RU2675188C1 - Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки - Google Patents

Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки Download PDF

Info

Publication number
RU2675188C1
RU2675188C1 RU2017146038A RU2017146038A RU2675188C1 RU 2675188 C1 RU2675188 C1 RU 2675188C1 RU 2017146038 A RU2017146038 A RU 2017146038A RU 2017146038 A RU2017146038 A RU 2017146038A RU 2675188 C1 RU2675188 C1 RU 2675188C1
Authority
RU
Russia
Prior art keywords
reactor
particles
wire
powder
separation
Prior art date
Application number
RU2017146038A
Other languages
English (en)
Inventor
Александр Васильевич Первиков
Марат Израильевич Лернер
Елена Алексеевна Глазкова
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт физики прочности и материаловедения Сибирского отделения Российской академии наук (ИФПМ СО РАН)
Priority to RU2017146038A priority Critical patent/RU2675188C1/ru
Application granted granted Critical
Publication of RU2675188C1 publication Critical patent/RU2675188C1/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/14Making metallic powder or suspensions thereof using physical processes using electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Группа изобретений относится к получению металлического порошка на основе нано- и микрочастиц. Способ включает электрический взрыв металлической проволоки в реакторе и сепарацию частиц по размерам. В реакторе обеспечивают принудительную циркуляцию газовой среды при скорости газового потока на входе в реактор в интервале от 1,5 м/с до 2,5 м/с. Электрический взрыв проволоки ведут при давлении газовой среды в реакторе от 1 до 3 атм и величине энергии, введенной в проволоку, в интервале от 0,6 до 0,9 энергии сублимации металла проволоки, а сепарацию полученных частиц порошка ведут с выделением мелкой фракции с размерами частиц менее 5 мкм. Обеспечивается эффективное разделение частиц в газовом потоке на две фракции. 2 н. и 1 з.п. ф-лы, 4 ил., 3 пр.

