TWI293359B - Heat recovery method for regenerative thermal oxidizer - Google Patents

Heat recovery method for regenerative thermal oxidizer Download PDF

Info

Publication number
TWI293359B
TWI293359B TW092108224A TW92108224A TWI293359B TW I293359 B TWI293359 B TW I293359B TW 092108224 A TW092108224 A TW 092108224A TW 92108224 A TW92108224 A TW 92108224A TW I293359 B TWI293359 B TW I293359B
Authority
TW
Taiwan
Prior art keywords
heat
organic waste
regenerative
waste gas
combustion
Prior art date
Application number
TW092108224A
Other languages
Chinese (zh)
Other versions
TW200420857A (en
Inventor
Feng Tang Chang
Lei Tien
Yu Chih Lin
Original Assignee
Deisccant Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Deisccant Technology Corp filed Critical Deisccant Technology Corp
Priority to TW092108224A priority Critical patent/TWI293359B/en
Priority to KR1020040001255A priority patent/KR20040089460A/en
Publication of TW200420857A publication Critical patent/TW200420857A/en
Application granted granted Critical
Publication of TWI293359B publication Critical patent/TWI293359B/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23GCREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
    • F23G7/00Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
    • F23G7/06Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Description

1293359 95.7,26 年月曰補充1 九、發明說明: 【發明之技術領域】 本發明係有關一種蓄熱式燃燒爐(Regenerative Thermal Oxidizer, RT〇) ’特別是,本發明提出一種蓄熱式燃燒爐的熱能回收法,其熱 父換器(heat exchanger)在不需使用風車誘引下,藉由高低溫之 密度差煙1¾效應及氣體流動之動能(速度能)差效應而自然產生氣 、流擾動及流動’即可將燃燒爐之燃燒室中所產生的熱再次於燃燒 室封閉回路(Close Loop)中達到高效率熱能回收再利用之功能,有 別於一習用技術之開放回路。 【先前技術】 各國對於揮發性有機溶劑(V〇iatHe 〇rganic c〇mp〇unds ; v〇Cs)皆有 一疋的官制標準,揮發性有機溶劑在工業界廣泛被使用。以中華民國 為例·壞保署在八十九年已公告實施半導體製造業空氣污染管制 &排放標準。其揮發性有機廢氣強制要求其v〇Cs削減率應大於 9〇%。有機廢氣的處理方純多,如熱焚化、觸媒焚化、蓄熱式燃 L、轉輪濃縮焚化、活性碳吸附、冷凝回收等。 其中蓄熱式燃燒爐配置有單個或多個蓄熱床(Regenerative H+s)’蓄熱床内充填蓄熱材,使揮發性有機廢氣流經蓄熱床預熱(此 。(^熱材釋出熱能),而後揮發性有機廢氣進人高溫氧化區(> 800 即燃燒至中)。此時,由於燃燒爐燃料喷嘴產生輔助熱能可提供 …、里及VC^Cs成分氧化分解產生的熱量,使燃燒室保持一定的溫 度—在定的停留時間中有機廢氣所含的v〇Cs成份被完全氧化成 無害的H2〇及c〇2,其代表性反應如下·· C7H8 + 9〇2^7C02 + 4H2〇 2CsHl0 + 21〇2 叫 6C〇2+10H2〇 1293359 補无 2 C6H6+ 15 〇2-^12 C〇2 + 6 H201293359 95.7, 26-year-old supplement 1 IX. Description of the invention: [Technical Field of the Invention] The present invention relates to a Regenerative Thermal Oxidizer (RT〇) 'In particular, the present invention proposes a regenerative burner The heat energy recovery method, the heat exchanger, naturally generates gas and flow disturbances by using the high-low temperature density difference smoke effect and the kinetic energy (speed energy) difference effect of the gas flow without using the windmill. The flow 'supplied the heat generated in the combustion chamber of the combustion furnace to the high-efficiency heat energy recovery and reuse function in the closed loop of the combustion chamber, which is different from the open circuit of a conventional technology. [Prior Art] Various countries have a standard for volatile organic solvents (V〇iatHe 〇rganic c〇mp〇unds; v〇Cs), and volatile organic solvents are widely used in the industry. Take the Republic of China as an example. The Bad Insurance Agency announced in August that it has implemented air pollution control and emission standards for semiconductor manufacturing. Its volatile organic waste gas mandates that its v〇Cs reduction rate should be greater than 9〇%. The treatment of organic waste gas is pure, such as heat incineration, catalyst incineration, regenerative combustion, recirculation incineration, activated carbon adsorption, and condensation recovery. The regenerative combustion furnace is provided with a single or a plurality of regenerative beds (Regenerative H+s), and the regenerative beds are filled with heat accumulating materials, so that the volatile organic waste gas flows through the regenerator bed for preheating (this. (the hot material releases heat energy), Then the volatile organic waste gas enters the high temperature oxidation zone (> 800 is burned to medium). At this time, the auxiliary heat energy generated by the fuel nozzle of the burner can provide heat generated by the oxidative decomposition of the components and the VC^Cs component, so that the combustion chamber Maintain a certain temperature - the v〇Cs component of the organic waste gas is completely oxidized to harmless H2〇 and c〇2 in a fixed residence time. The representative reaction is as follows: · C7H8 + 9〇2^7C02 + 4H2〇 2CsHl0 + 21〇2 is called 6C〇2+10H2〇1293359 Supplement 2 C6H6+ 15 〇2-^12 C〇2 + 6 H20

