WO2011052333A1 - 走査荷電粒子線装置、及び色球面収差補正方法 - Google Patents

走査荷電粒子線装置、及び色球面収差補正方法 Download PDF

Info

Publication number
WO2011052333A1
WO2011052333A1 PCT/JP2010/066979 JP2010066979W WO2011052333A1 WO 2011052333 A1 WO2011052333 A1 WO 2011052333A1 JP 2010066979 W JP2010066979 W JP 2010066979W WO 2011052333 A1 WO2011052333 A1 WO 2011052333A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromatic
aberration
particle beam
charged particle
spherical aberration
Prior art date
Application number
PCT/JP2010/066979
Other languages
English (en)
French (fr)
Inventor
朝則 中野
猛 川▲崎▼
琴子 廣瀬
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to US13/502,754 priority Critical patent/US8772732B2/en
Priority to DE112010004145.8T priority patent/DE112010004145B4/de
Priority to JP2011538318A priority patent/JP5331893B2/ja
Publication of WO2011052333A1 publication Critical patent/WO2011052333A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/153Electron-optical or ion-optical arrangements for the correction of image defects, e.g. stigmators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams

Definitions

  • the present invention relates to a scanning charged particle beam apparatus that scans and irradiates a sample with a charged particle beam to acquire secondary electrons, reflected electrons, or transmitted electrons from the sample, and in particular, correction technology for chromatic spherical aberration in tilt observation thereof.
  • a scanning charged particle beam apparatus that scans and irradiates a sample with a charged particle beam to acquire secondary electrons, reflected electrons, or transmitted electrons from the sample, and in particular, correction technology for chromatic spherical aberration in tilt observation thereof.
  • Charged particle beam devices such as scanning electron microscopes (Scanning Electron Microscope: SEM) and transmission electron microscopes (Transmission Electron Microscope: TEM) use an electric or magnetic field to focus the charged particle beam.
  • a lens is always used. In an electric or magnetic lens, various aberrations inevitably occur. Therefore, even if an attempt is made to narrow the charged particle beam by increasing the reduction ratio, if the aberration is large, the spot diameter cannot be reduced, and the fine structure cannot be observed and the dimensional measurement accuracy cannot be improved.
  • This aberration corrector is usually composed of multipole lenses installed in multiple stages, and generates an electric field or magnetic field in the multipole lens, thereby removing aberrations contained in a charged particle beam passing through the interior.
  • Non-Patent Document 1 a technique for correcting chromatic aberration is disclosed.
  • Non-Patent Document 1 does not disclose chromatic spherical aberration (chromatic third-order aperture aberration or chromatic spherical aberration combination) measurement and chromatic spherical aberration correction technology at the time of tilt observation technology.
  • Non-patent document 2 discloses chromatic spherical aberration during aberration correction.
  • Non-Patent Document 2 discloses a condition in which the chromatic spherical aberration and the fifth-order spherical aberration increase due to aberration correction and the resolution is limited by using simulation, and the effective distance between the aberration corrector and the objective lens is reduced as a countermeasure. Is disclosed.
  • Non-Patent Document 2 does not disclose a method for actually measuring chromatic spherical aberration, and does not disclose a method for canceling chromatic spherical aberration and other aberrations during tilt observation.
  • Patent Document 1 discloses a technique in which the resolution is improved by performing aberration correction in tilt observation.
  • a chromatic spherical aberration correction technique at the time of chromatic spherical aberration measurement and tilt observation is not disclosed.
  • Patent Document 2 As a technique for detecting chromatic dispersion aberration of a charged particle beam apparatus and correcting it, there is a technique disclosed in Patent Document 2, for example. According to this technique, the movement due to the axis deviation when the acceleration voltage is changed from the current value is corrected. However, an aberration corrector and a tilt observation technique using the same are not disclosed.
  • An object of the present invention is to provide a scanning charged particle beam apparatus capable of improving resolution in tilt observation using an aberration corrector, and a chromatic spherical aberration correction method thereof, paying attention to such conventional problems. It is in.
  • a scanning charged particle beam apparatus using a charged particle beam which comprises a sample stage on which a sample is placed, and an aberration for correcting the aberration of the incident primary charged particle beam
  • An irradiating optical system having a corrector and a deflector for deflecting the primary charged particle beam installed on the aberration corrector, and scanning the primary charged particle beam with respect to the sample placed on the sample stage;
  • a detector for detecting secondary charged particles generated by scanning of the charged particle beam, a display unit for displaying an image of an output signal of the detector, and an irradiation angle of the primary charged particle beam to the sample using the deflector
  • a scanning charged particle beam apparatus and a chromatic spherical aberration correction method are provided which control to change the accelerating voltage to the primary charged particle beam and to measure the amount of chromatic spherical aberration.
  • the control unit determines the image per unit voltage with respect to the changed acceleration voltage with respect to the movement of the image caused by changing the acceleration voltage in the measurement of the amount of chromatic spherical aberration.
  • the movement amount and direction are calculated, and when calculating the image movement amount and direction per unit voltage, the inclination of the primary charged particle beam is measured at at least three different angles in the same direction with respect to the inclination axis to obtain the inclination angle.
  • the control unit in the measurement of the amount of chromatic spherical aberration, the control unit generates a focus shift by changing the acceleration voltage, and the unit of the acceleration voltage changed with respect to the focus shift
  • the focus shift amount and direction per voltage are calculated, and when calculating the focus shift amount and direction per unit voltage, the tilt of the primary charged particle beam is measured in the same direction with respect to the tilt axis at at least two different tilt angles.
  • a scanning charged particle beam apparatus and a method for controlling to calculate the amount of chromatic spherical aberration from a second-order coefficient of the polynomial by approximating the amount of focus shift per unit voltage with the inclination angle as a variable as a polynomial. provide.
  • control unit has a chromatic aberration control function in the tilt observation of the sample, and the direction parallel to the sample surface due to the chromatic spherical aberration and the chromatic aberration at the tilt angle to be observed and the tilt angle that is axially symmetric with the tilt angle.
  • a scanning charged particle beam apparatus and method for controlling the chromatic aberration to be more positive or negative than the state where the chromatic aberration is zero by this chromatic aberration control function are provided.
  • the acceleration voltage is changed stepwise at a plurality of different tilt angles, and the beam movement or focus shift generated at that time is changed. From this, the amount of chromatic spherical aberration is measured.
  • the chromatic aberration correction amount, the chromatic dispersion aberration correction amount, or the spherical aberration correction amount is controlled at a specific angle (tilt angle) at which the observation is performed, thereby canceling the chromatic spherical aberration, thereby reducing the resolution.
  • the present invention provides a method for measuring chromatic spherical aberration and a method for canceling out other aberrations in tilted observation, it can be adjusted with high accuracy without the need for fixing optical conditions and without any effort, and high resolution in tilted observation. Can be realized. For this reason, the aberration corrector can be adjusted in a short time according to switching between the non-tilt state and the tilt observation state, and the resolution of the three-dimensional structure side wall observation can be improved.
  • chromatic spherical aberration means a combination aberration caused by chromatic aberration and spherical aberration, and is proportional to the first order of energy and the third order of the opening angle.
  • the amount of chromatic spherical aberration is controlled by changing and controlling the irradiation angle and direction of the electron beam to the sample and the acceleration voltage to the electron beam source using a deflector of a scanning electron microscope (SEM). taking measurement.
  • SEM scanning electron microscope
  • the image movement amount per unit voltage with respect to the changed acceleration voltage with respect to the image movement caused by changing the acceleration voltage by the acceleration voltage control function of the electron beam source is controlled.
  • the inclination of the electron beam is measured in at least three different angles (tilt angles) in the same direction with respect to the tilt axis.
  • the amount of image movement per unit voltage with the tilt angle as a variable is approximated as a polynomial, and the amount of chromatic spherical aberration is calculated from the third-order coefficient of this polynomial.
  • FIG. 1 shows a schematic configuration of a scanning electron microscope (SEM) according to the present embodiment.
  • SEM scanning electron microscope
  • This scanning electron microscope roughly controls the SEM column 101 that irradiates or scans a sample with an electron beam, the sample chamber 102 in which the sample stage is stored, the SEM column 101 and the control for controlling each component of the sample chamber 102.
  • the control unit 103 is configured as a unit.
  • the control unit 103 as a control unit includes a control computer 30 and various power sources 21, 22, 23, 24, 25, 26, 27, 28, 29, 32, 33, 74, 75, such as an electron gun power source 20.
  • a sample stage control mechanism 81 is included.
  • control unit 103 includes a data storage 76 for storing and storing predetermined information and a program for operating the control computer 103, a monitor 77 that is a display unit for displaying an acquired image, a device and a device user.
  • the console 78 is configured by an information input unit such as a keyboard and a mouse, for example.
  • the aberration calculator 79 is a calculator that calculates various aberrations described later, and the calculation result is stored in the data storage 76.
  • This aberration calculation function can also be executed by a program processing of a central processing unit (CPU) which is a processing unit (not shown) in the control computer 30. In this case, the control computer calculates the calculated color sphere. It goes without saying that aberrations and the like are stored in the data storage 76. Therefore, in the present specification, the function of the aberration calculating device 79 is included in the control unit.
  • CPU central processing unit
  • the Schottky electron source 1 is an electron source that uses the Schottky effect by diffusing oxygen and zirconium into a single crystal of tungsten, and a suppressor electrode 2 and an extraction electrode 3 are provided in the vicinity thereof.
  • the Schottky electron source 1 is heated and a voltage of about +2 kV is applied between the extraction electrode 3 and Schottky electrons are emitted.
  • a negative voltage is applied to the suppressor electrode 2 to suppress emission of electrons from other than the tip of the Schottky electron source 1.
  • the electrons exiting the hole of the extraction electrode 3 are accelerated and converged by the electrostatic lens formed by the first anode 4 and the second anode 5, and the converged electrons enter the subsequent component along the optical axis 60.
  • the electron beam is converged by the first condenser lens 6, the beam current is limited by the movable diaphragm 9, passes through the second condenser lens 7 and the deflector 8, and enters the aberration corrector 10.
  • the condenser lens 7 is adjusted so that the beam incident on the aberration corrector becomes parallel. When there is no inclination, the trajectory of the electron beam is adjusted by the deflector 8 so as to pass through the axis of the aberration corrector 10.
  • a description will be given taking a quadrupole-octupole aberration corrector 10 as an example.
  • a quadrupole and an octupole are formed.
  • a 12-pole electrode which may also serve as a magnetic pole
  • a dipole, a hexapole Twelve poles can also be formed and used to electrically correct field distortions caused by electrode, pole assembly errors, and pole material inhomogeneities.
  • the electron beam given chromatic aberration and spherical aberration that cancels the objective lens 17 by the aberration corrector 10 is deflected by the objective aligner 12 so as to pass through the objective lens axis, and is converged on the sample 18 by the objective lens 17.
  • the spot is scanned on the sample by the scanning deflector 15.
  • a sample stage 80 having a sample placement surface on which the sample 17 is placed is stored.
  • the secondary electrons generated by the electron beam irradiation pass through the objective lens 17 and hit the reflector 72 to generate electrons.
  • the generated electrons are detected by the secondary electron detector 73, but the position where the secondary electrons strike the reflecting plate 72 can also be adjusted by the ExB deflector 71.
  • the detected secondary electron signal is taken into the control computer 30 as a luminance signal synchronized with scanning.
  • the control computer 30 performs appropriate processing on the captured luminance signal information and displays it on the monitor 77 as an SEM image.
  • the reflector 72 is necessarily required. is not.
  • control unit 103 which is a control unit includes the electron gun power source 20, the control voltage source 21, the acceleration voltage source 22, the first condenser lens power source 23, the second condenser lens power source 24, the deflection coil power source 25, and the aberration corrector.
  • the flow of measurement is shown in the flowchart shown in FIG.
  • This flowchart mainly shows an operation flow by the control unit described above. Steps after the start of measurement (S10 to S19) will be described in detail later.
  • the inclination can change the inclination angle in various directions in 360 degrees, but in this embodiment, only the inclination angle is continuously changed for a specific direction, and the inclination angle is 2N + 1 times at ⁇ t intervals, Assume that the acceleration voltage is changed 2M + 1 times at ⁇ E intervals.
  • N and M are natural numbers of 1 or more.
  • the tilt angle t is an angle from the vertical direction where the electron beam is incident on the sample 18.
  • the tilt angle t is set by deflecting an electron beam incident on the aberration corrector 10 using the deflector 8. At this time, the optical system is adjusted so as to change only the tilt angle t of the electron beam to the sample 18 without changing the object point of the objective lens. This adjustment is performed by parallel movement of the electron beam when the electron beam at the deflector 8 is parallel.
  • the acquired image is stored in the data storage 76 or the like.
  • FIG. 3 shows an example of a graph in which the movement amount and the variation of the acceleration voltage are plotted in one direction.