Description

Изобретение относится к порошковой металлургии, а именно к получению порошковых материалов, содержащих смесь нано- и микрочастиц, в частности для получения порошковых материалов из жаропрочных, жаростойких, коррозионностойких сплавов для аддитивных технологий синтеза деталей сложных систем.
Известна установка для получения высокодисперсных порошков неорганических материалов электрическим взрывом и реактор для взрыва металлической заготовки [RU 2048278, опубликовано: 20.11.1995], содержащая источник питания электроэнергией с емкостным накопителем, реактор для взрыва металлической заготовки с двумя электродами и механизмом подачи заготовки, при этом она снабжена коммутатором, соединенным с накопителем и реактором, сборником порошка, трубопроводом для возврата газа в реактор и емкостью для порошка, при этом один из электродов реактора соединен с коммутатором, а другой заземлен, причем реактор соединен со сборником порошка. Энергия накопителя подводится к заготовке, и происходит ее взрыв с образованием высокодисперсных частиц алюминия, которые поступают в сборник порошка, где улавливаются и ссыпаются в емкость для порошка.
В данной конструкции не предусмотрен узел (сепаратор) для разделения частиц на фракции, т.е. в процессе циркуляции буферного газа невозможно произвести сепарацию частиц для получения смеси нано- и микрочастиц размером менее 5 мкм, что необходимо для применения взрывных порошков в аддитивной технологии. В сборник порошка поступают все частицы, образованные в процессе ЭВП.
Известен способ получения высокодисперсных порошков неорганических веществ [RU 2048277, опубликовано: 20.11.1995], включающий взрыв металлических заготовок под воздействием импульса тока в газовой среде при повышенном давлении, при этом используют металлические заготовки диаметром 0,2 - 0,7 мм, а воздействие осуществляют импульсом тока при плотности энергии, передаваемой на заготовку, от 0,9 энергии сублимации металла до энергии его ионизации в течение не более 15 мкс.
Данный способ получения наноразмерных частиц основан на введении в проволоку металла (сплава) энергии более 0.9 Ec (Ec - энергия сублимации), что не позволяет получить порошки на основе смеси нано- и микрочастиц.
В статье авторов Chang Kyu Kim, Gyoung-Ja Lee, Min Ku Lee, Chang Kyu Rhee «A novel method to prepare Cu@Ag core-shell nanoparticles for printed flexible electronics» [Powder Technology V. 263 (2014) pp. 1-6] раскрыта установка, содержащая механизм подачи проволоки, источник питания, реактор с электродами, систему подачи аргона, вентилятор, замкнутую систему циркуляции газа внутри установки, циклон и фильтрующая система, контейнер для сбора порошка. Конструкция установки позволяет обеспечить разделение частиц на две фракции: с распределением частиц менее 1 мкм, и распределением частиц более 1 мкм. В фильтрующей системе (Filtering system) собираются частицы с размерами менее 1 мкм, что следует из кривых распределения частиц по размерам, приведенных в статье.
Невозможность получения смеси из нано- и микрочастиц следует из конструктивных особенностей описанной в статье установки. Использование циклона (Cyclone) на первой стадии разделения частиц, обеспечивает нежелательное удаление частиц микронной фракции из газового потока.
Наиболее близким техническим решением является установка, раскрытая в статье [Research into nanoparticles obtained by electric explosion of conductive materials, V. Jankauskas, J. Padgurskas, A.
Figure 00000001
, I.
Figure 00000002
, Электронная обработка материалов, 2011, 47(2), 79-85], содержащая источник импульсов высокого напряжения; шину токового входа (+); источник питания, токоведущие шины, камеру; шину токового входа; механизм подачи проволочных сегментов; взрываемую проволоку; систему сепарации, содержащую сепаратор и три циклона: циклон крупных частиц, циклон средних частиц; циклон мелких частиц и вентилятор.
Недостатком данного устройства является использование в конструкции трех циклонов. Это приводит к тому, что деловая фракция (порошок с размерами частиц <5 мкм) распределится между тремя циклонами. Функции распределения частиц по размерам для трех циклонов будут различны, что следует из описания работы установки. Для получения фракции порошка с размерами частиц менее 5 мкм будет необходимо однородно перемешать три фракции, что увеличивает трудоемкость способа получения порошка с использованием описанной установки. Использованный в установке тип циклонов - конические циклоны, хотя и имеют высокую эффективность разделения частиц по размерам (способствуют получению узкого распределения частиц по размерам), однако имеют меньшую производительность, в сравнении, например, с циклонами цилиндрического типа.
К тому же в сепараторе отсутствует бункер для осаждения крупных частиц, что увеличивает вероятность их попадания в циклон. Разделение частиц в газовом потоке на входе в сепаратор происходит под углами, близкими к 90°, что также не способствует эффективному разделению частиц.
