WO2011049032A1 - 蓄熱式バーナーの燃焼設備及び燃焼方法 - Google Patents

蓄熱式バーナーの燃焼設備及び燃焼方法 Download PDF

Info

Publication number
WO2011049032A1
WO2011049032A1 PCT/JP2010/068250 JP2010068250W WO2011049032A1 WO 2011049032 A1 WO2011049032 A1 WO 2011049032A1 JP 2010068250 W JP2010068250 W JP 2010068250W WO 2011049032 A1 WO2011049032 A1 WO 2011049032A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
gas
burner
heat
furnace
Prior art date
Application number
PCT/JP2010/068250
Other languages
English (en)
French (fr)
Inventor
光紀 松浦
田中 智之
藤森 俊郎
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Priority to EP10824881.6A priority Critical patent/EP2492594A4/en
Priority to KR1020127009746A priority patent/KR101485967B1/ko
Priority to CN201080047159.9A priority patent/CN102549339B/zh
Publication of WO2011049032A1 publication Critical patent/WO2011049032A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L15/00Heating of air supplied for combustion
    • F23L15/02Arrangements of regenerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C99/00Subject-matter not provided for in other groups of this subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23JREMOVAL OR TREATMENT OF COMBUSTION PRODUCTS OR COMBUSTION RESIDUES; FLUES 
    • F23J15/00Arrangements of devices for treating smoke or fumes
    • F23J15/06Arrangements of devices for treating smoke or fumes of coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23LSUPPLYING AIR OR NON-COMBUSTIBLE LIQUIDS OR GASES TO COMBUSTION APPARATUS IN GENERAL ; VALVES OR DAMPERS SPECIALLY ADAPTED FOR CONTROLLING AIR SUPPLY OR DRAUGHT IN COMBUSTION APPARATUS; INDUCING DRAUGHT IN COMBUSTION APPARATUS; TOPS FOR CHIMNEYS OR VENTILATING SHAFTS; TERMINALS FOR FLUES
    • F23L7/00Supplying non-combustible liquids or gases, other than air, to the fire, e.g. oxygen, steam
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/30Premixing fluegas with combustion air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/09001Cooling flue gas before returning them to flame or combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/08Preheating the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2233/00Ventilators
    • F23N2233/06Ventilators at the air intake
    • F23N2233/08Ventilators at the air intake with variable speed
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Definitions

