WO2011052520A1 - ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法 - Google Patents

ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法 Download PDF

Info

Publication number
WO2011052520A1
WO2011052520A1 PCT/JP2010/068809 JP2010068809W WO2011052520A1 WO 2011052520 A1 WO2011052520 A1 WO 2011052520A1 JP 2010068809 W JP2010068809 W JP 2010068809W WO 2011052520 A1 WO2011052520 A1 WO 2011052520A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
surface treatment
metal material
treatment agent
laminated metal
Prior art date
Application number
PCT/JP2010/068809
Other languages
English (en)
French (fr)
Inventor
貴延 斉藤
貴 石川
Original Assignee
日本パーカライジング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本パーカライジング株式会社 filed Critical 日本パーカライジング株式会社
Priority to KR1020127013818A priority Critical patent/KR101444566B1/ko
Priority to JP2011538405A priority patent/JP5663490B2/ja
Priority to CN2010800486128A priority patent/CN102666922A/zh
Publication of WO2011052520A1 publication Critical patent/WO2011052520A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • C09D5/082Anti-corrosive paints characterised by the anti-corrosive pigment
    • C09D5/084Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/44Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes

Definitions

  • the present invention improves the adhesion (including work adhesion) between the surface of a metal material and a laminate film, and further improves the corrosion resistance (particularly strong acid resistance and strong alkali resistance) of the metal material laminated with the film.
  • the present invention relates to a surface treatment agent for a laminated metal material and a method for producing the laminated metal material for forming a treated film.
  • the surface treatment agent for laminated metal materials and laminated metal for forming a surface-treated film having a high corrosion resistance so that the laminated film does not peel off and the article (molded article) has excellent corrosion resistance is performed.
  • the present invention relates to a material manufacturing method.
  • Lamination is a processing means for heat-pressing a resin film (hereinafter referred to as a resin film or a laminate film) to the surface of a metal material (or press-bonding with an adhesive) for the purpose of surface protection or designability. It is used in various fields as a method for coating the surface of metallic materials. In this laminating process, compared with a method of applying a resin composition and baking and drying to form a resin film, that is, coating, the amount of generated waste gas such as solvent and carbon dioxide or warming gas during baking drying is small. Therefore, it is preferable in terms of environmental protection, and its uses are expanded. For example, a body or lid of a food can made of aluminum thin plate material, steel thin plate material, packaging aluminum foil or stainless steel foil, a food container, Alternatively, it is used for a dry battery container or the like.
  • metal foils such as aluminum foil and stainless steel foil that are lightweight and have high barrier properties are preferably used as exterior materials for mobile lithium-ion secondary batteries used in mobile phones, electronic notebooks, notebook computers, video cameras, and the like. Lamination processing to such metal foil is applied.
  • lithium ion secondary batteries have been studied as driving energy for electric vehicles or hybrid vehicles, and laminated metal foils have also been examined as exterior materials.
  • the laminate film used for such a lamination process is directly bonded to a metal material and then heat-pressed, it is possible to suppress waste of raw materials compared to a general resin film that is applied with a resin composition and then heated and dried. There are advantages such as few pinholes (defects) and excellent workability.
  • polyester resins such as polyethylene terephthalate and polyethylene naphthalate, or polyolefins such as polyethylene and polypropylene are generally used.
  • a metal material also simply referred to as a metal surface
  • the metal surface is usually degreased and washed and then usually phosphoric acid.
  • a chemical conversion treatment such as chromate is applied.
  • a chemical conversion treatment requires a washing step for removing excess treatment liquid after the treatment, and costs for waste water treatment of washing water discharged from the washing step.
  • chemical conversion treatment such as phosphoric acid chromate uses a treatment solution containing hexavalent chromium, and therefore tends to be avoided from recent environmental considerations.
  • the laminate film is peeled off from the metal surface or the metal material is corroded.
  • the contents are added to the container or packaging material after lamination, and then heat treatment is performed for the purpose of sterilization.
  • the laminate film is peeled off from the metal surface during the heat treatment.
  • processing with a high degree of processing is received in the manufacturing process.
  • Patent Document 1 proposes a method for producing an aluminum alloy for deep drawing and ironing cans, in which a chemical conversion treatment film is formed on one surface of an aluminum alloy strip and a resin film is coated on the chemical conversion treatment film.
  • This chemical conversion film is a film formed with a chemical conversion liquid containing one metal component selected from chromium, titanium and zirconium, and the adhesion and corrosion resistance with the resin film change depending on the amount of metal attached.
  • the metal adhesion amount is preferably 5 to 50 mg / m 2 .
  • Patent Document 2 discloses a surface treatment agent for an adhesion base for forming a surface treatment film that improves interlayer adhesion between a metal surface and a laminate film and further improves the corrosion resistance of a metal material laminated with a film.
  • This surface treating agent contains an aminated phenol polymer and at least one metal compound selected from Ti, Zr, Hf, Mo, W, Se, Ce, Fe, Cu, Zn, V, and trivalent Cr.
  • the pH is preferably in the range of 1.5 to 6.0.
  • Patent Document 3 a coating base film that enhances the adhesion of a coating film to be formed on a metal surface is used instead of a surface treatment agent for forming a surface treatment film that enhances the adhesion between the metal surface and the laminate film.
  • Surface treatment agents for forming have been proposed.
  • This surface treating agent is a surface treating agent for precoated metal materials containing a silane coupling agent (A), a cationic urethane resin (B), a Zr compound and / or a Ti compound (C), and a fluorine-containing inorganic compound (D).
  • the mass ratio of (A) / (B) is 1/50 to 20/1, and the mass ratio of (Zr and / or Ti atoms) / (B) is 1/1000 to 1/2. , And a fluorine atom / (B) mass ratio of 1/1000 to 2/1.
  • the present invention can meet recent high-level requirements, and its purpose is to form a resin film on the surface of a metal material and then tough forming such as deep drawing, ironing or stretch drawing.
  • a surface treatment agent for a laminated metal material for forming a surface treatment film capable of imparting high adhesion and high corrosion resistance so that the laminate film does not peel even when processed. It is in.
  • Another object of the present invention is to provide a method for producing a laminated metal material having a surface treatment film formed with such a surface treatment agent.
  • the present inventor has examined whether or not the surface treatment agent for a coating base film described in Patent Document 3 can be used as a surface treatment agent for a laminated metal material. It has been found that a surface treatment film excellent in corrosion resistance cannot be formed and can be achieved by defining a specific component within a specific range, and the present invention has been completed.
  • the surface treatment agent for a laminated metal material according to the present invention for solving the above problems includes a silane coupling agent (A), a cationic urethane resin (B), a Zr compound (C1), a Ti compound (C2), and a fluorine-containing material.
  • the inorganic compound (D) is contained, the blending ratio (A) / (B) is 1/50 to 20/1 by weight, and the blending ratio (C) / (B) is 1/100 to 1 /.
  • the weight of (C) is the sum of (C1) and (C2)
  • the blending ratio (fluorine atom) / (B) is 1/1000 or more and 2/1 or less by weight
  • the blending ratio (C1) / (C2) is 1/10 or more and less than 2/1 in weight ratio.
  • the cationic urethane resin (B) contains an amino functional group selected from a secondary amino group and a tertiary amino group.
  • silane coupling agent (A) is a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary.
  • the Zr compound (C1) and the Ti compound (C2) are fluoride, fluoro acid, or fluoro acid salt.
  • a method for producing a laminated metal material according to the present invention comprises applying a surface treatment agent for a laminated metal material according to the present invention to the surface of the metal material and drying to form a coating of 0.01 to 1 g / m 2 . Then, a polyester resin, a polyethylene resin, a polypropylene resin, or a modified resin thereof is laminated.
  • the metal material is an aluminum or stainless steel metal foil.
  • it has an excellent effect as a surface treatment agent for producing a laminated metal packaging material.
  • the surface treating agent for laminated metal material according to the present invention there is no hexavalent chromium, and it is completely chromium-free considering the recent environmental problems, and there is an effect that the environmental load is small.
  • the manufacturing method of the laminated metal material which concerns on this invention there exists an outstanding effect that the metal container or packaging material excellent in adhesiveness and corrosion resistance can be provided.
  • the surface treating agent for laminated metal material and the method for producing the laminated metal material according to the present invention will be described in detail below.
  • the weight ratio and the mass ratio, and the weight and the mass are all synonymous.
  • the surface treatment agent for laminated metal materials according to the present invention includes a silane coupling agent (A), a cationic urethane resin (B), a Zr compound (C1), a Ti compound ( C2) and a fluorine-containing inorganic compound (D) are contained as essential components.
  • the fluorine-containing inorganic compound (D) may be blended as a single compound, or may be a Zr compound (C1) or a Ti compound (C2) containing fluorine.
  • Zr compound (C1) or Ti compound (C2) contains fluorine
  • Zr compound (C1) or Ti compound (C2) containing fluorine can also be referred to as fluorine-containing inorganic compound (D).
  • the silane coupling agent (A) has a high —OH activity of silanol groups generated by hydrolysis, and a strong chemical bond of —Si—OM through the metal material M as a base material and oxygen atoms. do. This chemical bond particularly contributes to good adhesion to the metal material M. Moreover, a silane coupling agent (A) contributes also to adhesive improvement with a laminate film by reaction with the organic functional group contained in the laminate film provided as an upper layer. When a functional group having strong polar O, N or the like as a constituent element is introduced into the silane coupling agent (A), the adhesion with the laminate film is further improved.
  • silane coupling agent (A) examples include ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, N-phenyl-3-propyltrimethoxysilane, N-phenyl-3-propyltriethoxysilane, N- ( 2-aminoethyl) aminopropyltrimethoxysilane, N- (2-aminoethyl) aminopropylmethyldimethoxysilane, N- (2-aminoethyl) aminopropyltriethoxysilane, N- (2-aminoethyl) aminopropylmethyl Diethoxysilane, N- (2-aminoethyl) aminopropylmethyldimethoxysilane, ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -methacryloxypropylmethyldimethoxysilane, ⁇ -methacryloxypropyltriethoxy
  • the silane coupling agent (A) is compatible with a laminate film (a resin film or an extrusion laminate resin described later) laminated as an upper layer, and depending on the combination, there are cases where the performance does not appear as expected.
  • a laminate film a resin film or an extrusion laminate resin described later
  • compatibility with the laminate film is good when the silane coupling agent (A) having an amino group is applied. Therefore, in the surface treating agent according to the present invention, the silane coupling agent (A) preferably contains at least one (one or two or more) types having an amino functional group.
  • the amino functional group is a functional group selected from a primary amino group, a secondary amino group, a tertiary amino group, and a quaternary ammonium group.
  • a halogen ion including a chlorine ion, a phosphate ion, a nitrate ion, a sulfate ion, an organic acid ion, and the like can be given.
  • a more preferred amino functional group is a tertiary amino group.
  • the reason is that the adhesiveness to the laminate film is good, but when used industrially, the stability (storage stability) as a surface treatment agent is important. From this viewpoint, the present inventors have found that a tertiary amino group that imparts high adhesion and has excellent storage stability and accompanying operational stability is most preferable.
  • the silane coupling agent having at least one amino functional group preferably has a content of 5% by mass or more, more preferably 10% by mass or more, based on the entire silane coupling agent (A). It is particularly preferably 20% by mass or more.
  • the silane coupling agent (A) having such a content can eliminate or minimize the adverse effects such as adhesion to the laminate film and corrosion resistance, which may occur depending on the type of the laminate film.
  • silane coupling agent (A) which has a functional group which reacts mutually and produces
  • film adhesiveness process adhesiveness
  • corrosion resistance can also be improved.
  • silane coupling agent that reacts with a silane coupling agent having a primary amino group and / or a secondary amino group to generate a new bond
  • a silane having a glycidyl group as the functional group A coupling agent is preferred
  • a silane coupling agent for example, a silane coupling agent having a glycidyl group as a functional group
  • a combination with a coupling agent can be preferably mentioned.
  • the compounding ratio of the silane coupling agents having functional groups that react with each other to form bonds as in the latter (ii) does not have to be an amount in which the functional groups react with each other without excess or deficiency.
  • the equivalent ratio of (for example, primary amino group or secondary amino group) to the other functional group (for example, glycidyl group) is preferably in the range of 50: 1 to 1:50, 30: 1 More preferably, it is in the range of ⁇ 1: 30.