Frank M· Colagio糧ni在美國專利案號:u.S· patent 5,297,954中所提之苦熱 式燃燒爐即為一般傳統所使用之多塔蓄熱式燃燒爐。其燃燒燐係 包含有三組蓄熱床,藉由三組蓄熱床之交替使用來儲存燃燒v〇Cs 後所釋放出之能量,作為輔助熱能之使用。此外,含高溫之v〇Cs 、、工由熱父換為將熱能做再進一步的回收,如此廢氣便可降至安 全溫度後再排放。以下使用一般雙塔蓄熱式燃燒爐做為例子以說 明之。 ° 圖一係為一般傳統雙塔蓄熱式燃燒爐1〇 (RT〇)搭配燃燒後熱 氣旁通16(Hot Gas By-Pass)熱回收之結構示意圖。其中之蓄熱式燃燒 爐10主要含有兩組蓄熱床[第一蓄熱床11和第二蓄熱床12]、廢氣燃燒室 13及其相連之廢氣進出管線和流向調節閥等。更詳細的說製程風機”自廢 氣來源端抽排有機廢氣2〇 (V0Cs Laden Air)至雙塔蓄熱式燃燒爐1〇 (RTO)人口的進風門叫灸(此時第五流向調節閥%為〇ff狀態),可 有兩種模式進入燃燒室13中反應。第一種模式:有機廢氣2〇 (以下簡稱 VOCS20)藉由一進風門26進入管線,分別經由第一流向調節閥以進入第二 蓄熱床12 (此時的第二流向調節閥22和第三流向調節閥23為〇]^[關閉]狀 恶)。在通過第二蓄熱床12後,VOCs20在燃燒室13中由燃料喷嘴14提供一 燃燒用火焰15將V〇Cs20經氧化反應形成H20及C〇2。其燃燒室13内部 之燃燒/皿度可達攝氏溫度8〇〇〜9贼,在辦堯過程中第二蓄熱床^可儲存反 應之熱2:用以預熱而後的VOCs2〇進入燃燒室中進行反應,如此,便 可降低火焰15的能量損耗。反應後之v〇Cs2〇 (9〇%以上由水和二 氧化碳所組成)流經由第一蓄熱床11、第四流向調節閥24,由送風機27 排出至大氣35中。第二種模式:v〇Cs2〇由進風門26進入管線,分別經由第 二流向调節閥23 (此時的第一流向調節閥21和第四向量調節閥24為〇][^狀 態)進入第一蓄熱床丨丨。在通過第一蓄熱床丨丨後v〇Cs2〇在燃燒室13中由燃 1293359 埯7· 26修正 “曰補充 燒喷嘴14提供一燃燒用火焰15將v〇Cs20氧化成Η20及C〇2。VOCs20除 可選擇第一流向調節閥21和第三流向調節閥23進出外,蓄熱式燃燒爐1〇 包含有一熱氣旁通管16相連於送風機27之管線,其旁通管亦有第 五流向控制閥25控制之,但此路徑僅供雙塔蓄熱式燃燒爐1〇 (RTO)系統停機之狀況使用,並非v〇Cs2〇燃燒之正常路線。 類似於第-種模式’在燃燒過程中第—蓄熱床u可儲存反應之熱量用 以預熱而後的VOCs20進入燃燒室13中進行反應。反應後之v〇Cs2〇 廢氣流、經由第二蓄熱床12、第二流向調節閥22,由送風機27排出至大氣^ 中。 其上述之第一和第二種模式定時循環做切換保持第 蓄熱床 ,及第蓄熱床12可維持面溫用以預熱反應氣體。其中蓄熱材多 為陶瓷材料所組成。通常若製程上須要會對廢氣V〇CS2〇所含之 熱能經氧化職後進行再次时,因此在職室13旁會連接一個 管路至-細線3G(heatexehan㈣,錢錢㈣另綠_接於送風 :27>將降溫後的V〇Cs2G排至大氣%中。v〇Cs2()經由熱交換器料, ,、熱父換器如内部設置有熱交換管束31吸收熱能,其熱交換管束μ中含 = ^ = f Μ進行熱咖作。熱傳_ 32經由加熱後所形 ’、、、孔°於讀中的卫作機台,以達到熱資源回收的目的。可注音 的是,經過熱交換器3〇中的有播 w 生之_導_。抖=L ) _風機27產 源的回收(圖中未亍),;;= 位於#熱材之中來進行熱資 岸㈣f叙. 匕種^又汁的缺點在於所述熱交換器將大幅增加燃 ^^控之風_而耗損能源及當此熱交換 ♦ =^«_蛛拆裝才能維護所述熱交補。本發^出^内: =、、又換构需依賴送風機風_即可達到原有較高效率熱回收的目 1293359 喔7 26修正 单月曰補充 【發明内容】 本發明的主要目的在於提供一種蓄熱式燃燒爐的熱能回收法,係利 用煙Hi效應及壓差效應使反應後的含高熱的氣體自動通過熱交換器中。也 就是說藉由高低溫之密度差煙囡效應及氣體流動之動能(速度能)差 效應而自然產生氣流擾動及流動,即可將燃燒爐之燃燒室中所產 生的熱再次於燃燒室封閉回路(Cl〇se Loop)中達到高效率熱能回 收再利用之功能,有別於一習用技術之開放回路。 本發明的再-目的在於提賴之管束式散難紐於賴式燃燒爐 中蓄^材之上方燃燒室的水平位置之上,以熱氣端並聯流方式建構 —官束式熱交換器用以進行熱能回收。使有機廢氣在煙自及動壓差之 雙效應作訂’部分減簡燒室巾自減聯進出熱交換器無燒室。 首先,其有機廢氣(VOCs Laden Ai〇的途徑係為:由一製程風 =抽送進人燃燒爐之管線進人第—蓄熱床。在通過第―蓄熱床加熱廢氣 。之H2〇及C〇2。在燃燒過程後有機廢氣接著進人第二蓄熱床,其第二 蓄熱床可儲存氧化反應之熱量進行熱回收,㈣預熱之後先”二㈣ 床通過再進人難室之有機純。在燃燒室中其燃燒後之部分高 ^機廢氣接續藉由高低溫之密度差煙岐應聽體流動之動能 (速度能)差效應,而自然擾動進人㈣較低溫的管束式数 換器中,進行熱交換動作以達到歸源回收的目的。其進;;^轨 =:器中含有流動的熱傳導介質藉由間接與有機廢氣間接 會⑽反錢乾淨且高溫有機麵之減, :=氣接續經由第二蓄熱床,由送風機抽送排出至大氣中,此時廢 降至安全溫度及且淨化轉達至環保要求而排放至空氣中。 本發明在蓄熱式燃燒爐上製作㈣交換器使有機廢氣能自動 1293359The bitter heat burner proposed by Frank M. Colagio, U.S. Patent No. 5,297,954, is a conventionally used multi-column regenerative burner. The combustion system contains three sets of regenerator beds, and the energy released by burning v〇Cs is stored by alternate use of three sets of regenerator beds as auxiliary thermal energy. In addition, the high temperature v〇Cs, the work is replaced by the hot father to further recover the heat, so that the exhaust gas can be reduced to a safe temperature before being discharged. The following uses a conventional two-column regenerative burner as an example to illustrate. ° Figure 1 is a schematic diagram of the conventional traditional two-tower regenerative furnace 1 〇 (RT〇) with hot gas bypass-burning 16 (Hot Gas By-Pass) heat recovery. The regenerative combustion furnace 10 mainly comprises two sets of regenerator beds [the first regenerator bed 11 and the second regenerator bed 12], the exhaust gas combustion chamber 13 and its associated exhaust gas inlet and outlet lines, and a flow direction regulating valve. In more detail, the process fan “extracts the organic exhaust gas 2〇 (V0Cs Laden Air) from the exhaust gas source end to the inlet of the double tower regenerative combustion furnace 1〇 (RTO) population called moxibustion (at this time, the fifth flow regulating valve is 〇ff state), there are two modes to enter the reaction in the combustion chamber 13. The first mode: organic exhaust gas 2〇 (hereinafter referred to as VOCS20) enters the pipeline through an intake damper 26, respectively, through the first flow regulating valve to enter the first The second regenerator bed 12 (the second flow regulating valve 22 and the third flow regulating valve 23 at this time is 〇]^[closed]. After passing through the second regenerator bed 12, the VOCs 20 are in the combustion chamber 13 by the fuel nozzle. 14 provides a combustion flame 15 to oxidize V〇Cs20 to form H20 and C〇2. The combustion inside the combustion chamber 13 can reach a temperature of 8 〇〇 9 9 thieves, and the second heat storage during the process The bed can store the heat of the reaction 2: the VOCs2〇 for preheating and then enter the combustion chamber for reaction, so that the energy loss of the flame 15 can be reduced. After the reaction, v〇Cs2〇 (more than 9〇% by water and The carbon dioxide is flowed through the first regenerator bed 11 and the fourth flow direction regulating valve 24 It is discharged to the atmosphere 35 by the blower 27. The second mode: v〇Cs2〇 enters the pipeline from the intake damper 26 via the second flow regulating valve 23 (the first flow regulating valve 21 and the fourth vector regulating valve at this time) 24 is 〇][^ state) enters the first regenerator bed. After passing through the first regenerator bed, v〇Cs2〇 is corrected in the combustion chamber 13 by burning 1293359 埯7·26. The combustion flame 15 oxidizes v〇Cs20 to Η20 and