  • the present invention relates to a combustion facility and a combustion method for a regenerative burner.
  • a heat storage burner designed for energy saving in an industrial furnace is provided with a pair of burners equipped with a heat storage body on the furnace side wall, etc. for combustion containing fuel gas and oxygen with one burner
  • a mixed gas of gas combustion air
  • the heat storage body is heated by discharging combustion exhaust gas from the other burner through the heat storage body.
  • combustion and exhaust gas emission are alternately performed, and the heat storage body heated by the combustion exhaust gas is used for combustion. Preheated as the gas passes.
  • a combustion facility using this regenerative burner for example, a regenerative burner installation furnace described in Patent Document 1 below can be cited.
  • the present invention has been made in view of the above problems, and provides a combustion facility and a combustion method for a regenerative burner that can reduce the amount of escape gas released and achieve high exhaust heat recovery efficiency and energy saving. Objective.
  • the present invention employs the following means. That is, (1)
  • the present invention includes a furnace body; a pair of burners provided with a heat storage body provided in the furnace body, and the pair of burners are alternately burned in the furnace, and the burner is in a non-burning state.
  • the combustion exhaust gas in the furnace is sucked to store heat in the heat storage body of the burner, and a predetermined amount of combustion gas is supplied to the burner in the combustion state to cool the heat storage body of the burner and to release heat from the heat storage body
  • a combustion facility of a regenerative burner that preheats the combustion gas, the non-combustion gas that does not disturb the combustion together with the predetermined amount of combustion gas is supplied to the burner in the combustion state,
  • a gas supply device for cooling the heat storage body is provided.
  • an exhaust line for exhausting the combustion exhaust gas remaining without being taken in from the non-burning burner to the outside of the furnace, and the exhaust gas exhausted from the exhaust line A cooling / heat recovery device that cools the combustion exhaust gas and recovers heat; and a non-combustion gas supply device that supplies the heat recovery recovered combustion exhaust gas as the non-combustion gas to the gas supply device. Also good.
  • an exhaust line for exhausting the combustion exhaust gas remaining without being sucked from the non-burning burner to the outside of the furnace, and the exhaust gas exhausted from the exhaust line A boiler that cools the combustion exhaust gas and recovers heat to generate steam, and supplies at least one of the heat recovery recovered combustion exhaust gas and the generated steam to the gas supply device as the non-combustion gas And a second non-combustion gas supply device.
  • a third non-combustion gas supply device that supplies an inert gas to the gas supply device as the non-combustion gas May be included.
  • the present invention is a combustion method for a regenerative burner, wherein a pair of burners provided with a heat accumulator are alternately burned in the furnace, and the combustion exhaust gas in the furnace is sucked from a non-burning burner.
  • an exhaust process for exhausting the combustion exhaust gas remaining without being sucked from the non-burning burner to the outside of the furnace, and exhausted in the exhaust process A cooling / heat recovery step for cooling the combustion exhaust gas and recovering heat; and a non-combustion gas supply step for supplying the heat recovered combustion exhaust gas as the non-combustion gas to the gas supply step. May be.
  • the method for burning a regenerative burner described in (5) to (7) above includes a third non-combustion gas supply step for supplying an inert gas as the non-combustion gas to the gas supply device. May be.
  • the combustion is provided by having the gas supply device and the gas supply step. Cooling of the regenerator with non-combustion gas that does not contribute to Thereby, the thermal radiation amount of a thermal storage body is increased, and the temperature rise of a thermal storage body is prevented.
  • the heat storage body can store the amount of heat that corresponds to the heat dissipation amount, so that the combustion exhaust gas can flow to the heat storage body more than before, resulting in the release of escape gas Can be reduced.
  • the generation amount of the combustion exhaust gas does not increase more than the supply amount of the non-combustion gas. Therefore, in the present invention, the amount of escape gas released can be reduced, and high exhaust heat recovery efficiency and energy saving can be achieved.
  • FIG.1 and FIG.2 is a figure which shows the structure of the heating furnace 1 in embodiment of this invention.
  • a heating furnace (combustion facility of a regenerative burner) 1 has a furnace body 2, and the furnace body 2 is surrounded by a furnace wall formed of a refractory material such as heat-resistant concrete.
  • a heat-treated product such as a steel material is arranged in the furnace body 2.
  • a pair of regenerative burners (10 is provided, protruding from the inside of the side wall of the furnace body 2.
  • the regenerative burner 10 includes a pair of burners 11A and 11B.
  • the regenerative burner 10 is The burner 11A and the burner 11B that are paired alternately perform combustion and intake air (see FIGS.
  • control device includes a computer system that comprehensively controls the operation of each component device included in the heating furnace 1, and operates the heating furnace 1. Control overall.
  • the burner 11A is provided with a heat storage body 12A
  • the burner 11B is provided with a heat storage body 12B.
  • As the heat storage body 12A and the heat storage body 12B for example, a form in which ceramic balls are filled, a form in which ceramic is formed in a honeycomb shape, or the like is employed.
  • the burner 11A and the burner 11B have a first gas supply line 20 for supplying fuel gas, a second gas supply line 30 for supplying non-combustion gas (combustion exhaust gas) to be described later together with combustion gas (combustion air), and Are connected.
  • the first gas supply line 20 is connected to the burners 11A and 11B at positions closer to the furnace body 2 than the heat storage bodies 12A and 12B.
  • the combustion blower (gas supply device) 31 supplies combustion gas and non-combustion gas to the second gas supply line 30 under a constant pressure. That is, when the burner is in a combustion state, the non-combustion gas that does not disturb the combustion is supplied from the combustion blower 31 together with a predetermined amount of combustion gas, whereby the heat storage body of the burner can be cooled.
  • the second gas supply line 30 is piped so that the gas pumped by the combustion blower 31 passes through the heat storage bodies 12A and 12B and is supplied to the burners 11A and 11B.
  • the first gas supply line 20 is provided with control valves 22A and 22B for switching the gas supply to the burner 11A or the burner 11B.
  • the second gas supply line 30 is provided with control valves 32A and 32B for switching the gas supply from the combustion blower 31 to the burner 11A or the burner 11B.
  • the burner 11A and the burner 11B are connected to an exhaust gas line 40 that sucks combustion exhaust gas generated in the furnace and exhausts it outside the furnace.
  • the exhaust gas line 40 is piped so that the gas sucked by the exhaust fan 41 passes through the heat storage bodies 12A and 12B and is released to the outside.
  • Control valves 42A and 42B are provided in the exhaust gas line 40, and the source of gas intake by the exhaust fan 41 is switched from the burner 11A or from the burner 11B.
  • the furnace body 2 is provided with an escape gas line (exhaust line) 50 that exhausts a part of the combustion exhaust gas in the furnace (escape gas) to the outside of the furnace without passing through the burners 11A and 11B.
  • the escape gas line 50 is provided with a cooling / heat recovery device 51 that cools the combustion exhaust gas exhausted outside the furnace as escape gas and recovers heat.
  • the cooling / heat recovery device 51 of the present embodiment adopts a boiler form that generates water vapor by exchanging heat between the combustion exhaust gas and water.
  • a well-known type such as a shell and tube type heat exchanger, a plate fin type heat exchanger, or the like can be adopted.
  • a non-combustion gas supply device 60 is provided that supplies the fuel 31 to the outside and discharges the remaining heat-recovered combustion exhaust gas to the outside.
  • the non-combustion gas supply device 60 includes a pressure feeding means such as a blower, a flow rate control device for controlling the return flow rate of the combustion exhaust gas, and piping (both not shown).
  • control valve 22A and the control valve 32A are opened based on a command from the control device to bring the burner 11A into a combustion state as shown in FIG. .
  • the control valve 22B and the control valve 32B are closed.