  • the cationic urethane resin (B) is in the form of a water-soluble or aqueous emulsion.
  • the dissolution or dispersion of the cationic urethane resin (B) in water may be achieved on the basis of self-solubility or self-dispersibility, and a cationic surfactant (for example, an alkyl quaternary ammonium salt and the like) and / or Or you may disperse
  • a cationic urethane resin (B) effectively acts to improve processing adhesion as a result of imparting flexibility to the resulting surface treatment film and contributing to improvement in adhesion of the laminate film.
  • the cationic urethane resin (B) has at least one (one or two or more) cationic functional groups selected from secondary amino groups, tertiary amino groups, and quaternary ammonium salts. If so, there are no particular limitations on the polyol and polyisocyanate components, which are monomer components, and the polymerization method. Among these, those having at least a tertiary amino group are preferable. On the other hand, the primary amino group is highly reactive and immediately reacts with a glycidyl group or the like. Therefore, the primary amino group is not preferable in that the stability or adhesion of the drug is remarkably lowered, and should not be contained.
  • the proportion of the tertiary amino group in the cationic functional group is preferably 30 to 100%, more preferably 60% to 100%, and by making the tertiary amine within this range, In particular, the adhesion can be improved in a surface-treated film for use as a laminated metal material.
  • Examples of the cationic urethane resin (B) include aliphatic, alicyclic or aromatic diisocyanates such as hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), and isophorone diisocyanate (IPDI). And a polyol such as polyester polyol, polyether polyol, polycarbonate polyol, etc., in which an amino group is introduced into the chain, is polymerized by a conventionally known method, and the amine is partially quaternized with alkyl sulfate or the like. it can.
  • aliphatic, alicyclic or aromatic diisocyanates such as hexamethylene diisocyanate (HDI), dicyclohexylmethane diisocyanate (HMDI), and isophorone diisocyanate (IPDI).
  • a polyol such as polyester polyol, polyether polyol, polycarbonate polyo
  • Substituents on nitrogen as the cationic functional group include, but are not limited to, substituents such as hydrogen, alkyl, aryl, alkenyl, alkynyl, and hydroxyalkyl groups.
  • Two or more cationic urethane resins (B) may be mixed in the surface treatment agent.
  • the aliphatic, alicyclic or aromatic polyisocyanate includes tetramethylene diisocyanate, hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4′-dicyclohexylmethane.
  • Diisocyanate 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, 3,3'-dimethoxy-4,4'-biphenylene diisocyanate, 1,5-naphthalene diisocyanate, 1,5-tetrahydronaphthalene diisocyanate, 2,4-tolylene diisocyanate Isocyanate, 2,6-tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate DOO, phenylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, and the like.
  • tetramethylene diisocyanate hexamethylene diisocyanate, lysine diisocyanate ester, hydrogenated xylylene diisocyanate, 1,4-cyclohexylene diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, 2,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate
  • an aliphatic or alicyclic polyisocyanate compound such as the above is used, a surface treatment film excellent in chemical resistance and corrosion resistance is obtained, which is preferable.
  • examples of the polyol include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propylene glycol, 1,3-propylene glycol, neopentyl glycol, 1,2-butylene glycol, 1,3-butylene glycol, 1,4-butylene glycol, hexamethylene glycol, bisphenol A, hydrogenated bisphenol A, trimethylolpropane, 1,2-propanediol, 1,3-propanediol, 2-methyl-1,3-propanediol, 2- Butyl-2-ethyl-1,3-propanediol, 1,4-butanediol, neopentyl glycol, 3-methyl-2,4-pentanediol, 2,4-pentanediol, 1,5-pentanediol, 3 -Methyl-1,5- Nanthanediol, 2-methyl-2,4-pentanediol,
  • examples of the polyether polyol include ethylene oxide adducts such as ethylene glycol, diethylene glycol and triethylene glycol, propylene oxide adducts such as propylene glycol, dipropylene glycol and tripropylene glycol, and ethylene of the above polyol.
  • examples thereof include oxides and / or propylene oxide adducts, polytetramethylene glycol and the like.
  • polyester polyol for example, the above polyol and the like, polycarboxylic acid having an amount less than the stoichiometric amount, or an ester-forming derivative such as an ester, an anhydride, or a halide, and / or a lactone
  • an ester-forming derivative such as an ester, an anhydride, or a halide
  • a lactone Or what is obtained by the direct esterification reaction and / or transesterification reaction with the hydroxycarboxylic acid compound obtained by hydrolytic ring-opening is mentioned.
  • polyvalent carboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, 2-methylsuccinic acid, 2-methyladipic acid Aliphatic such as 3-methyladipic acid, 3-methylpentanedioic acid, 2-methyloctanedioic acid, 3,8-dimethyldecanedioic acid, 3,7-dimethyldecanedioic acid, dimer acid, hydrogenated dimer acid Dicarboxylic acids; cycloaliphatic dicarboxylic acids such as cyclohexanedicarboxylic acid; aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, terephthalic acid, naphthalenedicarboxylic acid; tricarboxylic acids such as trimeric acid, trimesic acid, castor oil
  • polycarbonate polyol for example, those obtained by esterifying carbonic acid and fatty acid polyol can be used.
  • diols such as 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, diethylene glycol, polyethylene glycol, polypropylene glycol or polytetramethylene glycol, and dimethylene carbonate And reaction products with diphenyl carbonate, phosgene and the like.
  • the use of a surfactant as a solubilizer or emulsifier may adversely affect the adhesion to metal materials or water resistance. Soap-free without using such a surfactant. Or the thing which restrained the usage-amount is more preferable.
  • the weight average molecular weight of the cationic urethane resin (B) is preferably 1,000 to 1,000,000, and more preferably 2,000 to 500,000. If the weight average molecular weight is less than 1,000, the formability of the surface treatment film tends to be insufficient. On the other hand, if the weight average molecular weight exceeds 1,000,000, the stability of the surface treatment agent tends to decrease. Become.
  • an acrylic resin, an ester resin, an amino resin, an epoxy resin, a phenol resin, or the like may be mixed and used. These resins are preferably water-soluble or water-dispersible. There is no particular limitation as long as it is compatible with the surface treatment of the present invention and does not deteriorate the performance of the film to be formed. Further, the ionicity of the resin such as cationic, anionic and nonionic properties is not limited. Further, an organic solvent may be used in order to improve the film forming property and form a more uniform and smooth film.
  • the cationic urethane resin (B) preferably has a blending ratio (A) / (B) with the silane coupling agent (A) of 1/50 or more and 20/1 or less by weight.
  • a blending ratio (A) / (B) with the silane coupling agent (A) of 1/50 or more and 20/1 or less by weight.
  • the more preferable range of compounding ratio (A) / (B) is 1/20 or more and 10/1 or less, and a more preferable range is 1/10 or more and 5/1 or less.
  • the blending ratio (A) / (B) is less than 1/50, the hardness of the obtained surface treatment film is lowered and it is difficult to obtain sufficient work adhesion, and the blending ratio (A) / (B) is When it exceeds 20/1, it is difficult to obtain adhesion between the surface and the metal surface, and the adhesion of the laminate film through the surface treatment film may deteriorate.
  • Zr compound and Ti compound Zr compound (C1) and Ti compound (C2) act so that the obtained surface treatment film improves the corrosion resistance of the metal material.
  • the Zr compound (C1) and the Ti compound (C2) are essential components, and the compounding ratio (C1) / (C2) is 1/10 or more and 2/1 in weight ratio. It is an essential configuration to be in a range less than.
  • the resin film or extrusion laminate laminated on the obtained surface treatment film as compared with the case where only one of them is included. Adhesion with the resin can be enhanced, and further, the corrosion resistance of the metal surface can be enhanced.
  • Zr compound (C1) and Ti compound (C2) include Zr or Ti carbonate, oxide, hydroxide, nitrate, sulfate, phosphate, fluoride, fluoro acid (salt), organic acid salt, An organic complex compound or the like can be used, and among them, a fluoride and a fluoro acid (salt) that also serve as a fluorine-containing inorganic compound (D) described later are preferable.
  • the compounding ratio (C) / (B) is less than 1/100, the corrosion resistance is insufficient, and when the compounding ratio (C) / (B) exceeds 1/2, the adhesion of the laminate film or the storage stability of the surface treatment agent. Tend to decrease.
  • the Zr compound (C1) and the Ti compound (C2) are required to have a blending ratio (C1) / (C2) in the range of 1/10 or more and less than 2/1 by weight ratio.
  • a blending ratio (C1) / (C2) in the range of 1/10 or more and less than 2/1 by weight ratio.
  • the blending ratio (C1) / (C2) is less than 1/10, the adhesion or the appearance is deteriorated.
  • the blending ratio (C1) / (C2) is 2/1 or more, the corrosion resistance is lowered. Tend to.
  • the present invention allows the Zr compound (C1) and the Ti compound (C2) to coexist as will be apparent from the results of Examples and Comparative Examples described later, and also pays attention to the content ratio of the two to the specific range. It has been found that by setting the inside, the problems at the beginning of obtaining high adhesion (including work adhesion) and high corrosion resistance (particularly strong acid resistance and strong alkali resistance) can be solved.
  • the fluorine-containing inorganic compound (D) releases free fluoride ions or complex fluoride ions into the liquid and plays a role as an etching agent for the metal surface to be formed with a surface treatment film.
  • the fluorine-containing inorganic compound (D) is not particularly limited, and examples thereof include hydrofluoric acid, ammonium fluoride, sodium fluoride and the like that release free fluoride ions.
  • complex fluorides include hexafluorosilicate, zinc hexafluorosilicate, manganese hexafluorosilicate, magnesium hexafluorosilicate, nickel hexafluorosilicate, hexafluorotitanic acid, hexafluorozirconic acid and the like. Can do.
  • the said compound may be used individually by 1 type, and may mix and use 2 or more types.
  • the fluorine-containing inorganic compound (D) may be blended as a single compound, or may be the Zr compound (C1) or Ti compound (C2) described above.
  • the Zr compound (C1) or the Ti compound (C2) contains fluorine
  • the fluorine-containing Zr compound (C1) or Ti compound (C2) is the fluorine-containing inorganic compound (D) referred to here.
  • the Zr compound (C1) or the Ti compound (C2) may be included together with other fluorine-containing inorganic compounds.
  • the fluorine-containing inorganic compound (D) needs to have a blending amount of fluorine atoms (fluorine atoms) / (B) with respect to the cationic urethane resin (B) of 1/1000 or more and 2/1 or less, It is preferably 1/500 or more and 1/1 or less, and more preferably 1/250 or more and 1/2 or less.
  • a fluorine atom is an atomic conversion mass.
  • the surface treatment agent according to the present invention further includes V compound, Mo compound, W compound, Co compound, Al compound, Zn compound, Ni compound, Mn compound, Ce compound, Nb compound, Sn compound, Mg compound as optional components.
  • At least one metal compound (E) selected from Cr compounds can be blended. These metal compounds (E) have the effect of improving the corrosion resistance. Examples of the metal compound (E) include carbonates, oxides, hydroxides, nitrates, sulfates, phosphates, fluorinated complex compounds, organic acid salts, and organic complex compounds of the above metals.
  • V compound, Mo compound, W compound, Co compound, Al compound, and Zn compound include vanadium pentoxide, metavanadate HVO 3 , ammonium metavanadate, vanadium oxytrichloride VOCl 3 , vanadium trioxide V 2 O 3 , vanadium dioxide, vanadium oxysulfate VOSO 4 , vanadium oxyacetylacetonate VO (OC ( ⁇ CH 2 ) CH 2 COCH 3 ) 3 , vanadium trichloride VCl 3 ; phosphovanadomolybdate H 15-X [PV 12 —X MoO 40 ] ⁇ nH 2 O (6 ⁇ X ⁇ 12, n ⁇ 30), molybdenum oxide, molybdate H 2 MoO 4 , ammonium molybdate, ammonium paramolybdate, sodium molybdate, molybdophosphoric acid compounds (eg, molybdoline) Acid ammoni Beam (
  • Mn compound Ce compound, Nb compound, Sn compound, Mg compound and Cr compound, permanganate HMnO 4 , potassium permanganate, sodium permanganate, manganese dihydrogen phosphate Mn (H 2 PO 4 ) 2 , manganese nitrate Mn (NO 3 ) 2 , manganese sulfate (II), (III) or (IV), manganese fluoride (II) or (III), manganese carbonate, manganese acetate (II) or (III ), Ammonium manganese sulfate, manganese acetylacetonate Mn (OC ( ⁇ CH 2 ) CH 2 COCH 3 ) 3 , manganese iodide, manganese oxide, manganese hydroxide; cerium oxide, cerium acetate Ce (CH 3 CO 2 ) 3 , nitric acid Cerium (III) or (IV), cerium ammonium nitrate, cerium sul
  • the metal compound (E) is suitably 1/1000 or more and 1/2 or less in the weight ratio of the blending ratio (E) / (B) to the cationic urethane resin (B), and is 1/100 or more and 1/4. Or less, more preferably 1/50 or more and 1/8 or less. If the compounding ratio (E) / (B) of the metal compound (E) and the cationic urethane resin (B) is less than 1/1000 in weight ratio, there is no effect in improving the adhesion, while it exceeds 1/2. As a result, the storage stability of the drug is significantly reduced.
  • “(E)” in the blending ratio (E) / (B) is the atomic equivalent mass of the metal compound (E).
  • the surface treatment agent according to the present invention may contain a silica component as necessary.
  • a silica component for example, gas phase silica, colloidal silica, hydrophobic silica, etc. can be used as the silica component.
  • the silica component By including the silica component, it can act as an antifoaming agent for the surface treatment agent and can bring about a preferable effect that can improve the adhesion to the laminate.
  • Such a silica is suitably 1/100 or more and 1/5 or less, and 1/50 or more and 1/10 or less by weight ratio of the compounding ratio (silica) / (B) with respect to the cationic urethane resin (B). It is more preferable. If the blending ratio of silica and cationic urethane resin (B) (silica) / (B) is less than 1/100 by weight, there is no effect on adhesion and the like, while if it exceeds 1/5, the coating becomes brittle. As a result, the adhesion is significantly reduced.
