatings Inc. Procédés de fabrication de poudre métallique par atomisation au plasma et systèmes s'y rapportant
CN107020384A (zh) * 2017-06-07 2017-08-08 西迪技术股份有限公司 细晶金属球形粉末生产设备及方法
CN107225251A (zh) * 2017-07-25 2017-10-03 天津中能锂业有限公司 一种钝化锂微球生产装置
CN107671303A (zh) * 2017-09-15 2018-02-09 曹文 一种银合金复合纳米材料的制备方法
CN108161019A (zh) * 2018-01-17 2018-06-15 北京金物科技发展有限公司 一种感应加热与射频等离子联合雾化制粉系统的制粉方法
CN108237231A (zh) * 2016-12-26 2018-07-03 龙岩紫荆创新研究院 一种球形钼粉的制造方法
US10028368B2 (en) 2015-06-29 2018-07-17 Tekna Plasma Systems, Inc. Induction plasma torch with higher plasma energy density
CN108526472A (zh) * 2018-05-14 2018-09-14 宝鸡市新福泉机械科技发展有限责任公司 一种自由电弧制备金属球形粉末的装置和方法
CN108580913A (zh) * 2018-07-10 2018-09-28 深圳微纳增材技术有限公司 一种3d打印用贵金属粉末制备方法
RU2675188C1 (ru) * 2017-12-27 2018-12-17 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки
CN109014224A (zh) * 2018-10-17 2018-12-18 中国科学院高能物理研究所 消除卫星粉的气雾化制粉设备用反应室及气雾化制粉设备
US10226821B2 (en) 2015-01-20 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
CN109732095A (zh) * 2019-03-15 2019-05-10 西安赛隆金属材料有限责任公司 一种制备稀有金属球形粉末的装置
CN109986087A (zh) * 2019-04-19 2019-07-09 贵研铂业股份有限公司 一种微米级球形致密钨铱粉体及其制备方法
CN110181066A (zh) * 2019-07-03 2019-08-30 广东省材料与加工研究所 高球形度3d打印钽粉末、其制备方法及应用
CN110405221A (zh) * 2019-08-19 2019-11-05 昆明理工大学 一种直流电弧等离子体制备难熔金属纳米粉的方法
CN110919017A (zh) * 2019-12-20 2020-03-27 北京工业大学 一种热丝辅助等离子弧制备球形金属粉末的方法及装置
CN111712342A (zh) * 2017-07-21 2020-09-25 加拿大派罗杰尼斯有限公司 用于使用推力器辅助等离子体雾化以大规模成本有效地生产超细球形粉末的方法
CN112512734A (zh) * 2018-06-06 2021-03-16 加拿大派罗杰尼斯有限公司 由一或两根线材以高产率生产高纯度球形金属粉末的方法和设备
WO2021058374A1 (fr) 2019-09-24 2021-04-01 Ald Vacuum Technologies Gmbh Dispositif d'atomisation d'un flux de fusion au moyen d'un gaz
RU204335U1 (ru) * 2020-12-09 2021-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Устройство для получения металлических порошков
RU2749403C1 (ru) * 2020-08-06 2021-06-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Устройство для получения металлического порошка
RU205453U1 (ru) * 2020-05-06 2021-07-15 Общество С Ограниченной Ответственностью "Новые Дисперсные Материалы" Устройство для получения порошков для аддитивных технологий
RU2751609C1 (ru) * 2020-05-06 2021-07-15 Общество С Ограниченной Ответственностью "Новые Дисперсные Материалы" Способ и устройство для получения порошков для аддитивных технологий
CN113145855A (zh) * 2021-02-24 2021-07-23 山东大学 一种电弧制备高熔点合金粉末的装置和方法
WO2021147234A1 (fr) * 2020-01-20 2021-07-29 深圳市捷安纳米复合材料有限公司 Mélange maître de plastique bactéricide, procédé de préparation de celui-ci et application de celui-ci
US11235385B2 (en) 2016-04-11 2022-02-01 Ap&C Advanced Powders & Coating Inc. Reactive metal powders in-flight heat treatment processes
CN114226741A (zh) * 2021-12-22 2022-03-25 江苏天楹等离子体科技有限公司 一种电预热式等离子体雾化装置
RU210798U1 (ru) * 2021-10-26 2022-05-05 Петр Петрович Усов Устройство для послойной печати объемных изделий из металлических проволок
CN114523116A (zh) * 2022-01-24 2022-05-24 中国科学院福建物质结构研究所 一种解决激光球化设备沾粉问题的方法及装置
CN114888297A (zh) * 2022-04-13 2022-08-12 浙江亚通焊材有限公司 一种采用棒料可连续雾化的制粉设备