  • the inside of the furnace is heated by the combustion of the burner 11A, the combustion exhaust gas is sucked from the burner 11B in a non-combustion state.
  • the control valve 42B is opened, while the control valve 42A is closed.
  • the combustion exhaust gas (about 1200 ° C.) sucked from the burner 11B is deprived of heat by passing through the heat storage body 12B, and is discharged to the outside. At this time, the heat storage body 12B is heated from about 250 ° C. to about 1200 ° C. by heat storage due to passage of the combustion exhaust gas (heat storage step).
  • the combustion is switched from the burner 11A to the burner 11B based on a command from the control device as shown in FIG. That is, the control valve 22A and the control valve 32A are closed, while the control valve 22B and the control valve 32B are opened. Further, the control valve 42B is closed and the control valve 42A is opened.
  • the combustion gas (about 30 ° C.) supplied to the burner 11B is preheated when passing through the heat storage body 12B, and rises to a temperature close to the furnace temperature (combustion gas preheating step).
  • the heat storage body 12B cools down from about 1200 ° C. to about 250 ° C. due to heat radiation by passage of the combustion gas.
  • combustion exhaust gas is sucked and heat is stored in the heat storage body 12A. By continuing such a combustion cycle repeatedly, the inside of the furnace is heated.
  • the cooling / heat recovery unit 51 generates water vapor by recovering the waste heat of the combustion exhaust gas as described above.
  • the steam generated in the cooling / heat recovery unit 51 is transported to, for example, another heat treatment facility and used in the heat treatment process.
  • the combustion exhaust gas recovered by the cooling / heat recovery unit 51 is introduced into the non-combustion gas supply device 60.
  • the non-combustion gas supply device 60 supplies a part of the heat-recovered combustion exhaust gas to the combustion blower 31 via the escape gas return line 61 and discharges the remaining heat-recovered combustion exhaust gas to the outside. (Non-combustion gas supply process).
  • the low-temperature (about 300 ° C.) combustion exhaust gas supplied to the combustion blower 31 via the escape gas return line 61 is combined with a predetermined amount of combustion gas by the combustion blower 31 and any of the burners 11A and 11B in the combustion state. Supplied to
  • the combustion exhaust gas cools the heat storage body 12A together with the combustion gas (gas supply step). Since the combustion blower 31 supplies the combustion exhaust gas together with the combustion gas, the amount of gas supplied to the heat storage body 12A is increased, and the cooling capacity is improved. That is, since a predetermined amount of low-temperature combustion exhaust gas that does not contribute to combustion is supplied to the heat storage body 12A in addition to a predetermined amount of combustion gas that contributes to combustion, the heat dissipation amount of the heat storage body 12A increases. Then, the temperature rise of the heat storage body 12A is prevented.
  • the combustion exhaust gas preheated through the heat storage body 12A is blown into the furnace again, but does not contribute to combustion, but exclusively contributes to maintaining the furnace temperature.
  • generation of nitrogen oxides (NO x ) in the system can be reduced.
  • the burner 11A sucks the combustion exhaust gas and causes the heat storage body 12A to store heat.
  • the heat release amount in the heat storage body 12A is increased by the supply amount of the combustion exhaust gas. Since the heat storage body 12A can store the amount of heat corresponding to the amount of heat released, more combustion exhaust gas can flow to the heat storage body 12A. As a result, the escape gas release amount can be reduced. Further, since the combustion exhaust gas does not contribute to combustion, the amount of combustion exhaust gas generated in the furnace does not increase more than the supply amount of combustion exhaust gas, and the mass balance in the system can be taken.
  • the burners 11A and 11B that are paired with the heat storage elements 12A and 12B are alternately burned in the furnace, and the combustion exhaust gas in the furnace is burned from the non-burning burner. And heat is stored in the heat storage body of the burner. Then, a predetermined amount of combustion gas is supplied to the burner in the combustion state to cool the heat storage body of the burner, and the combustion gas is preheated by heat radiation of the heat storage body.
  • a combustion blower 31 that cools the heat storage body of the burner by supplying non-combustion gas that does not disturb the combustion to the burners 11A and 11B in the combustion state together with the predetermined amount of combustion gas is provided.
  • the heat storage bodies 12A and 12B are cooled with a non-combustion gas that does not contribute to combustion. .
  • the thermal radiation amount of heat storage body 12A, 12B is increased, and the temperature rise of heat storage body 12A, 12B is prevented.
  • the heat storage bodies 12A and 12B can store the amount of heat corresponding to the heat release amount, so that combustion exhaust gas can flow to the heat storage bodies 12A and 12B as compared with the conventional case.
  • the amount of escape gas released can be reduced.
  • the generation amount of the combustion exhaust gas does not increase more than the supply amount of the non-combustion gas.
  • the exhaust gas remaining after being not taken in from the non-combustion burners 11A and 11B is exhausted to the outside of the furnace, and the escape gas line 50 is exhausted from the escape gas line 50.
  • a cooling / heat recovery unit 51 that cools the combustion exhaust gas and recovers heat; and a non-combustion gas supply device 60 that supplies the heat-recovered combustion exhaust gas as the non-combustion gas to the combustion blower 31.
  • the exhaust gas remaining without being taken in from the non-burning burners 11A and 11B is discharged from the escape gas line 50 to the outside of the furnace, and then recovered, and the temperature is lowered.
  • the combustion exhaust gas is supplied to the combustion blower 31 as non-combustion gas. Thereby, the thermal radiation amount of a thermal storage body is increased, and the temperature rise of a thermal storage body is prevented. Further, generation of nitrogen oxides (NO x ) in the system can be reduced by circulation of the combustion exhaust gas.
  • NO x nitrogen oxides
  • combustion exhaust gas is used as the non-combustion gas.
  • water vapor generated by the cooling / heat recovery unit 51 may be used as the non-combustion gas. That is, instead of providing the cooling / heat recovery device 51 in the escape gas line 50 described above, a boiler that cools the combustion exhaust gas exhausted from the exhaust line and recovers heat to generate water vapor is provided. May be.
  • the non-combustion gas supply device (referred to as a second non-combustion gas supply device) here is at least one of the heat-recovered combustion exhaust gas and the generated water vapor. One of them is supplied to the gas supply device as the non-combustion gas.
  • the combustion exhaust gas remaining without being sucked from the burner in the non-combustion state is exhausted from the exhaust line to the outside of the furnace, and heat is recovered to generate water vapor, and the combustion exhaust gas in a state where the temperature is reduced and the generation At least one of the water vapor is supplied to the gas supply device as a non-combustion gas for cooling the heat storage body.
  • the thermal radiation amount of a thermal storage body can be increased, and the temperature rise of a thermal storage body can be prevented.
  • water vapor in addition to the above-described effects, rapid combustion in the furnace can be suppressed by supplying water vapor, and the amount of nitrogen oxides (NO x ) generated can be suppressed.
  • both the combustion exhaust gas recovered by heat and the water vapor may be used as non-combustion gas.
  • an inert gas for example, argon gas, helium gas, nitrogen gas or the like can be used.
  • an inert gas and a non-combustion gas supply device that supplies the inert gas referred to as a third non-combustion gas supply device
  • the heat accumulator in addition to the conventional cooling of the heat accumulator with a predetermined amount of combustion gas, the heat accumulator is cooled with an inert gas that does not contribute to combustion. Thereby, the thermal radiation amount of a thermal storage body can be increased, and the temperature rise of a thermal storage body can be prevented.
  • the amount of escape gas released can be reduced, and high exhaust heat recovery efficiency and energy saving can be achieved.
  • SYMBOLS 1 Heating furnace (combustion equipment of regenerative burner), 10 ... Regenerative burner, 11A, 11B ... Burner, 12A, 12B ... Regenerator, 31 ... Combustion blower (gas supply device), 50 ... Escape gas line (exhaust) Line), 51 ... cooling / heat recovery device (boiler), 60 ... non-combustion gas supply device