  • “(silica)” in the compounding ratio (silica) / (B) is an atomic equivalent mass of silicon oxide.
  • a surfactant or a thickening agent called a wettability improver for obtaining a uniform film on the surface to be coated is added to the liquid stability of the aqueous surface treatment agent and It can mix
  • the medium used in the surface treatment agent according to the present invention is usually water, but a small amount of alcohol or ketone (for example, 10% by volume or less of the entire aqueous medium) for the purpose of improving the drying property of the surface treatment film obtained.
  • a cellosolve-based water-soluble organic solvent may be used in combination.
  • the pH of the surface treatment agent according to the present invention is not particularly limited, but is preferably in the range of 3 to 12, more preferably in the range of 4 to 8.
  • etching occurs when the pH is less than 3, and the function as a surface treating agent cannot be sufficiently exhibited, and the liquid stability tends to be lowered.
  • the pH exceeds 12, the dissolution rate of aluminum or an alloy thereof increases, and the storage stability of the silane coupling agent (A) tends to be adversely affected.
  • alkaline components such as ammonia, dimethylamine and triethylamine, or acidic components such as acetic acid and phosphoric acid can be added.
  • the lower limit of the total solid content concentration in the surface treatment agent according to the present invention is not particularly limited as long as the effect of the present invention can be achieved, but the upper limit is limited from the viewpoint of liquid stability.
  • the total solid concentration of the surface treatment agent according to the present invention is preferably adjusted to a range of 0.1 to 40% by mass, more preferably adjusted to a range of 1 to 30% by mass, and 5 to 25% by mass. It is even more preferable to adjust the range.
  • the surface treatment agent according to the present invention includes a silane coupling agent (A), a cationic urethane resin (B), a Zr compound (C1), a Ti compound (C2), a fluorine-containing inorganic compound (D),
  • the metal compound (E) is produced by adding the mixture to water as a dispersion medium and stirring. There is no restriction
  • the metal material to which the surface treatment agent according to the present invention can be applied include aluminum foil, aluminum alloy foil, stainless steel foil, and the like.
  • the thickness of such a metal material is not particularly limited and can be applied to what is called a foil, a sheet, or a plate, but in the present invention, a surface treatment film is formed with a surface treatment agent and then laminated, and thereafter Since a deep drawing process, an ironing process, a stretch drawing process, or the like is performed to form an exterior material or the like of a lithium ion secondary battery, the thickness is preferably used for such applications.
  • a foil having a thickness of about 0.01 to 2 mm can be preferably applied as the metal material.
  • an alkaline or acidic degreasing agent is used to remove oil or dirt adhering to the metal material before performing this treatment. Wash with water, or wash with hot water or solvent. Thereafter, surface adjustment with acid or alkali is performed as necessary. After performing these treatments, it is preferable to wash with water so that the cleaning agent does not remain on the surface of the metal material.
  • the temperature of the surface treatment agent is not particularly limited, but since the solvent of this treatment agent is an aqueous treatment agent mainly composed of water, the temperature is preferably 0 to 60 ° C, and preferably 5 to 40 ° C. Is more preferable.
  • the heat treatment temperature is preferably 50 to 250 ° C, more preferably 60 to 220 ° C.
  • the surface treatment film formed by the above surface treatment method preferably has an adhesion amount in the range of 0.01 to 1 g / m 2 as a dry film weight.
  • the more preferable range of the adhesion amount is 0.01 to 0.5 g / m 2 , and more preferably 0.03 to 0.25 g / m 2 .
  • the adhesion amount is less than 0.005 g / m 2 , the corrosion resistance becomes insufficient due to the small coating amount.
  • the adhesion amount exceeds 1 g / m 2 , the adhesion is rather deteriorated and the cost is disadvantageous.
  • the surface treatment film may be treated on one surface of the metal material surface according to the purpose.
  • the laminated metal material forms a surface treatment film on the surface of the metal material by the surface treatment method using the surface treatment agent according to the present invention, and further a resin film (also referred to as a laminate film) or on the surface treatment film. It is manufactured by laminating an extrusion laminate resin.
  • the resin film may be formed on only one side or both sides of the surface-treated metal material depending on the purpose.
  • Lamination of resin film consists of (i) a method of directly laminating a resin film after the formation of a surface treatment film as a base film, (ii) an adhesion improver (polyester-based adhesion) called a primer after the formation of a surface treatment film as a base film And a method of laminating a resin film thereafter. Select one according to the required quality and cost.
  • an adhesion improver polyyester-based adhesion
  • the above-described surface treatment agent according to the present invention is applied.
  • the surface treatment agent is excellent in adhesion (including processing adhesion) to the laminate film and corrosion resistance (particularly strong acid resistance and strong alkali resistance), and produces a laminated metal material, a laminated metal container or a laminated metal packaging material. Therefore, it is a particularly preferable surface treating agent.
  • the surface treatment agent does not have hexavalent chromium, is completely chromium-free considering the recent environmental problems, and has an advantage that the environmental load is small.
  • the manufacturing method of the laminated metal material which concerns on this invention has the outstanding effect that the metal container or packaging material excellent in adhesiveness and corrosion resistance can be provided as a laminated metal material.
  • part means part by weight (synonymous with part by mass).
  • Example material and pretreatment A commercially available aluminum alloy plate (aluminum-manganese alloy plate: JIS A 3004, plate thickness: 0.3 mm, plate size: 200 mm ⁇ 300 mm) was used as a test material. This aluminum alloy plate was cleaned by spraying an 8% aqueous solution of a commercially available acidic cleaning agent (Pulclean 500: manufactured by Nihon Parkerizing Co., Ltd.) at 75 ° C. for 20 seconds, and then washed with water to clean the surface. .
  • a commercially available acidic cleaning agent Pulclean 500: manufactured by Nihon Parkerizing Co., Ltd.
  • a commercially available stainless steel plate JIS SUS304, plate thickness: 0.3 mm, plate size: 200 mm ⁇ 300 mm
  • the stainless steel plate was cleaned by spraying a 2% aqueous solution of a commercially available cleaning agent (Fine Cleaner 4328: manufactured by Nippon Parkerizing Co., Ltd.) at 60 ° C. for 20 seconds, and then washed with water to clean the surface.
  • a commercially available cleaning agent Fine Cleaner 4328: manufactured by Nippon Parkerizing Co., Ltd.
  • the dry film weight (adhesion amount) is 0.1 g / m 2 with a roll coater. And dried in a hot air drying oven so that the temperature reached by the test material was 80 ° C.
  • No. 1 to 30 are surface treatment agents according to the present invention (Examples 1 to 30). 31 to 47 are surface treating agents (Comparative Examples 1 to 17) outside the scope of the present invention. No.
  • the equivalent ratio of the amino group of A1 and the glycidyl group of A3 constituting 15 silane coupling agent (A) is 5: 1.
  • (A) / (B) is a blending mass ratio of the silane coupling agent (A) and the cationic urethane resin (B), and (C1) / (C2) is the Zr compound (C1).
  • Ti compound (C2), (C) / (B) is the total mass of Zr compound and Ti compound and cationic urethane resin (B), and (E) / ( B) is a blending mass ratio of the metal species (E) (atomic equivalent weight) constituting the metal compound and the cationic urethane resin (B), and fluorine / (B) constitutes the fluorine-containing inorganic compound (D). It is a blending mass ratio of fluorine (atomic equivalent weight) and cationic urethane resin (B). The contents of each component in Table 1 are shown below.
  • ⁇ Silane coupling agent (A)> A1: ⁇ -aminopropyltriethoxysilane A2: 2-aminoethyl-3-aminopropyltrimethoxysilane A3: ⁇ -glycidoxypropyltrimethoxysilane A4: ⁇ -mercaptopropyltrimethoxysilane
  • B1 Cationic polyether-based polyurethane water dispersion
  • B2 Cationic polyester-based polyurethane water dispersion
  • B3 Cationic polycarbonate-based polyurethane water dispersion
  • B4 Superflex 410 (anionic polycarbonate-based polyurethane water dispersion, Daiichi Kogyo Seiyaku) (Made by Co., Ltd.)
  • B5 Primal K-3 (polyacrylic resin, manufactured by ROHM AND HAAS)
  • B1: Cationic polyether polyurethane resin (aqueous dispersion) 150 parts by mass of polyether polyol (synthesis components: polytetramethylene glycol and ethylene glycol, molecular weight 1500), 6 parts by mass of trimethylolpropane, 24 parts by mass of N-methyl-N, N-diethanolamine, 94 parts by mass Part of isophorone diisocyanate and 135 parts by weight of methyl ethyl ketone are dispensed into a reaction vessel, and 15 parts by weight of dimethyl sulfate is added to a urethane prepolymer that is reacted while being maintained at 70 to 75 ° C., and 50 to 60 ° C.
  • a cationic urethane prepolymer For 30 to 60 minutes to obtain a cationic urethane prepolymer. Further, 576 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic water-soluble polyurethane resin (B1).
  • “B2: Cationic polyester polyurethane resin (water dispersion)” 135 parts by weight of polyester polyol (synthesis components: isophthalic acid, adipic acid and 1,6-hexanediol, ethylene glycol, molecular weight 1700), 5 parts by weight of trimethylolpropane, and 22 parts by weight of N-methyl-N , N-diethanolamine, 86 parts by mass of isophorone diisocyanate, and 120 parts by mass of methyl ethyl ketone are dispensed into a reaction vessel and reacted with maintaining at 70 to 75 ° C. to 17 parts by mass of dimethyl sulfate. And reacted at 50 to 60 ° C.
  • a cationic urethane prepolymer for 30 to 60 minutes to obtain a cationic urethane prepolymer. Further, 615 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic water-soluble polyurethane resin (B2).
  • B3: Cationic polycarbonate-based polyurethane resin (aqueous dispersion) 130 parts by weight of polycarbonate polyol (synthesis component: 1,6-hexane carbonate diol, ethylene glycol, molecular weight 2000), 4 parts by weight of trimethylolpropane, 21 parts by weight of N-methyl-N, N-diethanolamine, 75 parts by mass of isophorone diisocyanate and 115 parts by mass of methyl ethyl ketone are dispensed into a reaction vessel, and 22 parts by mass of dimethyl sulfate are added to a urethane prepolymer that is reacted while being maintained at 70 to 75 ° C. Reaction was performed at 60 ° C.
  • a cationic urethane prepolymer for 30 to 60 minutes to obtain a cationic urethane prepolymer. Further, 633 parts by mass of water was added to the cationic urethane prepolymer and uniformly emulsified, and then methyl ethyl ketone was recovered to obtain a cationic water-soluble polyurethane resin (B3).
  • ⁇ Zr compound (C1)> C11: Hexafluorozirconic acid
  • C12 Ammonium hexafluorozirconium
  • C13 Zirconium acetylacetonate
  • C14 Ammonium zirconium carbonate
  • C15 Zirconia sol
  • ⁇ Ti compound (C2)> C21: Titanium acetylacetonate C22: Titanyl sulfate C23: Hexafluorotitanate C24: Ammonium hexafluorotitanate C25: Titanium laurate
  • ⁇ Silica> Colloidal silica (manufactured by Nissan Chemical Industries, Ltd., trade name: Snowtex O) was used as the silica.
  • the surface treatment agent to which silica is added is shown in No. 1 in Table 1. 6 and no. 7 surface treatment agent.
  • the blending ratio of silica is not described in Table 1, but No.
  • the surface treating agent of No. 6 is No. 6.
  • No. 5 was blended at a blending ratio (silica) / (B) of 1/50.
  • No. 7 surface treatment agent is No. 7.
  • No. 5 is blended with the compounding ratio (silica) / (B) of 1/10.
  • thermoplastic polyester film (film thickness: 30 ⁇ m) was heat-laminated at 250 ° C. for 5 seconds on the test material on which the surface treatment film was formed to obtain a laminated metal material.
  • the surface pressure during heat lamination was 50 kg / cm 2 .
  • Comparative Examples 18 to 21 As Comparative Example 18, a commercially available phosphate chromate treatment agent (AM-K702: manufactured by Nihon Parkerizing Co., Ltd.) was sprayed at 50 ° C. for 5 seconds, washed with water to remove unreacted chemicals, and heated at 80 ° C. for 1 minute. It dried and obtained the test piece (Cr adhesion amount is 20 mg / m ⁇ 2 >). As Comparative Example 19, a commercially available zirconium phosphate treating agent (AL-404: manufactured by Nihon Parkerizing Co., Ltd.) was sprayed at 40 ° C. for 20 seconds, washed with water to remove unreacted chemicals, and then at 80 ° C. for 1 minute. A test piece (Zr adhesion amount: 15 mg / m 2 ) was obtained by heating and drying. Moreover, as Comparative Examples 20 and 21, test pieces only for degreasing were also produced.
  • A-404 manufactured by Nihon Parkerizing Co., Ltd.
  • the current value is low, “ ⁇ ” when less than 0.1 mA, “ ⁇ ” when less than 0.1 mA and less than 0.3 mA, “ ⁇ ” when less than 0.3 mA and less than 1.0 mA, 1
  • 0.0 mA or more was evaluated as “x”.
  • a can body poured with 5% aqueous sodium hydroxide solution and a can body poured with 5% aqueous sulfuric acid solution were stored at 25 ° C. for 2 weeks. Next, these cans were washed with water, rinsed, and then the leakage current was measured with a commercially available enamellator (Peco) as before. The same 0.5% saline solution was used as the measurement solution, and the current value after 4 seconds was measured at 6.3 V.
  • the current value is preferably as low as before, “ ⁇ ” when less than 0.1 mA, “ ⁇ ” when less than 0.1 mA and less than 0.3 mA, and “0.3” when less than 1.0 mA and less than 1.0 mA. The case of “ ⁇ ” and 1.0 mA or more was evaluated as “x”. Those having poor acid resistance and alkali resistance have a large current value at this time.
  • the surface treatment agent was stored in a constant temperature apparatus at 40 ° C. for 3 months, and then the state of gelation or precipitation was observed with the naked eye, and the storage stability was evaluated according to the following criteria. At this time, the case where there was no change was evaluated as “ ⁇ ”, the case where the viscosity increased was evaluated as “ ⁇ ”, and the case where gelation or precipitation occurred was evaluated as “ ⁇ ”.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