  • the slope of this graph is the movement amount Iv (t) per change in acceleration voltage.
  • Iv (t) is stored in the data storage 76 or the like in a state in which the obtained two directions are distinguished for each direction.
  • the moving amount Iv (t) applied with the acceleration voltage E0 is proportional to the cube of the inclination angle t
  • the coefficient is proportional to the deviation of CsC (chromatic spherical aberration coefficient), the inclination angle t, and the coefficient Is proportional to the deviation of Cc (chromatic aberration coefficient) and energy
  • the coefficient is the sum of deviations of C0 (chromatic dispersion aberration amount), which is expressed by the following equation (1).
  • the third-order coefficient CsC in Equation 1 is the chromatic spherical aberration coefficient
  • the first-order coefficient Cc is the chromatic aberration coefficient
  • the constant term C0 is the amount of chromatic dispersion aberration. Therefore, from the third-order coefficient of the above polynomial, Chromatic spherical aberration can be calculated.
  • the calculation of the amount of chromatic spherical aberration can be executed by the CPU in the control computer 30 of the control unit or the aberration calculator 79. It goes without saying that other aberration calculations are similar. All the calculation results are stored in the data storage 76 by the control computer 30 as described above.
  • the chromatic spherical aberration can be measured by performing the steps (S10) to (S19).
  • the direction of inclination is performed in one specific direction (plus side, minus side), but chromatic spherical aberration measurement considering asymmetry can be performed by measuring in at least two directions such as orthogonal inclination directions. You can do it.
  • the change of the tilt angle and the acceleration voltage may be other than the one shown in the present embodiment, such as the one in which the order is changed alternately between the plus side and the minus side, and the change intervals may not be equal. However, it is desirable to change the acceleration voltage within a range of several volts and the inclination angle within a range of several to 10 degrees.
  • the resolution reduction suppressing method is cancellation of chromatic aberration and chromatic spherical aberration. That is, the control unit of the present embodiment has a chromatic aberration control function in the observation of the tilt of the sample. At the tilt angle to be observed and the tilt angle that is axially symmetric with respect to the tilt angle, the chromatic aberration control function controls the chromatic aberration to be more positive or negative than a state where the chromatic aberration is zero.
  • chromatic spherical aberration is a main factor for a decrease in resolution in tilt observation after aberration correction.
  • Equation 1 The cancellation of chromatic aberration and chromatic spherical aberration will be described using Equation 1 and FIG.
  • the dispersion with respect to energy increases as the inclination is increased as shown in FIG.
  • the aberration corrector 10 corrects chromatic aberration, but functions as an apparatus that increases or decreases the amount of chromatic aberration. Therefore, if the chromatic aberration coefficient Cc is controlled so as to satisfy the following expression 2 at a specific inclination angle t1, the effect of energy dispersion due to the chromatic spherical aberration CsC can be canceled at the inclination angle t1.
  • the method for suppressing the reduction in resolution due to chromatic spherical aberration during tilt observation after aberration correction in the present embodiment has been described above.
  • an example was given at specific angles t1 and -t1, but even different inclination angles can be offset by adjusting the amount of chromatic aberration.
  • the chromatic aberration may be controlled based on a table prepared in advance only during tilting so as to be compatible with high-resolution observation on the axis. In this case, the deviation from the chromatic spherical aberration canceling condition can be adjusted relatively easily by finely adjusting the tilt angle.
  • the control unit 103 which is a control unit of the scanning electron microscope (SEM), has a chromatic dispersion aberration control function, and an image generated in a direction parallel to the sample surface due to chromatic spherical aberration and chromatic aberration at an inclination angle to be observed.
  • the chromatic dispersion aberration control function controls so that the chromatic dispersion aberration when not tilting is more positive or negative than the zero state.
  • the method of this example is the offset between the chromatic dispersion aberration and the chromatic spherical aberration.
  • the chromatic dispersion aberration is controlled by the aberration corrector so as to satisfy the following expression 4 at the specific inclination angle t1 in the expression 1, the effect of energy dispersion due to the chromatic spherical aberration can be canceled at the inclination angle t1.
  • FIG. 6 shows the state.
  • the difference from the first embodiment is that the condition for canceling out chromatic spherical aberration is not satisfied at the inclination angle -t1.
  • the condition for canceling out chromatic spherical aberration is not satisfied at the inclination angle -t1.
  • the resolution is lowered in the absence of inclination. Since CsC does not change even if the chromatic dispersion aberration is changed, the prediction of the solution becomes simple.
  • the greatest advantage is that the chromatic spherical aberration can be canceled while the chromatic aberration is also corrected.
  • an example at a specific angle has been described, but even at different inclination angles, it can be canceled out with chromatic spherical aberration by adjusting the amount of chromatic dispersion aberration.
  • the chromatic dispersion aberration since the amount of chromatic dispersion aberration must be changed in proportion to the cube of the tilt angle, the adjustment voltage and the like need to be changed to the third power, and the adjustable range for the tilt angle is that of the first embodiment due to the limit of the power source. Is too narrow. Further, in order to be compatible with high-resolution observation on the axis, the chromatic dispersion aberration may be controlled based on a table prepared in advance only during tilting. In this case, the chromatic spherical aberration cancellation deviation can be adjusted relatively easily by finely adjusting the tilt angle.
  • the method described in the present embodiment makes it possible to achieve high resolution in tilt observation during aberration correction without having to fix optical conditions.
  • the control unit of the scanning electron microscope (SEM) in this example has a spherical aberration control function in tilt observation of the sample using the irradiation angle control function, and is parallel to the sample surface by chromatic spherical aberration and chromatic aberration at the tilt angle to be observed.
  • the spherical aberration control function controls the spherical aberration to be more positive or negative than the zero state so as to suppress blurring of the image generated in any direction.
  • this chromatic spherical aberration is a function of the spherical aberration correction amount, it can be reduced by changing the correction amount. Further, higher order chromatic spherical aberration and chromatic spherical aberration that are proportional to the first order with respect to energy and fifth order with respect to the opening angle can be canceled out.
  • FIG. 7 shows the state.
  • the quadrupole, four-stage aberration corrector if the direction of the octupole that performs spherical aberration correction and the tilt direction match, only the octupole in charge is changed, and only the spherical aberration in the tilt direction is controlled. To do. By doing so, it is possible to correct only the aberrations caused by the tilt while suppressing the generation of extra aberrations.
  • the method of the present embodiment creates a condition such that the effect of the chromatic spherical aberration is zero at a specific tilt angle within the feasible range of the voltage or current applied to the aberration corrector. I can't. Therefore, in addition to the above spherical aberration control, the chromatic spherical surface is offset at a specific inclination angle in combination with the chromatic aberration shown in the first embodiment, the chromatic dispersion aberration shown in the second embodiment, or both methods. The effect of aberration may be zero. When this method is used, the voltage and current required for correction can be reduced as compared with other methods, but the spherical aberration increases. However, the influence of the remaining spherical aberration component and the fifth-order spherical aberration can be reduced by adding a coma aberration correction hexapole and astigmatism correction.
  • Embodiment 1 an embodiment of another measurement method different from the chromatic spherical aberration measurement method of Embodiment 1 will be shown.
  • the apparatus configuration of the present embodiment is the same as that of the first embodiment.
  • the control unit of the scanning electron microscope (SEM) generates a focus shift by changing the acceleration voltage, and the focus shift amount and direction per unit voltage of the acceleration voltage changed with respect to the focus shift
  • the inclination of the primary charged particle beam is measured at at least two different angles in the same direction with respect to the inclination axis.
  • the amount of focus shift per unit voltage with ⁇ as a variable is approximated as a polynomial that is a second or higher order function, and the amount of chromatic spherical aberration is calculated from the second order coefficient of the polynomial.
  • the flow of the chromatic spherical aberration measurement method in this embodiment will be described with reference to the flowchart shown in FIG. 360 degrees can be measured by changing the tilt angle in various directions, but the measurement is performed by fixing the tilt angle in one specific direction. That is, it is assumed that the measurement is performed by changing the tilt angle 2N + 1 times at ⁇ t intervals, changing the acceleration voltage 2M + 1 times at ⁇ E intervals, and changing the focus value 2L + 1 times at ⁇ f intervals.
  • the focus value the current value of the objective lens 17 focused on the sample, the retarding voltage value of the retarding power source 29, and the like can be used, the convergence position of the electron beam is changed, and the difference between the focus values and the actual sample surface is changed.
  • the inclination angle t is an angle from the vertical direction where the electron beam is incident on the sample 18 as in the first embodiment.
  • the inclination angle is determined by deflecting the electron beam incident on the aberration corrector 10 using the deflector 8. At this time, the optical system is adjusted to change only the tilt angle of the electron beam to the sample 18 without changing the object point.
  • the SEM image can be acquired. Note that aberration correction is not essential for the measurement conditions.
  • the focus position at the acceleration voltage E is calculated.
  • the focus position is calculated by distinguishing two directions such as a tilt direction on the sample surface and a direction orthogonal to the tilt.
  • the focus position is calculated using the sharpest focus value in the direction obtained from the image acquired in step (S23).
  • the sharpest calculation in a specific direction can be obtained by a conventional method used in astigmatism measurement such as, for example, differentiation of an image.
  • the focus position is stored in the data storage 76 or the like in a state in which the two directions are distinguished for each direction.
  • the acceleration voltage and the tilt angle at that time are also stored in a corresponding manner.
  • S28 The acceleration voltage is increased by ⁇ E, and the process proceeds again to step (S22).
  • the slope of this graph is the focus change amount Cv (t) per change in acceleration voltage.
  • Cv (t) is stored in the data storage 76 or the like in a state in which the obtained two directions are distinguished for each direction.
  • the chromatic spherical aberration in the tilt direction can be calculated from the second-order coefficient.
  • Cv (t) is also calculated for the direction orthogonal to the inclination direction. However, since the inclination angle in the orthogonal direction is 0, Cc in the orthogonal direction can be calculated.
  • the chromatic spherical aberration can also be measured by performing (S20) to (S33). Since the method of this embodiment is based on the focus shift, it is affected by the aperture diameter. Therefore, when the aperture diameter cannot be ignored with respect to the tilt angle, calculation is performed in consideration of the aperture diameter. For example, if the inclination angle of the electron beam passing through the inside of the diaphragm with respect to the inclination is ⁇ 1, and the inclination angle passing through the outside is ⁇ 2, it can be obtained by solving the simultaneous equations of Equation 7 below.
  • chromatic spherical aberration measurement in consideration of asymmetry can be performed by measuring in at least two directions such as orthogonal inclination directions.
  • Example 1 The method described above makes it possible to measure chromatic spherical aberration.
  • the difference in effect between Example 1 and this example will be described.
  • both chromatic spherical aberration and chromatic aberration can be measured, but chromatic dispersion aberration cannot be measured by the method of this embodiment alone.
  • Example 1 since it is necessary to detect the movement of the image, there are cases where the measurement cannot be performed well when there is a movement more than expected or when the image blur is larger than the movement.
  • the measurable range is relatively wide.
  • Example 1 is suitable for measurement when the chromatic spherical aberration is relatively small, and this example is suitable for measurement when the chromatic spherical aberration is relatively large. Is suitable.
  • the control unit includes at least any two functions of a chromatic aberration control function, a chromatic dispersion aberration control function, and a spherical aberration control function, Using at least two functions, it suppresses chromatic spherical aberration and image blur caused by chromatic aberration in a direction parallel to the sample surface at the tilt angle to be observed, and causes image blur caused by chromatic aberration and spherical aberration generated during the suppression. It is also possible to configure a charged particle beam apparatus that controls to select and observe the smallest combination.
  • the present invention is useful as a scanning charged particle beam apparatus such as a scanning electron microscope, a semiconductor inspection apparatus, a scanning transmission electron microscope, and a focused ion beam apparatus.
  • Aberration corrector power source 27 ... Scanning coil power source, 28 ... Objective lens power source , 29 ... retarding power supply, 30 ... control computer, 32 ... astigmatism correction coil power supply, 33 ... objective aligner power supply, 60 ... optical axis, 71 ... ExB deflector, 72 ... reflector, 73 ... secondary electron detector, 74 ... Secondary electron detector power supply, 75 ... ExB deflector power supply, 76 ... Data storage, 77 ... Nita, 78 ... console, 79 ... aberration calculating unit, 80 ... sample stage 81 ... sample stage control mechanism, 100 ... vacuum vessel, 101 ... column, 102 ... Sample chamber, 103 ... Control unit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