Согласно принципа работы установки, например, для осаждения фракции с размерами менее 5 мкм в одном из циклонов, необходимо будет либо уменьшить скорость газового потока (для осаждения в циклоне крупных частиц), либо уменьшить величину введенной в проволочки энергии, для получения распределения частиц с более широким распределением по размерам (с целью осаждения фракции с размерами менее 5 мкм в циклонах средних частиц либо мелких частиц). Уменьшение скорости газового потока является нежелательным, поскольку ограничивает производительность установки из-за низкой эффективности выноса продуктов взрыва из камеры. Уменьшение выноса продуктов взрыва из камеры будет приводить к нежелательной агломерации нано- и микрочастиц, что затруднит их сепарацию по размерам. Уменьшение введенной энергии без изменения скорости газового потока, будет приводить к нежелательному увеличению фракции с размерами частиц более 5 мкм (осаждается в сепараторе и циклоне крупных частиц) и уменьшению общего выхода полезной фракции с размерами менее 5 мкм (в процентах относительно массы используемой проволоки).
Задачей, на решение которой направлено данное изобретение, является эффективное разделение частиц в газовом потоке установки электрического взрыва проволоки с целью получения 2-х фракций порошковых материалов с размерами частиц более и менее 5 мкм.
Технический результат - получение порошковых материалов, содержащих смесь нано- и микрочастиц с размерами менее 5 мкм.
Поставленная задача достигается тем, что предлагаемое устройство (установка) для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки содержит горизонтально установленный реактор (1) с электродами (2) и (3) в котором осуществляется электрический взрыв проволоки, источник питания (4), соединенный с упомянутыми электродами, механизм подачи проволоки (5) в реактор и систему сепарации (разделения) частиц по размерам, которая включает сепаратор (6), подсоединенный к реактору (1) и установленный непосредственно под ним в вертикальной плоскости, и соединенный трубопроводом с циклоном цилиндрического типа (8), а также вентилятор (10), осуществляющий подачу и принудительную циркуляцию буферного газа внутри устройства, при этом сепаратор (6) снабжен бункером (7) для сбора частиц с размерами более 5 мкм.
Кроме того, сепаратор (6) установлен напротив межэлектродного промежутка.
Кроме того, вентилятор (10) соединен трубопроводами с реактором (1) и циклоном
(8).
Кроме того, упомянутый циклон (8) снабжен бункером (9) для сбора частиц с размерами менее 5 мкм.
Поставленная задача достигается также тем, что в способе получения порошковых материалов с использованием вышеописанной установки осуществляют взрыв металлических заготовок (проволок) под воздействием импульса тока в реакторе (1) в газовой среде при повышенном давлении и последующую сепарацию (разделение) получаемых частиц.
Новым является то, что используют металлические заготовки (проволоки) диаметром от 0,4 до 0,65 мм, воздействие импульсом тока осуществляют при величине энергии, введенной в заготовки (проволоки) в интервале от 0,6 до 0,9 энергии сублимации металла заготовки (проволоки) при скорости газового потока на входе в реактор в интервале от 1.5 м/с до 2.5 м/с и сепарации получаемых частиц осуществляют на две фракции: с размерами частиц более и менее 5 мкм.
Кроме того, в качестве металлической заготовки используют заготовки из жаропрочных, жаростойких, коррозионностойких сплавов.
Кроме того, в качестве газовой среды используют аргон, азот, гелий.
Кроме того, воздействие импульсом тока осуществляют при давлении от 1 до 3 атм.
Отличительными признаками предлагаемой конструкции является:
- использование цилиндрического циклона, установленного последовательно сепаратору и соединенному с ним трубопроводом, позволяет осаждать фракции с более широким распределением частиц, в отличие от циклонов конического типа, используемых в выбранном ближайшем техническом решении;
- расположение сепаратора: установлен вертикально по отношению к реактору и последовательно по отношению к циклону; при таком расположении разделение частиц в газовом потоке происходит под углами, близкими к 180°, что позволяет обеспечивать более эффективное разделение частиц за счет действия инерционных сил.
Регулируя скорость потока буферного газа, удается добиться разделения частиц на две фракции с размерами более и менее 5 мкм. Уменьшение скорости газового потока менее 1.5 м/с, приводит к нежелательному осаждению частиц с размерами менее 5 мкм в бункере сепаратора. Увеличение скорости газового потока более 2.5 м/с, приводит к нежелательному выносу частиц с размерами более 5 мкм из сепаратора в бункер циклона.
Варьируя/комбинируя диаметр проволоки и введенную в проводник энергию менее 0,9 Ес, а также отсекая крупную фракцию с помощью сепаратора при заявляемой скорости газового потока, предлагаемый способ позволяет получать порошковую смесь нано- и микрочастиц. Уменьшение величины введенной в проволоки энергии приводит к нежелательному увеличению массовой доли частиц с размерами более 5 мкм в бункер циклона. Увеличение величины введенной в проволоки энергии, приводит к нежелательному увеличению массовой доли частиц с размерами менее 5 мкм (выше 95% общей массы порошка). Предпочтительно, что в проволоку вводится энергия от 0.6 Ec до 0,9 Ес.
В тоже самое время использование иного по отношению к известному ближайшему аналогу взаимного расположения камеры (реактора) и сепаратора, а также вместо конического цилиндрического циклона при заявляемой скорости газового потока и величины введенной в проволоку энергии позволяет обеспечить эффективное разделение частиц на две фракции: с размерами более и менее 5 мкм: в бункере сепаратора осаждается фракция с размерами частиц более 5 мкм, в бункере циклона осаждается фракция с размерами частиц менее 5 мкм.