【課題】ラミネートフィルム又は押出ラミネート樹脂が剥離しない高い密着性と、金属材料に対する高い耐食性とを付与することができる表面処理皮膜を金属材料の表面に形成するための金属表面処理剤を提供する。 【解決手段】シランカップリング剤(A)、カチオン性ウレタン樹脂(B)、Zr化合物(C1)、Ti化合物(C2)及びフッ素含有無機化合物(D)を含有し、配合比(A)/(B)が重量比で1/50以上20/1以下、配合比(C)/(B)が重量比で1/100以上1/2以下(但し、(C)の重量は(C1)と(C2)の合計である。)、配合比(フッ素原子)/(B)が重量比で1/1000以上2/1以下、且つ配合比(C1)/(C2)が重量比で1/10以上2/1未満とした金属表面処理剤により、上記課題を解決した。

Description

ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法
 本発明は、金属材料の表面とラミネートフィルムとの密着性(加工密着性を含む。)を向上させ、さらにフィルムをラミネートした金属材料の耐食性(特に耐強酸性及び耐強アルカリ性)を向上させる表面処理皮膜を形成するための、ラミネート金属材料用の表面処理剤及びラミネート金属材料の製造方法に関する。
 更に詳しくは、アルミニウム系金属箔及びステンレス鋼系金属箔等の金属材料の表面に樹脂フィルムをラミネートした後に、深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、そのラミネートフィルムが剥離しないような高い密着性を付与し、さらに物品(成形加工品)が優れた耐食性を有する表面処理皮膜を形成するための、ラミネート金属材料用の表面処理剤及びラミネート金属材料の製造方法に関する。
 ラミネート加工は、樹脂製のフィルム(以下、樹脂フィルム又はラミネートフィルムという。)を金属材料の表面に加熱圧着(或いは接着剤を介して圧着)する加工手段であり、表面保護又は意匠性付与を目的とした金属材料表面の被覆方法の一つとして様々な分野で使用されている。このラミネート加工は、樹脂組成物を塗布、焼付乾燥して樹脂皮膜を形成する方法、すなわち塗装に比べ、焼付乾燥時に発生する溶剤及び二酸化炭素等の廃棄ガス乃至温暖化ガスの発生量が少ない。そのため、環境保全の面において好ましく、その用途は拡大し、例えば、アルミニウム薄板材、スチール薄板材、包装用アルミニウム箔若しくはステンレス箔等を素材とした食品用缶のボディー又は蓋材、食品用容器、或いは、乾電池容器等に用いられている。
 特に最近では、携帯電話、電子手帳、ノート型パソコン、ビデオカメラ等に用いられるモバイル用リチウムイオン2次電池の外装材として、軽量でバリアー性の高いアルミニウム箔及びステンレス箔等の金属箔が好ましく用いられており、こうした金属箔へのラミネート加工が適用されている。また、電気自動車又はハイブリッド自動車の駆動エネルギーとしてリチウムイオン2次電池が検討されているが、その外装材としても、ラミネート加工した金属箔が検討されている。
 こうしたラミネート加工に用いるラミネートフィルムは、直接金属材料に貼り合わせた後に加熱圧着するため、樹脂組成物を塗布し、その後に加熱乾燥してなる一般的な樹脂皮膜に比べて原材料のムダを抑制できる、ピンホール(欠陥部)が少ない、及び加工性が優れる、等の利点がある。ラミネートフィルムの材料としては、一般に、ポリエチレンテレフタレート及びポリエチレンナフタレート等のポリエステル系樹脂、又は、ポリエチレン及びポリプロピレン等のポリオレフィンが用いられている。
 ラミネートフィルムを金属材料の表面(単に金属表面ともいう。)にラミネート加工する際、ラミネートフィルムと金属表面との密着性及び耐食性を向上させるために、金属表面を脱脂洗浄した後、通常、リン酸クロメート等の化成処理が施される。しかしながら、こうした化成処理は、処理後に余剰の処理液を除去するための洗浄工程が必要であり、その洗浄工程から排出される洗浄水の廃水処理にコストがかかる。特にリン酸クロメート等の化成処理は六価クロムを含む処理液が用いられるので、近年の環境的配慮から敬遠される傾向にある。
 一方、金属表面に化成処理等の処理を施さないでラミネート加工を行うと、金属表面からラミネートフィルムが剥離したり、金属材料に腐食が生じたりするという問題がある。例えば、食品用容器又は包装材においては、ラミネート加工後の容器又は包装材に内容物を加えた後、殺菌を目的とした加熱処理を施すが、その加熱処理時に金属表面からラミネートフィルムが剥離することがある。また、リチウムイオン2次電池の外装材等においては、その製造工程で加工度の高い加工を受ける。こうした外装材が長期使用されると、大気中の水分が内部に浸入し、これが電解質と反応してフッ化水素酸を生成し、これがラミネートフィルムを透過して、金属表面とラミネートフィルムとの剥離を発生させるとともに、金属表面を腐食するという問題がある。
 こうした問題に対しては、ラミネート加工に先立って、金属表面にラミネートフィルムとの密着性を高めるための皮膜を形成する方法が種々提案されている。
 例えば、特許文献1には、アルミニウム合金条の片面に化成処理膜を形成し、その化成処理膜上に樹脂フィルムを被覆してなる深絞り・しごき缶用アルミニウム合金の製造方法が提案されている。この化成処理膜は、クロム系、チタニウム系及びジルコニウム系から選ばれる一つ金属成分を含有する化成処理液で形成された膜であり、金属付着量により樹脂フィルムとの密着性と耐食性が変化し、その金属付着量が5~50mg/mである場合が好ましいとしている。
 また、特許文献2には、金属表面とラミネートフィルムとの層間密着性を向上させ、さらにフィルムをラミネートした金属材料の耐食性を向上させる表面処理皮膜を形成するための、接着下地用の表面処理剤が提案されている。この表面処理剤は、アミノ化フェノール重合体と、Ti、Zr、Hf、Mo、W、Se、Ce、Fe、Cu、Zn、V及び3価Crから選ばれる少なくとも1種の金属化合物とを含有し、pHが1.5~6.0の範囲であることが好ましいとされている。
 なお、特許文献3には、金属表面とラミネートフィルムとの密着性を高める表面処理皮膜を形成するための表面処理剤ではなく、金属表面に塗布形成する塗装膜の密着性を高める塗装下地膜を形成するための表面処理剤が提案されている。この表面処理剤は、シランカップリング剤(A)、カチオン性ウレタン樹脂(B)、Zr化合物及び/又はTi化合物(C)並びにフッ素含有無機化合物(D)を含有するプレコート金属材料用表面処理剤であって、(A)/(B)の質量比を1/50~20/1とし、(Zr及び/又はTi原子)/(B)の質量比を1/1,000~1/2とし、及びフッ素原子/(B)の質量比を1/1,000~2/1とするものである。
特開2005-120422号公報 特開2003-138382号公報 特開2006-328445号公報
 特に最近においては、携帯電話、電子手帳、ノート型パソコン若しくはビデオカメラ等に用いられるモバイル用リチウムイオン2次電池、又は、電気自動車若しくはハイブリッド自動車の駆動エネルギーとしてのリチウムイオン2次電池の外装材等には、高い加工性と耐食性が要求されてきている。そのため、そうした金属材料へのラミネート加工に先立って形成される表面処理皮膜には、従来にも増して、金属材料への高い密着性及び耐食性が要求されてきている。
 本発明は、最近の高レベルの要求に応えることができるものであって、その目的は、金属材料の表面に樹脂フィルムをラミネートした後、深絞り加工、しごき加工又はストレッチドロー加工等の厳しい成形加工を施した場合であっても、そのラミネートフィルムが剥離しないような高い密着性と高い耐食性を付与することができる表面処理皮膜を形成するための、ラミネート金属材料用表面処理剤を提供することにある。また、本発明の他の目的は、そうした表面処理剤で形成した表面処理皮膜を有するラミネート金属材料の製造方法を提供することにある。
 本発明者は、上記特許文献3に記載の塗装下地膜用表面処理剤が、ラミネート金属材料用の表面処理剤としても用いることができないか否かを検討していたが、そのままでは密着性と耐食性に優れた表面処理皮膜を形成できず、特定の成分を特定の範囲に規定することにより達成できることを見出し、本発明を完成するに至った。
 上記課題を解決するための本発明に係るラミネート金属材料用表面処理剤は、シランカップリング剤(A)、カチオン性ウレタン樹脂(B)、Zr化合物(C1)、Ti化合物(C2)及びフッ素含有無機化合物(D)を含有し、配合比(A)/(B)が重量比で1/50以上20/1以下、配合比(C)/(B)が重量比で1/100以上1/2以下(但し、(C)の重量は(C1)と(C2)の合計である。)、配合比(フッ素原子)/(B)が重量比で1/1000以上2/1以下、且つ、配合比(C1)/(C2)が重量比で1/10以上2/1未満であることを特徴とする。
 本発明に係るラミネート金属材料用表面処理剤において、前記カチオン性ウレタン樹脂(B)が、第2級アミノ基及び第3級アミノ基から選ばれるアミノ性官能基を含有する。
 本発明に係るラミネート金属材料用表面処理剤において、前記シランカップリング剤(A)全体の5質量%以上が、第1級アミノ基、第2級アミノ基、第3級アミノ基及び第4級アンモニウム基から選ばれるアミノ性官能基を有するシランカップリング剤である。
 本発明に係るラミネート金属材料用表面処理剤において、前記Zr化合物(C1)及び前記Ti化合物(C2)が、フッ化物又はフルオロ酸若しくはフルオロ酸塩である。
 上記課題を解決するための本発明に係るラミネート金属材料の製造方法は、上記本発明のラミネート金属材料用表面処理剤を金属材料表面に塗布乾燥して0.01~1g/mの皮膜を形成し、次いで、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂又はこれらの変性樹脂をラミネートすることを特徴とする。
 本発明に係るラミネート金属材料の製造方法において、前記金属材料がアルミニウム系又はステンレス鋼系の金属箔である。
 本発明に係るラミネート金属材料用表面処理剤によれば、ラミネートフィルムとの密着性(加工密着性を含む。)及び耐食性(特に耐強酸性及び耐強アルカリ性)に優れるラミネート金属材料、ラミネート金属容器又はラミネート金属包装材を作製するための表面処理剤として優れた効果を奏する。また、本発明に係るラミネート金属材料用表面処理剤によれば、六価クロムを有さず、近年の環境問題をも考慮した完全クロムフリーであり、環境負荷が少ないという効果を奏する。また、本発明に係るラミネート金属材料の製造方法によれば、密着性及び耐食性に優れた金属容器又は包装材を提供できるという優れた効果を奏する。
 本発明に係るラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法を以下に詳細に説明する。なお、本願において、重量比と質量比、重量と質量はいずれも同義である。
 [ラミネート金属材料用表面処理剤]
 本発明に係るラミネート金属材料用表面処理剤(以下単に「表面処理剤」ともいう。)は、シランカップリング剤(A)、カチオン性ウレタン樹脂(B)、Zr化合物(C1)、Ti化合物(C2)及びフッ素含有無機化合物(D)を必須成分として含有する。なお、フッ素含有無機化合物(D)は、単独の化合物として配合されてもよいし、フッ素を含有するZr化合物(C1)又はTi化合物(C2)であってもよい。Zr化合物(C1)又はTi化合物(C2)がフッ素を含有する場合には、フッ素を含有するZr化合物(C1)又はTi化合物(C2)もフッ素含有無機化合物(D)ということができる。こうした表面処理剤を金属表面に塗布し、乾燥することにより、ラミネート金属材料用の下地皮膜として好ましい表面処理皮膜を形成することができる。
 (シランカップリング剤)
 シランカップリング剤(A)は、加水分解することにより生成するシラノール基の-OHの活性が高く、母材である金属材料Mと酸素原子を介して-Si-O-Mの強固な化学結合をする。この化学結合は、特に金属材料Mとの良好な密着性に寄与する。また、シランカップリング剤(A)は、上層として設けられたラミネートフィルムに含まれる有機官能基との反応により、ラミネートフィルムとの密着性向上にも寄与する。シランカップリング剤(A)に極性の強いO、N等を構成元素とした官能基が導入されている場合、ラミネートフィルムとの密着性はさらに向上する。
 シランカップリング剤(A)として、例えばγ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-フェニル-3-プロピルトリメトキシシランN-フェニル-3-プロピルトリエトキシシラン、N-(2-アミノエチル)アミノプロピルトリメトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)アミノプロピルトリエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-3-アミノプロピルトリメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-3-アミノプロピルトリエトキシシラン、N-β-(N-ビニルベンジルアミノエチル)-3-アミノプロピルメチルジエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジエトキシシラン、メチルトリメトキシシラン、ジメチルジメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、ビニルトリアセトキシシラン、γ-クロロプロピルトリメトキシシラン、γ-クロロプロピルメチルジメトキシシラン、γ-クロロプロピルトリエトキシシラン、γ-クロロプロピルメチルジエトキシシラン、ヘキサメチルジシラザン、γ-アニリノプロピルトリメトキシシラン、γ-アニリノプロピルメチルジメトキシシラン、γ-アニリノプロピルトリエトキシシラン、γ-アニリノプロピルメチルジエトキシシラン、イソシアネートプロピルトリメトキシシラン、イソシアネートプロピルトリエトキシシラン、ウレイドプロピルトリエトキシシラン、ビス(トリメトキシシリル)アミノビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、オクタデシルジメチル〔3-(トリメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(メチルジメトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(トリエトキシシリル)プロピル〕アンモニウムクロライド、オクタデシルジメチル〔3-(メチルジエトキシシリル)プロピル〕アンモニウムクロライド、γ-クロロプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、メチルトリクロロシラン、ジメチルジクロロシラン、トリメチルクロロシラン等を挙げることができる。