C〇2. In addition to the selection of the first flow regulating valve 21 and the third flow regulating valve 23, the regenerative combustion furnace 1 includes a hot gas bypass pipe 16 connected to the blower 27, and the bypass pipe also has a fifth flow direction control. Valve 25 controls, but this path is only used in the case of a two-column regenerative furnace (RTO) system shutdown, not a normal route for v〇Cs2〇 combustion. Similar to the first mode, in the combustion process, the first heat storage bed u stores the heat of the reaction for preheating and then the VOCs 20 enter the combustion chamber 13 for reaction. The v〇Cs2〇 exhaust gas stream after the reaction passes through the second regenerator bed 12 and the second flow direction regulating valve 22, and is discharged to the atmosphere by the blower 27. The first and second mode timing loops described above are switched to maintain the first regenerator bed, and the first regenerator bed 12 maintains the surface temperature for preheating the reaction gas. Among them, the heat storage materials are mostly composed of ceramic materials. Usually, if the heat energy contained in the exhaust gas V〇CS2〇 is required to be re-oxidized after the oxidation, then a pipe will be connected to the thin line 3G (heatexehan (four), money (four) and green _ connected to the air supply) :27> The cooled V〇Cs2G is discharged to the atmosphere%. v〇Cs2() is transferred to the heat exchanger via the heat exchanger, and the heat exchanger is internally provided with the heat exchange tube bundle 31 to absorb the heat energy, and the heat exchange tube bundle μ is Containing = ^ = f Μ for hot coffee. Heat transfer _ 32 through the heating of the shape of ',,, hole ° in the reading machine, in order to achieve the purpose of heat recovery. It can be noted that after heat In the converter 3〇, there is a broadcast _ _ _ _ _ _ _ _ _ fan 27 source recovery (not shown);; = = located in the # hot material to carry out the hot shore (four) f Syria. A disadvantage of the seedlings is that the heat exchanger will greatly increase the wind of the combustion control - and the energy is consumed and when the heat exchange is ♦ = ^__ spider disassembly can maintain the heat compensation. The present invention is: ^, and the structure is dependent on the blower wind _ to achieve the original higher efficiency heat recovery. 1293359 喔 7 26 amendment single month 曰 supplement [invention content] The main purpose of the present invention is to provide The thermal energy recovery method of a regenerative combustion furnace utilizes the Hi effect and the differential pressure effect to automatically pass the reacted high heat-containing gas through the heat exchanger. That is to say, the airflow disturbance and the flow are naturally generated by the high-low temperature density difference soot effect and the kinetic energy (speed energy) difference effect of the gas flow, so that the heat generated in the combustion chamber of the combustion furnace can be closed again in the combustion chamber. The function of recycling high-efficiency heat energy in the loop (Cl〇se Loop) is different from the open loop of a conventional technology. The re-purpose of the present invention is to increase the tube bundle type dispersion in the horizontal position of the combustion chamber above the storage material in the Lai burner, and construct the heat exchanger in parallel flow mode - the official beam heat exchanger is used for Heat recovery. The double effect of the organic exhaust gas in the smoke and the dynamic pressure difference is made to the portion of the reduced-burning room towel to be fed into and out of the heat exchanger without a burning chamber. First of all, the organic waste gas (VOCs Laden Ai〇) is: a process air is pumped into the combustion furnace to enter the first heat storage bed. The exhaust gas is heated by the first heat storage bed. H2〇 and C〇2 After the combustion process, the organic waste gas then enters the second regenerator bed, and the second regenerator bed stores the heat of the oxidation reaction for heat recovery, and (4) after the preheating, the first two (four) beds pass through the organic purity of the human chamber. The combustion part of the combustion chamber is connected to the high-low temperature density difference. The kinetic energy (speed energy) difference effect of the soaking body is the natural disturbance, and the natural disturbance enters the (4) lower temperature tube bundle type converter. The heat exchange operation is carried out to achieve the purpose of returning to the source. It enters;;^Track=: The heat transfer medium containing the flow is indirectly indirectly combined with the organic waste gas. (10) The money is clean and the high temperature organic surface is reduced, := gas The splicing is discharged to the atmosphere through the second regenerator bed, and is discharged to the atmosphere by the blower. At this time, the waste is reduced to a safe temperature and the purification is transferred to the air to be discharged to the air. The invention is made on the regenerative combustion furnace (4) the exchanger makes the organic exhaust gas can Move 1293359