CN118060549A (zh) * 2024-04-17 2024-05-24 上海氢美健康科技有限公司 一种连续式纳米镁粉制备设备
CN118060549B (zh) * 2024-04-17 2024-07-02 上海氢美健康科技有限公司 一种连续式纳米镁粉制备设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374075A (en) * 1981-06-17 1983-02-15 Crucible Inc. Method for the plasma-arc production of metal powder
JPS59118803A (ja) * 1982-12-27 1984-07-09 Pioneer Electronic Corp 金属超微粒子の製造方法
JPH06172818A (ja) * 1992-09-30 1994-06-21 Toyo Alum Kk 超微粒粉末の製造方法
US5340377A (en) * 1991-07-25 1994-08-23 Aubert & Duval Method and apparatus for producing powders
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization
US20050050993A1 (en) * 2003-09-09 2005-03-10 Scattergood John R. Atomization technique for producing fine particles

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4374075A (en) * 1981-06-17 1983-02-15 Crucible Inc. Method for the plasma-arc production of metal powder
JPS59118803A (ja) * 1982-12-27 1984-07-09 Pioneer Electronic Corp 金属超微粒子の製造方法
US5340377A (en) * 1991-07-25 1994-08-23 Aubert & Duval Method and apparatus for producing powders
JPH06172818A (ja) * 1992-09-30 1994-06-21 Toyo Alum Kk 超微粒粉末の製造方法
US5707419A (en) * 1995-08-15 1998-01-13 Pegasus Refractory Materials, Inc. Method of production of metal and ceramic powders by plasma atomization
US20050050993A1 (en) * 2003-09-09 2005-03-10 Scattergood John R. Atomization technique for producing fine particles

Cited By (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140374386A1 (en) * 2013-06-21 2014-12-25 Samsung Electro-Mechanics, Co., Ltd. Method and device for forming nano particle
CN112246184B (zh) * 2014-03-11 2023-01-06 泰克纳等离子系统公司 通过雾化以伸长部件的形式的原材料制造粉末粒子的方法和设备
CN106457180A (zh) * 2014-03-11 2017-02-22 泰克纳等离子系统公司 通过雾化以伸长部件的形式的原材料制造粉末粒子的方法和设备
CN106457180B (zh) * 2014-03-11 2020-09-11 泰克纳等离子系统公司 通过雾化以伸长部件的形式的原材料制造粉末粒子的方法和设备
EP3730208A1 (fr) * 2014-03-11 2020-10-28 Tekna Plasma Systems Inc. Dispositif pour la production de particules de poudre par atomisation d'une matière première sous forme d'un élément allongé
EP4309775A3 (fr) * 2014-03-11 2024-04-17 Tekna Plasma Systems Inc. Appareil pour produire des particules de poudre par atomisation d'un matériau d'alimentation sous la forme d'un élément allongé
EP3116636A1 (fr) 2014-03-11 2017-01-18 Tekna Plasma Systems Inc. Procédé et appareil de production de particules de poudre par atomisation d'une substance de base sous la forme d'un élément allongé
US11638958B2 (en) 2014-03-11 2023-05-02 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
CN112246184A (zh) * 2014-03-11 2021-01-22 泰克纳等离子系统公司 通过雾化以伸长部件的形式的原材料制造粉末粒子的方法和设备
JP2017518165A (ja) * 2014-03-11 2017-07-06 テクナ・プラズマ・システムズ・インコーポレーテッド 細長い部材の形をした供給材料を噴霧化することによって粉末粒子を生成するための方法及び装置
US9718131B2 (en) 2014-03-11 2017-08-01 Tekna Plasma Systems, Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11059099B1 (en) 2014-03-11 2021-07-13 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US9751129B2 (en) 2014-03-11 2017-09-05 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11565319B2 (en) 2014-03-11 2023-01-31 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US11110515B2 (en) 2014-03-11 2021-09-07 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US20170326649A1 (en) * 2014-03-11 2017-11-16 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