 シランカップリング剤(A)は、上層としてラミネートされるラミネートフィルム(後述する樹脂フィルム又は押出ラミネート樹脂)との相性があり、組み合わせによっては性能が期待通りに出現しないケースがある。表面処理剤をラミネート金属材料用とする本発明の用途では、アミノ基を持つシランカップリング剤(A)を適用した場合にはラミネートフィルムとの相性が良い。そのため、本発明に係る表面処理剤においては、シランカップリング剤(A)が、アミノ性官能基を有するものを少なくとも1種(1種又は2種以上)含有することが好ましい。
 ここで、アミノ性官能基とは、第1級アミノ基、第2級アミノ基、第3級アミノ基及び第4級アンモニウム基から選ばれる官能基である。なお、第4級アンモニウム基を有する場合の対イオンとしては、塩素イオンをはじめとするハロゲンイオン、リン酸イオン、硝酸イオン、硫酸イオン、有機酸イオン等が挙げられる。より好ましいアミノ官能基は、第3級アミノ基である。その理由は、ラミネートフィルムとの密着性も良好であるが、工業的に使用する場合には、表面処理剤としての安定性(貯蔵安定性)が重要なためである。この観点から、高い密着性を付与し、且つ優れた貯蔵安定性とそれに伴う操業安定性を有する第3級アミノ基が最も好ましいことを本発明者は見出している。
 こうした少なくとも1種のアミノ性官能基を有するシランカップリング剤は、シランカップリング剤(A)全体に対する含有量が5質量%以上であることが好ましく、10質量%以上であることがより好ましく、20質量%以上であることが特に好ましい。こうした含有量を有するシランカップリング剤(A)は、ラミネートフィルムの種類によって起こり得るラミネートフィルムとの密着性、耐食性等の悪影響をなくすことができるか、或いは最小限に抑えることができる。
 シランカップリング剤(A)として2種以上を混合して用いる場合、互いに反応して新たな結合を生成させる官能基を有するシランカップリング剤(A)を用いることが好ましい。こうすることによって、フィルム密着性(加工密着性)をさらに向上させることができ、耐食性をも向上させることができる。例えば、第1級アミノ基及び/又は第2級アミノ基を有するシランカップリング剤と反応して新たな結合を生成するシランカップリング剤としては、(i)前記官能基としてグリシジル基を有するシランカップリング剤が好ましく、また、(ii)前記官能基としてヒドロキシル基を有するか生じうるシランカップリング剤(例えば官能基としてグリシジル基を有するシランカップリング剤)と前記官能基としてイソシアネート基を有するシランカップリング剤との併用を好ましく挙げることができる。後者(ii)のように互いに反応して結合を生成する官能基を有するシランカップリング剤同士の配合割合は、互いの官能基が過不足無く反応する量である必要はなく、一方の官能基(例えば、第1級アミノ基若しくは第2級アミノ基)と他方の官能基(例えば、グリシジル基)との当量比として、50:1~1:50の範囲であることが好ましく、30:1~1:30の範囲であることがより好ましい。
 (カチオン性ウレタン樹脂)
 カチオン性ウレタン樹脂(B)は、水溶性又は水系エマルジョン形態のものである。カチオン性ウレタン樹脂(B)の水への溶解又は分散は、自己溶解性又は自己分散性に基づいて達成されてもよく、また、カチオン性界面活性剤(例えばアルキル4級アンモニウム塩等)及び/又はノニオン性界面活性剤(例えばアルキルフェニルエーテル等)の存在により分散されてもよい。こうしたカチオン性ウレタン樹脂(B)は、得られる表面処理皮膜に柔軟性を付与し、かつラミネートフィルムの密着性の向上に寄与する結果、加工密着性を向上させるのに効果的に作用する。
 カチオン性ウレタン樹脂(B)は、第2級アミノ基、第3級アミノ基及び第4級アンモニウム塩の中から選ばれる少なくとも1種(1種又は2種以上)のカチオン性官能基を有するものであれば、構成されるモノマー成分であるポリオール及びポリイソシアナート成分、及び重合方法は特に限定されるものではない。中でも、少なくとも第3級アミノ基を有するものが好ましい。一方、第1級アミノ基は、反応性が激しく、グリシジル基等と直ぐに反応してしまうため、薬剤の安定性又は密着性が著しく低下する点で好ましくなく、含まれていない方がよい。カチオン性官能基のうち、第3級アミノ基の割合は、30~100%であることが好ましく、60%~100%であることがより好ましく、第3級アミンをこの範囲とすることにより、特にラミネート金属材料用途の表面処理皮膜において、その密着性を向上させることができる。
 カチオン性ウレタン樹脂(B)は、例えば、ヘキサメチレンジイソシアナート(HDI)、ジシクロヘキシルメタンジイソシアナート(HMDI)、イソホロンジイソシアナート(IPDI)等の脂肪族、脂環式若しくは芳香族ジイソシアナ-トと、ポリエステルポリオール、ポリエーテルポリオール、ポリカーボネートポリオール等の鎖中にアミノ基を導入したポリオールとを、従来公知の方法により重合させ、硫酸アルキル等でアミンを一部4級化することによって得ることができる。カチオン性官能基としての窒素上の置換基は、水素、アルキル、アリール、アルケニル、アルキニル、ヒドロキシアルキル基等の置換基が挙げられるが、これらに限定するものではない。表面処理剤には、カチオン性ウレタン樹脂(B)を2種以上混合してもよい。
 上記において、脂肪族、脂環式若しくは芳香族ポリイソシアネートとしては、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート、3,3’-ジメトキシ-4,4’-ビフェニレンジイソシアネート、1,5-ナフタレンジイソシアネート、1,5-テトラヒドロナフタレンジイソシアネート、2,4-トリレンジイソシアネート、2,6-トリレンジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、2,4’-ジフェニルメタンジイソシアネート、フェニレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート等があげられる。これらの中でも、テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、リジンジイソシアネートエステル、水添キシリレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、イソホロンジイソシアネート等の脂肪族又は脂環式ポリイソシアネート化合物を用いた場合に、耐薬品性と防食性に優れた表面処理皮膜が得られるので好ましい。
 上記において、ポリオールとしては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロピレングリコール、1,3-プロピレングリコール、ネオペンチルグリコール、1,2-ブチレングリコール、1,3-ブチレングリコール、1,4-ブチレングリコール、ヘキサメチレングリコール、ビスフェノールA、水添ビスフェノールA、トリメチロールプロパン、1,2-プロパンジオール、1,3-プロパンジオール、2-メチル-1,3-プロパンジオール、2-ブチル-2-エチル-1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、3-メチル-2,4-ペンタンジオール、2,4-ペンタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,4-ジエチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,7-ヘプタンジオール、3,5-ヘプタンジオール、1,8-オクタンジオール、2-メチル-1,8-オクタンジオール、1,9-ノナンジオール、1,10-デカンジオール等の脂肪族ジオール化合物、トリメチロールエタン、トリメチロールプロパン、ヘキシトール類、ペンチトール類、グリセリン、ジグリセリン、ポリグリセリン、ペンタエリスリトール、ジペンタエリスリトール、テトラメチロールプロパン等の3価以上の脂肪族又は脂環族アルコール化合物等が挙げられる。
 上記において、ポリエーテルポリオールとしては、例えば、エチレングリコール、ジエチレングリコ-ル、トリエチレングリコール等のエチレンオキサイド付加物、プロピレングリコール、ジプロピレングリコール、トリプロピレングリコール等のプロピレンオキサイド付加物、上記のポリオールのエチレンオキサイド及び/又はプロピレンオキサイド付加物、ポリテトラメチレングリコール等が挙げられる。
 上記において、ポリエステルポリオールとしては、例えば、上記ポリオール等と、その化学量論的量より少ない量の多価カルボン酸又はそのエステル、無水物、ハライド等のエステル形成性誘導体、及び/又は、ラクトン類若しくはその加水分解開環して得られるヒドロキシカルボン酸化合物と、の直接エステル化反応及び/又はエステル交換反応により得られるものが挙げられる。多価カルボン酸としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカン二酸、2-メチルコハク酸、2-メチルアジピン酸、3-メチルアジピン酸、3-メチルペンタン二酸、2-メチルオクタン二酸、3,8-ジメチルデカン二酸、3,7-ジメチルデカン二酸、ダイマー酸、水添ダイマー酸等の脂肪族ジカルボン酸類;シクロヘキサンジカルボン酸等の脂環式ジカルボン酸類;フタル酸、イソフタル酸、テレフタル酸、ナフタレンジカルボン酸等の芳香族ジカルボン酸類;トリメリット酸、トリメシン酸、ひまし油脂肪酸の3量体等のトリカルボン酸類;ピロメリット酸等のテトラカルボン酸;等のポリカルボン酸が挙げられる。そのエステル形成性誘導体としては、これらの多価カルボン酸の酸無水物;該多価カルボン酸のクロライド、ブロマイド等のハライド;該多価カルボン酸のメチルエステル、エチルエステル、プロピルエステル、イソプロピルエステル、ブチルエステル、イソブチルエステル、アミルエステル等の低級脂肪族エステル;等が挙げられる。上記ラクトン類としては、γ-カプロラクトン、δ-カプロラクトン、ε-カプロラクトン、γ-バレロラクトン、δ-バレロラクトン等のラクトン類等が挙げられる。
 上記において、ポリカーボネートポリオールとしては、例えば、炭酸と脂肪酸ポリオールとをエステル化反応させて得られるもの等を使用できる。具体的には、1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、ジエチレングリコール、ポリエチレングリコール、ポリプロピレングリコール又はポリテトラメチレングリコール等のようなジオールと、ジメチレンカーボネートやジフェニルカーボネートやホスゲン等との反応生成物等が挙げられる。
 カチオン性ウレタン樹脂(B)において、可溶化剤又は乳化剤としての界面活性剤の使用は、金属材料への密着性又は耐水性に悪影響を及ぼすおそれがあるため、そうした界面活性剤を使用しないソープフリー或いはその使用量を抑えたものがより好ましい。
 カチオン性ウレタン樹脂(B)の重量平均分子量は、1,000~1,000,000であることが好ましく、2,000~500,000であることがより好ましい。重量平均分子量が1,000未満では、表面処理皮膜の形成性が不十分になる傾向となり、一方、重量平均分子量が1,000,000を超えると、表面処理剤の安定性が低下する傾向となる。
 また、カチオン性ウレタン樹脂(B)と相溶するものであれば、アクリル系樹脂、エステル系樹脂、アミノ系樹脂、エポキシ系樹脂又はフェノール系樹脂等を混合して用いてもよい。これら樹脂は、水溶性或いは水分散性を有するものがよい。本発明の表面処理と相溶できて、形成する皮膜の性能を低下させるものでなければ特に限定しない。また、カチオン性、アニオン性、ノニオン性といった樹脂のイオン性も限定しない。また、その造膜性を向上させ、より均一で平滑な皮膜を形成するために有機溶剤を用いてもよい。
 カチオン性ウレタン樹脂(B)は、シランカップリング剤(A)との配合比(A)/(B)が重量比で1/50以上20/1以下であることが好ましい。こうした配合比とすることにより、上層であるラミネートフィルムとの間で優れた密着性を得ることができる。なお、配合比(A)/(B)のより好ましい範囲は、1/20以上10/1以下であり、さらに好ましい範囲は1/10以上5/1以下である。配合比(A)/(B)が1/50未満では、得られた表面処理皮膜の硬度が低下して十分な加工密着性が得られにくく、また、配合比(A)/(B)が20/1を超えると、かえって下地金属である金属表面との間の密着性を得にくく、表面処理皮膜を介したラミネートフィルムの密着性が悪化することがある。
 (Zr化合物とTi化合物)
 Zr化合物(C1)とTi化合物(C2)は、得られた表面処理皮膜が金属材料の耐食性を向上させるように作用する。本発明に係る表面処理剤では、このZr化合物(C1)とTi化合物(C2)とを必須の成分としており、その配合比(C1)/(C2)が重量比で1/10以上2/1未満の範囲とすることを必須の構成としている。本発明では、Zr化合物(C1)とTi化合物(C2)とを必須の成分とすることにより、いずれか一方のみを含む場合に比べ、得られた表面処理皮膜上にラミネートした樹脂フィルム又は押出ラミネート樹脂との密着性を高めることができ、さらに金属表面の耐食性を高めることができる。