 収差補正器を備えた走査荷電粒子線装置での傾斜観察において、特定の光学系によらず、色球面収差による分解能低下の抑制を図る。走査荷電粒子線装置の制御部は、試料の傾斜観察における色球面収差の測定方法を提供し、更に、試料の傾斜観察において色収差制御機能を有し、観察する傾斜角(t1)およびこの傾斜角と軸対称の関係にある傾斜角(-t1)において、色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するため、この色収差制御機能により色収差が0となる状態よりも正もしくは負になるよう制御する。

Description

走査荷電粒子線装置、及び色球面収差補正方法
 本発明は、荷電粒子ビームを試料に対して走査照射して、この試料からの二次電子または反射電子または透過電子を取得する走査荷電粒子線装置、特にその傾斜観察における色球面収差の補正技術に関する。
 走査型電子顕微鏡(Scanning Electron Microscope:SEM)や透過型電子顕微鏡(Transmission Electron Microscope:TEM)などの電子顕微鏡をはじめとする荷電粒子ビーム装置では、荷電粒子ビームを集束するため電場若しくは磁場を用いたレンズが必ず使用される。電場若しくは磁場レンズでは、各種収差が不可避的に発生する。したがって、縮小率を高くして荷電粒子ビームを絞ろうとしても、収差が大きくてはスポット径を小さくできず、微細構造の観察や寸法測定精度の向上ができない。
 荷電粒子ビーム装置では、分解能を向上するために、収差補正器の導入が進められている。この収差補正器は、通常、多段に設置された多極子レンズにより構成され、多極子レンズ内に電場ないし磁場を発生することにより、内部を通過する荷電粒子線に含まれる収差を除去する。
 この収差補正器に関しては、例えば、非特許文献1に開示されているもののように、多極子レンズを4段用いたものがある。
 荷電粒子ビーム装置では加速電圧が完全に一定でなくエネルギー幅をもつことによって発生する収差がある。この収差の代表的なものとして、色収差と倍率色収差がある。本明細書では倍率色収差で生じる分散量(ボケ)を特に色分散収差(chromatic dispersion)と呼ぶ。非特許文献1の収差補正器においては、色収差の補正技術が開示されている。しかしながら、非特許文献1では色球面収差(chromatic third-order aperture aberration,またはchromatic spherical combination aberration)の測定および傾斜観察技術時の色球面収差補正技術について開示されていない。
 収差補正中の色球面収差に関しては、非特許文献2に開示されている。非特許文献2ではシミュレーションを用いて、収差補正により色球面収差ならびに5次球面収差が増大し分解能が制限される条件を開示し、対策法として収差補正器と対物レンズ間の実効距離を縮めることが開示されている。しかしながら、非特許文献2では、実際の色球面収差の測定法は開示されておらず、また、傾斜観察時の色球面収差と他の収差との相殺方法については開示されていない。
 また、荷電粒子ビーム装置の収差補正を考慮した傾斜観察技術としては、例えば、特許文献1に開示されている技術がある。この技術は、傾斜観察において収差補正を行うことで分解能が向上する技術が開示されている。しかしながら、色球面収差の測定および傾斜観察時の色球面収差補正技術について開示されていない。
 更に、荷電粒子ビーム装置の色分散収差を検出し、これを補正する技術としては、例えば、特許文献2に開示されている技術がある。この技術は、加速電圧を現在値から変化させた場合の軸ずれにともなう移動を補正するようにしてある。しかしながら、収差補正器やそれを用いた傾斜観察技術について開示されていない。
特開2006-054074号公報 特開2008-181778号公報
Nuclear Instruments and Methods in Physics Research 、 A363(1995)、 第316~325頁 Nuclear Instruments and Methods in Physics Research 、A519(2004)、 第264~279頁
 特許文献1に記載の方法で収差補正した後傾斜観察を行う場合、色球面収差について考慮した補正を行っていないため、色球面収差のために分解能が制限されてしまう問題があった。非特許文献2に開示の方法で色球面収差を抑制し傾斜観察を行う場合、色球面収差を最適化するために必要な色球面収差を測定する技術がないという問題があった。また、非特許文献2に開示の方法で色球面収差の最適化を行う場合、光学系の倍率変化を伴うため他のすべての収差も同時に変化してしまい完全に調整するには時間と手間がかかる問題があり、実際には完全には補正しきれず残ってしまう問題となっていた。なお、色球面収差自体は、色収差補正および球面収差補正をまったく行わなければ発生しないが、その場合は球面収差と特に色収差によって傾斜観察での分解能が低下する。さらに、非特許文献2に開示の方法では光学条件は固定となるため、光学系の自由度が低下してしまい、傾斜観察において使い勝手はよくなく、分解能においても必ずしも最適条件とならない問題もあった。
 本発明の目的は、このような従来の問題点に着目し、収差補正器を用いた傾斜観察において分解能を向上することができる走査荷電粒子線装置、及びその色球面収差補正方法を提供することにある。
 上記の目的を達成するため、本発明においては、荷電粒子線を利用する走査荷電粒子線装置であって、試料を載置する試料ステージと、入射した1次荷電粒子線の収差を補正する収差補正器とこの収差補正器上部に設置された1次荷電粒子線を偏向する偏向器を有し、試料ステージ上に載置された試料に対して1次荷電粒子線を走査する照射光学系と、荷電粒子線の走査により発生する2次荷電粒子を検出する検出器と、この検出器の出力信号を画像表示する表示部と、偏向器を用いて1次荷電粒子線の試料への照射角度と方向、及び1次荷電粒子線への加速電圧を変更制御して、色球面収差量を測定するよう制御する走査荷電粒子線装置、及び色球面収差補正方法を提供する。
 また、上記の目的を達成するため、本発明においては、制御部は、色球面収差量の測定において、加速電圧を変更することで生じる画像の移動について、変更した加速電圧に対する単位電圧あたりの画像移動量と方向を算出し、単位電圧あたりの画像移動量と方向の算出に際し、1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも3種異なる角度において測定して傾斜角を変数とする単位電圧あたりの画像移動量を多項式として近似し、この多項式の3次の係数から前記色球面収差量を算出するよう制御する走査荷電粒子線装置、及び方法を提供する。
 更に、上記の目的を達成するため本発明においては、制御部は、色球面収差量の測定において、加速電圧を変更することでフォーカスズレを発生させ、フォーカスズレに対して変更した加速電圧の単位電圧あたりのフォーカスズレ量と方向を算出し、単位電圧あたりのフォーカスズレ量と方向の算出に際し、1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも2種異なる傾斜角において測定し、傾斜角を変数とする単位電圧あたりのフォーカスズレ量を多項式として近似し、多項式の2次の係数から色球面収差量を算出するよう制御するよう制御する走査荷電粒子線装置、及び方法を提供する。
 また更に、制御部は、試料の傾斜観察において色収差制御機能を有し、観察する傾斜角および当該傾斜角と軸対称の関係にある傾斜角において、色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するため、この色収差制御機能により色収差が0となる状態よりも正もしくは負になるよう制御する走査荷電粒子線装置、及び方法を提供する。
 すなわち、本発明においては、収差補正機能(手段)を備えた荷電粒子線装置における傾斜観察において、異なる複数の傾斜角で加速電圧を段階的に変更し、その際に生じるビームの移動もしくはフォーカスズレから、色球面収差量を測定する。そして、傾斜観察を行う際に、観察を行う特定の角度(傾斜角)において、色収差補正量もしくは色分散収差補正量もしくは球面収差補正量をコントロールすることで色球面収差と相殺することにより分解能の向上を図る。
 本発明では、色球面収差の測定方法および傾斜観察での他の収差との相殺方法を提供するため、光学条件を固定する必要なく手間をかけずに精度良く調整でき、傾斜観察での高分解能化が可能となる。このため、傾斜しない状態と傾斜観察する状態の切り替えに伴う収差補正器の調整が短時間で行え、3次元構造の側壁観察の分解能を向上することができる。
各実施例に係わる走査電子顕微鏡の概略構成を示す図である。 第1の実施例に係わる、色球面収差測定のフローチャートを示す図である。 第1の実施例に係わる、加速エネルギーの変動値と移動量の関係の例を示した図である。 第1の実施例に係わる、傾斜角と単位エネルギーあたり移動量の関係の例を示した図である。 第1の実施例に係わる、色収差制御による傾斜角と単位エネルギーあたり移動量の関係の変化の例を示した図である。 第2の実施例に係わる、色分散収差制御による傾斜角と単位エネルギーあたり移動量の関係の変化の例を示した図である。 第3の実施例に係わる、球面収差制御による傾斜角と単位エネルギーあたり移動量の関係の変化の例を示した図である。 第4の実施例の色球面収差測定のフローチャートを示す図である。 第4の実施例に係わる、加速エネルギーの変動とフォーカスズレ量の関係の例を示した図である。 第4の実施例に係わる、傾斜角と単位エネルギーあたりフォーカスズレ量の関係の例を示した図である。