US10688564B2 (en) 2014-03-11 2020-06-23 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
KR20160131060A (ko) * 2014-03-11 2016-11-15 테크나 플라즈마 시스템 인코포레이티드 세장형 부재 형태의 공급 재료를 미립화시켜 분말 입자들을 제조하는 공정 및 장치
US11951549B2 (en) 2014-03-11 2024-04-09 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
EP3116636A4 (fr) * 2014-03-11 2017-11-15 Tekna Plasma Systems Inc. Procédé et appareil de production de particules de poudre par atomisation d'une substance de base sous la forme d'un élément allongé
KR102351919B1 (ko) * 2014-03-11 2022-01-17 테크나 플라즈마 시스템 인코포레이티드 세장형 부재 형태의 공급 재료를 미립화시켜 분말 입자들을 제조하는 공정 및 장치
US10882114B2 (en) 2015-01-20 2021-01-05 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
US10226821B2 (en) 2015-01-20 2019-03-12 Panasonic Intellectual Property Management Co., Ltd. Apparatus for producing fine particles and method for producing fine particles
EP3978166A1 (fr) 2015-06-05 2022-04-06 Pyrogenesis Canada Inc. Appareil à plasma pour la production de poudres sphériques de haute qualité à haute capacité
EP3302855B1 (fr) 2015-06-05 2021-09-22 Pyrogenesis Canada Inc. Appareil à plasma pour la production de poudres sphériques de haute qualité à haute capacité
JP2018524478A (ja) * 2015-06-05 2018-08-30 パイロジェネシス カナダ インコーポレイテッド 高能力での高品質球状粉末の生産のためのプラズマ装置
US20180169763A1 (en) * 2015-06-05 2018-06-21 Pyrogenesis Canada Inc. Plasma apparatus for the production of high quality spherical powders at high capacity
JP7263004B2 (ja) 2015-06-05 2023-04-24 パイロジェネシス・カナダ・インコーポレーテッド 高能力での高品質球状粉末の生産のためのプラズマ装置
WO2016191854A1 (fr) 2015-06-05 2016-12-08 Pyrogenesis Canada Inc. Appareil à plasma pour la production de poudres sphériques de haute qualité à haute capacité
CN108025364A (zh) * 2015-06-05 2018-05-11 派洛珍尼西斯加拿大公司 用于以高产能生产高品质球形粉末的等离子设备
JP2022008977A (ja) * 2015-06-05 2022-01-14 パイロジェネシス カナダ インコーポレイテッド 高能力での高品質球状粉末の生産のためのプラズマ装置
TWI787148B (zh) * 2015-06-05 2022-12-21 加拿大商匹若堅尼斯加拿大股份有限公司 透過電漿原子化從焊線生產粉末的裝置和方法,以及其生產的粉末
JP7443313B2 (ja) 2015-06-05 2024-03-05 パイロジェネシス・カナダ・インコーポレーテッド 高能力での高品質球状粉末の生産のためのプラズマ装置
US10028368B2 (en) 2015-06-29 2018-07-17 Tekna Plasma Systems, Inc. Induction plasma torch with higher plasma energy density
EP3756799A1 (fr) * 2015-07-17 2020-12-30 AP&C Advanced Powders And Coatings Inc. Procédés de fabrication de poudre métallique par atomisation au plasma et systèmes s'y rapportant
KR102533933B1 (ko) 2015-07-17 2023-05-17 에이피앤드씨 어드밴스드 파우더스 앤드 코팅스 인크. 플라즈마 분무화 금속 분말 제조 프로세스 및 플라즈마 분무화 금속 분말 제조 프로세스를 위한 시스템
CN108025365A (zh) * 2015-07-17 2018-05-11 Ap&C高端粉末涂料公司 等离子体雾化金属粉末制造工艺及其系统
EP3325196A4 (fr) * 2015-07-17 2018-08-22 AP&C Advanced Powders&Coatings Inc. Procédés de fabrication de poudre métallique par atomisation au plasma et systèmes s'y rapportant
WO2017011900A1 (fr) 2015-07-17 2017-01-26 Ap&C Advanced Powders & Coatings Inc. Procédés de fabrication de poudre métallique par atomisation au plasma et systèmes s'y rapportant