Изобретение поясняется графическими материалами.
На фиг. 1 приведена конструкция предлагаемого устройства со схемой циркуляции газового потока, обеспечиваемой вентилятором (10).
На фиг. 2 приведена микрофотография (а) и массовое распределение по размерам частиц сплава ХН60Вт, полученного по примеру 1.
На фиг. 3 приведена микрофотография (а) и массовое распределение по размерам частиц сплава ХН60Вт, полученного по примеру 2.
На фиг. 4 приведена микрофотография (а) и массовое распределение по размерам частиц сплава 03Х16 Н15М3, полученного по примеру 3.
Предлагаемое устройство (фиг. 1) содержит горизонтальный установленный реактор 1 с высоковольтным (2) и заземленным (3) электродами, в котором осуществляется электрический взрыв одной проволоки, источник питания (4), механизм подачи проволоки (5), вертикально установленный (установленный перпендикулярно оси горизонтально расположенного реактора) сепаратор (6), бункер для сбора частиц с размерами более 5 мкм (7), циклон цилиндрического типа (8), бункер для сбора частиц с размерами менее 5 мкм (9), вентилятор (10), осуществляющий подачу и принудительную циркуляцию буферного газа внутри устройства.
Изобретение осуществляется следующим образом.
Пример 1.
Осуществляли получение порошка путем взрыва заготовки диаметром 0,45 мм длиной 90 мм из проволоки жаропрочного сплава марки ХН60Вт в атмосфере аргона. Перед заполнением аргоном устройство предварительно вакуумируется до остаточного давления 10-1 Па. Энергия сублимации (Ес) 6 кДж/г. На заготовку, размещенную в реакторе 1 от источника питания 4 подавалась энергия, порядка 0,85Ec. Энергия на заготовку подавалась в течение 2,0 мкс. Вентилятор 10 по трубопроводу, соединяющему его с реактором 1, осуществлял непрерывную подачу газа аргона со скоростью 2,0 м/с в реактор (стрелка, а). «Захватывая» в реакторе 1 наработанные продукты взрыва проволоки, представленные смесью нано- и микрочастиц, газовый поток движется в сепаратор 6 (стрелка б). В сепараторе происходит разделение частиц на две фракции. Частицы с размерами более 5 мкм осаждаются в бункере 7 сепаратора (стрелка в). Частицы с размерами менее 5 мкм выносятся газовым потоком из сепаратора 6 в циклон 8 (стрелка г). За счет вихревой циркуляции газового потока в циклоне 8 происходит осаждение частиц с размерами менее 5 км - в бункере 9 циклона (стрелка г). Очищенный газ из циклона 8 по трубопроводу подается на вход вентилятора 10 и вновь по поступает в реактор 1.
Наработано 150 г порошка (бункер 9), представляющего собой смесь нано- и микрочастиц (фиг. 2). Характерные изображения частиц, а также массовое распределение частиц приведены на фигурах 2а, 26.
Пример 2.
Осуществляли получение порошка путем взрыва заготовки диаметром 0,45 мм длиной 90 мм из проволоки жаропрочного сплава марки ХН60Вт в атмосфере аргона. Перед заполнением аргоном камера предварительно вакуумируется до остаточного давления 10-1 Па. Энергия сублимации (Ес) 6 кДж/г. На заготовку, размещенную в реакторе подавалась энергия, порядка 0,85Ec. Энергия на заготовку подавалась в течение 2,0 мкс. Вентилятор 10 осуществлял непрерывную подачу газа аргона и со скоростью 3,5 м/с в реактор 1 (стрелка а).
Наработано 150 г порошка (бункер 9), представляющего собой смесь нано- и микрочастиц. Характерные изображения частиц, а также массовое распределение частиц приведены на фигурах За, 36 соответственно.
Пример 3
Осуществляли получение порошка путем взрыва заготовки диаметром 0,45 мм длиной 90 мм из проволоки коррозионностойкого сплава марки 03Х16 Н15М3 в атмосфере аргона. Перед заполнением аргоном камера предварительно вакуумируется до остаточного давления 10-1 Па. Энергия сублимации (Ес) 7,1 кДж/г. На заготовку, размещенную в реакторе подавалась энергия, порядка 0,5Ec. Энергия на заготовку подавалась в течение 2,7 мкс. Вентилятор 10 осуществлял непрерывную подачу газа аргона и со скоростью 2,5 м/с в реактор 1 (стрелка, а). Наработано 150 г порошка (бункер 9), представляющего собой смесь нано- и микрочастиц (фиг. 4). Характерные изображения частиц, а также массовое распределение частиц приведены на фиг. 4а, 4б.
Из данных, представленных на фиг. 2, следует, что при введении в проволоку энергии порядка 0.85Ec, и скорости газового потока на входе в сепаратор, равной 2 м/с, в бункере 9 удается получить порошок с заданным фракционным составом. (~ 100% массы представлены частицами, размеры которых не превышают 5 мкм).
Увеличение скорости газового потока с 2,0 м/с до 3,5 м/с, приводит к выносу частиц с размерами более 5 мкм из сепаратора в циклон (фиг. 3а). Присутствие частиц с размерами более 5 мкм снижает содержание деловой фракции в образце (частицы с размерами менее 5 мкм) со 100 до 85% вес (фиг. 3б).
Уменьшение введенной в проволоку энергии с 0,85Ec до 0,5Ec при скорости газового потока на входе в сепаратор, равной 2.5 м/с, приводит к тому, что содержание частиц с размерами менее 5 мкм не превышает 10% вес (фиг. 4а, 4б).
Приведенные примеры демонстрируют, что превышение скорости газового потока, относительно рекомендуемых значений, а также снижение введенной в проволоку энергии, относительно рекомендуемых значений, приводят к нежелательному увеличению содержания в образцах частиц с размерами более 5 мкм.