 本発明の実施形態として、走査電子顕微鏡(SEM)に適用した種々の実施例を説明する。他の電子線応用装置や陽子やイオンなど他の荷電粒子線装置についてもレンズや収差補正器の構成はその種類に応じて変わるが、以下に説明する実施例と基本的に同一の手法が適用できる。収差補正器は色収差、色分散収差、球面収差を含む3次までの幾何収差を補正できるものを想定する。また、本発明書において、色球面収差とは、色収差と球面収差によるコンビネーション収差を意味し、エネルギーの1次と開き角の3次に比例するものである。
 本実施例では、走査電子顕微鏡(SEM)における色球面収差測定法と、収差補正後の傾斜観察時の色球面収差による分解能低下を抑制するための方法を示す。
 まず、装置構成の説明を行い、次に、測定法の流れを説明し、最後に傾斜時の分解能低下抑制法を説明する。なお、本実施例においては、走査電子顕微鏡(SEM)の偏向器を用いて電子線の試料への照射角度と方向、及び電子線源への加速電圧を変更制御して、色球面収差量を測定する。この色球面収差量の測定のため、本実施例においては、電子線源の加速電圧制御機能によって加速電圧の変更することで生じる画像の移動について、変更した加速電圧に対する単位電圧あたりの画像移動量と方向を算出すると共に、この単位電圧あたりの画像移動量と方向の算出の際、電子線の傾斜を傾斜軸に対して同一の向きで少なくとも3種異なる角度(傾斜角)で測定し、この傾斜角を変数とする単位電圧あたりの画像移動量を多項式として近似し、この多項式の3次の係数から色球面収差量を算出する。
 図1に本実施例に係わる走査電子顕微鏡(SEM)の概略構成を示す。なお、この走査電子顕微鏡(SEM)の構成は本実施例のみならず、他の実施例においても共通に利用されるものである。この走査電子顕微鏡は、大まかに、電子線を試料上に照射ないし走査させるSEMカラム101、試料ステージが格納される試料室102、SEMカラム101や試料室102の各構成部品を制御するための制御部としての制御ユニット103等により構成されている。制御部としての制御ユニット103には、制御コンピュータ30と、電子銃電源20等の各種の電源21、22、23、24、25、26、27、28、29、32、33、74、75や試料ステージ制御機構81が含まれている。
 更に、制御ユニット103には、所定の情報や制御コンピュータ103を動作させるためのプログラム等を保存・格納するためのデータストレージ76や、取得画像を表示する表示部であるモニタ77、装置と装置ユーザとのマン・マシンインタフェースとなる操作卓78、収差演算装置79が接続されている。操作卓78は、例えば、キーボードやマウスなどの情報入力部により構成される。収差演算装置79は、後で説明する種々の収差を演算する演算装置であり、その演算結果はデータストレージ76に保存される。この収差演算機能を制御コンピュータ30内の図示を省略した処理部である中央処理部(Central Processing Unit:CPU)のプログラム処理で実行することも可能であり、この場合、制御コンピュータは算出した色球面収差等をデータストレージ76に保存することは言うまでもない。そこで、本明細書において、制御部にはこの収差演算装置79の機能が含まれる。
 はじめに、SEMカラム101内部の構成要素について説明する。ショットキー電子源1はタングステンの単結晶に、酸素とジルコニウムなどを拡散させショットキー効果を利用する電子源で、その近傍にサプレッサー電極2、引き出し電極3が設けられる。ショットキー電子源1を加熱し、引き出し電極3との間に+2kV程度の電圧を印加することにより、ショットキー電子を放出させる。サプレッサー電極2には負電圧が印加されショットキー電子源1の先端以外からの電子放出を抑制する。引き出し電極3の穴を出た電子は第1陽極4、第2陽極5で形成される静電レンズにより加速、収束された電子は、光軸60に沿って後段の構成要素へ入射する。電子ビームは第1コンデンサーレンズ6で収束され、可動絞り9にてビーム電流を制限され、第2コンデンサーレンズ7、偏向器8を通り、収差補正器10に入射する。
コンデンサーレンズ7では収差補正器に入射するビームが平行となるよう調整される。傾斜なしのとき偏向器8によって電子ビームの軌道は収差補正器10の軸を通るように調節される。本実施例では4極-8極子系の収差補正器10を例に説明する。
 収差補正器10の各段で4極子、8極子を形成するがこれには12極の電極(磁極を兼ねてもよい)を用いると、4極子、8極子のほか、2極子、6極子、12極子も形成可能で電極、磁極の組み立て誤差、磁極材料の不均一性により生じる場の歪みを電気的に補正するためにそれらを使用する。収差補正器10により対物レンズ17と相殺する色収差、球面収差を与えられた電子ビームは、対物アライナ12によって対物レンズ軸を通るように偏向され、対物レンズ17にて試料18上に収束し、そのスポットは走査偏向器15にて試料上を走査される。
 試料室102内部には、試料17を載置する試料載置面を備えた試料ステージ80が格納されている。電子線照射により発生する2次電子は、対物レンズ17を抜けて、反射板72に当たり電子を発生させる。発生した電子は、2次電子検出器73で検出されるが、ExB偏向器71により、反射板72に2次電子の当たる位置を調整することもできる。検出された2次電子信号は、走査と同期した輝度信号として制御コンピュータ30に取り込まれる。制御コンピュータ30は、取り込んだ輝度信号情報に対して適当な処理を行い、モニタ77上にSEM画像として表示される。検出器はここでは1つしか図示していないが、反射電子や2次電子のエネルギーや角度分布を選別して画像取得できるように、複数配置することもできる。ExB偏向器71により直接2次電子検出器73に2次電子を集める、あるいは中心に穴のあいた同軸円板状の2次電子検出器を光軸60上に配置すれば反射板72は必ずしも必要ではない。
 制御部である制御ユニット103は、上述の通り、電子銃電源20、制御電圧源21、加速電圧源22、第1コンデンサーレンズ電源23、第2コンデンサーレンズ電源24、偏向コイル電源25、収差補正器電源26、走査コイル電源27、対物レンズ電源28、リターディング電源29、制御コンピュータ30、非点補正コイル電源32、対物アライナ電源27、対物2次電子検出器電源74、ExB偏向器電源75、試料ステージ制御機構81等により構成され、それぞれSEMカラム内の対応する構成要素と、信号伝送路や電気配線等で接続されている。
 次に、本実施例における色球面収差測定法を説明する。図2に示すフローチャートで測定の流れを示した。このフローチャートは、主に上述した制御部による動作フローを示している。測定開始後のステップ(S10~S19)について後で詳述する。傾斜は360度いろいろな方向で傾斜の角度を変えることができるが、本実施例では特定の一方向ついて連続的に傾斜の角度のみを変えることとし、傾斜角をΔt間隔で2N+1回、加速電圧をΔE間隔で2M+1回変更して測定する場合を想定する。ここで、N、Mは1以上の自然数である。また、傾斜角tは電子ビームが試料18に入射する垂直方向からの角度とする。傾斜角tの設定は、偏向器8を用いて収差補正器10に入射する電子ビームを偏向することで行う。このとき光学系は対物レンズの物点を変えないまま試料18への電子ビームの傾斜角tのみ変えるよう調整する。この調整は、偏向器8での電子ビームが平行となっている場合は電子ビームの平行移動により行われる。開始状態は、加速電圧E=E0、傾斜無しとし、軸調整、色収差、球面収差、ならびに3次の幾何収差補正はされており、SEM像を取得可能な状態とする。
 (S10):傾斜角tを-NΔtに設定する。本実施例では簡単のため、始めに-NΔtを設定したが、どの角度から開始しても良い。
  (S11):加速電圧EをE0-MΔEに設定する。本実施例では簡単のため、始めにE0-MΔEを設定したが、どの電圧から開始しても良い。
 (S12):2次電子検出器の信号を制御コンピュータ30で処理することで画像を取得する。取得した画像はデータストレージ76などに保存される。画像は取得した順に画像(i)、i=-M~+Mといった形などでラベリングされ、画像と共に取得時の条件もストレージ76に保存され、後から画像と対応する条件が参照できるようになっている。
 (S13):加速電圧変更の終了条件を満たすかを判断する。ここでは、段階的に加速電圧を変更するため、規定電圧に達したかによって判断したが、取得する画像数やカウンタを用いて判断してもよい。終了条件を満たしている場合はステップ(S15)に進み、満たしていない場合はステップ(S14)に進む。
  (S14):加速電圧をΔE増やし、ステップ(S12)へ再度進む。このステップでは軸の再調整や、フォーカス合わせ、非点補正など一切行わない。
 (S15):加速電圧の変更あたりの移動量を算出する。移動量は試料面上の傾斜方向、傾斜と直交する方向といった2方向について区別してそれぞれ算出する。移動量の算出は、ステップ(S12)取得した画像間の位置ズレを、相関法などを用いて求めることができる。図3に一方向について移動量と加速電圧の変動をプロットしたグラフの一例を示す。縦軸にE=E0の画像からの移動量(nm)を、横軸に加速電圧の変動分ΔE(V)をとっている。このグラフの傾きが加速電圧の変更あたりの移動量Iv(t)となる。Iv(t)は求めた2方向について方向毎にそれぞれ区別した状態でデータストレージ76などに保存される。