KR20180056641A (ko) * 2015-07-17 2018-05-29 에이피앤드씨 어드밴스드 파우더스 앤드 코팅스 인크. 플라즈마 분무화 금속 분말 제조 프로세스 및 플라즈마 분무화 금속 분말 제조 프로세스를 위한 시스템
US11198179B2 (en) 2015-07-17 2021-12-14 Ap&C Advanced Powders & Coating Inc. Plasma atomization metal powder manufacturing processes and system therefor
CN105562699A (zh) * 2016-03-02 2016-05-11 沈倩友 一种高精度微细金属球体成型机
US11794247B2 (en) 2016-04-11 2023-10-24 AP&C Advanced Powders & Coatings, Inc. Reactive metal powders in-flight heat treatment processes
US11235385B2 (en) 2016-04-11 2022-02-01 Ap&C Advanced Powders & Coating Inc. Reactive metal powders in-flight heat treatment processes
CN105903973A (zh) * 2016-04-27 2016-08-31 龙岩紫荆创新研究院 一种球形钒粉的等离子体制备方法
CN105855560A (zh) * 2016-05-27 2016-08-17 广州纳联材料科技有限公司 球形金属粉末及其制备方法
CN108237231A (zh) * 2016-12-26 2018-07-03 龙岩紫荆创新研究院 一种球形钼粉的制造方法
CN107020384A (zh) * 2017-06-07 2017-08-08 西迪技术股份有限公司 细晶金属球形粉末生产设备及方法
JP7436357B2 (ja) 2017-07-21 2024-02-21 パイロジェネシス・カナダ・インコーポレーテッド スラスタ支援プラズマ微粒化を使用した大量の超微細球状粉末の費用効率の良い生産方法
CN111712342A (zh) * 2017-07-21 2020-09-25 加拿大派罗杰尼斯有限公司 用于使用推力器辅助等离子体雾化以大规模成本有效地生产超细球形粉末的方法
CN107225251A (zh) * 2017-07-25 2017-10-03 天津中能锂业有限公司 一种钝化锂微球生产装置
CN107671303A (zh) * 2017-09-15 2018-02-09 曹文 一种银合金复合纳米材料的制备方法
CN107671303B (zh) * 2017-09-15 2018-12-21 曹文 一种银合金复合纳米材料的制备方法
RU2675188C1 (ru) * 2017-12-27 2018-12-17 Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки
CN108161019A (zh) * 2018-01-17 2018-06-15 北京金物科技发展有限公司 一种感应加热与射频等离子联合雾化制粉系统的制粉方法
CN108161019B (zh) * 2018-01-17 2021-01-26 北京金物科技发展有限公司 一种感应加热与射频等离子联合雾化制粉系统的制粉方法
CN108526472A (zh) * 2018-05-14 2018-09-14 宝鸡市新福泉机械科技发展有限责任公司 一种自由电弧制备金属球形粉末的装置和方法
US20210229170A1 (en) * 2018-06-06 2021-07-29 Pyrogenesis Canada Inc. Method and apparatus for producing high purity spherical metallic powders at high production rates from one or two wires
CN112512734A (zh) * 2018-06-06 2021-03-16 加拿大派罗杰尼斯有限公司 由一或两根线材以高产率生产高纯度球形金属粉末的方法和设备
US11839918B2 (en) * 2018-06-06 2023-12-12 Pyrogenesis Canada Inc. Method and apparatus for producing high purity spherical metallic powders at high production rates from one or two wires
CN108580913A (zh) * 2018-07-10 2018-09-28 深圳微纳增材技术有限公司 一种3d打印用贵金属粉末制备方法
CN109014224A (zh) * 2018-10-17 2018-12-18 中国科学院高能物理研究所 消除卫星粉的气雾化制粉设备用反应室及气雾化制粉设备
CN109732095A (zh) * 2019-03-15 2019-05-10 西安赛隆金属材料有限责任公司 一种制备稀有金属球形粉末的装置
CN109986087A (zh) * 2019-04-19 2019-07-09 贵研铂业股份有限公司 一种微米级球形致密钨铱粉体及其制备方法
CN110181066A (zh) * 2019-07-03 2019-08-30 广东省材料与加工研究所 高球形度3d打印钽粉末、其制备方法及应用
CN110405221A (zh) * 2019-08-19 2019-11-05 昆明理工大学 一种直流电弧等离子体制备难熔金属纳米粉的方法
WO2021058374A1 (fr) 2019-09-24 2021-04-01 Ald Vacuum Technologies Gmbh Dispositif d'atomisation d'un flux de fusion au moyen d'un gaz
CN110919017A (zh) * 2019-12-20 2020-03-27 北京工业大学 一种热丝辅助等离子弧制备球形金属粉末的方法及装置
WO2021147234A1 (fr) * 2020-01-20 2021-07-29 深圳市捷安纳米复合材料有限公司 Mélange maître de plastique bactéricide, procédé de préparation de celui-ci et application de celui-ci
RU205453U1 (ru) * 2020-05-06 2021-07-15 Общество С Ограниченной Ответственностью "Новые Дисперсные Материалы" Устройство для получения порошков для аддитивных технологий