Claims (3)

1. Способ получения металлического порошка, включающий электрический взрыв металлической проволоки в реакторе и сепарацию частиц по размерам, отличающийся тем, что в реакторе обеспечивают принудительную циркуляцию газовой среды при скорости газового потока на входе в реактор в интервале от 1,5 м/с до 2,5 м/с, при этом электрический взрыв проволоки ведут при давлении газовой среды в реакторе от 1 до 3 атм и величине энергии, введенной в проволоку, в интервале от 0,6 до 0,9 энергии сублимации металла проволоки, а сепарацию полученных частиц порошка ведут с выделением мелкой фракции с размерами частиц менее 5 мкм.
2. Способ по п. 1, отличающийся тем, что используют металлическую проволоку из жаропрочных, жаростойких, коррозионно-стойких сплавов с диаметром от 0,4 до 0,65 мм.
3. Устройство для получения металлического порошка, содержащее реактор, установленные в реакторе и подключенные к источнику питания электроды для электрического взрыва металлической проволоки с получением частиц порошка, механизм подачи проволоки и систему сепарации частиц по размерам, отличающееся тем, что оно содержит высоковольтный и заземленный электроды, а система сепарации частиц по размерам выполнена в виде сепаратора, установленного вертикально под реактором напротив межэлектродного промежутка и снабженного бункером для сбора крупной фракции частиц порошка, цилиндрического циклона, установленного последовательно по отношению к сепаратору, соединенного с ним трубопроводом и снабженного бункером для сбора мелкой фракции порошка с размерами частиц менее 5 мкм, и вентилятора, соединенного трубопроводами с реактором и циклоном и выполненного с возможностью принудительной циркуляции газовой среды в виде аргона, азота или гелия.
RU2017146038A 2017-12-27 2017-12-27 Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки RU2675188C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2017146038A RU2675188C1 (ru) 2017-12-27 2017-12-27 Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2017146038A RU2675188C1 (ru) 2017-12-27 2017-12-27 Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки

Publications (1)

Publication Number Publication Date
RU2675188C1 true RU2675188C1 (ru) 2018-12-17

Family

ID=64753093

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2017146038A RU2675188C1 (ru) 2017-12-27 2017-12-27 Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки

Country Status (1)

Country Link
RU (1) RU2675188C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709304C1 (ru) * 2019-06-15 2019-12-17 Общество с ограниченной ответственностью "Передовые порошковые технологии" (ООО "Передовые порошковые технологии") Способ получения смеси микро- и наночастиц бинарных сплавов
RU2754543C1 (ru) * 2021-01-11 2021-09-03 Общество С Ограниченной Ответственностью "Лаборатория Инновационных Технологий" Способ получения металлического порошка
CN114210988A (zh) * 2021-11-17 2022-03-22 广东银纳科技有限公司 一种难熔金属球形颗粒的制备方法
RU211926U1 (ru) * 2021-12-28 2022-06-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Устройство для получения наночастиц оксидов металлов путем электрического взрыва проволоки