26修正 日補充 進出熱轉換器,其實施例以雙塔蓄熱式燃燒爐作為實施例用以說明 本發明之精神。 首先,參考圖二所示,其為雙塔蓄熱式燃燒爐(RTO)之結構100 示意圖。其中蓄熱式燃燒爐100主要由兩組蓄熱床(第一蓄熱床11〇和 第二蓄熱床120)、廢氣燃燒室130及其相連之廢氣進出管線等。有機廢氣 200 (VOCs Laden Air)的進出方式如下所述: 製程風機280自廢氣來源端抽排有機廢氣2〇〇 (VOCs Laden Air ;以下 簡稱VOCs 200 )由一進風門260控制進入燃燒爐管線,分別經由第一流向調 節閥210進入第二蓄熱床120 (此時的第二流向調節閥22〇和第三流向調節閥 230為OFF[關閉]狀態)。在通過第二蓄熱床12〇後v〇Cs2〇〇在燃燒室13〇中 由燃料噴嘴140提供一燃燒用火焰15〇將v〇Cs2〇〇經氧化反應形成無害 的Ηβ及C〇2。燃料喷嘴14〇提供所述燃燒室π〇熱能之裝置亦可以 電熱裔或電漿產生器。此燃料喷嘴14〇之裝置位置亦可於蓄熱式燃 燒爐之入口處(圖中未示)。其燃燒室13〇内部之燃燒溫度可麵氏溫 度600〜95〇C或是其它的溫度(依所燃燒物質而定),在經過燃燒過程後之 高溫廢氣則進人第-蓄熱床11G ’其第—f熱床ησ可儲存反應之熱量作為 熱能回收,用以賴而後先進人第_蓄熱床11(^v〇c侧,再進入 燃:^至130中進行反應,如此,便可降低燃燒喷嘴丨4〇的能量損耗。 其中第一蓄熱床12〇及第一蓄熱床11〇係由蜂巢狀、馬鞍形或圓柱 形等的喊材料所組成,其具有良好的蓄熱能力,其喊材料的 孔洞結構可使反應的VOCs·通過f熱床l2(ml職入燃燒室 ㈣。所述之第一流向調咖、第二流向調節鬧—第三綱 230、弟四流向調節閥24_接有電動閱或氣動閥,以能作相互之開關切 換動作在M k室130正上方含有熱氣管線通道口〇及⑽使高溫熱 氣自然通往位於燃燒室130上方的管束式熱交換器30。(T* bundles heat exchanger),其管束式熱交換器綱的溫度較低,反 1293359 應後的VOCs200便會自動擴散至溫度較低的管束式熱交換器3〇〇 中而形成密度差異之煙_效應之自然對流流動現象。就管束式熱 交換器300及燃燒室130周圍之廢氣密度而言,反應後之v〇Cs2〇〇 於管束式熱父換裔300的廢氣密度自然低於燃燒室13〇内之廢氣密 度,且管束式熱交換器300位置高於燃燒室130,因此自然有煙囪 效應的自然對流流動現象存在。此外,反應後的V〇cs200亦會因廢 氣流動所產生離開第一蓄熱床110或第二蓄熱床12〇的風速之動壓力 (velocity pressure )影響而進入管束式熱交換器3〇〇進行熱交換的 動作。其上所述,.便是本發明的重點所在。 其管束式熱交換器300中包含有螺旋狀之熱交換管束管路3 1〇 和一供VOCS200廢氣進出之結構體34()。熱交換管束管路31〇中填充 有流動的熱傳導介質320,以進行熱交換動作。而可加入之熱傳導介質32〇 包括有·空氣、蒸汽、水及熱媒油…等任何形態之流體。其所述螺旋狀之 熱父換管束管路310可為其它形狀之管路所構成,其目的在增加管 路在結構體340中與高溫之VOCs200的接觸面積。而熱傳導介質32〇 經由加熱後所形成之熱氣、高溫蒸汽、熱水及熱媒油,可經由不同的方法 加以利用’以達到熱資源回收的目的。其進入管束式熱交換器3〇〇之熱 傳導介質320之初始溫度不受限制,但需低於燃燒室13〇的反應溫 度,而出官束式熱交換器300之熱傳導介質32〇控制在18〇〜3〇〇它之 間(隨順工廠内機台要求而作變更)。但可注意的是,熱傳導介 質320之初始溫度與燃燒室13()的溫度差異越大,其熱交換效益亦 越高。 、此外,該熱交換管束管路310進入端與離開端之間會多加一旁 通s 330 (bypass),並有一第六流向調節閥36〇位於旁通管33〇上(如 圖二所示)用以調節熱傳導介質32〇吸收太多熱能導致溫度過高時, 冬未經過官束式熱父換器300的熱傳導介質32〇(未吸收熱量的熱 1293359 95· 7·26 修正 年月日補充 傳導介質320 )直接經過旁通管33 0達到控溫之功效。 反應後之VOCs200其路徑與前述傳統蓄熱式燃燒爐10相同流 · 經由第一蓄熱床110、第四流向調節閥240,由送風機270排出至大氣350中。 - 其VOCs200亦可由進風門260進入管線,分別經由第三流向調節閥230 進入第一蓄熱床110,利用已吸收熱能的第一蓄熱床110預熱VOCs200。在 通過第一蓄熱床110後VOCs200在燃燒室130中由燃燒喷嘴140提供一燃燒 用火焰150將VOCs200經氧化反應形成無害的η20及C02。在經過燃燒 過程後之南溫廢氣則進入第二蓄熱床120,其可儲存反應之熱量作為熱能回 收,用以預熱而後先進入第二蓄熱床120之VOCs200。此時的反應 的VOCs200亦會如依所述之方式進入管束式熱交換器3〇〇中進行 · 熱交換動作,在此不再重複說明之。反應後之VOCs200流經由第二 蓄熱床120、第二流向調節閥220,由送風機270排出至大氣350中,第二蓄 熱床120亦會吸收VOCs200之部分熱能,因此排出大氣35〇中的v〇Cs200可 降至安全溫度及濃度排放。 其上述之VOCS200流動方向(於第一蓄熱床11()或第二蓄熱床 120進行反應)定時做切換保持第一蓄熱床110及第二蓄熱床12〇 可維持高溫用以預熱反應氣體,如此熱能回收率即可達到93。/〇以 上,同時淨化率可達到95%〜99%以上。 VOCS200除可選擇第一流向調節閥210和第三流向調節閥23〇進出 外,蓄熱式燃燒爐100包含有一旁通管相連於送風機270之管線, 其旁通管亦有第五流向控制閥250控制之,但此路徑僅供雙拔苦 熱式燃燒爐100 (RTO)系統停機之狀況使用,並非v〇Cs2〇〇_ 燒反應之正常路線。 本發明之管束式熱交換器300可運用在任何—種形式之燃燒爐 或氧化爐或反應爐中’且不需其他額外的導入裝置,在本發明之 實施例僅以雙塔蓄熱式燃燒爐說明之。本發明所述之參考例子$係在特 11 咖 59 |W|| 定領域中之特定實施例,因此熟知此技藝的人士應能明瞭本發明要義所 在’進行適當、些微的調整和應用,仍將不失本發明之要義所在。接續的 申請專利範圍中係包含在本發明中所有此類的應用、調整。 綜上所述’本發明實施之具體性,誠已符合專利法中所規定之發明專 利要件責審查委員惠予審視,並賜准專利為禱。The present invention is an embodiment of a dual-column regenerative combustion furnace as an embodiment for explaining the spirit of the present invention. First, referring to FIG. 2, it is a schematic diagram of a structure 100 of a two-column regenerative combustion furnace (RTO). The regenerative combustion furnace 100 mainly comprises two sets of regenerator beds (the first regenerator bed 11 〇 and the second regenerator bed 120), the exhaust gas combustion chamber 130 and the exhaust gas inlet and outlet lines connected thereto. The inlet and outlet modes of the organic exhaust gas 200 (VOCs Laden Air) are as follows: The process fan 280 extracts organic exhaust gas 2 (VOCs Laden Air; hereinafter referred to as VOCs 200) from the exhaust gas source end and is controlled by an intake dam 260 to enter the combustion furnace pipeline. The second regenerator bed 120 is entered via the first flow regulating valve 210 (the second flow regulating valve 22 and the third flow regulating valve 230 are in the OFF state). After passing through the second regenerator bed 12, v 〇 Cs2 〇〇 in the combustion chamber 13 由 a combustion flame 15 is supplied from the fuel nozzle 140 to oxidize the v 〇 Cs2 形成 to form harmless Ηβ and C〇2. The means for providing the combustion chamber π〇 thermal energy to the fuel nozzle 14〇 may also be an electrothermal or plasma generator. The position of the fuel nozzle 14 can also be at the inlet of the regenerative burner (not shown). The combustion temperature inside the combustion chamber 13〇 can be 65~95〇C or other temperature (depending on the substance to be burned), and the high-temperature exhaust gas after entering the combustion process enters the first heat storage bed 11G. The first-f hot bed ησ can store the heat of the reaction as heat energy recovery, and then it can be used to reduce the combustion after the advanced person _ regenerator bed 11 (^v〇c side, then enter the combustion: ^ to 130) The energy loss of the nozzle 。4〇, wherein the first regenerator bed 12〇 and the first regenerator bed 11 are composed of a honeycomb material, a saddle shape or a cylindrical material, which has a good heat storage capacity and a shouting material. The hole structure can make the VOCs of the reaction pass through the heat bed l2 (ml into the combustion chamber (4). The first flow direction is adjusted to the coffee, the second flow direction is adjusted to the third stage 230, and the fourth flow regulating valve 24_ is connected. The electric or pneumatic valve is configured to be capable of switching between each other to include a hot gas passage port 正 directly above the M k chamber 130 and (10) to cause the high temperature hot gas to naturally lead to the tube bundle heat exchanger 30 located above the combustion chamber 130. (T * bundles heat exchanger) The temperature of the scheme is low, and the VOCs200 after the reverse 1293359 will automatically diffuse into the tube bundle heat exchanger 3〇〇 with lower temperature to form the natural convection flow phenomenon of the smoke with different density. In the case of the exhaust gas density around 300 and the combustion chamber 130, the exhaust gas density after the reaction of