WO2011049033A1 - データセンターおよびそのための計算機格納用ラック - Google Patents

データセンターおよびそのための計算機格納用ラック Download PDF

Info

Publication number
WO2011049033A1
WO2011049033A1 PCT/JP2010/068252 JP2010068252W WO2011049033A1 WO 2011049033 A1 WO2011049033 A1 WO 2011049033A1 JP 2010068252 W JP2010068252 W JP 2010068252W WO 2011049033 A1 WO2011049033 A1 WO 2011049033A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
data center
exhaust
air
intake
Prior art date
Application number
PCT/JP2010/068252
Other languages
English (en)
French (fr)
Inventor
岡田良介
大塚隆一
Original Assignee
Okada Ryosuke
Otsuka Ryuichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okada Ryosuke, Otsuka Ryuichi filed Critical Okada Ryosuke
Priority to US13/263,143 priority Critical patent/US20120034860A1/en
Priority to JP2011537233A priority patent/JP5089810B2/ja
Priority to CN2010800254309A priority patent/CN102834787A/zh
Publication of WO2011049033A1 publication Critical patent/WO2011049033A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20745Forced ventilation of a gaseous coolant within rooms for removing heat from cabinets, e.g. by air conditioning device
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/206Cooling means comprising thermal management
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20709Modifications to facilitate cooling, ventilating, or heating for server racks or cabinets; for data centers, e.g. 19-inch computer racks
    • H05K7/20718Forced ventilation of a gaseous coolant
    • H05K7/20736Forced ventilation of a gaseous coolant within cabinets for removing heat from server blades
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present invention relates to a data center that is a building for installing and operating a computer, and a computer storage rack for use in the data center.
  • the present invention provides a data center that can stably operate a computer such as a server and can significantly reduce energy consumption during operation, and a computer storage rack used there The task is to do.
  • a building for installing and operating a computer an intake area having an intake device for taking outside air into the building, an exhaust area having an exhaust device for discharging air outside the building, an intake area, A partition that cuts off the exhaust area, a computer storage rack installed so as to pass through a part of the partition, and an air flow so that the air in the intake area flows to the exhaust area through the computer storage rack
  • An airflow control means for controlling the data center.
  • a suction device that takes in outside air into the building, a second intake area that is separate from the intake area, a second partition that blocks the exhaust area and the second intake area, and a second partition
  • the second computer storage rack installed so as to penetrate a part thereof, and the air flow is controlled so that the air in the second intake area passes through the second computer storage rack and flows to the exhaust area.
  • a temperature sensor is further provided in at least one of the intake area and the exhaust area, and (A) airflow control in the airflow control means and / or (B) the bypass path from the exhaust device according to a signal from the temperature sensor
  • the data center according to any one of (1) to (4), wherein the airflow to the inhalation device is controlled via (6)
  • a computer storage rack for installation in a building for installing and operating a computer the computer storage rack configured to penetrate the rack body, and in the storage area
  • the outside air taken into the intake area passes through the computer storage rack and flows to the exhaust area, and at that time, the heat generated by the computer stored in the rack is taken away. Can do. Since the air warmed by the computer is exhausted to the outside, there is no or very little need to cool the air itself. Thus, since the data center can be constructed by controlling the airflow, the energy consumption in the data center is remarkably reduced, and cost reduction and environmental load reduction are greatly expected.
  • the present invention does not require complex building elements such as double floors for air conditioning in conventional data centers.
  • the computer storage rack according to the present invention is suitable for application to the above-described data center because air can efficiently flow into the stored computer.
  • the worker can travel between the intake area and the exhaust area via the airtight chamber, so that the work efficiency in the data center is improved.
  • the intake area provided in the data center can be increased, and the number of computers that can be stored and operated can be increased.
  • the exhausted warm air can be taken into the inhalation area as needed. This makes it possible to suppress overcooling of the computer or warm the data center at low temperatures such as at night or in winter.
  • the feedback of the signal from the temperature sensor is used to control the air flow or to incorporate a part of the warmed exhaust air into the intake area. Temperature change can be suppressed.
  • 1 is a schematic plan view of a data center that is one embodiment of the present invention. It is a schematic diagram of the computer storage rack which is one aspect
  • mode of this invention. 1 is a schematic plan view of a data center that is one embodiment of the present invention. 1 is a schematic plan view of a data center that is one embodiment of the present invention. It is a model front view of the 19-inch rack used in the Example of this invention.
  • 1 is a data center
  • 10 and 110 are intake areas
  • 11 and 111 are intake openings
  • 20 is an exhaust area
  • 21 is an exhaust opening
  • 12 and 112 are fans.
  • 30 is a computer storage rack
  • 31 is a top plate
  • 32 is a side plate
  • 33 is a closing plate
  • 34 is an area not storing a server
  • 35 is a server
  • 36 is an air It is a blank
  • 40 and 140 are partition walls
  • 50 is an airtight chamber
  • 13, 23, 51 and 52 are doorways.
  • FIG. 1 is a schematic plan view of a data center which is one embodiment of the present invention.
  • the data center 1 is divided into an intake area 10 and an exhaust area 20 by a partition wall 40.
  • a computer storage rack 30 is installed in a part of the partition wall 40 so as to penetrate the partition wall 40, and the rack 30 faces both the intake area 10 and the exhaust area 20.
  • outside air is taken into the intake area 10 through the intake port 11, flows through the computer storage rack 30 to the exhaust area 20, and is discharged to the outside through the exhaust port 21.