 (S16):傾斜角変更の終了条件を満たすかを判断する。ここでは、段階的に傾斜角を変更するため、規定角に達したかによって判断するが、取得するIv(t)の数やカウンタを用いて判断してもよい。終了条件を満たしている場合はステップ(S18)に進み、満たしていない場合はステップ(S17)に進む。
  (S17):傾斜角をΔt増やし、ステップ(S11)へ再度進む。このステップでは軸の再調整は行わない。
 (S18):色球面収差量を算出する。手順は、ステップ(S15)にて求めたIv(t)の傾斜方向について、傾斜角ごとの移動量Iv(t)(nm/V)をプロットすると図4のようなグラフが得られる。ここで、加速電圧E0をかけた移動量Iv(t)は、傾斜角tの3乗に比例し、その係数がCsC(色球面収差係数)であるずれ、傾斜角tに比例し、その係数がCc(色収差係数)であるずれ、及びエネルギーに比例し、その係数がC0(色分散収差量)であるずれの総和となり、下式1の多項式で表される。
Figure JPOXMLDOC01-appb-M000001
 この式1の3次数の係数CsCは色球面収差係数、1次の係数Ccは色収差係数、定数項C0は色分散収差量であるため、上記の多項式の3次の係数から、傾斜方向についての色球面収差が算出できる。先に述べたように、色球面収差量の算出は、制御部の制御コンピュータ30内のCPUや、収差演算装置79で実行可能である。他の収差算出も同様であることは言うまでもない。いずれの算出結果も先に述べたように、制御コンピュータ30によりデータストレージ76に保存される。
 (S19):測定を終了するため、測定開始前の状態に戻す。
以上(S10)から(S19)を行うことで色球面収差を測定できる。また上述のフローで傾斜の方向は特定の一方向(プラス側、マイナス側)について行ったが、直交する傾斜方向など、少なくとも2方向について測定することで、非対称性を考慮した色球面収差測定が行えることになる。
 なお、傾斜角および加速電圧の変更について、順番は例えばプラス側とマイナス側に交互に変動させるようなものなど本実施例で示したもの以外で良く、変更間隔が等間隔でなくても良い。ただし、加速電圧の変更は数V、傾斜角の変更は数~10度以内の範囲で行うのが望ましい。
 次に本実施例における収差補正後の傾斜観察時の色球面収差による分解能低下を抑制するための方法を説明する。
 本実施例における分解能低下抑制方法は、色収差と色球面収差の相殺である。すなわち、本実施例の制御部は、試料の傾斜観察において色収差制御機能を有し、観察する傾斜角およびこの傾斜角と軸対称の関係にある傾斜角において、色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するため、色収差制御機能により色収差が0となる状態よりも正もしくは負になるよう制御する。
 以下説明のために、まず、傾斜時の色球面収差による分解能低下の状態を説明する。収差補正後は色収差、並びに3次以下の幾何収差が補正されている。この状態において、収差補正器と対物レンズ間の実効的な距離がゼロでない場合は色球面収差が発生している。また、高次の幾何収差も発生している。収差補正後の傾斜観察において、高次収差の影響により傾斜角が大きくなるほど分解能は低下する。幾何収差は絞り径で制限できるため小さい径の絞りを利用することで影響を抑えられるが、エネルギー分散の効果は絞り径に関係なく発生するため色球面収差は微小な絞りを用いても制限できない。よって、色球面収差が収差補正後の傾斜観察での分解能低下の主要因となっている。
 式1と図4を用いて、色収差と色球面収差の相殺を説明する。収差補正後は式1においてCc=0、C0=0となっており、図4に示すように傾斜するほどエネルギーに対する分散が大きくなる。収差補正器10は色収差を補正するが、機能としては色収差量を増やしたり減らしたり制御する装置である。したがって特定の傾斜角t1において下式2を満たすよう色収差係数Ccをコントロールすれば、傾斜角t1において色球面収差CsCによるエネルギー分散
の効果を相殺することができる。
Figure JPOXMLDOC01-appb-M000002
 図5にその状態を示す。収差補正後の相殺前ではtの3次関数として単調増加しているが、下式3を満たす色収差を加えることで傾斜角t1においてグラフはIv=0と交差する。
Figure JPOXMLDOC01-appb-M000003
 このとき、傾斜角-t1においても色球面収差との相殺条件が満たされるため、本実施例においては、t1と-t1の2つの異なる角度からの観察を即座に行うことができる。なお、CsCは色収差補正量の関数でCcを変更すると変化するため調整後のCcは単純な傾斜角の2次関数とは異なるが、調整の解は存在する。
 以上で本実施例における、収差補正後の傾斜観察時の色球面収差による分解能低下を抑制するための方法を示した。本実施例では特定の角度t1と-t1での例を挙げたが、異なる傾斜角においても、色収差量を調整することで相殺することができる。また、軸上での高分解能観察と両立できるよう、傾斜時にのみあらかじめ用意しておいたテーブルに基づき色収差に制御するよう動作してもよい。その際に色球面収差相殺条件からのズレは、傾斜角の方を微調整すれば、比較的簡単にあわせられる。
 以上詳述した本実施例で説明した手法により、光学条件を固定する必要なく、収差補正時の傾斜観察での高分解能化が可能となる。また、2方向からの傾斜観察を素早く切り替え観察することが可能となる。
 次に、第2の実施例として、色分散収差を用いた、収差補正後の傾斜観察時の色球面収差による分解能低下抑制方法の実施例を説明する。本実施例の装置構成は実施例1と同じものを用いる。
 本実施例において、走査電子顕微鏡(SEM)の制御部である制御ユニット103は、色分散収差制御機能を有し、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するように、色分散収差制御機能により、傾斜しない場合の色分散収差が0の状態よりも正もしくは負になるように制御する。
 本実施例の方法はこの色分散収差と色球面収差の相殺である。収差補正後、式1で特定の傾斜角t1において下式4を満たすよう収差補正器によって色分散収差をコントロールすれば、傾斜角t1において色球面収差によるエネルギー分散の効果を相殺することができる。図6その状態を示す。
Figure JPOXMLDOC01-appb-M000004
 図6に見るように、下式5を満たす色分散収差を加えることで傾斜角t1においてIv=0と交差する。
Figure JPOXMLDOC01-appb-M000005
 実施例1とは異なる点としては、傾斜角-t1において色球面収差との相殺条件は満たさない。また、色分散収差を発生させるため、傾斜無しの状態では分解能の低下がおきる。色分散収差を変えてもCsCは変化しないため解の予測は単純になる。最大の利点としては、色収差も補正した状態を保ったまま色球面収差の相殺が行えることである。
 本実施例では特定の角度での例を挙げたが、異なる傾斜角においても、色分散収差量を調整することで色球面収差と相殺することができる。しかしながら、傾斜角の3乗に比例して色分散収差量を変更しなければならないため、調整電圧等も3乗の変更が必要となり、傾斜角に対する調整可能範囲は電源の限界により実施例1よりも狭い。また、軸上での高分解能観察と両立できるよう、傾斜時にのみあらかじめ用意しておいたテーブルに基づいた色分散収差に制御するよう動作してもよい。その際に色球面収差相殺ズレは、傾斜角の方を微調整すれば、比較的簡単にあわせられる。
 本実施例で説明した手法により、光学条件を固定する必要なく、収差補正時の傾斜観察での高分解能化が可能となる。
 続いて、第3の実施例として、球面収差制御を用いた、収差補正後の傾斜観察時の色球面収差による分解能低下抑制方法の実施例を説明する。本実施例の装置構成は実施例1と同じものを用いる。
 本実施例における走査電子顕微鏡(SEM)の制御部は、照射角度制御機能を用いた試料の傾斜観察において球面収差制御機能を有し、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するように球面収差制御機能により球面収差が0の状態よりも正もしくは負になるよう制御する。
 この色球面収差は球面収差補正量の関数であるため、補正量を変えれば小さくすることができる。また、エネルギーに対して1次に、開き角に対して5次に比例する高次の色球面収差と色球面収差の相殺もできる。図7にその状態を示す。本実施例の方法を適用することで色球面収差を減らすことができる。この方法では、傾斜方向に相当する球面収差のみを増減させてもよい。具体的には、4極4段型収差補正器において、球面収差補正を行う8極子の担当する方向と傾斜方向が一致する場合、担当する8極子のみを変え、傾斜方向の球面収差のみを制御する。このようにすることで、余計な収差発生を抑えて傾斜によって発生する収差のみ補正することができる。
 本実施例の方法は実施例1や実施例2と異なり、収差補正器にかける電圧もしくは電流の実行可能な範囲では、特定の傾斜角において色球面収差の効果が0となるような条件は作ることができない。そこで、上記球面収差制御に加えて、実施例1で示した色収差との相殺、もしくは実施例2で示した色分散収差との相殺、あるいは両法の手法と合わせて特定の傾斜角において色球面収差の効果を0としても良い。この方法を使うと,他の方法と比較して補正に必要な電圧や電流を少なくすることができるが、球面収差が増えてしまう。ただし、球面収差の残成分や5次の球面収差の影響は、コマ収差補正の6極子と非点補正を加えることで減らすことができる。