RU2751609C1 (ru) * 2020-05-06 2021-07-15 Общество С Ограниченной Ответственностью "Новые Дисперсные Материалы" Способ и устройство для получения порошков для аддитивных технологий
RU2749403C1 (ru) * 2020-08-06 2021-06-09 Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) Устройство для получения металлического порошка
RU204335U1 (ru) * 2020-12-09 2021-05-20 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский политехнический университет Петра Великого" (ФГАОУ ВО "СПбПУ") Устройство для получения металлических порошков
CN113145855B (zh) * 2021-02-24 2022-10-11 山东大学 一种电弧制备高熔点合金粉末的装置和方法
CN113145855A (zh) * 2021-02-24 2021-07-23 山东大学 一种电弧制备高熔点合金粉末的装置和方法
RU210798U1 (ru) * 2021-10-26 2022-05-05 Петр Петрович Усов Устройство для послойной печати объемных изделий из металлических проволок
CN114226741A (zh) * 2021-12-22 2022-03-25 江苏天楹等离子体科技有限公司 一种电预热式等离子体雾化装置
CN114523116A (zh) * 2022-01-24 2022-05-24 中国科学院福建物质结构研究所 一种解决激光球化设备沾粉问题的方法及装置
CN114523116B (zh) * 2022-01-24 2023-03-28 中国科学院福建物质结构研究所 一种解决激光球化设备沾粉问题的方法及装置
CN114888297B (zh) * 2022-04-13 2023-06-30 浙江亚通新材料股份有限公司 一种采用棒料可连续雾化的制粉设备
CN114888297A (zh) * 2022-04-13 2022-08-12 浙江亚通焊材有限公司 一种采用棒料可连续雾化的制粉设备
CN118060549A (zh) * 2024-04-17 2024-05-24 上海氢美健康科技有限公司 一种连续式纳米镁粉制备设备
CN118060549B (zh) * 2024-04-17 2024-07-02 上海氢美健康科技有限公司 一种连续式纳米镁粉制备设备

Similar Documents

Publication Publication Date Title
WO2011054113A1 (fr) Procédés et appareils pour la préparation de poudres sphéroïdales
US20220288684A1 (en) Methods and apparatuses for producing metallic powder material
CN108025365B (zh) 等离子体雾化金属粉末制造工艺及其系统
CA1301462C (fr) Procede d'hydrometallurgie utilise dans la production de poudres a base de fines particules spheriques de metal spherique
EP2701869B1 (fr) TRAITEMENT À FAIBLE COÛT PERMETTANT DE PRODUIRE UNE POUDRE SPHÉRIQUE D'ALLIAGE DE TITANE Ti6Al4V
US11839918B2 (en) Method and apparatus for producing high purity spherical metallic powders at high production rates from one or two wires
JP5427452B2 (ja) 金属チタンの製造方法
JP6590203B2 (ja) 微粒子製造装置及び微粒子製造方法
EP0282945B1 (fr) Procédé hydrométallurgique pour la préparation de poudre fine sphérique à base de métal précieux
US7300491B2 (en) Method and apparatus for the production of metal powder
AU2003271852B2 (en) Purification of electrochemically deoxidised refractory metal particles by heat processing
CN102674353A (zh) 一种制备球形碳化钨粉末的方法
EP1497061B1 (fr) Procede de production de poudres
JP5115209B2 (ja) 表面が平滑なセラミックビーズの製造方法
RU2413595C2 (ru) Способ получения сферических гранул жаропрочных и химически активных металлов и сплавов, устройство для его осуществления и устройство для изготовления исходной расходуемой заготовки для реализации способа
CN115625339A (zh) 一种采用射频等离子制备球形粉末的装置及方法
JP2002253953A (ja) 超微粒子の製造装置および製造方法
JP2002180112A (ja) 高融点金属粉末材料の製造方法
JP2002263474A (ja) 超微粒子の製造装置および製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10827777

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10827777

Country of ref document: EP

Kind code of ref document: A1