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Chimneys And Flues (AREA)

Abstract

 炉体(2)と、炉体に設けられた、蓄熱体(12A,12B)を備える一対のバーナー(11A,11B)と、を有し、前記一対のバーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させ、燃焼状態のバーナー(11A)に所定量の燃焼用ガスを供給して該バーナーの蓄熱体(12B)を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する蓄熱式バーナーの燃焼設備(1)であって、燃焼状態の前記バーナーに、所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給することで、該バーナーの蓄熱体を冷却するガス供給装置(31)を有する。

Description

蓄熱式バーナーの燃焼設備及び燃焼方法
 本発明は、蓄熱式バーナーの燃焼設備及び燃焼方法に関する。
 本願は、2009年10月23日に日本に出願された特願2009-244381号に基づき優先権を主張し、その内容をここに援用する。
 工業用炉の省エネルギー化のために考案された蓄熱式バーナー(リジェネレイティブバーナー)は、蓄熱体を具備した一対のバーナーを炉側壁等に設け、一方のバーナーで燃料ガスと酸素を含む燃焼用ガス(燃焼用空気)の混合ガスを燃焼させているとき、他方のバーナーから燃焼排ガスを、蓄熱体を通して排出させることによって蓄熱体を加熱する。そして、数十秒~数分の間隔でその両バーナーの状態を頻繁に交代させることにより、燃焼と燃焼排ガスの排出とが交互に行われるようにし、燃焼排ガスにより加熱された蓄熱体を燃焼用ガスが通過する際に予熱される。これにより、高い排熱回収効率が達成され、省エネルギー化を図るようにしている。この蓄熱式バーナーを用いた燃焼設備としては、例えば下記特許文献1に記載のリジェネバーナー設置炉が挙げられる。
特開2007-3036号公報
 ところで、上記燃焼設備においては、炉内で発生する燃焼排ガスの全てを蓄熱体に流すことはできない。すなわち、燃焼用ガスの供給量よりも燃焼排ガスの発生量が大きいため、燃焼用排ガスにより蓄熱体に蓄熱された熱を、燃焼用ガスの予熱によって全て放熱できずに、蓄熱体の温度過昇となって焼損してしまう虞があるためである。
 このため、従来では蓄熱体の温度過昇を避けるために、燃焼排ガスの総発生量の約20%をエスケープガス(escape gas)として、蓄熱体を通さずに高温のまま系外に放出している。しかし、エスケープガスの放出は、排熱回収効率及び省エネルギー化の観点からは好ましくない。
 エスケープガスの放出量を低減させるためには、蓄熱体の温度過昇を防止する必要がある。例えば燃焼時間(放熱時間)を非燃焼時間(蓄熱時間)よりも長くするように時間差をつけた運転をする手法が考えられるが、この手法はマスバランス(mass balance)が取れないため不可能である。
 本発明は、上記問題点に鑑みてなされたものであり、エスケープガスの放出量を低減させ、高い排熱回収効率及び省エネルギー化を図ることのできる蓄熱式バーナーの燃焼設備及び燃焼方法の提供を目的とする。
 上記の課題を解決するために、本発明は、以下の手段を採用した。
すなわち、
(1)本発明は、炉体と;炉体に設けられた、蓄熱体を備える一対のバーナーとを有し、前記一対のバーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させ、燃焼状態のバーナーに所定量の燃焼用ガスを供給して該バーナーの蓄熱体を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する蓄熱式バーナーの燃焼設備であって、上記燃焼状態のバーナーに、上記所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給して、該バーナーの蓄熱体を冷却するガス供給装置を有する。
 (2)上記(1)に記載の蓄熱式バーナーの燃焼設備では、非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気ラインと、上記排気ラインから排気された上記燃焼排ガスを冷却すると共に熱回収する冷却・熱回収器と、上記熱回収された上記燃焼排ガスを上記非燃焼用ガスとして上記ガス供給装置に供給する非燃焼用ガス供給装置と、を有しても良い。
 (3)上記(1)に記載の蓄熱式バーナーの燃焼設備では、非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気ラインと、上記排気ラインから排気された上記燃焼排ガスを冷却すると共に熱回収して水蒸気を生成するボイラーと、上記熱回収された上記燃焼排ガス及び上記生成された上記水蒸気の少なくともいずれか一方を上記非燃焼用ガスとして上記ガス供給装置に供給する第2非燃焼用ガス供給装置と、を有しても良い。
 (4)上記(1)~(3)のいずれかに記載の蓄熱式バーナーの燃焼設備では、不活性ガスを上記非燃焼用ガスとして上記ガス供給装置に供給する第3非燃焼用ガス供給装置を、有しても良い。
 (5)また、本発明は、蓄熱式バーナーの燃焼方法であって、蓄熱体を備える一対のバーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の前記燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させる蓄熱工程と;燃焼状態のバーナーに所定量の前記燃焼用ガスを供給して該バーナーの蓄熱体を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する燃焼用ガス予熱工程と;上記燃焼状態のバーナーに、上記所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給して、該バーナーの蓄熱体を冷却するガス供給工程を有する。
 (6)上記(5)に記載の蓄熱式バーナーの燃焼方法では、前記非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気工程と、前記排気工程で排気された前記燃焼排ガスを冷却すると共に熱回収する冷却・熱回収工程と、前記熱回収された前記燃焼排ガスを前記非燃焼用ガスとして前記ガス供給工程に供給する非燃焼用ガス供給工程と、を有しても良い。
 (7)上記(5)に記載の蓄熱式バーナーの燃焼方法では、前記非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気工程と、前記排気工程で排気された前記燃焼排ガスを冷却すると共に熱回収して水蒸気を生成する冷却・熱回収工程と、前記熱回収された前記燃焼排ガス及び前記生成された前記水蒸気の少なくともいずれか一方を前記非燃焼用ガスとして前記ガス供給工程に供給する第2非燃焼用ガス供給工程と、を有しても良い。
 (8)上記(5)~(7)に記載の蓄熱式バーナーの燃焼方法では、不活性ガスを前記非燃焼用ガスとして前記ガス供給装置に供給する第3非燃焼用ガス供給工程を有しても良い。
 本発明の蓄熱式バーナーの燃焼設備および蓄熱式バーナーの燃焼方法によれば、ガス供給装置およびガス供給工程を有することによって、従来の所定量の燃焼用ガスによる蓄熱体の冷却に加えて、燃焼に寄与しない非燃焼用ガスによる蓄熱体の冷却を行う。これにより、蓄熱体の放熱量を増加させて、蓄熱体の温度過昇を防止する。蓄熱体の放熱量が増加すると、その放熱量にみあった熱量を蓄熱体が蓄熱可能となるため、従来よりも燃焼排ガスを蓄熱体に対して流すことができ、結果、エスケープガスの放出量を低減させることができる。また、非燃焼用ガスは燃焼に寄与しないので、非燃焼用ガスの供給量以上に燃焼排ガスの発生量は増加しない。
 したがって、本発明では、エスケープガスの放出量を低減させ、高い排熱回収効率及び省エネルギー化を図ることができる。
本発明の実施形態における蓄熱式バーナーを用いた加熱炉の構成を示す図である。 本発明の実施形態における蓄熱式バーナーを用いた加熱炉の構成を示す図である。
 以下、本発明の蓄熱式バーナーの燃焼設備及び燃焼方法の実施形態について図面を参照して説明する。
 図1及び図2は、本発明の実施形態における加熱炉1の構成を示す図である。
 加熱炉(蓄熱式バーナーの燃焼設備)1は、炉体2を有し、炉体2は、耐熱性コンクリート等の耐火物で形成された炉壁で囲まれている。炉体2内には、鋼材等の被熱処理品が配置される。
 炉体2の側壁内部から外部に突出して、1組の蓄熱式バーナー(10が設けられている。蓄熱式バーナー10は、対となったバーナー11A及びバーナー11Bを備える。蓄熱式バーナー10は、対となったバーナー11A及びバーナー11Bに交互に燃焼と吸気を行わせている(図1及び図2参照)。また、炉内には、炉内の圧力を計測する炉圧センサ及び炉温センサが設けられ、その計測情報は、制御装置(ともに不図示)に送られる。制御装置は、加熱炉1が備える各構成装置の動作を統括的に制御するコンピュータシステムを備え、加熱炉1の運転全般を制御する。
 バーナー11Aには蓄熱体12Aが、バーナー11Bには蓄熱体12Bが設けられている。蓄熱体12A及び蓄熱体12Bには、例えばセラミックボールを充填した形態や、セラミックをハニカム状にした形態等が採用される。
 バーナー11A及びバーナー11Bには、燃料ガスを供給する第1ガス供給ライン20と、燃焼用ガス(燃焼用空気)と共に後述する非燃焼用ガス(燃焼排ガス)を供給する第2ガス供給ライン30とが連結されている。第1ガス供給ライン20は、の蓄熱体12A,12Bより炉体2側の位置で、各バーナー11A,11Bと連結されている。燃焼用ブロア(ガス供給装置)31は、燃焼用ガスと非燃焼用ガスを、一定の圧力の下で第2ガス供給ライン30に供給する。即ち、バーナーが燃焼状態の時、燃焼用ブロア31より、所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給することで、該バーナーの蓄熱体を冷却することができる。第2ガス供給ライン30は、燃焼用ブロア31によって圧送されてくるガスを蓄熱体12A,12Bを通過して各バーナー11A,11Bに供給するように配管されている。
 第1ガス供給ライン20には、ガスの供給をバーナー11Aあるいはバーナー11Bに切り替える制御弁22A,22Bが設けられている。また、第2ガス供給ライン30には、燃焼用ブロア31によるガスの供給を、バーナー11Aあるいはバーナー11Bに切り替える制御弁32A,32Bが設けられている。この構成により、バーナー11A,11Bは、供給された燃料ガスに所定量の燃焼用ガスを混合して燃焼させるとともに、流量調整によって燃焼状態及び炉内温度を制御する。
 また、バーナー11A及びバーナー11Bには、炉内で発生した燃焼排ガスを吸気して炉外に排気する排ガスライン40が連結されている。排ガスライン40は、排気ファン41によって吸気したガスを蓄熱体12A,12Bを通過して、外部に放出させるように配管されている。排ガスライン40には、制御弁42A,42Bが設けられており、排気ファン41によるガスの吸気元を、バーナー11Aから、あるいはバーナー11Bからに切り替える。
 炉体2には、炉内の燃焼排ガスの一部(エスケープガス)を、バーナー11A,11Bを通さずに、炉外に排気するエスケープガスライン(排気ライン)50が設けられている。エスケープガスライン50には、エスケープガスとして炉外に排気された燃焼排ガスを冷却すると共に、熱回収する冷却・熱回収器51が設けられている。本実施形態の冷却・熱回収器51は、燃焼排ガスと水との間で熱交換させて水蒸気を生成するボイラーの形態を採用する。なお、冷却・熱回収器51の形態としては、シェル&チューブ型熱交換器、プレートフィン型熱交換器等、周知のものが採用できる。
 また、エスケープガスライン50(escape gas line)の冷却・熱回収器51が設けられる位置より下流側には、熱回収された燃焼排ガスの一部を、エスケープガス返送ライン61を介して燃焼用ブロア31に供給すると共に、熱回収された燃焼排ガスの残部を外部に放出する非燃焼用ガス供給装置60が設けられている。非燃焼用ガス供給装置60は、ブロア等の圧送手段、燃焼排ガスの返送流量を制御するための流量制御装置、及び配管等(ともに図示せず)を含んでいる。
 次に、上記構成の加熱炉1の動作について説明する。
 炉内に鉄やステンレス等の鋼材が搬入されると、制御装置からの指令に基づいて、図1に示すように、制御弁22A及び制御弁32Aを開放して、バーナー11Aを燃焼状態にする。このとき、制御弁22B及び制御弁32Bは、閉塞される。
 バーナー11Aの燃焼により、炉内が加熱されると、その燃焼排ガスは、非燃焼状態のバーナー11Bから吸気される。このとき、制御弁42Bは開放され、一方、制御弁42Aは閉塞されている。バーナー11Bから吸気された燃焼排ガス(約1200℃程度)は、蓄熱体12Bを通過することで熱を奪われて冷やされ、外部に放出される。このとき、蓄熱体12Bは、燃焼排ガスの通過による蓄熱により、約250℃程度から約1200℃程度まで昇温する(蓄熱工程)。
 設定時間(例えば、30秒)が経過すると、制御装置からの指令に基づいて、図2に示すように、バーナー11Aからバーナー11Bに燃焼を切り替える。すなわち、制御弁22A及び制御弁32Aを閉塞して、一方、制御弁22B及び制御弁32Bを開放する。また、制御弁42Bを閉塞して、制御弁42Aを開放する。バーナー11Bに供給される燃焼用ガス(約30℃程度)は、蓄熱体12Bを通過する際に予熱されて、炉温に近い温度まで昇温する(燃焼用ガス予熱工程)。一方、蓄熱体12Bは、燃焼用ガスの通過による放熱により、約1200℃程度から約250℃程度まで降温する。また、バーナー11Aでは、燃焼排ガスを吸気し、蓄熱体12Aに熱を蓄熱させる。
 このような燃焼サイクルを繰り返し継続することにより、炉内が加熱される。
 上記加熱炉1においては、燃焼サイクルを繰り返すため、炉内で発生する燃焼排ガスの全てを蓄熱体12A,12Bに流すことはできない。そのため、燃焼排ガスの総発生量の約20%をエスケープガスとして、蓄熱体12A,12Bを通さずに高温(約1200℃程度)のままエスケープガスライン50を介して炉外に排気する(排気工程)。
 エスケープガスライン50を介して炉外に排気された燃焼排ガスは、冷却・熱回収器51に導入される。冷却・熱回収器51には、冷媒として水が供給されており、燃焼排ガスは、水との間で熱交換することにより約1200℃程度から約300℃程度まで冷却される(冷却・熱回収工程)。冷却・熱回収器51は、燃焼排ガスの廃熱を上記のように回収することで、水蒸気を生成する。冷却・熱回収器51において生成された水蒸気は、例えば他の熱処理設備に輸送されて熱処理プロセスの過程において使用される。