 以上で球面収差制御による色球面収差低減方法についての実施例を示した。本実施例で説明した手法により、光学条件を固定する必要なく、収差補正時の傾斜観察での高分解能化が可能となる。
 次に第4の実施例として、実施例1の色球面収差測定法とは異なる別の測定法の実施例を示す。本実施例の装置構成は実施例1と同じものを用いる。
 本実施例において、走査電子顕微鏡(SEM)の制御部は、加速電圧を変更制御することでフォーカスズレを発生させ、フォーカスズレに対して変更した加速電圧の単位電圧あたりのフォーカスのズレ量と方向を算出すると共に、この単位電圧あたりのフォーカスのズレ量と方向の算出の際に、一次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも2種異なる角度において測定し、この傾斜角を変数とする単位電圧あたりのフォーカスのズレ量を2次以上の関数である多項式として近似し、その多項式の2次の係数から色球面収差量を算出する。
 本実施例における色球面収差測定法の流れを図8に示すフローチャートで説明する。360度いろいろな方向でそれぞれ傾斜角度を変えて測定することができるが、測定は特定の一方向に固定し傾斜角を変えて行う。すなわち、測定は、傾斜角をΔt間隔で2N+1回、加速電圧をΔE間隔で2M+1回、フォーカス値をΔf間隔で2L+1回変更して測定する場合を想定する。ここでフォーカス値としては試料にフォーカスする対物レンズ17の電流値やリターディング電源29のリターディング電圧値などを利用でき、電子ビームの収束位置を変え、フォーカス値の差分から実際の試料面とのフォーカスズレ量を距離に換算できるものならば何でも良い。また、傾斜角tは第1の実施例同様、電子ビームが試料18に入射する垂直方向からの角度とする。傾斜角は、偏向器8を用いて収差補正器10に入射する電子ビームを偏向することで行う。このとき光学系は物点を変えないまま試料18への電子ビームの傾斜角のみ変えるよう調整する。今回の例での開始状態は、加速電圧E=E0、傾斜無し(t=0)、フォーカス値F=F0となっており、軸調整、色収差、球面収差、ならびに3次の幾何収差補正はされており、SEM像を取得可能な状態とする。なお、測定条件には、収差補正されていることは必須でない。
 (S20):傾斜角tを-NΔtに設定する。本実施例では簡単のため、始めに-NΔtを設定したが、順番には特に意味はない。
  (S21):加速電圧EをE0-MΔEに設定する。本実施例では簡単のため、始めにE0-MΔEを設定したが、順番には特に意味はない。
  (S22):フォーカス値FをF0-LΔfに設定する。本実施例では簡単のため、始めにF0-LΔfを設定したが、順番には特に意味はない。
 (S23):画像を取得する。取得した画像はデータストレージ76などに保存される。画像は取得した順に画像(i)、i=-L~Lといった形でラベリングされ、画像と共に取得時の条件も保存され、後から画像と対応する条件が参照できるようになっている。
 (S24):フォーカス値変更の終了条件を満たすかを判断する。ここでは、段階的にフォーカス値を変更するため、規定フォーカス値に達したかによって判断したが、取得する画像数やカウンタを用いて判断してもよい。終了条件を満たしている場合はステップ(S26)に進み、満たしていない場合はステップ(S25)に進む。
  (S25):フォーカス値をΔf増やし、再度ステップ(S23)へ進む。このステップでは軸の再調整は行わないが、イメージシフトは行っても良い。
 (S26):加速電圧Eにおけるフォーカス位置を算出する。フォーカス位置は試料面上の傾斜方向、傾斜と直交する方向といった2方向について区別してそれぞれ算出する。フォーカス位置の算出は、ステップ(S23)で取得した画像から求める方向について最も鮮鋭なもののフォーカス値とする。特定方向について最も鮮鋭なものの算出については、例えば画像を微分するものなど非点収差測定で用いられる従来手法によって求めることができる。フォーカス位置は2方向について方向毎にそれぞれ区別した状態でデータストレージ76などに保存される。また、その際の加速電圧や傾斜角も対応関係つく形で保存される。
 (S27):加速電圧変更の終了条件を満たすかを判断する。ここでは、段階的に加速電圧を変更するため、規定電圧に達したかによって判断したが、取得する画像数やカウンタを用いて判断してもよい。終了条件を満たしている場合はステップ(S29)に進み、満たしていない場合はステップ(S28)に進む。
  (S28):加速電圧をΔE増やし、再度ステップ(S22)へ進む。
 (S29):加速電圧の変更あたりのフォーカス変化量Cv(t)を算出する。Cv(t)は試料面上の傾斜方向、傾斜と直交する方向といった2方向について区別してそれぞれ算出する。図9に一方向についてE=E0を原点とした場合のフォーカス位置と各Eでのフォーカス位置の差分を加速電圧の変動をプロットしたグラフを示す。縦軸にE=E0からのフォーカス位置のズレ量(フォーカスズレ量)を、横軸に加速電圧の変動分をとっている。このグラフの傾きが加速電圧の変更あたりのフォーカス変化量Cv(t)となる。Cv(t)は求めた2方向について方向毎にそれぞれ区別した状態でデータストレージ76などに保存される。
 (S30):傾斜角変更の終了条件を満たすかを判断する。ここでは、段階的に傾斜角を変更するため、規定角に達したかによって判断するが、取得するIv(t)の数やカウンタを用いて判断してもよい。終了条件を満たしている場合はステップ(S32)に進み、満たしていない場合はステップ(S31)に進む。
  (S31):傾斜角をΔt増やし、ステップ(S21)へ再度進む。このステップでは軸の再調整は行わない。
 (S32):色球面収差量を算出する。手順は、ステップ(S29)にて求めたCv(t)の傾斜方向について、傾斜角ごとのCvをプロットすると図10のようなグラフが得られる。グラフは傾斜角tの2次関数で近似でき、加速電圧をかけると下式6となる。
Figure JPOXMLDOC01-appb-M000006
 数式6の2次数の係数CsCは色球面収差係数、定数項Ccは色収差係数、であるため、2次の係数から傾斜方向についての色球面収差が算出できる。なお,ステップ(S29)では傾斜方向と直交する方向についてもCv(t)を算出したが,直交方向の傾斜角は0であるため直交方向のCcを算出できる。
 (S33):測定開始前の状態に戻す。 
以上(S20)から(S33)を行うことでも色球面収差を測定できる。なお、本実施例の方法はフォーカスズレをもとにするため、絞り径の影響を受ける。したがって、傾斜角に対して絞り径が無視できない場合は、絞り径を考慮した計算をする。例えば、傾斜に対して絞りの内側を通る電子線の傾斜角をα1、外側を通る傾斜角をα2とすると下式7の連立方程式を解くことで求まる。
Figure JPOXMLDOC01-appb-M000007
 なお、上述した測定フローで傾斜の方向は特定の一方向について行ったが、直交する傾斜方向など、少なくとも2方向について測定することで、非対称性を考慮した色球面収差測定が行える。
 以上で説明した手法により、色球面収差測定が可能となる。実施例1と本実施例の効果の違いを記す。いずれの実施例でも色球面収差と色収差は共に測定できるが、色分散収差においては本実施例の方法単体では測定できない。実施例1では像の移動を検知する必要があるため、想定以上の移動がある場合や、像ボケが移動よりも大きい場合うまく測定できないことがある。それに対して、本実施例ではボケそのものを取り扱い、必ずしも同じ視野を含む必要がないため、測定可能範囲は比較的広い。また、傾斜角に対する次数の違いから変化の度合いが異なるため、実施例1は色球面収差が比較的小さい場合の測定に適しており、本実施例は色球面収差が比較的大きい場合の測定に適している。
 以上、本発明の好適な実施形態を種々の実施例により説明したが、本発明は以上の実施例に限定されるものでないことは言うまでもない。例えば、荷電粒子線応用装置の照射角度制御機能を用いた試料の傾斜観察において、その制御部は、色収差制御機能、色分散収差制御機能、球面収差制御機能の少なくともいずれか二つの機能を含み、少なくとも二つの機能を用いて、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制し,かつ抑制の際の生じる色収差と球面収差によって生じる画像のボケが最小となる組み合わせを選択して観察するよう制御する荷電粒子線装置を構成することも可能である。
 本発明は走査型電子顕微鏡、半導体検査装置、走査透過型電子顕微鏡、集束イオンビーム装置などの走査荷電粒子線装置として有用である。
1…ショットキー電子源、2…サプレッサー電極、3…引き出し電極、4…第1陽極、5…第2陽極、6…第1コンデンサーレンズ、7…第2コンデンサーレンズ、8…偏向器、9…可動絞り、10…収差補正器、11…非点補正コイル、12…対物アライナ、15…走査偏向器、16…下走査コイル、17…対物レンズ、18…試料、20…電子銃電源、21…制御電圧源、22…加速電圧源、23…第1コンデンサーレンズ電源、24…第2コンデンサーレンズ電源、25…偏向コイル電源、26…収差補正器電源、27…走査コイル電源、28…対物レンズ電源、29…リターディング電源、30…制御コンピュータ、32…非点補正コイル電源、33…対物アライナ電源、60…光軸、71…ExB偏向器、72…反射板、73…2次電子検出器、74…2次電子検出器電源、75…ExB偏向器電源、76…データストレージ、77…モニタ、78…操作卓、79…収差演算装置、80…試料ステージ、81…試料ステージ制御機構、100…真空容器、101…カラム、
102…試料室、103…制御ユニット。