v〇Cs2 〇〇 in the tube bundle type heat father 300 is naturally lower than the exhaust gas density in the combustion chamber 13〇, and the tube bundle heat exchanger 300 The position is higher than the combustion chamber 130, so there is a natural convection flow phenomenon with a chimney effect. In addition, the V〇cs200 after the reaction also generates a wind speed away from the first regenerator bed 110 or the second regenerator bed 12 due to the exhaust gas flow. The action of the velocity pressure to enter the tube bundle heat exchanger 3 to perform heat exchange. The above is the focus of the present invention. The tube bundle heat exchanger 300 includes a spiral shape. The heat exchange tube bundle line 3 1〇 and a structure 34 () for the VOCS 200 exhaust gas in and out. The heat exchange tube bundle line 31 is filled with a flowing heat transfer medium 320 for heat exchange operation. The guiding medium 32 includes any fluid of any form such as air, steam, water, and heat medium oil. The spiral hot-forward tube bundle tube 310 may be formed of other shapes of pipes, and the purpose thereof is to increase The contact area of the pipeline in the structure 340 with the high temperature VOCs 200. The heat transfer medium 32 〇 through the heating of the hot gas, high temperature steam, hot water and heat medium oil can be utilized by different methods to achieve thermal resources. For the purpose of recovery, the initial temperature of the heat transfer medium 320 entering the tube bundle heat exchanger 3 is not limited, but needs to be lower than the reaction temperature of the combustion chamber 13 ,, and the heat transfer medium 32 of the official beam heat exchanger 300 is removed. 〇 Control between 18〇~3〇〇 (changes with the requirements of the machine in the factory). It should be noted, however, that the greater the difference between the initial temperature of the heat transfer medium 320 and the temperature of the combustion chamber 13 (), the higher the heat exchange efficiency. In addition, a bypass s 330 (bypass) is added between the inlet end and the exit end of the heat exchange tube bundle line 310, and a sixth flow direction regulating valve 36 〇 is located on the bypass tube 33〇 (as shown in FIG. 2). To regulate the heat transfer medium 32, when too much heat is absorbed, causing the temperature to be too high, the heat transfer medium 32 that has not passed through the official heat exchanger 300 in winter (the heat that does not absorb heat is 1293359 95· 7·26) The conductive medium 320) directly passes through the bypass tube 33 0 to achieve the effect of temperature control. The VOCs 200 after the reaction have the same flow path as the conventional regenerative combustion furnace 10 described above. The first regenerator bed 110 and the fourth flow direction regulating valve 240 are discharged to the atmosphere 350 by the blower 270. - The VOCs 200 can also enter the pipeline from the intake dam 260, enter the first regenerator bed 110 via the third flow regulating valve 230, and preheat the VOCs 200 using the first regenerator bed 110 that has absorbed thermal energy. After passing through the first regenerator bed 110, the VOCs 200 provide a combustion flame 150 in the combustion chamber 130 by the combustion nozzle 140 to oxidize the VOCs 200 to form harmless η20 and CO2. The south temperature exhaust gas after passing through the combustion process enters the second regenerator bed 120, which stores the heat of the reaction as heat energy for preheating and then enters the VOCs 200 of the second regenerator bed 120. The VOCs 200 of the reaction at this time are also subjected to the heat exchange operation in the tube bundle heat exchanger 3 as described above, and will not be repeatedly described herein. After the reaction, the VOCs 200 flow through the second regenerator bed 120 and the second flow direction regulating valve 220, and are discharged to the atmosphere 350 by the blower 270. The second regenerator bed 120 also absorbs part of the heat energy of the VOCs 200, thereby discharging the v〇 in the atmosphere 35〇. The Cs200 can be reduced to safe temperature and concentration emissions. The above-mentioned VOCS200 flow direction (reacting in the first regenerator bed 11 (or the second regenerator bed 120) is periodically switched to maintain the first regenerator bed 110 and the second regenerator bed 12 〇 to maintain a high temperature for preheating the reaction gas. This heat recovery rate can reach 93. Above / 〇, the purification rate can reach 95%~99%. The VOCS 200 has a first flow direction regulating valve 210 and a third flow direction regulating valve 23, and the regenerative combustion furnace 100 includes a bypass pipe connected to the blower 270, and the bypass pipe also has a fifth flow direction control valve 250. Control, but this path is only used in the case of the shutdown of the double-exhaustive combustion furnace 100 (RTO) system, not the normal route of the v〇Cs2〇〇_ burning reaction. The tube bundle heat exchanger 300 of the present invention can be used in any type of combustion furnace or oxidizing furnace or reactor 'without additional additional introduction means, in the embodiment of the invention only the double column regenerative burner Explain it. The reference example of the present invention is a specific embodiment in the field of the invention, and those skilled in the art should be able to understand the meaning of the present invention as appropriate and minor adjustments and applications. The essence of the invention will not be lost. All such applications and adjustments are included in the scope of the patent application. To sum up the specificity of the implementation of the present invention, Cheng has complied with the review of the patents and articles responsible for reviewing the invention as stipulated in the Patent Law, and granted the patent as a prayer.