 Zr化合物(C1)及びTi化合物(C2)としては、Zr又はTiの炭酸塩、酸化物、水酸化物、硝酸塩、硫酸塩、リン酸塩、フッ化物、フルオロ酸(塩)、有機酸塩、有機錯化合物等を用いることができ、中でも、後述するフッ素含有無機化合物(D)を兼ねるフッ化物、フルオロ酸(塩)が好ましい。具体的には、塩基性炭酸ジルコニウム、オキシ炭酸ジルコニウム、炭酸ジルコニウムアンモニウム、炭酸ジルコニルアンモニウム(NH[Zr(CO(OH)]、酸化ジルコニウム(IV)(ジルコニア)、酸化チタン(IV)(チタニア)、硝酸ジルコニウム、硝酸ジルコニルZrO(NO、硝酸チタン、硫酸ジルコニウム(IV)、硫酸ジルコニル、硫酸チタン(III)、硫酸チタン(IV)、硫酸チタニルTiOSO、オキシリン酸ジルコニウム、ピロリン酸ジルコニウム、リン酸2水素ジルコニル、フッ化ジルコニウム、フッ化チタン(III)、フッ化チタン(IV)、ヘキサフルオロジルコニウム酸HZrF、ヘキサフルオロジルコニウム酸アンモニウム[(NHZrF]、ヘキサフルオロチタン酸HTiF、ヘキサフルオロチタン酸アンモニウム[(NHTiF]、酢酸ジルコニル、チタンラウレート、ジルコニウムアセチルアセトネートZr(OC(=CH)CHCOCH、ジイソプロポキシチタニウムビスアセトン(CTi[OCH(CH、チタニウムアセチルアセトネートTi(OC(=CH)CHCOCH等が挙げられる。これらは無水物であってもよいし水和物であってもよい。Zr化合物及びTi化合物ぞれぞれの化合物は、単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 Zr化合物(C1)及びTi化合物(C2)の合計配合量(C=C1+C2)は、カチオン性ウレタン樹脂(B)に対する配合比(C)/(B)が重量比で1/100以上1/2以下であることが必要であり、1 /50以上1/4以下であることが好ましく、1/20以上1/10以下であることがより好ましい。配合比(C)/(B)が1/100未満では耐食性が不十分であり、配合比(C)/(B)が1/2を超えるとラミネートフィルムの密着性又は表面処理剤の貯蔵安定性が低下する傾向になる。
 また、Zr化合物(C1)とTi化合物(C2)は、配合比(C1)/(C2)が重量比で1/10以上2/1未満の範囲であることが必要である。Zr化合物(C1)とTi化合物(C2)をこの範囲内で共存させることにより、得られた表面処理皮膜とラミネートした樹脂フィルム又は押出ラミネート樹脂との密着性を高めることができ、さらに金属表面の耐食性を高めることができる。なお、Zr化合物(C1)とTi化合物(C2)をこの範囲内で共存させない場合には、ラミネート金属材料用の下地皮膜としての十分な特性(密着性と耐食性)を得ることができない。具体的には、配合比(C1)/(C2)が1/10未満では密着性の低下又は外観不良が起こり、配合比(C1)/(C2)が2/1以上の場合は耐食性が低下する傾向となる。
 したがって、本発明は、後述する実施例及び比較例の結果からも明らかなよう、Zr化合物(C1)とTi化合物(C2)とを共存させ、しかも両者の含有比に着目して前記特定の範囲内とすることにより、高い密着性(加工密着性を含む。)及び高い耐食性(特に耐強酸性及び耐強アルカリ性)を得るという冒頭の課題を解決できることを見出したものである。
 (フッ素含有無機化合物)
 フッ素含有無機化合物(D)は、液中に遊離フッ化物イオン又は錯フッ化物イオンを放出し、表面処理皮膜の形成対象となる金属表面に対するエッチング剤としての役割を果たすものである。フッ素含有無機化合物(D)としては特に限定されず、例えば、遊離フッ化物イオンを放出するものとしてフッ化水素酸、フッ化アンモニウム、フッ化ナトリウム等を挙げることができる。また、錯フッ化物としては、ヘキサフルオロケイ酸、ヘキサフルオロケイ酸亜鉛、ヘキサフルオロケイ酸マンガン、ヘキサフルオロケイ酸マグネシウム、ヘキサフルオロケイ酸ニッケル、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸等を挙げることができる。上記化合物は1種類を単独で使用してもよいし、2種類以上を混合して用いてもよい。
 フッ素含有無機化合物(D)は、単独の化合物として配合されてもよいし、上記したZr化合物(C1)又はTi化合物(C2)であってもよい。Zr化合物(C1)又はTi化合物(C2)がフッ素を含有する場合には、フッ素を含有するZr化合物(C1)又はTi化合物(C2)がここでいうフッ素含有無機化合物(D)となる。なお、この場合、Zr化合物(C1)又はTi化合物(C2)は、それ以外のフッ素含有無機化合物とともに含まれていてもよい。
 フッ素含有無機化合物(D)は、カチオン性ウレタン樹脂(B)に対するフッ素原子の配合量(フッ素原子)/(B)が重量比で1/1000以上2/1以下であることが必要であり、1/500以上1/1以下であることが好ましく、1/250以上1/2以下であることがより好ましい。フッ素原子/(B)が1/1000未満では密着性が不十分となり、フッ素原子/(B)が2/1を超えると水系表面処理剤の安定性が低下する。なお、フッ素原子は原子換算質量である。
 (他の任意成分)
 本発明に係る表面処理剤には、さらに任意成分としてV化合物、Mo化合物、W化合物、Co化合物、Al化合物、Zn化合物、Ni化合物、Mn化合物、Ce化合物、Nb化合物、Sn化合物、Mg化合物及びCr化合物から選ばれる少なくとも1種の金属化合物(E)を配合することができる。これら金属化合物(E)は、特に耐食性を向上させる効能を有する。金属化合物(E)としては、上記金属の炭酸塩、酸化物、水酸化物、硝酸塩、硫酸塩、リン酸塩、フッ化錯化合物、有機酸塩、有機錯化合物等が挙げられる。
 V化合物、Mo化合物、W化合物、Co化合物、Al化合物、Zn化合物としては、具体的には、五酸化バナジウム、メタバナジン酸HVO、メタバナジウム酸アンモニウム、オキシ三塩化バナジウムVOCl、三酸化バナジウムV、二酸化バナジウム、オキシ硫酸バナジウムVOSO、バナジウムオキシアセチルアセトネートVO(OC(=CH)CHCOCH、三塩化バナジウムVCl;リンバナドモリブデン酸H15-X[PV12-XMoO40]・nH2O(6<X<12,n<30)、酸化モリブデン、モリブデン酸HMoO、モリブデン酸アンモニウム、パラモリブデン酸アンモニウム、モリブデン酸ナトリウム、モリブドリン酸化合物(例えば、モリブリン酸アンモニウム(NH[POMo1236]・3HO、モリブドリン酸ナトリウムNa[POMo1236]・nHO等);メタタングステン酸H[H1240]、メタタングステン酸アンモニウム(NH[H1240]、メタタングステン酸ナトリウム、パラタングステン酸H10[W124610]、パラタングステン酸アンモニウム、パラタングステン酸ナトリウム;塩化コバルト、クロロペンタアンミンコバルト塩化物[CoCl(NH]Cl、ヘキサアンミンコバルト塩化物[Co(NH]Cl2、クロム酸コバルト、硫酸コバルト、硫酸アンモニウムコバルト、硝酸コバルト、酸化コバルト2アルミニウムCoO・Al、水酸化コバルト、リン酸コバルト;硝酸ニッケル、硫酸ニッケル、炭酸ニッケル、ニッケルアセチルアセトネートNi(OC(=CH)CHCOCH、塩化ニッケル、ヘキサアンミンニッケル塩化物[Ni(NH]Cl2、酸化ニッケル、水酸化ニッケル;硝酸アルミニウム、硫酸アルミニウム、硫酸カリウムアルミニウム、硫酸ナトリウムアルミニウム、硫酸アンモニウムアルミニウム、リン酸アルミニウム、炭酸アルミニウム、酸化アルミニウム、水酸化アルミニウム、ヨウ化アルミニウム;硫酸亜鉛、炭酸亜鉛、塩化亜鉛、ヨウ化亜鉛、亜鉛アセチルアセトネートZn(OC(=CH)CHCOCH、リン酸2水素亜鉛;等が挙げられる。
 Mn化合物、Ce化合物、Nb化合物、Sn化合物、Mg化合物及びCr化合物としては、具体的には、過マンガン酸HMnO、過マンガン酸カリウム、過マンガン酸ナトリウム、リン酸2水素マンガンMn(HPO、硝酸マンガンMn(NO、硫酸マンガン(II)、(III)若しくは(IV)、フッ化マンガン(II)若しくは(III)、炭酸マンガン、酢酸マンガン(II)若しくは(III)、硫酸アンモニウムマンガン、マンガンアセチルアセトネートMn(OC(=CH)CHCOCH、ヨウ化マンガン、酸化マンガン、水酸化マンガン;酸化セリウム、酢酸セリウムCe(CHCO、硝酸セリウム(III)若しくは(IV)、硝酸セリウムアンモニウム、硫酸セリウム、塩化セリウム;五酸化ニオブ(Nb)、ニオブ酸ナトリウム(NaNbO)、フッ化ニオブ(NbF)、ヘキサフルオロニオブ酸アンモニウム(NH)NbF;酸化スズ(IV)、スズ酸ナトリウムNaSnO、塩化スズ(II)、塩化スズ(IV)、硝酸スズ(II)、硝酸スズ(IV)、ヘキサフルオロスズ酸アンモニウム(NH)SnF;硝酸マグネシウム、硫酸マグネシウム、炭酸マグネシウム、水酸化マグネシウム、フッ化マグネシウム、リン酸アンモニウムマグネシウム、リン酸水素マグネシウム、酸化マグネシウム;酢酸クロム、硫酸クロム、硝酸クロム、フッ化クロム、燐酸クロム、クロムアセチルアセトネート(Cr(C);等が挙げられる。
 金属化合物(E)は、カチオン性ウレタン樹脂(B)に対し、配合比(E)/(B)の重量比で1/1000以上1/2以下が適当であり、1/100以上1/4以下であることがより好ましく、1/50以上1/8以下であることがより一層好ましい。金属化合物(E)とカチオン性ウレタン樹脂(B)との配合比(E)/(B)が重量比で1/1000未満では、密着性向上などに効果が無く、一方、1/2を超えると、薬剤の貯蔵安定性が著しく低下する。なお、配合比(E)/(B)での「(E)」は、金属化合物(E)の原子換算質量である。
 また、本発明に係る表面処理剤には必要に応じてシリカ成分を含有させてもよい。例えばシリカ成分としては、気相シリカ、コロイダルシリカ、疎水性シリカ等が使用できる。シリカ成分を含有させることより、表面処理剤の消泡剤として作用するとともに、ラミネートとの密着性を向上させ得るような好ましい効果をもたらすことができる。
 こうしたシリカは、カチオン性ウレタン樹脂(B)に対し、配合比(シリカ)/(B)の重量比で1/100以上1/5以下が適当であり、1/50以上1/10以下であることがより好ましい。シリカとカチオン性ウレタン樹脂(B)との配合比(シリカ)/(B)が重量比で1/100未満では、密着性等に効果がなく、一方、1/5を超えると、皮膜が脆くなり密着性が著しく低下する。なお、配合比(シリカ)/(B)での「(シリカ)」は、酸化ケイ素の原子換算質量である。
 本発明に係る表面処理剤には、さらに任意成分として、被塗面に均一な皮膜を得るための濡れ性向上剤と呼ばれる界面活性剤又は増粘剤等を水系表面処理剤の液安定性及び皮膜性能を損なわない範囲で配合しうる。
 (その他の構成)
 本発明に係る表面処理剤で用いる媒体は、通常、水であるが、得られる表面処理皮膜の乾燥性を改善する等の目的で少量(例えば水性媒体全体の10容量%以下)のアルコール、ケトン、セロソルブ系の水溶性有機溶剤を併用してもよい。
 本発明に係る表面処理剤のpHについては特に制限はないが、3~12の範囲であるのが好ましく、4~8の範囲であるのがより好ましい。アルミニウム又はその合金を対象素材とした場合、pHが3未満の場合にはエッチング過多となり、表面処理剤としての機能を十分に発揮できなくなり、また液安定性も低下する傾向にある。pHが12を超えた場合には、アルミニウム又はその合金の溶解速度が増加し、また、シランカップリング剤(A)の貯蔵安定性にも悪影響がでる傾向にある。pH調整の必要がある場合には、アンモニア、ジメチルアミン及びトリエチルアミン等のアルカリ成分、又は、酢酸及びリン酸等の酸性成分を添加することもできる。
 本発明に係る表面処理剤における合計固形分濃度の下限については、本発明の効果が達成しうる限り特に制限はないが、上限については液安定性の観点から制限される。本発明に係る表面処理剤の合計固形分濃度は0.1~40質量%の範囲に調整するのが好ましく、1~30質量%の範囲に調整するのがより好ましく、5~25質量%の範囲に調整するのがより一層好ましい。
 本発明に係る表面処理剤は、シランカップリング剤(A)と、カチオン性ウレタン樹脂(B)と、Zr化合物(C1)と、Ti化合物(C2)と、フッ素含有無機化合物(D)と、場合によっては金属化合物(E)を、分散媒である水中に添加し、撹拌することによって製造される。その添加順序に特に制限は無い。
 [表面処理方法]
 次に、本発明に係る表面処理剤を適用した表面処理方法について説明する。本発明に係る表面処理剤を適用できる金属材料としては、アルミニウム箔、アルミニウム合金箔、ステンレス鋼箔等を好適な素材として挙げることができる。こうした金属材料の厚さは特に限定されず、箔、シート、板と称呼されるものに対して適用できるが、本発明では、表面処理剤で表面処理皮膜を形成した後にラミネート加工し、その後に深絞り加工、しごき加工又はストレッチドロー加工等を行ってリチウムイオン二次電池の外装材等に加工されるので、そうした用途に用いられる厚さのものであることが好ましい。例えば、厚さ0.01~2mm程度の箔を金属材料として好ましく適用できる。
 表面処理剤を用いた表面処理方法において、先立つ前処理工程は特に制限はないが、通常は本処理を行う前に金属材料に付着した油分又は汚れを取り除くために、アルカリ脱脂剤又は酸性脱脂剤で洗浄するか、湯洗、溶剤洗浄等を行う。その後、必要に応じて、酸又はアルカリ等による表面調整を行う。これらの処理を行った後においては、洗浄剤が金属材料の表面になるべく残留しないように、水洗することが好ましい。
 金属材料への表面処理剤の塗布には、従来の塗布方法、例えば、ロールコート、カーテンフローコート、エアースプレー、エアーレススプレー、浸漬、バーコート、刷毛塗り等の通常の塗布方法を採用することができる。表面処理剤の温度についても特に制限はないが、本処理剤の溶媒は水が主体の水系処理剤であるため、その温度は0~60℃であることが好ましく、5~40℃であることがより好ましい。