Claims (12)

  1. 荷電粒子線を利用する走査荷電粒子線装置であって、
    試料を載置する試料ステージと、入射した1次荷電粒子線の収差を補正する収差補正器と前記収差補正器の上部に設置された前記1次荷電粒子線を偏向する偏向器を有し、前記試料ステージ上に載置された試料に対して前記1次荷電粒子線を走査する照射光学系と、前記荷電粒子線の走査により発生する2次荷電粒子を検出する検出器と、前記検出器の出力信号を画像表示する表示部と、前記偏向器を用いて前記1次荷電粒子線の前記試料への照射角度と方向、及び前記1次荷電粒子線への加速電圧を変更して、色球面収差量を測定するよう制御する制御部を備えた、
    ことを特徴とする走査荷電粒子線装置。
  2. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、
    前記色球面収差量の測定において、前記加速電圧を変更することで生じる画像の移動について、変更した前記加速電圧に対する単位電圧あたりの画像移動量と方向を算出し、
    前記単位電圧あたりの画像移動量と方向の算出において、前記1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも3種異なる角度において測定して、前記傾斜角を変数とする前記単位電圧あたりの画像移動量を多項式として近似し、前記多項式の3次の係数から前記色球面収差量を算出する、
    ことを特徴とする走査荷電粒子線装置。
  3. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、
    前記色球面収差量の測定において、前記加速電圧を変更することでフォーカスズレを発生させ、前記フォーカスズレに対して変更した前記加速電圧の単位電圧あたりのフォーカスズレ量と方向を算出し、前記単位電圧あたりのフォーカスズレ量と方向の算出に際し、前記1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも2種異なる傾斜角において測定し、前記傾斜角を変数とする前記単位電圧あたりのフォーカスズレ量を多項式として近似し、前記多項式の2次の係数から前記色球面収差量を算出する、
    ことを特徴とする走査荷電粒子線装置。
  4. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、前記試料の傾斜観察において色収差制御機能を有し、観察する傾斜角および当該傾斜角と軸対称の関係にある傾斜角において、色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するため、前記色収差制御機能により色収差が0となる状態よりも正もしくは負になるよう制御する、
    ことを特徴とする走査荷電粒子線装置。
  5. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、前記試料の傾斜観察において色分散収差制御機能を有し、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するよう、前記色分散収差制御機能により、傾斜しない場合の色分散収差が0の状態よりも正もしくは負になるように制御する、
    ことを特徴とする走査荷電粒子線装置。
  6. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、前記試料の傾斜観察において球面収差制御機能を有し、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制するように前記球面収差制御機能により球面収差が0の状態よりも正もしくは負に制御する、
    ことを特徴とする走査荷電粒子線装置。
  7. 請求項1に記載の走査荷電粒子線装置であって、
    前記制御部は、照射角度制御による前記試料の傾斜観察において、色収差制御機能、色分散収差制御機能、球面収差制御機能の少なくともいずれか二つの機能を含み、このうちの少なくとも二つの機能を用いて観察する傾斜角において、色球面収差および色収差によって試料面と平行な方向に生じる画像のボケを抑制し,且つ抑制の際の生じる色収差と球面収差によって生じる画像のボケが最小となる組み合わせを選択して観察するよう制御する、
    ことを特徴とする走査荷電粒子線装置。
  8. 荷電粒子線を利用する走査荷電粒子線装置であって、
    試料を載置する試料ステージと、
    前記試料ステージ上に載置された試料に対して1次荷電粒子線を走査する照射光学系と、
    前記1次荷電粒子線の走査により発生する2次荷電粒子を検出する検出器と、前記検出器の出力信号を画像表示する表示部と、
    前記試料ステージ、前記照射光学系、前記検出器、前記表示部を制御する制御部と、
    前記制御部に接続される記憶部とを備え、
    前記照射光学系は、入射した前記1次荷電粒子線の収差を補正する収差補正器と前記1次荷電粒子線を偏向する偏向器とを有し、
    前記制御部は、前記偏向器を用いて前記1次荷電粒子線の前記試料への照射角度と方向、及び前記1次荷電粒子線への加速電圧を変更制御して測定した色球面収差量を前記記憶部に保存する、
    ことを特徴とする走査荷電粒子線装置。
  9. 試料を載置する試料ステージと、入射した1次荷電粒子線の収差を補正する収差補正器と前記1次荷電粒子線を偏向する偏向器を有し、前記試料ステージ上に載置された試料に対して前記1次荷電粒子線を走査する照射光学系と、前記荷電粒子線の走査により発生する2次荷電粒子を検出する検出器と、前記検出器の出力信号を画像表示する表示部とを備えた荷電粒子線装置の制御部による色球面収差補正方法であって、
    前記偏向器を用いて前記1次荷電粒子線の前記試料への照射角度と方向、及び前記1次荷電粒子線への加速電圧を変更制御して、色球面収差量を測定する、
    ことを特徴とする色球面収差補正方法。
  10. 請求項9に記載の色球面収差補正方法であって、
    前記色球面収差量の測定において、前記加速電圧を変更することで生じる画像の移動について、変更した前記加速電圧に対する単位電圧あたりの画像移動量と方向を算出し、前記単位電圧あたりの画像移動量と方向の算出について前記1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも3つの異なる角度において測定して当該角度を変数とする前記単位電圧あたりの画像移動量を多項式として近似し、前記多項式の3次の係数から前記色球面収差量を算出する、
    ことを特徴とする色球面収差補正方法。
  11. 請求項9に記載の色球面収差補正方法であって、
    前記色球面収差量の測定において、前記加速電圧を変更することでフォーカスズレを発生させ、前記フォーカスズレに対して変更した前記加速電圧の単位電圧あたりのフォーカスズレ量と方向を算出し、前記単位電圧あたりのフォーカスズレ量と方向の算出の際、前記1次荷電粒子線の傾斜を傾斜軸に対して同一の向きで少なくとも2種異なる傾斜角において測定し、前記傾斜角を変数とする前記単位電圧あたりのフォーカスズレ量を多項式として近似し、前記多項式の2次の係数から前記色球面収差量を算出する、
    ことを特徴とする色球面収差補正方法。
  12. 請求項9に記載の色球面収差補正方法であって、
    前記試料の傾斜観察において色収差制御機能を有し、観察する傾斜角において色球面収差および色収差によって試料面と平行な方向に生じる画像のボケが前記傾斜角および前記傾斜角と軸対称の関係にある傾斜角において、前記色収差制御機能により色収差が0となる状態よりも正もしくは負になるよう制御する、
    ことを特徴とする色球面収差補正方法。
PCT/JP2010/066979 2009-10-26 2010-09-29 走査荷電粒子線装置、及び色球面収差補正方法 WO2011052333A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/502,754 US8772732B2 (en) 2009-10-26 2010-09-29 Scanning charged particle beam device and method for correcting chromatic spherical combination aberration
DE112010004145.8T DE112010004145B4 (de) 2009-10-26 2010-09-29 Vorrichtung zur Abtastung mit einem geladenen Teilchenstrahl und Vefahren zur Korrektur der chromatischen und sphärischen Aberration in Kombination
JP2011538318A JP5331893B2 (ja) 2009-10-26 2010-09-29 走査荷電粒子線装置、及び色球面収差補正方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-245350 2009-10-26
JP2009245350 2009-10-26

Publications (1)

Publication Number Publication Date
WO2011052333A1 true WO2011052333A1 (ja) 2011-05-05

Family

ID=43921761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066979 WO2011052333A1 (ja) 2009-10-26 2010-09-29 走査荷電粒子線装置、及び色球面収差補正方法

Country Status (4)

Country Link
US (1) US8772732B2 (ja)
JP (1) JP5331893B2 (ja)
DE (1) DE112010004145B4 (ja)
WO (1) WO2011052333A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053074A (ja) * 2012-09-05 2014-03-20 Hitachi High-Technologies Corp 荷電粒子線装置
JP2020520053A (ja) * 2017-05-16 2020-07-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 電子顕微鏡における収差の測定および制御

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5735262B2 (ja) * 2010-11-12 2015-06-17 株式会社日立ハイテクノロジーズ 荷電粒子光学装置及びレンズ収差測定方法
EP2511936B1 (en) * 2011-04-13 2013-10-02 Fei Company Distortion free stigmation of a TEM
JP6876418B2 (ja) * 2016-12-05 2021-05-26 日本電子株式会社 画像取得方法および電子顕微鏡
CN111164725B (zh) * 2017-09-29 2023-08-29 Asml荷兰有限公司 用于带电粒子束检查的样本预充电方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197140A (ja) * 2001-12-25 2003-07-11 Ebara Corp 荷電粒子ビーム光学装置、荷電粒子ビーム光学装置の絞り、荷電粒子ビーム制御方法、及びこれらを用いた物体検査装置ならびに物体検査方法、及び半導体素子
JP2004087460A (ja) * 2002-06-28 2004-03-18 Jeol Ltd 収差補正装置を備えた荷電粒子ビーム装置
JP2006054074A (ja) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp 荷電粒子ビームカラム
JP2007128656A (ja) * 2005-11-01 2007-05-24 Jeol Ltd 収差補正装置を備えた荷電粒子ビーム装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273861A (ja) * 2000-03-28 2001-10-05 Toshiba Corp 荷電ビーム装置およびパターン傾斜観察方法
US6924488B2 (en) * 2002-06-28 2005-08-02 Jeol Ltd. Charged-particle beam apparatus equipped with aberration corrector
JP4133602B2 (ja) * 2003-06-06 2008-08-13 日本電子株式会社 荷電粒子ビーム装置における収差補正方法および荷電粒子ビーム装置
JP4522203B2 (ja) * 2004-09-14 2010-08-11 日本電子株式会社 荷電粒子ビーム装置の色収差補正方法及び装置並びに荷電粒子ビーム装置
JP4359232B2 (ja) * 2004-12-20 2009-11-04 株式会社日立ハイテクノロジーズ 荷電粒子線装置
EP1796130A1 (en) * 2005-12-06 2007-06-13 FEI Company Method for determining the aberration coefficients of the aberration function of a particle-optical lens.
JP2007335125A (ja) * 2006-06-13 2007-12-27 Ebara Corp 電子線装置
JP2008181778A (ja) 2007-01-25 2008-08-07 Jeol Ltd 荷電粒子ビーム装置の自動軸合わせ方法及び荷電粒子ビーム装置
JP5028297B2 (ja) * 2008-02-22 2012-09-19 株式会社日立ハイテクノロジーズ 収差補正器を備えた荷電粒子線装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003197140A (ja) * 2001-12-25 2003-07-11 Ebara Corp 荷電粒子ビーム光学装置、荷電粒子ビーム光学装置の絞り、荷電粒子ビーム制御方法、及びこれらを用いた物体検査装置ならびに物体検査方法、及び半導体素子
JP2004087460A (ja) * 2002-06-28 2004-03-18 Jeol Ltd 収差補正装置を備えた荷電粒子ビーム装置
JP2006054074A (ja) * 2004-08-10 2006-02-23 Hitachi High-Technologies Corp 荷電粒子ビームカラム
JP2007128656A (ja) * 2005-11-01 2007-05-24 Jeol Ltd 収差補正装置を備えた荷電粒子ビーム装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
M.MATSUYA ET AL.: "Resolution estimation of low election energy probe lens system", NUCLEAR INSTRUMENTS AND METHODS IN PHYSICS RESEARCH, vol. A519, 2004, pages 264 - 279, XP004490960, DOI: doi:10.1016/j.nima.2003.11.163 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014053074A (ja) * 2012-09-05 2014-03-20 Hitachi High-Technologies Corp 荷電粒子線装置
JP2020520053A (ja) * 2017-05-16 2020-07-02 インターナショナル・ビジネス・マシーンズ・コーポレーションInternational Business Machines Corporation 電子顕微鏡における収差の測定および制御
JP7064271B2 (ja) 2017-05-16 2022-05-10 インターナショナル・ビジネス・マシーンズ・コーポレーション 電子顕微鏡における収差の測定および制御

Also Published As

Publication number Publication date
DE112010004145T5 (de) 2012-11-22
US20120199739A1 (en) 2012-08-09
JP5331893B2 (ja) 2013-10-30
JPWO2011052333A1 (ja) 2013-03-21
US8772732B2 (en) 2014-07-08
DE112010004145B4 (de) 2019-03-21

Similar Documents

Publication Publication Date Title
JP4620981B2 (ja) 荷電粒子ビーム装置
JP5277250B2 (ja) 荷電粒子線応用装置およびその幾何収差測定方法
US8168951B2 (en) Charged particle beam apparatus
JP4881661B2 (ja) 荷電粒子線装置
JP5331893B2 (ja) 走査荷電粒子線装置、及び色球面収差補正方法
US8269188B2 (en) Charged particle beam apparatus and sample processing method
US9484181B2 (en) Charged particle beam apparatus and trajectory correction method in charged particle beam apparatus
US10446361B2 (en) Aberration correction method, aberration correction system, and charged particle beam apparatus
EP1783812A2 (en) Corrector for the correction of chromatic aberrations in a particle-optical apparatus.
JP6404736B2 (ja) 複合荷電粒子線装置
JP6389569B2 (ja) モノクロメーターおよびこれを備えた荷電粒子線装置
US20230377829A1 (en) Charged Particle Beam Device and Axis Adjustment Method Thereof
JP2017220413A (ja) 荷電粒子線装置および収差補正方法
JP6647854B2 (ja) 収差補正方法および荷電粒子線装置
JP5993668B2 (ja) 荷電粒子線装置
JP5204277B2 (ja) 荷電粒子線装置
WO2021100172A1 (ja) 荷電粒子線装置及び収差補正方法
JP6737539B2 (ja) 荷電粒子線装置
WO2014084172A1 (ja) 荷電粒子線装置
US20220359150A1 (en) Charged particle beam device
JP2010251218A (ja) 荷電粒子線装置
JP2011040256A (ja) 走査荷電粒子線装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10826467

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011538318

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13502754

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 112010004145

Country of ref document: DE

Ref document number: 1120100041458

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10826467

Country of ref document: EP

Kind code of ref document: A1