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05209209A (ja) * 1992-01-29 1993-08-20 I N R Kenkyusho:Kk 傾斜材料の製造方法
RU2048277C1 (ru) * 1991-04-04 1995-11-20 Акционерное общество "Сервер" Способ получения высокодисперсных порошков неорганических веществ
RU2115515C1 (ru) * 1997-06-16 1998-07-20 Институт сильноточной электроники СО РАН Способ получения высокодисперсных порошков неорганических веществ
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders
JP5209209B2 (ja) * 2004-02-05 2013-06-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング コンピュータプログラムを構成する方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2048277C1 (ru) * 1991-04-04 1995-11-20 Акционерное общество "Сервер" Способ получения высокодисперсных порошков неорганических веществ
JPH05209209A (ja) * 1992-01-29 1993-08-20 I N R Kenkyusho:Kk 傾斜材料の製造方法
RU2115515C1 (ru) * 1997-06-16 1998-07-20 Институт сильноточной электроники СО РАН Способ получения высокодисперсных порошков неорганических веществ
JP5209209B2 (ja) * 2004-02-05 2013-06-12 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング コンピュータプログラムを構成する方法
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
V. Jankauskas Research into nanoparticles obtained by electric explosion of conductive materials. Surface Engineering and Applied Electrochemistry, 2011, Vol. 47, N2, с. 170-175. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709304C1 (ru) * 2019-06-15 2019-12-17 Общество с ограниченной ответственностью "Передовые порошковые технологии" (ООО "Передовые порошковые технологии") Способ получения смеси микро- и наночастиц бинарных сплавов
RU2754543C1 (ru) * 2021-01-11 2021-09-03 Общество С Ограниченной Ответственностью "Лаборатория Инновационных Технологий" Способ получения металлического порошка
WO2022149999A1 (en) 2021-01-11 2022-07-14 Limited Liability Company "Laboratory Of Innovative Technologies" A method for producing a metal powder, comprising an electric explosion of a piece of a steel wire
CN114210988A (zh) * 2021-11-17 2022-03-22 广东银纳科技有限公司 一种难熔金属球形颗粒的制备方法
CN114210988B (zh) * 2021-11-17 2023-09-15 广东银纳科技有限公司 一种难熔金属球形颗粒的制备方法
RU211926U1 (ru) * 2021-12-28 2022-06-28 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Устройство для получения наночастиц оксидов металлов путем электрического взрыва проволоки
RU2795326C1 (ru) * 2022-03-29 2023-05-02 Общество с ограниченной ответственностью "Научно-технический центр Юг Машиностроение" Установка для получения нанодисперсных порошков металлов и растворов металлов
RU2797467C1 (ru) * 2022-11-23 2023-06-06 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" Комплекс для получения наночастиц оксидов металлов путем электрического взрыва проволоки

Similar Documents

Publication Publication Date Title
RU2675188C1 (ru) Устройство и способ для получения порошковых материалов на основе нано- и микрочастиц путем электрического взрыва проволоки
CN107442549B (zh) 一种废弃电路板中有价组分的干法分选回收工艺
US11878908B2 (en) Method for preparation and separation of atomic layer thickness platelets from graphite or other layered materials
JP2016517340A (ja) ジェットミルを用いた形態学的に最適化された微粒子の製造方法と、その方法で使用するジェットミルと、製造された粒子。
RU2699886C1 (ru) Способ получения металлического порошка и устройство для его осуществления
KR101210420B1 (ko) 기상공정 금속 나노분말 제조설비에서의 정전트랩을 이용한 나노분말 분급장치
CN112074350B (zh) 用于静电分离粒状材料的方法和装置
EP0040483A2 (en) Method and apparatus for classifying particles of powder material
CN111531180B (zh) 一种3d打印用金属铍粉及其制备方法、应用
US20220176410A1 (en) Method for processing electronic and electric device component scraps
RU2797467C1 (ru) Комплекс для получения наночастиц оксидов металлов путем электрического взрыва проволоки
RU2707455C1 (ru) Сферический порошок псевдосплава на основе вольфрама и способ его получения
Jankauskas et al. Research into nanoparticles obtained by electric explosion of conductive materials
Nazarenko et al. Electroexplosive nanometals
RU2613980C1 (ru) Устройство для пневмоподъема сыпучих материалов, содержащих наночастицы
RU2247631C1 (ru) Установка для получения порошков металлов, сплавов и химических соединений электрическим взрывом проволоки
CN105728160A (zh) 一种电熔镁砂破碎分离系统
US1416089A (en) Electric high-velocity classifier
US20240051020A1 (en) A method for producing a metal powder, comprising an electric explosion of a piece of a steel wire
RU2452582C1 (ru) Способ генерации бегущего магнитного поля в рабочей зоне электродинамического сепаратора и устройство для его осуществления
WO2024171843A1 (ja) 多結晶シリコン破砕混合物の風力選別装置、及び該装置を用いた多結晶シリコン破砕混合物からのチャンク状物、チップ状物、又は粉状物の製造方法
JP5345421B2 (ja) 貴金属粉末の製造方法
SU1430122A1 (ru) Способ разделени порошкообразных материалов и устройство дл его осуществлени
Stencel et al. Removal of ceramic defects from a superalloy powder using triboelectric processing
Fu et al. New size sorting technology for superconducting powders

Legal Events

Date Code Title Description
QB4A Licence on use of patent

Free format text: LICENCE FORMERLY AGREED ON 20200310

Effective date: 20200310

QZ41 Official registration of changes to a registered agreement (patent)

Free format text: LICENCE FORMERLY AGREED ON 20200310

Effective date: 20211119