12 1293^59 9IV6口修正 IΛ r日補充 【圖示簡要說明】 圖一係為傳統雙塔蓄熱式燃燒爐搭配熱氣旁通熱回收之結構示 意圖。 圖二係為本發明實施例中雙塔蓄熱式燃燒爐搭配熱回收之結構示 意圖。 【圖號說明】 10 蓄熱式燃燒爐 12 弟二畜熱床 14 燃料喷嘴 16 熱氣旁通管 20 有機廢氣 22 第二流向調節閥 24 第四流向調節閥 26 進風門 28 製程風機 30 熱交換器 32 熱傳導介質 100 蓄熱式燃燒爐 120 第二蓄熱床 140 燃料喷嘴 160 熱氣管線通道 200 有機廢氣 220 第二流向調節閥 240 第四流向調節閥 260 進風門 11 第一蓄熱床 13 燃燒室 15 火焰 21 第一流向調節閥 23 第三流向調節閥 25 第五流向調節閥 27 送風機 31 熱交換管束 35 大氣 110 第一蓄熱床 130 燃燒室 150 火焰 170 熱氣管線通道 210 第一流向調節閥 230 第三流向調節閥 250 第五流向調節閥 270 送風機12 1293^59 9IV6 port correction IΛ r day supplement [Simplified illustration] Figure 1 is a schematic diagram of the structure of a traditional two-tower regenerative combustion furnace with hot gas bypass heat recovery. Fig. 2 is a schematic view showing the structure of a double-column regenerative combustion furnace in combination with heat recovery in the embodiment of the present invention. [Description of the number] 10 Regenerative combustion furnace 12 Younger hot bed 14 Fuel nozzle 16 Hot gas bypass 20 Organic waste gas 22 Second flow regulating valve 24 Fourth flow regulating valve 26 Intake valve 28 Process fan 30 Heat exchanger 32 Heat transfer medium 100 Regenerative combustion furnace 120 Second regenerator bed 140 Fuel nozzle 160 Hot gas pipeline 200 Organic exhaust gas 220 Second flow regulating valve 240 Fourth flow regulating valve 260 Intake valve 11 First regenerator bed 13 Combustion chamber 15 Flame 21 First Flow regulating valve 23 third flow regulating valve 25 fifth flow regulating valve 27 blower 31 heat exchange tube bundle 35 atmosphere 110 first regenerator bed 130 combustion chamber 150 flame 170 hot gas line passage 210 first flow direction regulating valve 230 third flow direction regulating valve 250 Fifth flow regulating valve 270 blower