 表面処理剤で処理して表面処理皮膜を形成した後の乾燥工程において、カチオン性ウレタン樹脂(B)の硬化を促進する必要がなく且つ付着水の除去だけを行う場合は、必ずしも熱を必要とせず、風乾又はエアーブロー等によって水を除去するだけで構わない。しかし、カチオン性ウレタン樹脂(B)の硬化を促進するため、又は形成した表面処理皮膜を熱軟化させて地金属材料上での均一な被覆効果を高めるためには、加熱処理することが好ましい。その加熱処理温度は、50~250℃が好ましく、60~220℃がより好ましい。
 [表面処理皮膜]
 上記表面処理方法で形成された表面処理皮膜は、その付着量が乾燥皮膜重量として0.01~1g/mの範囲であることが好ましい。付着量のさらに好ましい範囲は0.01~0.5g/mの範囲であり、より好ましくは0.03~0.25g/mである。付着量が0.005g/m未満では、皮膜量が少ないために耐食性が不十分となる。また、付着量が1g/mを超えると、むしろ密着性が悪化するとともに、コスト面でも不利になる。表面処理皮膜は、目的に応じて金属材料表面の片面に処理しても構わない。
 [ラミネート金属材料の製造方法]
 次に、本発明に係るラミネート金属材料の製造方法について説明する。ラミネート金属材料は、金属材料の表面に、本発明に係る表面処理剤を用いて上記表面処理方法で表面処理皮膜を形成し、さらにその表面処理皮膜上に樹脂フィルム(ラミネートフィルムともいう。)又は押出ラミネート樹脂をラミネートすることにより製造される。樹脂フィルムは、目的に応じて表面処理金属材料の片面のみでも、両面に形成させても構わない。
 樹脂フィルムのラミネートは、(i)下地皮膜である表面処理皮膜の形成後に樹脂フィルムを直接ラミネートする方法、(ii)下地皮膜である表面処理皮膜の形成後にプライマーと呼ばれる接着向上剤(ポリエステル系接着剤、ポリエーテル系接着剤等)を塗布形成し、その後に樹脂フィルムをラミネートする方法、の2つに大別される。要求品質とコストにより、どちらかを選択する。なお、ラミネートには、樹脂フィルムをラミネートする方法と、溶融状態の樹脂をラミネートする方法(一般に「押出しラミネート」と呼ばれ、その樹脂を「押出ラミネート樹脂」と呼ぶ。)のいずれの方法も用いることができる。ラミネートされる樹脂フィルム又は押出ラミネート樹脂の樹脂材料としては、特に制限はされるものではないが、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂又はこれらの変性樹脂を好ましく挙げることができる。
 本発明に係るラミネート金属材料の製造方法では、上記した本発明に係る表面処理剤を適用する。その表面処理剤は、ラミネートフィルムとの密着性(加工密着性を含む。)及び耐食性(特に耐強酸性、耐強アルカリ性)に優れ、ラミネート金属材料、ラミネート金属容器又はラミネート金属包装材を作製するために特に好ましい表面処理剤である。さらに、その表面処理剤は、六価クロムを有さず、近年の環境問題をも考慮した完全クロムフリーであり、環境負荷が少ないという利点もある。以上より、本発明に係るラミネート金属材料の製造方法は、密着性、耐食性に優れた金属容器又は包装材をラミネート金属材料として提供できるという優れた効果を奏する。
 以下、実施例と比較例を挙げて本発明をさらに具体的に説明する。本発明は以下の実施例のみに限定されるものではない。なお、以下において、「部」は重量部(質量部と同義)である。
 [実施例1~30、比較例1~21]
 (供試材及び前処理)
 供試材として、市販のアルミニウム合金板(アルミニウム-マンガン合金板:JIS A 3004、板厚:0.3mm、板寸法:200mm×300mm)を用いた。このアルミニウム合金板については、市販の酸性洗浄剤(パルクリーン500:日本パーカライジング株式会社製)の8%水溶液を75℃で20秒スプレーすることにより洗浄し、次いで水洗してその表面を清浄にした。一方、他の供試材として、市販のステンレス鋼板(JIS SUS304、板厚:0.3mm、板寸法:200mm×300mm)を用いた。このステンレス鋼板については、市販の洗浄剤(ファインクリーナー4328:日本パーカライジング株式会社製)の2%水溶液を60℃で20秒スプレーすることにより洗浄し、次いで水洗してその表面を清浄にした。
 (表面処理及び表面処理剤)
 前処理後の供試材の表面(片面)に、表1に示す配合で形成した表面処理剤を用いて、ロールコーターにて乾燥皮膜重量(付着量)が0.1g/mとなるように塗布し、熱風乾燥炉で供試材の到達温度が80℃となるように乾燥した。
 表1において、No.1~30は本発明に係る表面処理剤(実施例1~30)であり、No.31~47は本発明の範囲外の表面処理剤(比較例1~17)である。No.15のシランカップリング剤(A)を構成するA1のアミノ基とA3のグリシジル基との当量比は5:1である。また、表1において、(A)/(B)はシランカップリング剤(A)とカチオン性ウレタン樹脂(B)との配合質量比であり、(C1)/(C2)はZr化合物(C1)とTi化合物(C2)との配合質量比であり、(C)/(B)はZr化合物及びTi化合物の合計とカチオン性ウレタン樹脂(B)との配合質量比であり、(E)/(B)は金属化合物を構成する金属種(E)(原子換算重量)とカチオン性ウレタン樹脂(B)との配合質量比であり、フッ素/(B)はフッ素含有無機化合物(D)を構成するフッ素(原子換算重量)とカチオン性ウレタン樹脂(B)との配合質量比である。表1における各成分の内容を以下に示す。
 <シランカップリング剤(A)>
 A1:γ-アミノプロピルトリエトキシシラン
 A2:2-アミノエチル-3-アミノプロピルトリメトキシシラン
 A3:γ-グリシドキシプロピルトリメトキシシラン
 A4:γ-メルカプトプロピルトリメトキシシラン
 <カチオン性水系ポリウレタン樹脂(B)>
 B1:カチオン性ポリエーテル系ポリウレタン水分散体
 B2:カチオン性ポリエステル系ポリウレタン水分散体
 B3:カチオン性ポリカーボネート系ポリウレタン水分散体
 B4:スーパーフレックス410(アニオン性ポリカーボネート系ポリウレタン水分散体、第一工業製薬株式会社製)
 B5:プライマルK-3(ポリアクリル樹脂、ROHM AND HAAS社製)
 上記のうちB1,B2及びB3は以下の手法にて調整した。
 『B1:カチオン性ポリエーテル系ポリウレタン樹脂(水分散体)』
 150質量部のポリエーテルポリオール(合成成分:ポリテトラメチレングリコール及びエチレングリコール、分子量1500)と、6質量部のトリメチロールプロパンと、24質量部のN-メチル-N,N-ジエタノールアミンと、94質量部のイソホロンジイソシアネートと、135質量部のメチルエチルケトンとを反応容器に分取し、70~75℃に保ちながら反応させてなるウレタンプレポリマーに、15質量部の硫酸ジメチルを添加し、50~60℃で30~60分間反応させて、カチオン性ウレタンプレポリマーを得た。さらに576質量部の水を前記カチオン性ウレタンプレポリマーに添加し、均一に乳化させた後、メチルエチルケトンを回収して、カチオン性の水溶性ポリウレタン樹脂(B1)を得た。
 『B2:カチオン性ポリエステル系ポリウレタン樹脂(水分散体)』
 135質量部のポリエステルポリオール(合成成分:イソフタル酸、アジピン酸及び1,6-へキサンジオール、エチレングリコール、分子量1700)と、5質量部のトリメチロールプロパンと、22質量部のN-メチル-N,N-ジエタノールアミンと、86質量部のイソホロンジイソシアネートと、120質量部のメチルエチルケトンとを反応容器に分取し、70~75℃に保ちながら反応させてなるウレタンプレポリマーに、17質量部の硫酸ジメチルを添加し、50~60℃で30~60分間反応させ、カチオン性ウレタンプレポリマーを得た。さらに615質量部の水を前記カチオン性ウレタンプレポリマーに添加し、均一に乳化させた後、メチルエチルケトンを回収して、カチオン性の水溶性ポリウレタン樹脂(B2)を得た。
 『B3:カチオン性ポリカーボネート系ポリウレタン樹脂(水分散体)』
 130質量部のポリカーボネートポリオール(合成成分:1,6-ヘキサンカーボネートジオール、エチレングリコール、分子量2000)と、4質量部のトリメチロールプロパンと、21質量部のN-メチル-N,N-ジエタノールアミンと、75質量部のイソホロンジイソシアネートと、115質量部のメチルエチルケトンとを反応容器に分取し、70~75℃に保ちながら反応させてなるウレタンプレポリマーに、22質量部の硫酸ジメチルを添加し、50~60℃で30~60分間反応させ、カチオン性ウレタンプレポリマーを得た。さらに633質量部の水を前記カチオン性ウレタンプレポリマーに添加し、均一に乳化させた後、メチルエチルケトンを回収して、カチオン性の水溶性ポリウレタン樹脂(B3)を得た。
 <Zr化合物(C1)>
 C11:ヘキサフルオロジルコニウム酸
 C12:ヘキサフルオロジルコニウム酸アンモニウム
 C13:ジルコニウムアセチルアセトネート
 C14:炭酸ジルコニウムアンモニウム
 C15:ジルコニアゾル
 <Ti化合物(C2)>
 C21:チタニウムアセチルアセトネート
 C22:硫酸チタニル
 C23:ヘキサフルオロチタン酸
 C24:ヘキサフルオロチタン酸アンモニウム
 C25:チタンラウレート
 <フッ素含有無機化合物(D)>
 D1:フッ化アンモニウム
 D2:フッ化水素酸
 D3:ヘキサフルオロ珪酸
 <金属化合物(E)>
 E1:バナジールアセチルアセトネート
 E2:モリブデン酸アンモニウム
 E3:メタタングステン酸アンモニウム
 E4:硝酸コバルト
 E5:水酸化アルミニウム
 E6:硝酸セリウムアンモニウム
 E7:炭酸ニッケル
 <シリカ>
 シリカとしてはコロイダルシリカ(日産化学工業株式会社製、商品名:スノーテックスO)を用いた。シリカを加えた表面処理剤は、表1中のNo.6及びNo.7の表面処理剤である。シリカの配合比は表1中には記載していないが、No.6の表面処理剤はNo.5の表面処理剤に、配合比(シリカ)/(B)を1/50として配合したものであり、No.7の表面処理剤はNo.5の表面処理剤に、配合比(シリカ)/(B)を1/10として配合したものである。
Figure JPOXMLDOC01-appb-T000001
 (フィルムラミネート)
 表面処理皮膜が形成された供試材上に、熱可塑性ポリエステルフィルム(膜厚30μm)を250℃で5秒間の条件でヒートラミネートして、ラミネート金属材料を得た。ヒートラミネート時の面圧は50kg/cmで行った。
 [比較例18~21]
 比較例18として、市販のりん酸クロメート処理剤(AM-K702:日本パーカライジング株式会社製)を50℃で5秒間スプレー処理し、水洗して未反応の薬剤を除去し、80℃で1分間加熱乾燥して試験片(Cr付着量は20mg/m)を得た。また、比較例19として、市販のりん酸ジルコニウム処理剤(AL-404:日本パーカライジング株式会社製)を40℃で20秒間スプレー処理し、水洗して未反応の薬剤を除去し80℃で1分間加熱乾燥して試験片(Zr付着量は15mg/m)を得た。また、比較例20,21として、脱脂のみの試験片も作製した。
 [評価試験]
 (1次密着性)
 フィルムラミネートした前記ラミネート金属材料をφ140mmに打ち抜き、この打ち抜き板を絞り加工して絞りカップを作製した。次いで、このカップを再度絞り、さらにしごき加工を3枚のダイで行って、絞りしごき缶(缶体)を成形した。
 前記絞りしごき加工した後の缶体の外観を観察し、破断が生じた場合を「×」、破断しないもののキズが入った場合を「△」、破断もキズもない場合を「○」として評価した。そして、「○」と評価された缶体を用い、市販のエナメルレーター(Peco社製)で漏れ電流を測定した。測定液として0.5%食塩水を用い、6.3Vで4秒後の電流値を測定した。電流値は低い方が好ましく、0.1mA未満の場合を「◎」、0.1mA以上0.3mA未満の場合を「○」、0.3mA以上1.0mA未満の場合を「△」、1.0mA以上の場合を「×」として評価した。
 (2次密着性)
 5%の水酸化ナトリウム水溶液を注いだ缶体と5%の硫酸水溶液を注いだ缶体とを、25℃で2週間保管した。次いで、これらの缶体を水洗し、濯いだ後、先と同様に市販のエナメルレーター(Peco社製)で漏れ電流を測定した。測定液も先と同様の0.5%食塩水を用い、6.3Vで4秒後の電流値を測定した。電流値は先と同様に低い方が好ましく、0.1mA未満の場合を「◎」、0.1mA以上0.3mA未満の場合を「○」、0.3mA以上1.0mA未満の場合を「△」、1.0mA以上の場合を「×」として評価した。耐酸性、耐アルカリ性の劣るものは、この際の電流値が大きくなる。
 (貯蔵安定性)
 表面処理剤を40℃の恒温装置に3ヶ月貯蔵し、その後のゲル化又は沈殿等の状態を肉眼で観察し、次の基準に従って貯蔵安定性を評価した。この際、変化が無かった場合を「○」、増粘した場合を「△」、ゲル化又は沈殿した場合を「×」として評価した。
 [評価結果]
 実施例1~32及び比較例1~21の各試験片について、前記試験を実施し、評価基準にしたがって判定を行った。その結果を表2に示す。表2の結果から明らかなように、本発明に係る表面処理剤は、ラミネートフィルム用の表面処理として適用した場合に優れた性能を発揮することがわかった。特にZr化合物(C1)とTi化合物(C2)とを共存させ且つ両者の含有比を1/10以上2/1未満としたことにより、特に強酸及び強アルカリの両方に対する2次密着性に優れていることが分かった。また、シリカを含有させた表面処理剤を用いた実施例6及び実施例7は、全ての評価項目において優れることが分かった。また、成分組成をより好ましい形態や範囲とした実施例9~12及び実施例15は、全ての項目において優れることが分かった。
Figure JPOXMLDOC01-appb-T000002