 冷却・熱回収器51において熱回収された燃焼排ガスは、非燃焼用ガス供給装置60に導入される。非燃焼用ガス供給装置60は、熱回収された燃焼排ガスの一部を、エスケープガス返送ライン61を介して燃焼用ブロア31に供給すると共に、熱回収された燃焼排ガスの残部を外部に放出する(非燃焼用ガス供給工程)。
 エスケープガス返送ライン61を介して燃焼用ブロア31に供給された低温(約300℃程度)の燃焼排ガスは、燃焼用ブロア31によって所定量の燃焼用ガスと共に、燃焼状態のバーナー11A,11Bのいずれかに供給される。
 図1に示すように、燃焼排ガスがバーナー11Aに供給された場合、燃焼排ガスは、燃焼用ガスと共に蓄熱体12Aの冷却を行う(ガス供給工程)。燃焼用ブロア31は、燃焼用ガスと共に燃焼排ガスを供給するため、蓄熱体12Aに対するガス供給量が増加し、冷却能力が向上する。すなわち、蓄熱体12Aには、燃焼に寄与する所定量の燃焼用ガスに加えて、燃焼に寄与しない所定量の低温の燃焼排ガスが供給されることとなるため、蓄熱体12Aの放熱量が増加し、蓄熱体12Aの温度過昇が防止される。蓄熱体12Aを通過して予熱された燃焼排ガスは、再び炉内に吹き込まれるが、燃焼に寄与せずに、専ら炉内温度の維持を寄与する。また、このように燃焼排ガスを循環させることにより、系内の窒素酸化物(NO)の発生を低減できる。
 図2に示すように、燃焼がバーナー11Aからバーナー11Bに切り替えられた場合、バーナー11Aでは、燃焼排ガスを吸気し、蓄熱体12Aに熱を蓄熱させる。ここで、蓄熱体12Aにおける放熱量は、燃焼排ガスの供給量だけ増加している。蓄熱体12Aは、放熱量にみあった熱量を蓄熱可能となるため、より多くの燃焼排ガスを蓄熱体12Aに対して流すことができる。その結果、エスケープガスの放出量を低減することができる。また、燃焼排ガスは燃焼に寄与しないので、燃焼排ガスの供給量以上に炉内で発生する燃焼排ガス量が増加することはなく、系内のマスバランスが取れる。
 したがって、本実施形態の加熱炉1によれば、蓄熱体12A,12Bを具備する対となったバーナー11A,11Bを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させる。そして、燃焼状態のバーナーに所定量の燃焼用ガスを供給して該バーナーの蓄熱体を冷却すると共に、該蓄熱体の放熱により該燃焼用ガスを予熱する。燃焼状態のバーナー11A,11Bに、上記所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給して、該バーナーの蓄熱体を冷却する燃焼用ブロア31を備える。
 この構成を採用することによって、本発明では、従来の所定量の燃焼用ガスによる蓄熱体12A,12Bの冷却に加えて、燃焼に寄与しない非燃焼用ガスによる蓄熱体12A,12Bの冷却を行う。これにより、蓄熱体12A,12Bの放熱量を増加させて、蓄熱体12A,12Bの温度過昇を防止する。蓄熱体12A,12Bの放熱量が増加すると、その放熱量にみあった熱量を蓄熱体12A,12Bが蓄熱可能となるため、従来よりも燃焼排ガスを蓄熱体12A,12Bに対して流すことができ、結果、エスケープガスの放出量を低減させることができる。また、非燃焼用ガスは燃焼に寄与しないので、非燃焼用ガスの供給量以上に燃焼排ガスの発生量が増加することはない。
また、本実施形態の加熱炉1によれば、非燃焼状態のバーナー11A,11Bから吸気されずに残存した燃焼排ガスを炉外に排気するエスケープガスライン50と、エスケープガスライン50から排気された燃焼排ガスを冷却すると共に熱回収する冷却・熱回収器51と、上記熱回収された燃焼排ガスを上記非燃焼用ガスとして燃焼用ブロア31に供給する非燃焼用ガス供給装置60と、を更に有する。
 この構成を採用することによって、本発明では、非燃焼状態のバーナー11A,11Bから吸気されずに残存した燃焼排ガスをエスケープガスライン50から炉外に排出した後に熱回収し、温度が下がった状態の燃焼排ガスを非燃焼用ガスとして燃焼用ブロア31に供給する。これにより、蓄熱体の放熱量を増加させて、蓄熱体の温度過昇を防止する。また、燃焼排ガスの循環により系内の窒素酸化物(NO)の発生を低減できる。
 以上、図面を参照しながら本発明の好適な実施形態について説明したが、本発明は上記実施形態に限定されない。上述した実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 例えば、上記実施形態では、非燃焼用ガスとして、燃焼排ガスを用いると説明したが、この構成に限定されない。
 例えば、非燃焼用ガスとして、冷却・熱回収器51で生成された水蒸気を用いてもよい。即ち、上述したエスケープガスライン50に冷却・熱回収器51が設けられている代わりに、上記排気ラインから排気された上記燃焼排ガスを冷却すると共に熱回収して水蒸気を生成するボイラーが設けられていても良い。ボイラーが設けられていることで、ここでの非燃焼用ガス供給装置(第2非燃焼用ガス供給装置と呼ぶ)は、上記熱回収された上記燃焼排ガス及び上記生成された上記水蒸気の少なくともいずれか一方を上記非燃焼用ガスとして上記ガス供給装置に供給する。
 この構成によれば、非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを排気ラインから炉外に排出した後に熱回収して水蒸気を生成し、温度が下がった状態の燃焼排ガス及び生成した水蒸気の少なくともいずれか一方を、蓄熱体を冷却する非燃焼用ガスとしてガス供給装置に供給する。これにより、蓄熱体の放熱量を増加させて、蓄熱体の温度過昇を防止することができる。
 また、水蒸気を用いることによって、上記作用効果に加えて、水蒸気の供給により炉内における急激な燃焼を抑制することができ、窒素酸化物(NO)の発生量を抑えることができる。また、熱回収された燃焼排ガスと上記水蒸気とを共に、非燃焼用ガスとして用いてもよい。
 また、非燃焼用ガスとして、不活性ガスを用いても上記実施形態と同様の作用効果を得ることができる。不活性ガスとしては、例えば、アルゴンガス、ヘリウムガス、窒素ガス等を用いることができる。なお、非燃焼用ガスとして不活性ガスを用いる場合は、不活性ガス及び不活性ガスを供給する非燃焼用ガス供給装置(第3非燃焼用ガス供給装置と呼ぶ)を別途用意しなくてはらない。そのため、コストの観点からは、上述した加熱炉1の燃焼プロセスで生じるガス、すなわち、非燃焼用ガスとして、燃焼排ガス及び水蒸気の少なくともいずれか一方を用いることが好ましい。
 この構成によれば、従来の所定量の燃焼用ガスによる蓄熱体の冷却に加えて、燃焼に寄与しない不活性ガスによる蓄熱体の冷却を行う。これにより、蓄熱体の放熱量を増加させて、蓄熱体の温度過昇を防止することができる。
 本発明の蓄熱式バーナーの燃焼設備及び燃焼方法によれば、エスケープガスの放出量を低減させ、高い排熱回収効率及び省エネルギー化を図ることができる。
 1…加熱炉(蓄熱式バーナーの燃焼設備)、10…蓄熱式バーナー、11A,11B…バーナー、12A,12B…蓄熱体、31…燃焼用ブロア(ガス供給装置)、50…エスケープガスライン(排気ライン)、51…冷却・熱回収器(ボイラー)、60…非燃焼用ガス供給装置

Claims (8)

  1.  炉体と、
     炉体に設けられた、蓄熱体を備える一対のバーナーと、を有し、
     前記一対の
     バーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させ、燃焼状態のバーナーに所定量の燃焼用ガスを供給して該バーナーの蓄熱体を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する蓄熱式バーナーの燃焼設備であって、
     燃焼状態の前記バーナーに、所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給することで、該バーナーの蓄熱体を冷却するガス供給装置を有する。
  2.  非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気ラインと、
     前記排気ラインから排気された前記燃焼排ガスを冷却すると共に熱回収する冷却・熱回収器と、
     前記熱回収された前記燃焼排ガスを前記非燃焼用ガスとして前記ガス供給装置に供給する非燃焼用ガス供給装置と、
     を更に有する請求項1に記載の蓄熱式バーナーの燃焼設備。
  3.  非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気ラインと、
     前記排気ラインから排気された前記燃焼排ガスを冷却すると共に熱回収して水蒸気を生成するボイラーと、
     前記熱回収された前記燃焼排ガス及び前記生成された前記水蒸気の少なくともいずれか一方を前記非燃焼用ガスとして前記ガス供給装置に供給する第2非燃焼用ガス供給装置と、
     を更に有する請求項1に記載の蓄熱式バーナーの燃焼設備。
  4.  不活性ガスを前記非燃焼用ガスとして前記ガス供給装置に供給する第3非燃焼用ガス供給装置を有する請求項1~3のいずれか一項に記載の蓄熱式バーナーの燃焼設備。
  5.  蓄熱式バーナーの燃焼方法であって、
     蓄熱体を備える一対のバーナーを炉内において交互に燃焼させつつ、非燃焼状態のバーナーから炉内の前記燃焼排ガスを吸気して該バーナーの蓄熱体に熱を蓄熱させる蓄熱工程と、
    燃焼状態のバーナーに所定量の前記燃焼用ガスを供給して該バーナーの蓄熱体を冷却すると共に該蓄熱体の放熱により該燃焼用ガスを予熱する燃焼用ガス予熱工程と、
    前記燃焼状態のバーナーに、前記所定量の燃焼用ガスと共に燃焼に外乱を与えない非燃焼用ガスを供給して、該バーナーの蓄熱体を冷却するガス供給工程を有する。
  6.  前記非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気工程と、
     前記排気工程で排気された前記燃焼排ガスを冷却すると共に熱回収する冷却・熱回収工程と、
     前記熱回収された前記燃焼排ガスを前記非燃焼用ガスとして前記ガス供給工程に供給する非燃焼用ガス供給工程と、
     を更に有する請求項5に記載の蓄熱式バーナーの燃焼方法。
  7.  前記非燃焼状態のバーナーから吸気されずに残存した燃焼排ガスを炉外に排気する排気工程と、
     前記排気工程で排気された前記燃焼排ガスを冷却すると共に熱回収して水蒸気を生成する冷却・熱回収工程と、
     前記熱回収された前記燃焼排ガス及び前記生成された前記水蒸気の少なくともいずれか一方を前記非燃焼用ガスとして前記ガス供給工程に供給する第2非燃焼用ガス供給工程と、
     を更に有する請求項5に記載の蓄熱式バーナーの燃焼方法。
  8.  不活性ガスを前記非燃焼用ガスとして前記ガス供給装置に供給する第3非燃焼用ガス供給工程を更に有する請求項5~7のいずれか一項に記載の蓄熱式バーナーの燃焼方法。
PCT/JP2010/068250 2009-10-23 2010-10-18 蓄熱式バーナーの燃焼設備及び燃焼方法 WO2011049032A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10824881.6A EP2492594A4 (en) 2009-10-23 2010-10-18 COMBUSTION PLANT WITH HEAT ASSEMBLY BURNERS AND COMBUSTION PROCESSES FOR HEAT ASSEMBLY BURNERS
KR1020127009746A KR101485967B1 (ko) 2009-10-23 2010-10-18 축열식 버너의 연소 설비 및 연소 방법
CN201080047159.9A CN102549339B (zh) 2009-10-23 2010-10-18 蓄热式燃烧器的燃烧设备以及燃烧方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009244381A JP5509785B2 (ja) 2009-10-23 2009-10-23 蓄熱式バーナーの燃焼設備及び燃焼方法
JP2009-244381 2009-10-23

Publications (1)

Publication Number Publication Date
WO2011049032A1 true WO2011049032A1 (ja) 2011-04-28

Family

ID=43900258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/068250 WO2011049032A1 (ja) 2009-10-23 2010-10-18 蓄熱式バーナーの燃焼設備及び燃焼方法

Country Status (6)

Country Link
EP (1) EP2492594A4 (ja)
JP (1) JP5509785B2 (ja)
KR (1) KR101485967B1 (ja)
CN (1) CN102549339B (ja)
TW (1) TWI417489B (ja)
WO (1) WO2011049032A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643001A (zh) * 2012-05-17 2012-08-22 重庆大学 流态化蓄热式污泥低温催化热解方法及其装置
JP2015210050A (ja) * 2014-04-28 2015-11-24 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360515B1 (ko) 2012-04-30 2014-02-10 부경대학교 산학협력단 비드를 내장한 열재생기를 구비한 마일드 연소기
CN103047859A (zh) * 2012-12-31 2013-04-17 张家港市金邦铝业有限公司 一种节能自动调压熔铝炉
KR101423430B1 (ko) * 2013-07-30 2014-08-13 부경대학교 산학협력단 공급공기와 연소가스 통로를 순차 전환하는 밸브를 구비한 마일드 연소방법 및 그에 의한 마일드 연소기
CN103528368B (zh) * 2013-10-23 2016-01-20 杨志文 快速切换蓄热式熔铝炉
CN103673643B (zh) * 2013-11-22 2015-06-17 宝钢集团广东韶关钢铁有限公司 高温烟气余热回收与除尘一体化装置
WO2016032125A1 (ko) * 2014-08-27 2016-03-03 대양환경(주) 무화염 축열식 연소설비
CN104913656B (zh) * 2015-06-29 2017-01-25 艾能赛克机械设备(江苏)有限公司 一种高温烟气除尘吸热装置
CN105402732B (zh) * 2015-12-09 2019-03-29 神雾科技集团股份有限公司 还原冶炼蓄热式燃烧系统以及利用该系统进行冶炼的方法
JP6727729B2 (ja) * 2017-07-07 2020-07-22 中外炉工業株式会社 熱処理炉
CN108870415B (zh) * 2018-03-30 2021-05-14 苏州巨联环保有限公司 一种旋转式蓄热燃烧装置和三厢式蓄热燃烧装置
KR102098182B1 (ko) * 2018-09-13 2020-04-08 한국생산기술연구원 질소산화물의 배출량 저감 및 소형화가 가능한 가정용 보일러
CN109579522B (zh) * 2018-11-29 2020-05-05 大余明发矿业有限公司 一种改进型天然气蓄热式熔铋炉

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169925A (ja) * 1996-12-06 1998-06-26 Nkk Corp ラジアントチューブバーナシステム及びその運転方法
JPH10232006A (ja) * 1996-12-16 1998-09-02 Mitsui Eng & Shipbuild Co Ltd 切替式蓄熱バーナー付燃焼装置及び該燃焼装置を用いた設備
JP2001124329A (ja) * 1999-08-16 2001-05-11 Nippon Furnace Kogyo Kaisha Ltd 燃料供給装置及び燃料供給方法
JP2001165578A (ja) * 1999-12-03 2001-06-22 Chugai Ro Co Ltd アルミ溶解炉
JP2007003036A (ja) 2005-06-21 2007-01-11 Chugai Ro Co Ltd リジェネバーナ設置炉
JP2009244381A (ja) 2008-03-28 2009-10-22 Kyocera Corp 電子機器および表示ユニット

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098286A (en) * 1989-11-30 1992-03-24 Smith Engineering Company Regenerative thermal incinerator apparatus
US5364259A (en) * 1993-03-10 1994-11-15 Monsanto Enviro-Chem Systems, Inc. Process and apparatus for gas phase reaction in a regenerative incinerator
JP3668546B2 (ja) * 1995-12-28 2005-07-06 日本ファーネス工業株式会社 気流循環式管式加熱設備
WO2001013042A1 (fr) * 1999-08-16 2001-02-22 Nippon Furnace Kogyo Kaisha, Ltd. Appareil et procede d'alimentation en carburant
NO20014924L (no) * 2001-10-10 2003-04-11 Norsk Hydro As Prosess og utstyr for behandling av forurensede avgasser
US7017592B2 (en) * 2002-12-10 2006-03-28 Pro-Environmental Inc. Regenerative fume-incinerator with on-line burn-out and wash-down system
TWI293359B (en) * 2003-04-10 2008-02-11 Deisccant Technology Corp Heat recovery method for regenerative thermal oxidizer
TWM267411U (en) * 2004-07-28 2005-06-11 Taiwan Environmental Engineeri High concentration volatile fluid combustion system
WO2007048428A1 (en) * 2005-10-28 2007-05-03 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Process and apparatus for low-nox combustion
CN200986198Y (zh) * 2006-12-14 2007-12-05 北京科技大学 多室蓄热式有机废气焚烧炉
TWM323583U (en) * 2007-03-27 2007-12-11 Jg Environmental Technology Co High-efficiency heat-preservation waste gas incinerator
CN101514871A (zh) * 2009-04-10 2009-08-26 株洲火炬工业炉有限责任公司 蓄热式熔铅炉

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10169925A (ja) * 1996-12-06 1998-06-26 Nkk Corp ラジアントチューブバーナシステム及びその運転方法
JPH10232006A (ja) * 1996-12-16 1998-09-02 Mitsui Eng & Shipbuild Co Ltd 切替式蓄熱バーナー付燃焼装置及び該燃焼装置を用いた設備
JP2001124329A (ja) * 1999-08-16 2001-05-11 Nippon Furnace Kogyo Kaisha Ltd 燃料供給装置及び燃料供給方法
JP2001165578A (ja) * 1999-12-03 2001-06-22 Chugai Ro Co Ltd アルミ溶解炉
JP2007003036A (ja) 2005-06-21 2007-01-11 Chugai Ro Co Ltd リジェネバーナ設置炉
JP2009244381A (ja) 2008-03-28 2009-10-22 Kyocera Corp 電子機器および表示ユニット

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492594A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102643001A (zh) * 2012-05-17 2012-08-22 重庆大学 流态化蓄热式污泥低温催化热解方法及其装置
CN102643001B (zh) * 2012-05-17 2013-08-07 重庆大学 流态化蓄热式污泥低温催化热解方法及其装置
JP2015210050A (ja) * 2014-04-28 2015-11-24 日本ファーネス株式会社 高温酸素燃焼装置及び高温酸素燃焼方法

Also Published As

Publication number Publication date
TWI417489B (zh) 2013-12-01
KR101485967B1 (ko) 2015-01-23
EP2492594A1 (en) 2012-08-29
CN102549339A (zh) 2012-07-04
JP5509785B2 (ja) 2014-06-04
TW201124678A (en) 2011-07-16
JP2011089723A (ja) 2011-05-06
KR20120066045A (ko) 2012-06-21
CN102549339B (zh) 2015-07-22
EP2492594A4 (en) 2014-12-03

Similar Documents

Publication Publication Date Title
WO2011049032A1 (ja) 蓄熱式バーナーの燃焼設備及び燃焼方法
JP6423102B2 (ja) 工業炉及びその熱利用方法
JP5765620B2 (ja) 多層燃焼流動炉の熱回収システム
EP1555396A1 (en) Apparatus for the production of electric energy using high temperature fumes or gasses
JP2002266012A (ja) 高炉用熱風炉排熱回収設備
JP5211943B2 (ja) 加熱炉の排気設備
JP2006302660A (ja) 固体酸化物型燃料電池発電装置
JP2012112588A (ja) 加熱炉
JP4901054B2 (ja) 希薄濃度の可燃ガスを燃焼させる過圧燃焼器
JP6821274B2 (ja) レキュペレーター及びラジアントチューブ式加熱装置
JP2005114218A (ja) 流動焼却炉システムの運転方法
EP3710767A1 (en) High temperature furnace
JP4148492B2 (ja) 蓄熱体付ボイラ
JP5696641B2 (ja) 加熱炉における空気予熱器の冷却方法
JP6927705B2 (ja) 焼却設備のボイラにおいて発生する熱によって過熱蒸気をもたらすための方法及び装置
KR101477098B1 (ko) 폐열 회수장치
JP2024035715A (ja) 工業炉の加熱構造
JP4701255B2 (ja) 工業炉
JP2009102686A (ja) ガス加熱装置
JP2005336544A (ja) 熱風炉の保温方法および保温装置
JP2013139961A (ja) 発電システム、および火葬炉
JP2004003712A (ja) 高温気体発生用バーナおよび高温気体発生方法
JP2005214449A (ja) コジェネレーションシステム
JPS63140009A (ja) 冶金炉における高温熱風発生方法
JP2009179861A (ja) 熱処理システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047159.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824881

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20127009746

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010824881

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3498/DELNP/2012

Country of ref document: IN