13 1293359 280 300 320 340 360 95. 7. 26 修正年月日補充 製程風機 管束式熱交換器 310 熱交換管束管路 熱傳導介質 330 旁通管 結構體 350 大氣 第六流向調節閥13 1293359 280 300 320 340 360 95. 7. 26 Correction date replenishment process fan tube bundle heat exchanger 310 heat exchange tube bundle line heat transfer medium 330 bypass tube structure 350 atmosphere sixth flow direction regulating valve

1414

Claims (1)

1293359 說…:一-ί 十、申請專鄉® 1、一種蓄熱式燃燒爐(Regenerative Thermal Oxidizer ;丨RTGt)熱 _回收法係包含:_ · a、 揮發性有機廢氣(volatile organic compound ; VOCs)由燃燒爐 管線進入第二蓄熱床; b、 通過第二蓄熱床之揮發性有機廢氣於燃燒室高溫燃燒;以及 c、經燃燒反應後之揮發性有機廢氣經第一蓄熱床,該第一蓄 熱床係吸收燃燒反應後揮發性有機廢氣之熱量,並經送風機排 至大氣;同時該經燃燒之部份高溫發性有機廢氣係因煙囪 效應通往管束式熱交換器進行熱交換,以提供熱能者。 2如申睛專利範圍第1項所述之蓄熱式燃燒爐熱能回收法,其中所述 之第一蓄熱床及第二蓄黔床係由蜂巢狀、馬鞍形、圓柱形蓄熱 材料其中之一所組成。… 3、如申請專利範圍第1項所述之蓄熱式燃燒爐熱能回收法,其中所述 燃燒室其結構型式係為直燃式燃燒爐、觸媒式燃燒爐、氧化爐、 反應爐其中之一所組成。 4如申印專利範圍第1項所述之蓄熱式燃燒爐熱能回收法,其中所述 之燃燒室中包含有一燃料喷嘴提供所述燃燒室熱能。 5、 如申請專利範菌第1項所述之蓄熱式燃燒爐熱能回收法,其中所述 之燃燒室中包含有一電熱器提供所述燃燒室熱能。 6、 如申請專利範圍第1項所述之蓄熱式燃燒爐熱能回收法,其中所述 之燃燒室中包含有一電漿產生器提供所述燃燒室熱能。 7、 如申請專利範圍第1項所述之蓄熱式燃燒爐熱能回收法,其令所述 之反應後之揮發性有機廢氣因最初引入有機廢氣產生的風速動 屋力而進入所述管束式熱交換器。 8、 如申請專利範圍第1項所述之f熱式燃燒爐熱能回收法,其中所述 15 1293359 之官束式熱父換态中包含: a、 一結構體,可供高溫之揮發性有機廢氣進出之; b、 一熱交換管束管路,通過所述管束式熱交換器内部可與外界相溝 通;以及 c、 一流動的熱傳導介質,填充於上述熱交換管束管路之中,可吸收 經燃燒室燃燒之揮發性有機廢氣之熱量,以進行熱交換動作, 其中所述之熱傳導介質的溫度低於所述反應後之揮發性有機廢 氣的溫度。 9、 一種畜熱式燃燒爐(Regenerative Thermal Oxidizer ; RT0)結 構,係包含: 至少二蓄熱床,該二蓄熱床係以一第一蓄熱床及一第二蓄熱床分別 設有管線供揮發性有機廢氣(volatile organic compounds ; VOCs)進入 與排出,該第一蓄熱床與第二蓄熱床之頂部是相通; 一燃燒室’位於上述第一蓄熱床與第二蓄熱床頂部相通之空間,能 對流通入蓄熱床内之揮發性有機廢氣進行加熱; 旨束式熱又換( tube bundles heat exchanger ),水平設置 於該二蓄熱床上方,該管束式熱交換器之熱氣進出連通口並聯連 接於燃燒室之兩端,使熱傳導介質與經燃燒的高溫有機廢氣進行熱交 換; 一喷嘴,係位於所述燃燒室之内用以提供燃燒所述有機廢氣 之能量; 進風門,係與第一蓄熱床及第二蓄熱床進口相連,使揮發性有機 廢氣置入以進行反應;以及 一送風機’係與第一蓄熱床及第二蓄熱床出口相連,將已反應完已降 溫之有機廢氣排至空氣中。 10、 如申請專利範圍第9項所述之蓄熱式燃燒爐結構,其中所述之二蓄 设93359 _ I ' (y 乂 月利軌圍第9項所述之蓄熱式燃燒爐結構,其中所述燃燒爐 所組成直燃式燃燒爐、觸媒式燃燒爐、氧化爐、反應爐其中之一 口、月專?範圍第9項所述之蓄熱式燃燒爐結構,其巾二蓄熱床之進 13、士由▲刀别接有電動之流置控制閥,以能作相互之開關切換動作者。 Z請專利範圍第9項所述之蓄熱式燃燒爐結構,其中所述之有機 氣係目煙_效應進人所述管束式熱交換器中進行熱交換動 作。 /申明專利範圍第9項所述之蓄熱式燃燒爐結構,其中所述之反應 後之揮發性有機廢氣因最初引入有機廢氣產生的風速動壓力而 進入所述管束式熱交換器。 如申明專利範圍第9項所述之蓄熱式燃燒爐結構,其中所述之管束 式熱交換器更包含: ⑷一結構體,可供高溫之揮發性有機廢氣進出之; (b)熱交換管束管路,通過所述管束式熱交換器内部可與外界相溝 通,以及 (C) Ll動的熱傳導介質’填充於上述熱交換管束管路之中,可吸收經 燃燒至燃燒之揮發性有機廢氣之熱量,以進行熱交換動作,其中 所述之熱傳導介質的溫度低於所述反應後之揮發性有機廢氣的 溫度。 171293359 says...:一-ί10, application for the hometown® 1. A Regenerative Thermal Oxidizer (丨RTGt) heat_recovery system contains: _ · a, volatile organic compounds (VOCs) Entering the second regenerator bed from the combustion furnace line; b, burning the volatile organic waste gas through the second regenerator bed at a high temperature in the combustion chamber; and c, passing the volatile organic waste gas after the combustion reaction through the first regenerator bed, the first regenerative heat The bed absorbs the heat of the volatile organic waste gas after the combustion reaction, and is discharged to the atmosphere through the blower; and the burned part of the high-temperature organic waste gas is heat exchanged to the tube bundle heat exchanger due to the chimney effect to provide heat energy. By. [2] The regenerative combustion furnace heat energy recovery method according to claim 1, wherein the first regenerator bed and the second storage bed are one of a honeycomb type, a saddle shape, and a cylindrical heat storage material. composition. 3. The regenerative combustion furnace heat energy recovery method according to claim 1, wherein the combustion chamber has a structural type of a direct combustion type combustion furnace, a catalytic type combustion furnace, an oxidation furnace, and a reaction furnace. A composition. 4. The regenerative combustion furnace thermal energy recovery method of claim 1, wherein the combustion chamber includes a fuel nozzle to provide thermal energy to the combustion chamber. 5. The regenerative combustion furnace heat energy recovery method according to claim 1, wherein the combustion chamber includes an electric heater to provide the combustion chamber thermal energy. 6. The regenerative combustion furnace thermal energy recovery method of claim 1, wherein the combustion chamber includes a plasma generator to provide the combustion chamber thermal energy. 7. The regenerative combustion furnace heat energy recovery method according to claim 1, wherein the volatile organic waste gas after the reaction enters the tube bundle heat due to the wind speed moving force originally generated by the organic waste gas. Switch. 8. The thermal energy recovery method of the thermal combustion furnace according to the first aspect of the patent application, wherein the 15 1293359 official beam hot parent transformation includes: a, a structure for high temperature volatile organic The exhaust gas enters and exits; b. a heat exchange tube bundle pipeline through which the inside of the tube bundle heat exchanger can communicate with the outside; and c, a flowing heat conduction medium filled in the heat exchange tube bundle pipeline to be absorbed The heat of the volatile organic waste gas combusted by the combustion chamber to perform a heat exchange operation, wherein the temperature of the heat transfer medium is lower than the temperature of the volatile organic waste gas after the reaction. 9. A Regenerative Thermal Oxidizer (RT0) structure, comprising: at least two regenerator beds, wherein the two regenerator beds are respectively provided with a pipeline for volatile organic compounds in a first regenerator bed and a second regenerator bed; Volatile organic compounds (VOCs) enter and exit, the first regenerator bed is in communication with the top of the second regenerator bed; a combustion chamber is located in a space in which the first regenerator bed communicates with the top of the second regenerator bed, and can be circulated The volatile organic waste gas in the heat storage bed is heated; the tube bundles heat exchanger is horizontally disposed on the two heat storage beds, and the hot gas inlet and outlet ports of the tube bundle heat exchanger are connected in parallel to the combustion chamber The two ends of the heat transfer medium exchange heat with the burned high temperature organic waste gas; a nozzle is located in the combustion chamber to provide energy for burning the organic waste gas; the intake valve is connected to the first regenerator bed and The second regenerator bed is connected to the inlet to allow the volatile organic waste gas to be placed for reaction; and a blower is connected to the first regenerator bed and the second storage Is connected to the bed outlet, the reaction has been completed the temperature of the organic reducing exhaust emission into the air. 10. The structure of a regenerative combustion furnace according to claim 9, wherein the second storage device is 93359 _ I ' (the structure of the regenerative combustion furnace according to item 9 of the yue yue rail circumference, wherein The structure of a regenerative combustion furnace according to the ninth item of the direct combustion type combustion furnace, the catalytic combustion furnace, the oxidation furnace and the reaction furnace, which is composed of the combustion furnace, and the structure of the regenerative combustion bed of the towel士 ▲ ▲ ▲ 接 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动 电动The invention relates to a regenerative combustion furnace structure according to the invention of claim 9, wherein the volatile organic waste gas after the reaction is produced by initially introducing organic waste gas. The regenerative burner structure according to claim 9, wherein the tube bundle heat exchanger further comprises: (4) a structure for high temperature Volatile organic waste (b) a heat exchange tube bundle line through which the inside of the tube bundle heat exchanger can communicate with the outside, and (C) a Ll moving heat transfer medium filled in the heat exchange tube bundle line to be absorbed The heat of the volatile organic waste gas is burned to perform a heat exchange operation, wherein the temperature of the heat transfer medium is lower than the temperature of the volatile organic waste gas after the reaction. 1293359 七、指定代表圖: (一) 、本案代表圖為:第二圖 (二) 、本案代表圖之元件代表符號簡單說明: 100 蓄熱式燃燒爐 110 第一蓄熱床 120 第二蓄熱床 130 燃燒室 140 燃料喷嘴 150 火焰 160 熱氣管線通道 170 熱氣管線通道 200 有機廢氣 210 第一流向調節閥 220 第二流向調節閥 230 第三流向調節閥 240 第四流向調節閥 250 第五流向調節閥 260 進風門 270 送風機 300 管束式熱交換器 310 熱交換管束管路 320 熱傳導介質 330 第六流量調節閥 340 結構體 280 製程風機 350 大氣環境 八、本案若有化學式時,請揭示最能顯示發明特徵的化學式:1293359 VII. Designated representative map: (1) The representative figure of this case is: the second figure (2), the representative symbol of the representative figure in this case is a simple description: 100 regenerative combustion furnace 110 first regenerator bed 120 second regenerator bed 130 burning Chamber 140 Fuel Nozzle 150 Flame 160 Hot Gas Line Channel 170 Hot Gas Line Channel 200 Organic Exhaust Gas 210 First Flow Regulating Valve 220 Second Flow Regulating Valve 230 Third Flow Regulating Valve 240 Fourth Flow Regulating Valve 250 Fifth Flow Regulating Valve 260 Inlet 270 blower 300 tube bundle heat exchanger 310 heat exchange tube bundle pipeline 320 heat transfer medium 330 sixth flow regulator valve 340 structure 280 process fan 350 atmospheric environment 8. If there is a chemical formula in this case, please reveal the chemical formula that best shows the characteristics of the invention:
TW092108224A 2003-04-10 2003-04-10 Heat recovery method for regenerative thermal oxidizer TWI293359B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW092108224A TWI293359B (en) 2003-04-10 2003-04-10 Heat recovery method for regenerative thermal oxidizer
KR1020040001255A KR20040089460A (en) 2003-04-10 2004-01-08 Heat recovery method for regenerative thermal oxidizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW092108224A TWI293359B (en) 2003-04-10 2003-04-10 Heat recovery method for regenerative thermal oxidizer