Claims (6)

  1.  シランカップリング剤(A)、カチオン性ウレタン樹脂(B)、Zr化合物(C1)、Ti化合物(C2)及びフッ素含有無機化合物(D)を含有し、
     配合比(A)/(B)が重量比で1/50以上20/1以下、配合比(C)/(B)が重量比で1/100以上1/2以下(但し、(C)の重量は(C1)と(C2)の合計である。)、配合比(フッ素原子)/(B)が重量比で1/1000以上2/1以下、且つ、配合比(C1)/(C2)が重量比で1/10以上2/1未満であることを特徴とするラミネート金属材料用表面処理剤。
  2.  前記カチオン性ウレタン樹脂(B)が、第2級アミノ基及び第3級アミノ基から選ばれるアミノ性官能基を含有する、請求項1に記載のラミネート金属材料用表面処理剤。
  3.  前記シランカップリング剤(A)全体の5質量%以上が、第1級アミノ基、第2級アミノ基、第3級アミノ基及び第4級アンモニウム基から選ばれるアミノ性官能基を有するシランカップリング剤である、請求項1又は2に記載のラミネート金属材料用表面処理剤。
  4.  前記Zr化合物(C1)及び前記Ti化合物(C2)が、フッ化物又はフルオロ酸若しくはフルオロ酸塩である、請求項1~3のいずれか1項に記載のラミネート金属材料用表面処理剤。
  5.  請求項1~4のいずれか1項に記載のラミネート金属材料用表面処理剤を金属材料の表面に塗布乾燥して0.01~1g/mの皮膜を形成し、次いで、ポリエステル系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂又はこれらの変性樹脂をラミネートすることを特徴とするラミネート金属材料の製造方法。
  6.  前記金属材料がアルミニウム系又はステンレス鋼系の金属箔である、請求項5に記載のラミネート金属材料の製造方法。
PCT/JP2010/068809 2009-10-30 2010-10-25 ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法 WO2011052520A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020127013818A KR101444566B1 (ko) 2009-10-30 2010-10-25 라미네이트 금속 재료용 표면 처리제 및 라미네이트 금속 재료의 제조 방법
JP2011538405A JP5663490B2 (ja) 2009-10-30 2010-10-25 ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法
CN2010800486128A CN102666922A (zh) 2009-10-30 2010-10-25 层压金属材料用表面处理剂及层压金属材料的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-249886 2009-10-30
JP2009249886 2009-10-30

Publications (1)

Publication Number Publication Date
WO2011052520A1 true WO2011052520A1 (ja) 2011-05-05

Family

ID=43921942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068809 WO2011052520A1 (ja) 2009-10-30 2010-10-25 ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法

Country Status (5)

Country Link
JP (1) JP5663490B2 (ja)
KR (1) KR101444566B1 (ja)
CN (1) CN102666922A (ja)
TW (1) TWI532880B (ja)
WO (1) WO2011052520A1 (ja)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8343238B1 (en) 2011-12-30 2013-01-01 L'oreal Sa. Process for altering the appearance of hair using a composition containing dyes and non-hydroxide bases
US8506651B2 (en) 2011-12-30 2013-08-13 L'oreal S.A. Process for altering the appearance of hair using a composition containing dyes and non-hydroxide bases
US8556994B2 (en) 2011-12-30 2013-10-15 L'oreal Process for altering the appearance of hair using a composition containing direct dyes and non-hydroxide bases
US8591872B2 (en) 2011-12-30 2013-11-26 L'oreal Composition and process for reducing the curl and frizziness of hair
JP2014528520A (ja) * 2011-10-14 2014-10-27 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ 固体金属基材の防食処理方法およびかかる方法により得ることができる処理された固体金属基材
JP2015134957A (ja) * 2013-12-18 2015-07-27 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料
CN105441920A (zh) * 2015-11-12 2016-03-30 上海耀岩化学品有限公司 以硅烷偶联剂为主要成分的金属表面处理剂及其制备方法
JP2016176111A (ja) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 表面処理方法、表面処理装置およびアルミニウム表面処理材料
JP2016176097A (ja) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 表面処理方法、表面処理装置およびアルミニウム表面処理材料
EP3470549A4 (en) * 2016-06-12 2020-02-19 Baoshan Iron & Steel Co., Ltd. SURFACE TREATMENT AGENT, ENAMEL AND COVERED PART
WO2022075235A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 有機樹脂被覆用表面処理鋼板及びその製造方法、並びに有機樹脂被覆鋼板及びその製造方法
JP2023505688A (ja) * 2019-12-11 2023-02-10 ポスコホールディングス インコーポレーティッド 金属-プラスチック複合素材及びこの製造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150046303A (ko) 2012-08-29 2015-04-29 피피지 인더스트리즈 오하이오 인코포레이티드 리튬을 함유하는 지르코늄 전처리 조성물, 관련된 금속 기판 처리 방법 및 관련된 코팅된 금속 기판
EP2890830B1 (en) 2012-08-29 2018-06-27 PPG Industries Ohio, Inc. Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
CN103526195B (zh) * 2013-09-27 2016-06-01 宁波英科特精工机械股份有限公司 一种金属表面防腐蚀处理剂及其制备方法
CN103540918A (zh) * 2013-09-27 2014-01-29 宁波金恒机械制造有限公司 一种铸铁表面防腐处理剂
CN103540917B (zh) * 2013-09-27 2016-06-22 宁波英科特精工机械股份有限公司 一种金属表面处理剂及其制备方法
CN104726855A (zh) * 2013-12-18 2015-06-24 日本帕卡濑精株式会社 水系金属表面处理剂、金属表面处理被膜及带有金属表面处理被膜的金属材料
CN104900481B (zh) * 2014-03-04 2018-06-01 中芯国际集成电路制造(上海)有限公司 清洗焊盘的方法
KR102313803B1 (ko) * 2015-01-20 2021-10-15 에스케이넥실리스 주식회사 연성회로 동장 적층판과 이를 이용한 인쇄회로 기판 및 그 제조 방법
KR102313800B1 (ko) * 2015-01-20 2021-10-15 에스케이넥실리스 주식회사 연성회로 동장 적층판과 이를 이용한 인쇄회로 기판 및 그 제조 방법
KR101867913B1 (ko) * 2015-01-20 2018-07-23 케이씨에프테크놀로지스 주식회사 연성회로 동장 적층판과 이를 이용한 인쇄회로 기판 및 그 제조 방법
CA3034712C (en) 2016-08-24 2021-10-12 Ppg Industries Ohio, Inc. Alkaline composition for treating metal substartes
EP3336219B1 (de) * 2016-12-19 2019-04-17 Henkel AG & Co. KGaA Verfahren zur korrosionsschützenden und reinigenden vorbehandlung von metallischen bauteilen
WO2019188649A1 (ja) * 2018-03-29 2019-10-03 日本パーカライジング株式会社 表面処理剤、並びに表面処理皮膜を有するアルミニウム又はアルミニウム合金材料及びその製造方法
CN112281148A (zh) * 2020-10-27 2021-01-29 宁波沈鑫电子有限公司 一种金属表面处理剂

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328445A (ja) * 2005-05-23 2006-12-07 Nippon Parkerizing Co Ltd プレコート金属材料用水系表面処理剤、表面処理方法及びプレコート金属材料の製造方法
JP2009127061A (ja) * 2007-11-20 2009-06-11 Kansai Paint Co Ltd 金属表面処理組成物
JP2009127057A (ja) * 2007-11-19 2009-06-11 Kansai Paint Co Ltd 金属表面処理組成物

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3998057B2 (ja) * 2002-04-23 2007-10-24 日本ペイント株式会社 ノンクロム金属表面処理方法、及び、アルミニウム又はアルミニウム合金板
JP3904984B2 (ja) * 2002-06-14 2007-04-11 日本ペイント株式会社 被覆金属材料、及び、ノンクロム金属表面処理方法
JP3904983B2 (ja) * 2002-06-14 2007-04-11 日本ペイント株式会社 被覆金属材料、及び、ノンクロム金属表面処理方法
JP4083661B2 (ja) * 2003-10-16 2008-04-30 古河スカイ株式会社 片面ラミネート被覆深絞りしごき缶用アルミニウム合金条の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328445A (ja) * 2005-05-23 2006-12-07 Nippon Parkerizing Co Ltd プレコート金属材料用水系表面処理剤、表面処理方法及びプレコート金属材料の製造方法
JP2009127057A (ja) * 2007-11-19 2009-06-11 Kansai Paint Co Ltd 金属表面処理組成物
JP2009127061A (ja) * 2007-11-20 2009-06-11 Kansai Paint Co Ltd 金属表面処理組成物

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014528520A (ja) * 2011-10-14 2014-10-27 ユニヴェルシテ ポール サバティエ トゥールーズ トロワ 固体金属基材の防食処理方法およびかかる方法により得ることができる処理された固体金属基材
US8343238B1 (en) 2011-12-30 2013-01-01 L'oreal Sa. Process for altering the appearance of hair using a composition containing dyes and non-hydroxide bases
US8506651B2 (en) 2011-12-30 2013-08-13 L'oreal S.A. Process for altering the appearance of hair using a composition containing dyes and non-hydroxide bases
US8556994B2 (en) 2011-12-30 2013-10-15 L'oreal Process for altering the appearance of hair using a composition containing direct dyes and non-hydroxide bases
US8591872B2 (en) 2011-12-30 2013-11-26 L'oreal Composition and process for reducing the curl and frizziness of hair
JP2015134957A (ja) * 2013-12-18 2015-07-27 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料
JP2019167625A (ja) * 2013-12-18 2019-10-03 日本パーカライジング株式会社 水系金属表面処理剤、金属表面処理皮膜及び金属表面処理皮膜付き金属材料
JP2016176097A (ja) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 表面処理方法、表面処理装置およびアルミニウム表面処理材料
JP2016176111A (ja) * 2015-03-20 2016-10-06 株式会社神戸製鋼所 表面処理方法、表面処理装置およびアルミニウム表面処理材料
CN105441920A (zh) * 2015-11-12 2016-03-30 上海耀岩化学品有限公司 以硅烷偶联剂为主要成分的金属表面处理剂及其制备方法
EP3470549A4 (en) * 2016-06-12 2020-02-19 Baoshan Iron & Steel Co., Ltd. SURFACE TREATMENT AGENT, ENAMEL AND COVERED PART
JP2023505688A (ja) * 2019-12-11 2023-02-10 ポスコホールディングス インコーポレーティッド 金属-プラスチック複合素材及びこの製造方法
JP7368627B2 (ja) 2019-12-11 2023-10-24 ポスコホールディングス インコーポレーティッド 金属-プラスチック複合素材及びこの製造方法
US11993056B2 (en) 2019-12-11 2024-05-28 Posco Metal-plastic composite material and method for manufacturing same
WO2022075235A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 有機樹脂被覆用表面処理鋼板及びその製造方法、並びに有機樹脂被覆鋼板及びその製造方法
JP7060178B1 (ja) * 2020-10-05 2022-04-26 Jfeスチール株式会社 有機樹脂被覆用表面処理鋼板及びその製造方法、並びに有機樹脂被覆鋼板及びその製造方法

Also Published As

Publication number Publication date
JP5663490B2 (ja) 2015-02-04
TW201132801A (en) 2011-10-01
KR101444566B1 (ko) 2014-09-24
KR20120079478A (ko) 2012-07-12
JPWO2011052520A1 (ja) 2013-03-21
CN102666922A (zh) 2012-09-12
TWI532880B (zh) 2016-05-11

Similar Documents

Publication Publication Date Title
JP5663490B2 (ja) ラミネート金属材料用表面処理剤及びラミネート金属材料の製造方法
JP2006328445A (ja) プレコート金属材料用水系表面処理剤、表面処理方法及びプレコート金属材料の製造方法
JP5108820B2 (ja) プレコート金属材料用水系表面処理剤、表面処理金属材料及びプレコート金属材料
JP5183586B2 (ja) プライマー兼用水系塗装下地処理剤、表面処理金属材料及びプレコート金属材料
TWI554647B (zh) An aqueous metal surface treatment agent and a metal material treated with the treatment agent
JP6080670B2 (ja) 塗装鋼板用下地処理組成物、並びに下地処理されためっき鋼板およびその製造方法、塗装めっき鋼板およびその製造方法
KR101129212B1 (ko) 환경 대응형 프리코팅 금속 재료용 수계 표면 처리제, 그리고 표면 처리 금속 재료 및 환경 대응형 프리코팅 금속 재료
KR101712253B1 (ko) 표면 처리 알루미늄판 및 유기 수지 피복 표면 처리 알루미늄판 그리고 이것을 이용하여 이루어지는 캔체 및 캔 덮개
JP5744654B2 (ja) 金属表面処理剤及びその処理剤で処理してなる金属材料
JP5663486B2 (ja) 複層表面処理鋼板に用いる接着層形成用組成物
JPWO2013161621A1 (ja) 傷部及び端面耐食性に優れた表面処理亜鉛系めっき鋼板及びその製造方法
EP0565346B1 (en) Phosphating treatment for metal substrates
JP6428857B2 (ja) 表面処理液及び該表面処理液を用いた表面処理アルミニウム板の製造方法並びに表面処理アルミニウム板
JP6186792B2 (ja) 表面処理アルミニウム板及び有機樹脂被覆表面処理アルミニウム板並びにこれを用いて成る缶体及び缶蓋
JP5442346B2 (ja) 化成処理鋼板の製造方法
JP2004176114A (ja) 高耐食性燃料タンク用防錆鋼板
JP6428856B2 (ja) 表面処理液及び該表面処理液を用いた表面処理アルミニウム板の製造方法並びに表面処理アルミニウム板
TW201527451A (zh) 金屬材料用表面處理劑、表面處理金屬材料及其製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048612.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538405

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127013818

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10826652

Country of ref document: EP

Kind code of ref document: A1