  • air preferably passes through a computer (not shown) stored in the rack 30, and at that time, heat generated from the computer is taken away by the air, and the efficiency inside the computer is increased. Cooling is achieved.
  • the airflow is controlled by fans 12 and 22 and the like. The operator enters and exits the intake area 10 and the exhaust area 20 through the entrances 13 and 23.
  • the intake area 10 is an area partitioned within the data center 1. Outside air is taken into the intake area 10.
  • a general air conditioner can be used as appropriate as an inhaler for taking in outside air.
  • the suction port 11 can be appropriately provided with a filter for dust prevention.
  • the floor or ceiling of the air intake area 10 preferably has no holes or the like in order to minimize the entry and exit of air. However, holes may be provided for electric wiring or the like.
  • the area of the suction area 10 is not particularly limited as long as there is enough space for the operator to operate the computer in the suction area 10.
  • the inlet / outlet port 13 from outside the building is provided in the suction area 10.
  • the doorway 13 preferably constitutes an air lock having a plurality of doors.
  • the exhaust area 20 is an area partitioned in the data center 1 separately from the intake area 10. Air is discharged from the exhaust area 20 to the outside of the data center 1.
  • a general air conditioner can be used as the exhaust device as appropriate. For example, a combination of the exhaust port 21 and the fan 22 can be used.
  • the floor and ceiling of the exhaust area 20 preferably have no holes in order to minimize the inflow and outflow of air. However, holes may be provided for electric wiring and the like.
  • the area of the exhaust area 20 is not particularly limited as long as there is enough area for the operator to operate the computer in the exhaust area 20.
  • the exhaust area 20 is provided with an entrance 23 from outside the building.
  • the entrance / exit 23 preferably constitutes an air lock having a plurality of doors.
  • the partition 40 blocks the intake area 10 and the exhaust area 20. If the air flow in both areas 10 and 20 can be blocked, the structure and material of the partition wall 40 are not particularly limited, and a general building board or the like can be used as appropriate. In order to ensure the interruption of the air flow between the intake area 10 and the exhaust area 20, the partition wall 40 is usually constructed from the floor to the ceiling. A computer storage rack 30 is installed in a part of the partition wall 40 so as to penetrate from the intake area 10 to the exhaust area 20. Preferably, the computer storage rack 30 constitutes the only flow path between the intake area 10 and the exhaust area 20.
  • the computer storage rack 30 (hereinafter sometimes abbreviated as “rack”) is a shelf-like structure provided with an area for storing computers to be operated.
  • FIG. 2 is a schematic view of a rack according to one embodiment of the present invention.
  • the rack 30 has a top plate 31 and side plates 32.
  • a shelf-like storage area is provided so as to penetrate the main body of the rack 30.
  • a computer (not shown) is stored in this shelf-shaped storage area.
  • the computer used here is preferably designed so that air flows in a uniaxial direction inside.
  • a closing plate 33 that can block the airflow in the penetration direction of the area can be installed.
  • the closure plate 33 is installed in the storage areas where the computers are not stored. The air can be efficiently led into the computer, and the computer can be cooled more reliably.
  • a conventional computer storage rack does not have the top plate 31 and the side plate 32, and is often composed of only a frame. Even in such a rack, if it is configured so that the closing plate 33 can be installed on the extended line of the partition wall 40, or if the computer occupies as much of the rack storage area as possible, the efficiency of the computer can be improved. Cooling is possible. However, since it is easier to control the airflow when the top plate 31 and the side plate 32 are provided, the range of selection of the installation conditions and the computer to be used is widened. When the rack 30 has a gap other than the computer storage area, it is preferable to install a blocking plate in the gap so that air efficiently flows into the stored computer.
  • the type of computer installed and operated in the data center 1 is not particularly limited.
  • a computer configured to achieve cooling by flowing air from the front to the back of the computer is used. Even in other computers, the air in the intake area 10 flows to the exhaust area 20 through the computer, so that a predetermined cooling effect can be expected.
  • the outside air introduced into the intake area 10 flows through the computer storage rack 30 to the exhaust area 20.
  • Such air flow is controlled by the operation of the intake port 11, the exhaust port 21 and the fans 12 and 22 in the embodiment of FIG. 1. Therefore, in this embodiment, it can be evaluated that the intake port 11, the exhaust port 21 and the fans 12 and 22 act as airflow control means.
  • the airflow control means is not limited to a fan, and an alternative means that can generate a desired airflow may be used in combination or replaced.
  • the strength of the airflow can be adjusted as appropriate.
  • the temperature inside the computer can be maintained at a temperature about 10 to 16 ° C. higher than the outside air temperature with a sufficient air volume. Therefore, the number of fans and the like can be adjusted as appropriate so that the air volume can be achieved in the temperature range with the computer operated.
  • FIG. 3 is a schematic plan view of a data center which is one preferred embodiment of the present invention.
  • an airtight chamber 50 is defined in addition to the intake area 10 and the exhaust area 20 described above.
  • the airtight chamber 50 is configured so that airflow is blocked in both the intake area 10 and the exhaust area 20.
  • the airtight chamber 50 is provided with an entrance 51 to the intake area 10 and an entrance 52 to the exhaust area 20.
  • the operator can move between the intake area 10 and the exhaust area 20 without disturbing the airflow from the intake area 10 to the exhaust area 20 via the computer storage rack 30. Can do. As a result, it is not necessary to go out of the data center 1 through the entrances 13 and 23 during the work of the computer, so that work efficiency is increased.
  • the airtight chamber 50 By providing the airtight chamber 50, there is a possibility that either one of the entrances 13 and 23 may not be installed.
  • general construction techniques can be used as appropriate.
  • the “airtightness” assumed in the present invention may be airtight to such an extent that the airflow passing through the computer storage rack 30 is not significantly inhibited.
  • it is preferable to construct a structure of an airtight chamber by providing a plurality of doors at each entrance.
  • FIG. 4 is a schematic plan view of a data center which is one preferred embodiment of the present invention.
  • the data center 1 is divided into three areas.
  • the first intake area 10 and the second intake area 110 exist on both sides of the exhaust area 20.
  • the first intake area 10 and the exhaust area 20 are blocked from airflow by the first partition 40.
  • the second intake area 110 and the exhaust area 20 are blocked from airflow by the second partition 140.
  • a first computer storage rack 30 and a second computer storage rack 130 are provided so as to penetrate the first and second partition walls 40 and 140.
  • the thick arrows in the drawing represent the air flow.
  • the relationship between the first intake area 10 and the exhaust area 20 is the same as in the embodiment shown in FIG.
  • the second intake area 110 is provided with a suction port 111 and a fan 112 so that outside air can be taken in.
  • the taken outside air is controlled so as to pass through the second computer storage rack 130 and reach the exhaust area 20.
  • Such control of the air flow in the second intake area 110 is performed by the intake port 111 and the fans 112 and 22, and it can be evaluated that these are the second air flow control means.
  • the data center 1 can be appropriately provided with an airtight room and an entrance as described above.
  • the second intake area 110 By providing the second intake area 110 in this way, the number of computers stored and operated in the data center 1 can be increased.
  • a data center divided into four or more rooms can be constructed by appropriately combining the data centers in the modes of FIGS.
  • the air warmed by the computer is discharged out of the data center 1 from the exhaust area 20.
  • a bypass path (not shown) is provided for reincorporating the exhausted warm air into the intake area.
  • computers in the data center 1 tend to be considered to be better if they are cooled.
  • the amount of heat generated from a computer may not necessarily be large, and there may be an adverse effect caused by overcooling the computer.
  • the outside air temperature is extremely low, such as in winter or at night, there is a concern about overcooling, or the inside of the data center 1 needs to be heated.
  • bypass path is not particularly limited, and can be appropriately constructed using a duct or the like.
  • a route can also be constructed.
  • a temperature sensor (not shown) is installed in at least one of the intake area 10 and the exhaust area 20. More preferably, the airflow in the data center is controlled by a signal from the temperature sensor. For example, when the computer is insufficiently cooled and a signal indicating an increase in temperature is generated, the rotational output of the fans 12 and 22 is increased to increase the airflow, thereby promoting the cooling of the computer. On the contrary, when it is recognized that the cooling of the computer is sufficiently achieved by the signal from the temperature sensor, the rotational output of the fans 12 and 22 can be reduced to further reduce the energy consumption. it can.
  • the mixing ratio of the warmed air and the outside air is controlled to control the inside of the data center 1. It is also possible to warm up.
  • conventionally known control techniques can be used as appropriate. These inventions related to airflow control are not presented simply by cooling the inside of the data center, but are presented for the first time by presenting our new technical guidelines that the temperature change should be reduced by airflow control. It is what is done.
  • the present invention it is not necessary or extremely small to cool the air itself as in a conventional data center.
  • the prior art is appropriately used within a range that does not hinder the operation and effect of the present invention. can do.
  • Example 1 The server was operated in the actual data center as follows. A schematic plan view of the data center is as shown in FIG. 1 referred to above. However, the intake area 10 is made wider than the exhaust area 20 in consideration of the ease of work of the server. Specifically, the intake area 10 was 4.5 m ⁇ 2.1 m wide, and the exhaust area 20 was 4.5 m ⁇ 1.0 m wide.
  • the intake port 11 is provided with a hood, and three intake fans 12 are installed. The capacity of the fan 12 is as follows: pressure fan 40 cm, 1700 m 3 / h: 100 Pa, single phase 100 V, 135 W.
  • a hood was also provided at the exhaust port 21 and three exhaust fans 22 were installed. The exhaust fan 22 is the same as the intake fan described above. These hoods and fans are responsible for the suction device, exhaust device, and airflow control means.
  • FIG. 5 is a schematic front view of the 19-inch rack 30.
  • 25 1U servers 35 were stored in the rack 30.
  • a panel (not shown) was installed in this region 34 to block air flow from the front to the back of the rack.
  • an air blank 36 (an area where there is no object and can be ventilated) is generated near the outer periphery.
  • a panel was also fitted into the air blank 36 to block the flow of air from the front to the back of the rack.
  • the temperature of the CPU and HDD of the server 35 can be monitored, and temperature sensors can be installed on the intake area side and the exhaust area side of the rack 30 to monitor the temperature.
  • the fans 12 and 22 were operated in a state in which no particular load was applied to the CPU and HDD to control the airflow.
  • the temperature of each part at that time was as follows. Time CPU temperature HDD temperature Rack intake side temperature Rack exhaust side temperature 12:00 43 °C 37 °C 32 °C 32 °C 14:00 43 °C 37 °C 32 °C 33.59 °C 16:00 42 °C 37 °C 32 °C 32 °C 18:00 42 °C 35 °C 31.2 °C 32 °C 20:00 41 °C 35 °C 30.56 °C 30.56 °C
  • Example 2 In the same data center as in Example 1, the server was operated on another day (September 2, 2009). The outside temperature on this day was 24 ° C (maximum temperature).
  • the server is operated with a load applied to the CPU and HDD.
  • the sine function was executed 1 million times.
  • the CPU usually reaches 50 ° C.
  • the fans 12 and 22 were operated to control the airflow.
  • the temperature of each part at that time was as follows.

Abstract

 本発明の課題は、サーバ等の計算機を安定的に運用させることができ、大幅に運用時のエネルギー消費を抑制し得るデータセンター、および、そこで用いられる計算機格納用ラックを提供することである。本発明によれば、計算機を設置および運用するための建物であって、建物内に外気を取り込む吸入装置を備えた吸気エリア10と、建物外へ空気を排出する排気装置を備えた排気エリア20と、吸気エリア10と排気エリア20とを遮断する隔壁40と、隔壁40の一部を貫通するように設置された計算機格納用ラック30と、吸気エリア10内の空気が計算機格納用ラック30を通過して排気エリア20へと流れるように気流を制御する気流制御手段と、を有するデータセンター1が提供される。

Description

データセンターおよびそのための計算機格納用ラック
 本発明は、計算機を設置および運用するための建物であるデータセンターおよびそこで使用するための計算機格納用ラックに関する。
 従来から、サーバをはじめとする計算機の増加に伴い、データセンターの電力消費が増加している。近時は、環境問題への意識の高まりとともに、データセンターにおけるエネルギー節約が重要課題としてクローズアップされている。このため、最近のデータセンターの設計では、使用電力量を抑え、発生する熱なども管理することが求められている。
 一般的なデータセンターでは、特開2009-63226号公報に示されるように、計算機から発生する熱を除去するために、床下から冷気を入れて、天井から熱気を逃がす構造などがとられている。言い換えれば、冷却媒体として空気を利用した空調設備によって計算機を冷却している。具体的には、閉鎖されたデータセンター内で冷却媒体である空気を循環させ、これを空調機器によって計算機に作用させることで冷却が実現される。そして、計算機によって熱せられた空気それ自体を冷却機によって冷却して、再び、計算機に作用させている。
特開2009-63226号公報
 最近では、環境問題および省エネルギーへのさらなる意識が高まっている。また、情報通信分野では、インターネット利用者の激増、あるいは、Saasやクラウドコンピューティングの普及などにより、サーバの使用は加速度的に増加している。一方で、サーバ自体の技術の進歩によって、従来よりも少ない発熱で稼動する計算機や、従来より高い温度のもとでも稼動できる計算機も増えてきている。
 これらのことに鑑みて、本発明は、サーバ等の計算機を安定的に運用させることができ、運用時のエネルギー消費を大幅に抑制し得るデータセンター、および、そこで用いられる計算機格納用ラックを提供することを課題とする。
 本発明者らが鋭意検討した結果、以下のような本発明を完成した。
(1)計算機を設置および運用するための建物であって、建物内に外気を取り込む吸入装置を備えた吸気エリアと、建物外へ空気を排出する排気装置を備えた排気エリアと、吸気エリアと排気エリアとを遮断する隔壁と、隔壁の一部を貫通するように設置された計算機格納用ラックと、吸気エリア内の空気が計算機格納用ラックを通過して排気エリアへと流れるように気流を制御する気流制御手段と、を有するデータセンター。
(2)吸気エリアおよび排気エリアとは気流が遮断された気密室をさらに有し、気密室には吸気エリアへの出入口および排気エリアへの出入口が設けられている(1)のデータセンター。
(3)建物内に外気を取り込む吸入装置を備え上記吸気エリアとは別個の第2の吸気エリアと、排気エリアと第2の吸気エリアとを遮断する第2の隔壁と、第2の隔壁の一部を貫通するように設置された第2の計算機格納用ラックと、第2の吸気エリア内の空気が第2の計算機格納用ラックを通過して排気エリアへと流れるように気流を制御する第2の気流制御手段と、をさらに有する(1)または(2)のデータセンター。
(4)排気装置から吸入装置に至る空気のバイパス経路をさらに有する(1)~(3)のいずれかのデータセンター。
(5)吸気エリアおよび排気エリアの少なくとも一方に温度センサをさらに有し、温度センサからの信号によって、(A)気流制御手段における気流の制御、および/または、(B)排気装置から上記バイパス経路を介した吸入装置への気流の制御、が行われるよう構成された、(1)~(4)のいずれかのデータセンター。
(6)計算機を設置および運用するための建物内に設置するための計算機格納用ラックであって、当該ラック本体を貫通するように構成された計算機の格納領域を有し、前記格納領域内には閉鎖板を設置することができ、該格納領域に計算機を格納しない場合には閉鎖板によってラックを貫通する方向の気流が遮断されるよう構成されてなる、計算機格納用ラック。
 本発明によるデータセンターによれば、吸気エリア内に取り込んだ外気は計算機格納用ラックを通過して排気エリアへと流され、その際に、前記ラックに格納された計算機で発生した熱を奪うことができる。計算機によって暖められた空気は外部に排気されるから、空気自体を冷却する必要性は全くないか著しく小さい。このように、気流の制御によってデータセンターを構築することができるから、データセンターにおける消費エネルギーが著しく小さくなり、コスト低減および環境負荷低減が大いに見込まれる。本発明によれば、従来のデータセンターにおける空調のための二重床などの複雑な建築要素を必要としない。本発明による計算機格納用ラックは、格納した計算機内へ空気を効率よく流すことができるから、上述のデータセンターへの適用に好適である。
 本発明の好適態様によれば、気密室を介して吸気エリアと排気エリアとを作業者が往来できるので、データセンター内における作業効率が向上する。別の好適態様によれば、データセンター内に設けられる吸気エリアを増やすことができ、格納および運用できる計算機を増やすことができる。さらに別の好適態様では、排気された暖かい空気を必要に応じて吸入エリアに取り込むことができる。これによって、夜間や冬季など低温時に、計算機の過冷却を抑制したりデータセンターを暖めたりすることができる。また別の好適態様によれば、温度センサからの信号のフィードバックを利用して、気流を制御したり、暖められて排気される空気の一部を吸気エリアに取り入れたりすることで、データセンター内の温度変化を抑制させることができる。
本発明の一態様であるデータセンターの模式平面図である。 本発明の一態様である計算機格納用ラックの模式図である。 本発明の一態様であるデータセンターの模式平面図である。 本発明の一態様であるデータセンターの模式平面図である。 本発明の実施例で用いた19インチラックの模式正面図である。
 図面において、1はデータセンターであり、10と110は吸気エリアであり、11と111は吸入口であり、20は排気エリアであり、21は排気口であり、12、22と112はファンであり、30は計算機格納用ラックであり、31は天板であり、32は側板であり、33は閉鎖板であり、34はサーバを格納しない領域であり、35はサーバであり、36はエアーブランクであり、40と140は隔壁であり、50は気密室であり、13、23、51と52は出入口である。
 以下、図面を参照しながら本発明を詳述する。しかし、本発明は図示された態様に限定されるわけでは無い。図面は、一部の構成要素を強調して描写している場合があるので、図面に表れた寸法は本発明の範囲を制限するものではない。
 図1は、本発明の一つの実施態様であるデータセンターの模式平面図である。データセンター1は隔壁40によって吸気エリア10と排気エリア20とに区画されている。隔壁40の一部には、隔壁40を貫通するように計算機格納用ラック30が設置されていて、該ラック30は吸気エリア10および排気エリア20の両方に面している。図1のデータセンター1では、外気が吸入口11を経て吸気エリア10へ取り込まれ、計算機格納用ラック30を通過して排気エリア20へ流れ、排気口21を経て外部に排出される。計算機格納用ラック30では、好ましくは該ラック30内に格納された計算機(図示せず)の内部を空気が通過し、その際に、計算機から発生した熱が空気によって奪われ、計算機内部の効率的な冷却が達成される。データセンター1内ではファン12および22などによって気流が制御される。作業者は、出入口13、23から吸気エリア10および排気エリア20へ出入する。
 吸気エリア10はデータセンター1内に区画された領域である。吸気エリア10には外気が取り込まれる。外気を取り込むための吸入装置は一般的な空調装置を適宜援用することができ、例えば、吸入口11とファン12との組合わせが挙げられる。データセンター1の内部の清潔のために、吸入口11には防塵のためのフィルターなどを適宜備え付けることができる。吸気エリア10は、外気を取り込む吸入装置および計算機格納用ラック30を除いては、空気の出入が生じないことが好ましい。吸気エリア10の床や天井などは空気の出入をできるだけ少なくするため、孔などは存在しないことが好ましいが、電気配線などのために孔を設けてもよい。吸入エリア10内で作業者が計算機の操作をするに足る広さがある限り、吸入エリア10の広さは特に限定はない。図1の態様では、吸入エリア10には、建物外からの出入口13が設けられている。出入口13は、複数の扉を有するエアロックを構成していることが好ましい。
 排気エリア20はデータセンター1内に、吸気エリア10とは別に、区画された領域である。排気エリア20からデータセンター1の外部に空気が排出される。排気装置としては一般的な空調装置を適宜援用することができ、例えば、排気口21とファン22との組合わせが挙げられる。排気エリア20は、排気装置および計算機格納用ラック30を除いては、空気の出入が生じないことが好ましい。排気エリア20の床や天井などは空気の出入をできるだけ少なくするため、孔などは存在しないことが好ましいが、電気配線などのために孔を設けてもよい。排気エリア20内で作業者が計算機の操作をするに足る広さがある限り、排気エリア20の広さは特に限定はない。図1の態様では、排気エリア20には、建物外からの出入口23が設けられている。出入口23は、複数の扉を有するエアロックを構成していることが好ましい。
 隔壁40は、吸気エリア10と排気エリア20とを遮断する。両エリア10および20の気流を遮断することができれば、隔壁40の構造や材質は特に限定されず、一般的な建築用ボードなどを適宜援用することができる。吸気エリア10と排気エリア20との気流の遮断を確保するため、通常は、隔壁40は床から天井にまでわたって構築されている。隔壁40の一部には、吸気エリア10から排気エリア20へと貫通するように計算機格納用ラック30が設置されている。好ましくは、この計算機格納ラック30が吸気エリア10と排気エリア20との間の唯一の流路を構成する。
 計算機格納用ラック30(以下、「ラック」と略すこともある。)は、運用すべき計算機を格納する領域が設けられている棚状の構造物である。図2は、本発明の一つの実施態様であるラックの模式図である。このラック30は、天板31と側板32を有している。ラック30の本体を貫通するように棚状の格納領域が設けられている。この棚状の格納領域に計算機(図示せず)が格納される。ここで用いられる計算機は、内部において一軸方向に空気が流れるように設計されていることが好ましい。格納領域には、該領域の貫通方向の気流を遮断することができるような閉鎖板33を設置することができる。ラック30が複数の格納領域を有してデータセンター1の運用時にいくつかの格納領域に計算機を格納しない場合には、計算機を格納しない格納領域に閉鎖板33を設置しておくことによって、より効率的に、計算機内部に空気を導くことができ、計算機の冷却をより確実にすることができる。
 従来の計算機格納用ラック(図示せず)は、天板31や側板32を有さず、フレームのみで構成されることが多い。そのようなラックであっても、隔壁40の延長線上に閉鎖板33を設置できるように構成したり、ラックの格納領域のなるべく多くの割合を計算機で占めるようにすれば、計算機の効率的な冷却は可能である。ただし、天板31や側板32を有していたほうが、気流の制御がし易いため、設置条件や使用する計算機の選択の幅が広がる。ラック30に計算機格納領域以外の空隙部がある場合には、当該空隙部にも閉塞板を設置するなどして、格納した計算機の内部に効率的に空気が流れ込むようにすることが好ましい。
 本発明によれば、データセンター1において設置および運用する計算機の種類は特に限定されない。好ましくは、計算機の正面から背面へと空気を流すことによって冷却が達成されるよう構成された計算機が用いられる。それ以外の計算機であっても、吸気エリア10内の空気は計算機を通って排気エリア20へと流れるから、所定の冷却効果を期待することができる。
 本発明によれば、吸気エリア10に導入された外気は、計算機格納用ラック30を通過して排気エリア20へと流れる。このような空気の流れは、図1の態様では、吸気口11、排気口21およびファン12、22の動作によって制御される。よって、この実施態様においては、吸気口11、排気口21およびファン12、22が気流制御手段として作用していると評価することができる。気流制御手段はファンに限定されるわけではなく、所望の気流をつくることができる代替手段を併用したり置き換えたりしてもよい。
 ファンなどの出力を調整することによって、気流の強さなどを適宜調節することができる。本発明者らの知見によれば、十分な風量によって、計算機内部の温度を外気温よりも10~16℃程度高温に維持することができる。したがって、計算機を作動させた状態で前記温度領域が達成するような風量となるように、ファンの数などを適宜調整することができる。
 図3は、本発明の好適な一つの実施態様であるデータセンターの模式平面図である。このデータセンター1には、上述した吸気エリア10および排気エリア20に加えて、気密室50が区画されている。気密室50は吸気エリア10とも排気エリア20とも気流が遮断されるよう構成されている。気密室50には、吸気エリア10への出入口51と排気エリア20への出入口52が設けられている。気密室50を利用することによって、吸気エリア10から計算機格納用ラック30を介して排気エリア20へ至る気流を乱すことなく、作業者は吸気エリア10および排気エリア20の相互間を移動をすることができる。その結果、計算機の作業の際に出入口13や23からデータセンター1の外に出なくてもよいので、作業効率が増す。気密室50を設けることによって、出入口13および23のいずれか一方を設置しなくてもよい可能性もある。気密室50の設計や構築は、一般的な建築技術を適宜援用することができる。本発明において想定する「気密」は、計算機格納用ラック30を通過する気流を著しく阻害しない程度の気密であればよい。なお、データセンター1の出入口13および23についても、各々の出入口に複数の扉を設けて気密室の構造を構築することが好ましい。
 図4は、本発明の好適な一つの実施態様であるデータセンターの模式平面図である。このデータセンター1は3つのエリアに区画されている。排気エリア20の両側に、第1の吸気エリア10および第2の吸気エリア110が存在する。第1の吸気エリア10と排気エリア20とは第1の隔壁40によって気流が遮断されている。第2の吸気エリア110と排気エリア20とは第2の隔壁140によって気流が遮断されている。第1および第2の隔壁40および140を貫通するように、第1の計算機格納用ラック30および第2の計算機格納用ラック130が設けられている。
 図面中の太い矢印は、空気の流れを表している。第1の吸気エリア10と排気エリア20との関係は、図1に示した実施態様の場合と同様である。図4の態様では、第2の吸気エリア110には、吸入口111およびファン112が設けられていて、外気を取り込むことができるように構成されている。取り込まれた外気は、第2の計算機格納用ラック130を通過して排気エリア20へと至るように制御される。このような、第2の吸気エリア110における空気の流れの制御は、吸気口111、ファン112および22が担っており、これらは第2の気流制御手段であると評価することができる。
 図4には表現されていないが、データセンター1には、上述したような気密室や出入口を適宜設けることができる。このように第2の吸気エリア110を設けることによって、データセンター1において格納および運用する計算機の数を増やすことができる。さらに、図1、図3および図4の態様のデータセンターを適宜組合わせることによって、4室以上に区画されたデータセンターを構築することもできる。
 本発明によれば、計算機によって暖められた空気は、排気エリア20からデータセンター1の外へ排出される。本発明の更なる好適態様によれば、排出された暖かい空気を吸気エリアに再度取り込むためのバイパス経路(図示せず)が備えられている。従来、データセンター1における計算機は冷やせば冷やすほどよいと考えられる傾向にあった。しかし、本発明者らの新たな知見によれば、近時の計算機技術の発達により、計算機から発する熱量は必ずしも大きいとはいえない場合があるほか、計算機を冷やし過ぎることによる弊害もあり得る。とりわけ、冬季や夜間など、外気温が著しく低い場合には、過冷却の懸念が生じたり、あるいは、データセンター1の内部を暖める必要が生じたりする。そういった場合には、吸気エリア10に取り込む外気を加温する必要が生じ得る。ここで、排気エリア20から排出された暖かい空気を利用することで、加温のためのエネルギーを節約することができる。バイパス経路の具体的な構成は特に限定されることはなく、ダクトなどを用いて適宜構築することができる。図4に示した実施態様の場合には、分岐したダクト(図示せず)を用いて、排気エリア20の排気口21から第1の吸気エリア10および第2の吸気エリア110の両方へのバイパス経路を構築することもできる。
 好ましくは、吸気エリア10および排気エリア20の少なくとも一方には温度センサ(図示せず)が設置される。さらに好ましくは、温度センサからの信号によって、データセンター内の気流が制御される。例えば、計算機の冷却が不足して温度上昇を示す信号が生じた場合には、ファン12および22の回転出力を増して、気流を強くすることにより、計算機の冷却を促進することができる。逆に、温度センサからの信号によって、計算機の冷却が十分に達成されていることが認められた場合には、ファン12および22の回転出力を低減して、エネルギー消費のさらなる低減を図ることもできる。上述した排気装置から吸入装置に至る空気のバイパス経路を有し、温度センサによって過冷却が認められる場合には、暖められた空気と外気との混合割合を制御することによって、データセンター1の内部を暖めることも可能である。これらの制御の具体的手段については、従来公知の制御技術を適宜援用することができる。これらの気流制御に関する発明は、データセンターの内部を単に冷却すればよいのではなく、気流の制御によって温度変化を小さくしたほうがよいという、本発明者らの新たな技術的指針の提示によってはじめて提示されるものである。
 本発明によれば、従来のデータセンターのように、空気自体を冷却する必要性は無いか極めて小さいが、発明の実施に際しては、本発明の作用および効果を阻害しない範囲において従来技術を適宜援用することができる。
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。
[実施例1]
 以下のように、実際のデータセンターにおいてサーバを運用した。
 データセンターの模式的な平面図は、先に参照した図1に表されるとおりである。ただし、サーバの作業のし易さを考慮して、排気エリア20よりも吸気エリア10を広くした。具体的には、吸気エリア10は、4.5m×2.1mの広さ、排気エリア20は、4.5m×1.0mの広さにした。吸気口11にはフードを設け、吸気用のファン12を3台設置した。ファン12の能力は以下の通りである:圧力扇40cm、1700m/h:100Pa、単相100V、135W。排気口21にもフードを設け、排気用のファン22を3台設置した。排気用のファン22は、上述した吸気用のファンと同様のものを用いた。これらのフードおよびファンが吸入装置、排気装置、気流制御手段を担うこととなった。
 隔壁40として12cmの厚さの耐火壁を床から天井に至るまで設置した。この隔壁40を貫通するように、19インチラック30を2台設置した。該ラック30は天板および側板が備えられていた。図5は、この19インチラック30の模式的な正面図である。ラック30に25台の1Uサーバ35を格納した。ラック30において、サーバ35を格納しない領域34がいくつか生じた。この領域34にはパネル(図示せず)を設置して、ラックの正面から裏面への空気の流れを遮断した。ラック30には外周付近にエアーブランク36(物が無く、通気可能な領域)が生じていた。このエアーブランク36にもパネルを嵌め込んで、ラックの正面から裏面への空気の流れを遮断した。
 サーバ35のCPUおよびHDDの温度をモニタできるようにするとともに、ラック30における吸気エリア側および排気エリア側にも温度センサを設置して、温度をモニタできるようにした。
 2009年8月18日、東京において、このデータセンターにおいてサーバを運用した。この日の外気は30.1℃(最高気温)であった。
 この実施例では、CPUおよびHDDに特段の負荷をかけない状態でファン12および22を運転して気流を制御した。その際の各部の温度は以下の通りであった。
                                 
時刻  CPU温度  HDD温度  ラック吸気側温度 ラック排気側温度
12:00   43℃   37℃    32℃      32℃
14:00   43℃   37℃    32℃      33.59℃
16:00   42℃   37℃    32℃      32℃
18:00   42℃   35℃    31.2℃     32℃
20:00   41℃   35℃    30.56℃     30.56℃
[実施例2]
 実施例1と同じデータセンターで、別の日(2009年9月2日)にサーバを運用した。この日の外気温は24℃(最高気温)であった。
 この実施例では、CPUおよびHDDに負荷をかけた状態でサーバを運用した。CPUに負荷をかけるために、サイン関数を100万回実行した。特段の冷却措置を行わずにこのような負荷をかけると、通常は、CPUは50℃にまで達する。この実施例では、ファン12および22を運転して気流を制御した。その際の各部の温度は以下の通りであった。
                                 
時刻  CPU温度  HDD温度  ラック吸気側温度 ラック排気側温度
12:00   38℃   30℃    23.1℃       27.04℃
14:00   40℃   31℃    23.58℃      27.68℃
16:00   40℃   31℃    23.58℃      27.68℃
18:00   39℃   30℃    23.26℃      27.36℃
20:00   38℃   30℃    22.78℃      26.88℃
 以上のように、実施例1および2では、長時間にわたって安定した温度が保たれた。いずれの場合もCPU温度が外気温より10~16℃程度高い状態に維持され、更なる温度上昇は生じなかった。現在のサーバ技術によれば、十分に実運用にたえる温度維持効果であると評価できる。上記実施例で構築したデータセンターを従来のようにコンプレッサーを用いた冷却によって運用しようとすると、5000Wから10000W程度の電力消費を見込む必要があった。一方、実施例1および2では、6台のファン(各最大出力は135W)によって温度維持が達成でき、計算上の最大の消費電力は810Wであった。このように、実施例1および2では、データセンターの温度管理における顕著な電力削減を達成することができた。
 本発明によれば、データセンターにおけるエネルギーの消費を著しく低減することができ、情報技術のさらなる発展および環境負荷のさらなる低減に貢献すること大である。
 本願は日本で出願された特願2009-244340を基礎としており、その内容は参照することにより本明細書に包含される。

Claims (8)

  1.  計算機を設置および運用するための建物であって、
     建物内に外気を取り込む吸入装置を備えた吸気エリアと、
     建物外へ空気を排出する排気装置を備えた排気エリアと、
     吸気エリアと排気エリアとを遮断する隔壁と、
     隔壁の一部を貫通するように設置された計算機格納用ラックと、
     吸気エリア内の空気が計算機格納用ラックを通過して排気エリアへと流れるように気流を制御する気流制御手段と、を有するデータセンター。
  2.  吸気エリアおよび排気エリアとは気流が遮断された気密室をさらに有し、気密室には吸気エリアへの出入口および排気エリアへの出入口が設けられている、請求項1記載のデータセンター。
  3.  建物内に外気を取り込む吸入装置を備え上記吸気エリアとは別個の第2の吸気エリアと、
     排気エリアと第2の吸気エリアとを遮断する第2の隔壁と、
     第2の隔壁の一部を貫通するように設置された第2の計算機格納用ラックと、
     第2の吸気エリア内の空気が第2の計算機格納用ラックを通過して排気エリアへと流れるように気流を制御する第2の気流制御手段と、をさらに有する請求項1記載のデータセンター。
  4.  排気装置から吸入装置に至る空気のバイパス経路をさらに有する請求項1記載のデータセンター。
  5.  排気装置から吸入装置に至る空気のバイパス経路をさらに有する請求項2記載のデータセンター。
  6.  排気装置から吸入装置に至る空気のバイパス経路をさらに有する請求項3記載のデータセンター。
  7.  吸気エリアおよび排気エリアの少なくとも一方に温度センサをさらに有し、
     温度センサからの信号によって、(A)気流制御手段における気流の制御、および/または、(B)排気装置から上記バイパス経路を介した吸入装置への気流の制御、が行われるよう構成された、請求項1~6のいずれかに記載のデータセンター。
  8.  計算機を設置および運用するための建物内に設置するための計算機格納用ラックであって、当該ラック本体を貫通するように構成された計算機の格納領域を有し、前記格納領域内には閉鎖板を設置することができ、該格納領域に計算機を格納しない場合には閉鎖板によってラックを貫通する方向の気流が遮断されるよう構成されてなる、計算機格納用ラック。
PCT/JP2010/068252 2009-10-23 2010-10-18 データセンターおよびそのための計算機格納用ラック WO2011049033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/263,143 US20120034860A1 (en) 2009-10-23 2010-10-18 Data center and computer storing rack therefor
JP2011537233A JP5089810B2 (ja) 2009-10-23 2010-10-18 データセンターおよびそのための計算機格納用ラック
CN2010800254309A CN102834787A (zh) 2009-10-23 2010-10-18 数据中心及用于数据中心的计算机容纳机柜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244340 2009-10-23
JP2009-244340 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049033A1 true WO2011049033A1 (ja) 2011-04-28

Family

ID=43900259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068252 WO2011049033A1 (ja) 2009-10-23 2010-10-18 データセンターおよびそのための計算機格納用ラック

Country Status (6)

Country Link
US (1) US20120034860A1 (ja)
JP (2) JP5089810B2 (ja)
KR (1) KR20120098658A (ja)
CN (1) CN102834787A (ja)
TW (1) TW201114991A (ja)
WO (1) WO2011049033A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248136A (ja) * 2011-05-31 2012-12-13 Sohki:Kk サーバ温度管理システムまたはサーバ温度管理方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2953880B1 (fr) * 2009-12-11 2012-01-13 Enia Architectes Batiment a salles informatiques superposees et procede de climatisation de ce batiment
TW201243560A (en) * 2011-04-29 2012-11-01 Pegatron Corp Power management device, high performance server and power management method
US9433124B2 (en) 2014-11-21 2016-08-30 Arista Networks, Inc. Reversible fan module
US9458854B2 (en) 2014-11-21 2016-10-04 Arista Networks, Inc. Electrical connection mechanism for reversible fan module
JP6660727B2 (ja) * 2015-12-16 2020-03-11 ダイダン株式会社 外気利用型冷却システム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062779U (ja) * 1992-06-12 1994-01-14 株式会社東芝 電子機器の換気構造
JP2004184070A (ja) * 2002-11-21 2004-07-02 Ntt Power & Building Facilities Inc 機器収容用ラック、電算機室用空気調和装置および電算機室用空調システム
JP2007285082A (ja) * 2006-04-20 2007-11-01 Ntt Facilities Inc サーバー室
JP2007316989A (ja) * 2006-05-26 2007-12-06 Softbank Idc Corp 機器収容ラックおよび機器収容室用空調システム
JP2008538406A (ja) * 2005-04-22 2008-10-23 ディグリー コントロールズ,インク. 適応的環境管理のための知能ファン支援型タイル
JP2009140421A (ja) * 2007-12-10 2009-06-25 Toyo Netsu Kogyo Kk サーバラック及びこれを備えたデータセンター

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49106137A (ja) * 1973-02-14 1974-10-08
US5545086A (en) * 1994-08-18 1996-08-13 Phoenix Controls Corporation Air flow control for pressurized room facility
JP2002061893A (ja) * 2000-08-21 2002-02-28 Matsushita Electric Works Ltd 発熱機器収納室の換気冷房システム
JP2002373033A (ja) * 2001-06-14 2002-12-26 Sanki Eng Co Ltd 情報処理装置の冷却システム
JP3765748B2 (ja) * 2001-11-27 2006-04-12 富士写真フイルム株式会社 電子機器の内気圧調節システム
GB0207382D0 (en) * 2002-03-28 2002-05-08 Holland Heating Uk Ltd Computer cabinet
WO2003095765A1 (en) * 2002-05-08 2003-11-20 PETTUS, Candace, Gale Modular containment unit
US6758744B1 (en) * 2003-03-17 2004-07-06 Rongqing Dai Building interior air pressure control system
US7046514B2 (en) * 2003-03-19 2006-05-16 American Power Conversion Corporation Data center cooling
US7278273B1 (en) * 2003-12-30 2007-10-09 Google Inc. Modular data center
US6927976B1 (en) * 2004-01-15 2005-08-09 Hewlett-Packard Development Company, L.P. Air baffle for managing cooling air re-circulation in an electronic system
US20060082263A1 (en) * 2004-10-15 2006-04-20 American Power Conversion Corporation Mobile data center
US7259963B2 (en) * 2004-12-29 2007-08-21 American Power Conversion Corp. Rack height cooling
CN1924465A (zh) * 2005-09-04 2007-03-07 王润生 智能自然节能空调器
WO2007082351A1 (en) * 2006-01-23 2007-07-26 Datatainer Pty Ltd Data processing apparatus
WO2007139558A1 (en) * 2006-06-01 2007-12-06 Exaflop Llc Warm cooling for electronics
US7768780B2 (en) * 2006-06-19 2010-08-03 Silicon Graphics International Corp. Flow-through cooling for computer systems
US7724513B2 (en) * 2006-09-25 2010-05-25 Silicon Graphics International Corp. Container-based data center
DE112007003457A5 (de) * 2007-02-13 2010-01-21 Siemens Aktiengesellschaft Elektrische Anlage mit einen Container
US7430118B1 (en) * 2007-06-04 2008-09-30 Yahoo! Inc. Cold row encapsulation for server farm cooling system
US8037644B2 (en) * 2008-01-07 2011-10-18 International Business Machines Corporation Fire-code-compatible, collapsible partitions to prevent unwanted airflow between computer-room cold aisles and hot aisles
US20090229194A1 (en) * 2008-03-11 2009-09-17 Advanced Shielding Technologies Europe S.I. Portable modular data center
US8046896B2 (en) * 2008-10-31 2011-11-01 Dell Products L.P. Method for configuring information handling systems and infrastructure equipment in plural containers
US7852627B2 (en) * 2008-10-31 2010-12-14 Dell Products L.P. System and method for high density information handling system enclosure
US8251785B2 (en) * 2008-10-31 2012-08-28 Cirrus Logic, Inc. System and method for vertically stacked information handling system and infrastructure enclosures
US7903404B2 (en) * 2009-04-29 2011-03-08 Hewlett-Packard Development Company, L.P. Data centers
US20110189936A1 (en) * 2010-02-01 2011-08-04 Dataxenter Ip B.V Modular datacenter element and modular datacenter cooling element
EP2354378A1 (en) * 2010-02-01 2011-08-10 Dataxenter IP B.V. Modular datacenter element and modular datacenter cooling element
US8270161B2 (en) * 2010-08-06 2012-09-18 International Business Machines Corporation Hot or cold aisle computer chassis

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062779U (ja) * 1992-06-12 1994-01-14 株式会社東芝 電子機器の換気構造
JP2004184070A (ja) * 2002-11-21 2004-07-02 Ntt Power & Building Facilities Inc 機器収容用ラック、電算機室用空気調和装置および電算機室用空調システム
JP2008538406A (ja) * 2005-04-22 2008-10-23 ディグリー コントロールズ,インク. 適応的環境管理のための知能ファン支援型タイル
JP2007285082A (ja) * 2006-04-20 2007-11-01 Ntt Facilities Inc サーバー室
JP2007316989A (ja) * 2006-05-26 2007-12-06 Softbank Idc Corp 機器収容ラックおよび機器収容室用空調システム
JP2009140421A (ja) * 2007-12-10 2009-06-25 Toyo Netsu Kogyo Kk サーバラック及びこれを備えたデータセンター

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012248136A (ja) * 2011-05-31 2012-12-13 Sohki:Kk サーバ温度管理システムまたはサーバ温度管理方法

Also Published As

Publication number Publication date
KR20120098658A (ko) 2012-09-05
CN102834787A (zh) 2012-12-19
JPWO2011049033A1 (ja) 2013-03-14
JP5089810B2 (ja) 2012-12-05
US20120034860A1 (en) 2012-02-09
TW201114991A (en) 2011-05-01
JP2013069276A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP5089810B2 (ja) データセンターおよびそのための計算機格納用ラック
US7254022B2 (en) Cooling system for equipment and network cabinets and method for cooling equipment and network cabinets
JP4883491B2 (ja) 電子機器の冷却システム
JP5855895B2 (ja) 通信・情報処理機器室等の空調システム
JP2007316989A (ja) 機器収容ラックおよび機器収容室用空調システム
JP2009140421A (ja) サーバラック及びこれを備えたデータセンター
JP2010043817A (ja) サーバ室の空調システム
JP2008111588A (ja) 空調設備およびコンピュータシステム
JP2011027400A (ja) 電算機室の空調システムおよび建物
TW201302038A (zh) 具機房內外循環散熱切換功能之冷卻系統
JP2011196657A (ja) 空調システム
JP5540478B2 (ja) 空調システム
JP2010266085A (ja) コンピューターサーバールーム用温度管理システム及びそれを用いたコンピューターサーバールームの温度管理方法
US11274841B2 (en) Hybrid ventilation system
JP5492716B2 (ja) データセンター用空調システム
JP2012093859A (ja) 空調システム
JP6084501B2 (ja) 空調システム
RU2515530C2 (ru) Устройство кондиционирования для охлаждения воздуха в шкафу для электронных устройств
JP6049981B2 (ja) 空調機及び空調システム
JP2006145115A (ja) 換気制御装置
JP6656043B2 (ja) 換気システムおよび換気装置
JP4905992B2 (ja) ラック型空調機及びその運転方法
JP2011190987A (ja) 空調システム
JP2011185544A (ja) 発熱機器用のラック空調装置
JP6587987B2 (ja) 冷却システム、空調制御装置および空調制御方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080025430.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824882

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13263143

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011537233

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20127010826

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10824882

Country of ref document: EP

Kind code of ref document: A1