Publications (2)

Publication Number Publication Date
TW200420857A TW200420857A (en) 2004-10-16
TWI293359B true TWI293359B (en) 2008-02-11

Family

ID=37370951

Family Applications (1)

Application Number Title Priority Date Filing Date
TW092108224A TWI293359B (en) 2003-04-10 2003-04-10 Heat recovery method for regenerative thermal oxidizer

Country Status (2)

Country Link
KR (1) KR20040089460A (en)
TW (1) TWI293359B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417489B (en) * 2009-10-23 2013-12-01 Ihi Corp Combustion equipment for heat storage burner and combustion method
TWI547674B (en) * 2012-11-01 2016-09-01 bao-ming Li Heat supply system for heat supply systems

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100709749B1 (en) * 2006-11-21 2007-04-24 주식회사세진환경 Hot blast producing system using waste heat of regenerative thermal oxidizer
KR100734918B1 (en) * 2006-11-21 2007-07-03 주식회사세진환경 Steam producing system using waste heat of regenerative thermal oxidizer
KR101476270B1 (en) * 2013-05-13 2014-12-24 주식회사 엔바이온 Regenerative Thermal Oxidizer
KR101580235B1 (en) * 2014-04-03 2015-12-24 주식회사 애니텍 Toluen combustion decomposition system for removing toluen
CN108317526A (en) * 2017-01-17 2018-07-24 恩国环保科技(上海)有限公司 A kind of organic waste gas treatment device
CN108317525A (en) * 2017-01-17 2018-07-24 恩国环保科技(上海)有限公司 A kind of pharmaceutical technology emission-control equipment and processing method
CN108317524A (en) * 2017-01-17 2018-07-24 恩国环保科技(上海)有限公司 A kind of the heat accumulating type incineration device and its application process of oxidation furnace exhaust
CN109364697A (en) * 2018-12-03 2019-02-22 河北格源环保科技有限公司 The system of the processing of methanol production VOCs
KR20220099051A (en) 2021-01-05 2022-07-12 대우조선해양 주식회사 System for prevention of heat loss through air jacket
CN114484476A (en) * 2022-03-02 2022-05-13 山西亚乐士环保技术股份有限公司 Heat accumulating type flameless thermal oxidation device and method
CN116078102A (en) * 2022-12-26 2023-05-09 中国重型机械研究院股份公司 VOCs efficient combined treatment system and method
CN116557882B (en) * 2023-05-30 2023-11-17 江苏宏源中孚防水材料有限公司 Organic waste gas RTO heat accumulation oxidation treatment device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI417489B (en) * 2009-10-23 2013-12-01 Ihi Corp Combustion equipment for heat storage burner and combustion method
TWI547674B (en) * 2012-11-01 2016-09-01 bao-ming Li Heat supply system for heat supply systems

Also Published As

Publication number Publication date
KR20040089460A (en) 2004-10-21
TW200420857A (en) 2004-10-16

Similar Documents

Publication Publication Date Title
TWI293359B (en) Heat recovery method for regenerative thermal oxidizer
JP7332571B2 (en) Carbon dioxide reduction system and carbon dioxide reduction method
JP3112831U (en) Thermal storage exhaust gas combustion system
CN208108077U (en) A kind of gas combustion apparatus of near zero pollutant discharge
US6832480B1 (en) Power generation system utilizing oxidized gases from waste combustion
ES2607695T3 (en) Kettle and integrated air pollution control systems
JP2004516446A (en) Oxygen separation combustion apparatus and method
JP2011523012A (en) Method and apparatus for generating power by oxyfuel combustion
KR100526232B1 (en) Gas Separation Process Using Ceramic Membrane and Regenerators
TW201027008A (en) Temperature-control device in the processing system of volatile organic exhaust gas, and method thereof
KR101135642B1 (en) Reburning apparatus including oxygen separation module
CN206469272U (en) A kind of heat accumulating type incineration device for aoxidizing furnace exhaust
CN112344353A (en) Organic waste gas concentration heat-storage combustion backflow system and method thereof
CN206176412U (en) Energy -saving organic waste gas waste heat utilization equipment
CN206478659U (en) Tail gas burning facility and tail gas burning furnace
CN109668157A (en) Waste gas catalytic incineration processing system and its adjustment control method
CN206176411U (en) Energy -saving organic waste gas processing apparatus
KR100534543B1 (en) Oxygen enrichment system using temperature swing adsorption with combustion waste heat
CN201779983U (en) Heat accumulating-type combustion reformed heating furnace
CN108706547A (en) One kind is with H2S and the device and method that petroleum coke is raw materials recovery sulphur
CN107344069A (en) A kind of organic waste gas treatment device
CN110131725B (en) Heating method, heating device and flue gas treatment method thereof
CN217329823U (en) Heat accumulating type flameless thermal oxidation device
JP3774288B2 (en) Supply air preheating device and supply air preheating method
CN217795369U (en) Organic waste gas pollution-reducing carbon-reducing treatment equipment

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees