WO2011048958A1 - 液圧モータ駆動装置 - Google Patents

液圧モータ駆動装置 Download PDF

Info

Publication number
WO2011048958A1
WO2011048958A1 PCT/JP2010/067654 JP2010067654W WO2011048958A1 WO 2011048958 A1 WO2011048958 A1 WO 2011048958A1 JP 2010067654 W JP2010067654 W JP 2010067654W WO 2011048958 A1 WO2011048958 A1 WO 2011048958A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
hydraulic motor
hydraulic
pressure chamber
capacity switching
Prior art date
Application number
PCT/JP2010/067654
Other languages
English (en)
French (fr)
Inventor
森 聡
Original Assignee
カヤバ工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by カヤバ工業株式会社 filed Critical カヤバ工業株式会社
Priority to DE112010004561.5T priority Critical patent/DE112010004561B4/de
Priority to US13/255,493 priority patent/US8776666B2/en
Priority to CN201080016163.9A priority patent/CN102388217B/zh
Publication of WO2011048958A1 publication Critical patent/WO2011048958A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/04Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinders in star or fan arrangement
    • F03C1/0447Controlling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0697Control responsive to the speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/061Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders
    • F03C1/0615Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis having stationary cylinders distributing members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0681Control using a valve in a system with several motor chambers, wherein the flow path through the chambers can be changed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0684Control using a by-pass valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C1/00Reciprocating-piston liquid engines
    • F03C1/02Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders
    • F03C1/06Reciprocating-piston liquid engines with multiple-cylinders, characterised by the number or arrangement of cylinders with cylinder axes generally coaxial with, or parallel or inclined to, main shaft axis
    • F03C1/0678Control
    • F03C1/0686Control by changing the inclination of the swash plate

Definitions

  • the present invention relates to a hydraulic motor driving device including a motor capacity switching actuator.
  • JP08-21904A issued by the Japan Patent Office in 1996, proposes a drive device for a swash plate type hydraulic motor used for driving power of a hydraulic excavator.
  • this driving device includes a motor capacity switching actuator 93 that switches the tilt angle of the swash plate of the hydraulic motor 91, and a motor capacity switching valve 95 that switches the working fluid pressure that drives the motor capacity switching actuator 93. I have.
  • the motor capacity switching valve 95 supplies the pressurized hydraulic fluid from the high pressure port 94B to the motor capacity switching actuator 93 at the high speed position X.
  • the motor capacity switching actuator 93 is extended and driven by the pressurized hydraulic fluid, and reduces the tilt angle of the swash plate 92 of the hydraulic motor 91. As a result, the rotational speed of the hydraulic motor 91 increases.
  • the motor capacity switching valve 95 When the hydraulic motor 91 is decelerated, the motor capacity switching valve 95 is switched from the high speed position X to the low speed position Y. In the low speed position Y, the tank port 94C communicates with the motor capacity switching actuator 93. The motor capacity switching actuator 93 is contracted while discharging the hydraulic fluid to the tank 100 by the reaction force from the swash plate 92. As a result, the tilt angle of the swash plate 92 of the hydraulic motor 91 increases, and the rotational speed of the hydraulic motor 91 decreases.
  • a flow rate control valve 98 including a fixed orifice 96 and a pressure reducing valve 97 is provided between the motor capacity switching valve 95 and the tank port 94C.
  • the flow rate control valve 98 keeps the flow rate of the hydraulic fluid flowing out from the motor capacity switching actuator 93 to the tank 100 through the tank port 94C when the hydraulic motor 91 is decelerated substantially constant.
  • the contraction operation speed of the motor capacity switching actuator 93 is kept constant, so that an impact caused by the deceleration of the hydraulic motor 91 is reduced.
  • the flow control valve 98 is provided between the motor capacity switching valve 95 and the tank port 94C. If the upstream side of the flow control valve 98 becomes a high pressure when the hydraulic motor 91 is decelerated, a part of the hydraulic fluid leaks into the drain through the gap of the motor capacity switching valve 95. This leakage of the working fluid increases the contraction speed of the motor capacity switching actuator 93 and may hinder the relaxation of the impact caused by the deceleration of the hydraulic motor 91.
  • an object of the present invention is to provide a hydraulic motor driving apparatus capable of sufficiently mitigating an impact generated when the hydraulic motor is decelerated.
  • the present invention includes a motor capacity switching actuator in a hydraulic motor driving apparatus that changes the capacity of a hydraulic motor using hydraulic fluid.
  • the motor capacity switching actuator includes a drive pressure chamber that changes the capacity of the hydraulic motor in accordance with the supply and discharge of the hydraulic fluid.
  • the hydraulic motor driving device includes a motor capacity switching valve that switches between a supply position for supplying hydraulic fluid to the driving pressure chamber and a discharge position for discharging hydraulic fluid in the driving pressure chamber, and between the driving pressure chamber and the motor capacity switching valve. And a flow rate control valve that adjusts the flow rate of the hydraulic fluid discharged from the drive pressure chamber.
  • FIG. 1 is a hydraulic circuit diagram of a hydraulic motor driving apparatus according to the present invention.
  • FIG. 2 is a longitudinal sectional view of a hydraulic motor to which the hydraulic motor driving apparatus according to the present invention is applied.
  • FIG. 3A is a longitudinal sectional view of a main part of the flow control valve in the fully open position according to the present invention.
  • FIG. 3B is a longitudinal sectional view of an essential part of the flow control valve at the intermediate position.
  • FIG. 3C is a longitudinal sectional view of a main part of the flow control valve at the shut-off position.
  • FIG. 4 is FIG. FIG. 4 is a longitudinal sectional view of a flow control valve and a counter balance valve according to the present invention taken along line IV-IV in FIG.
  • FIG. 5 is FIG. FIG. 2 shows a second embodiment of the invention similar to FIG.
  • FIG. 6 is a longitudinal sectional view of a hydraulic motor to which a hydraulic motor driving apparatus according to a second embodiment of the present invention is applied.
  • FIG. 7 is a longitudinal sectional view of an essential part of a flow control valve according to a second embodiment of the present invention.
  • FIG. 8 is a hydraulic circuit diagram of a conventional hydraulic motor driving apparatus.
  • FIG. 1 a swash plate type variable displacement hydraulic motor 1 mounted on a hydraulic excavator as a driving power source is operated by hydraulic pressure selectively supplied to ports P1 and P2 formed in the hydraulic motor driving device. . It is also possible to use aqueous solution instead of hydraulic oil
  • the hydraulic motor drive device includes a main passage 11 connecting the motor port M1 and the port P1 of the hydraulic motor 1, and a main passage 12 connecting the motor port M2 of the hydraulic motor 1 and the port P2.
  • the hydraulic motor 1 rotates in the forward direction by hydraulic fluid supplied from the port P1 to the motor port M1 via the main passage 11, and advances the hydraulic excavator via the traveling device. Further, the hydraulic excavator is rotated in the reverse direction by the hydraulic oil wheel supplied from the port P2 to the motor port M2 via the main passage 12, and the hydraulic excavator is moved backward via the traveling device.
  • a counter balance valve 2 is interposed in the main passages 11 and 12.
  • the counter balance valve 2 responds to the pressure balance of the pilot pressure guided from the ports P1 and P2 via the pilot passages 5 and 6, respectively.
  • pressurized hydraulic fluid is supplied to the port P1.
  • the counter balance valve 2 is maintained at the forward rotation position A when the pressurized hydraulic fluid is guided to the pilot passage 5.
  • pressurized hydraulic oil is supplied to the port P2.
  • the counter balance valve 2 is maintained at the reverse rotation position B when the pressurized hydraulic fluid is guided to the pilot passage 6.
  • the ports P1 and P2 are both at a low pressure.
  • the pilot pressure introduced from the ports P1 and P2 through the pilot passages 5 and 6 is low, the counter balance valve 2 is switched to the stop position C, and the main passages 11 and 12 are closed.
  • a fixed orifice 16 is interposed in each of the pilot passages 5 and 6.
  • the fixed orifice 16 provides resistance to the flow of hydraulic oil that flows out to the drain through the pilot passage 5 or the pilot passage 6.
  • the resistance exerted on the outflow hydraulic oil by the fixed orifice 16 reduces the switching speed of the counter balance valve 2 and gently stops the hydraulic motor 1 from the normal rotation state or the reverse rotation state.
  • the variable displacement hydraulic motor 1 includes a swash plate 32 and a pair of motor capacity switching actuators 10 for changing a tilt angle of the swash plate 32, that is, a pump capacity.
  • Each motor capacity switching actuator 10 changes the displacement of the piston of the hydraulic motor 1 in two stages by changing the tilt angle of the swash plate 32. As a result, the rotation speed of the hydraulic motor 1 changes between a low speed and a high speed.
  • the hydraulic oil is supplied to each motor capacity switching actuator 10 via a motor capacity switching valve 20.
  • the motor capacity switching valve 20 communicates with a branch path 21 branched from the main path 11, a branch path 22 branched from the main path 12, a drain path 23 communicating with the tank port T1, and a pair of motor capacity switching actuators 10.
  • a pair of actuator passages 24 are connected.
  • the motor capacity switching valve 20 switches between two positions of the high speed position H and the low speed position L in response to the pilot pressure of the pilot port PS.
  • the pilot pressure of the pilot port PS urges the motor capacity switching valve 20 toward the high speed position H.
  • the motor capacity switching valve 20 is biased toward the low speed position L by the spring 41.
  • the motor capacity switching valve 20 When the pilot pressure at the pilot port PS is low, the motor capacity switching valve 20 is held at the low speed position L by the biasing force of the spring 41. In the low speed position L, the motor capacity switching valve 20 connects each of the pair of actuator passages 24 to the drain passage 23. When the pair of actuator passages 24 are connected to the drain passage 23, the motor capacity switching actuator 10 that supports the swash plate 32 is held in the contracted position by the reaction force received from the swash plate 32. As a result, the swash plate 32 maintains a large tilt angle, and the hydraulic motor 1 rotates at a low speed.
  • the motor capacity switching valve 20 When the pilot pressure of the pilot port PS is high, the motor capacity switching valve 20 is held at the high speed position H against the urging force of the spring 41.
  • the motor capacity switching valve 20 connects the pair of actuator passages 24 to the branch passages 21 and 22 at the high speed side position H.
  • One of the motor capacity switching actuators 10 is extended and driven by the pressurized hydraulic fluid supplied from the branch passage 21 or the branch passage 22 via the actuator passage 24.
  • the swash plate 32 has a small tilt angle, and the hydraulic motor 1 rotates at high speed.
  • the motor capacity switching valve 20 switches between the low speed position L and the high speed position H according to the change in the pilot pressure of the pilot port PS.
  • the high speed position H corresponds to a supply position for supplying hydraulic oil to the motor capacity switching actuator 10
  • the low speed position corresponds to a discharge position for discharging hydraulic oil from the motor capacity switching actuator 10.
  • the hydraulic motor drive device includes a flow control valve 15 in each actuator passage 24 to prevent a deceleration shock.
  • the flow control valve 15 moderates a decrease in the rotational speed of the hydraulic motor 1 by suppressing the flow rate of the hydraulic fluid flowing out from the corresponding motor capacity switching actuator 10 to a certain level or less.
  • FIG. 1 The configuration of the hydraulic motor 1 will be described with reference to FIG.
  • the hydraulic motor 1 includes an internal space defined by the motor casing 30 and the port block 40.
  • the cylinder block 31 and the swash plate 32 are accommodated in the internal space.
  • the cylinder block 31 is fixed to the outer periphery of the rotating shaft 36 supported by the motor casing 30 and the port block 40.
  • a plurality of cylinders 34 parallel to the rotation shaft 36 are formed in the cylinder block 31 at equal angular intervals in the circumferential direction.
  • a piston 33 is accommodated in each cylinder 34. The piston 33 is held in contact with the swash plate 32 via a shoe.
  • Each cylinder 34 has a FIG. Pressurized hydraulic oil is supplied from one main passage 11 or 12.
  • the pressurized hydraulic fluid supplied to the cylinder 34 drives the piston 33 to extend and contract in the axial direction with respect to the cylinder 34.
  • the cylinder block 31 is rotationally driven by the plurality of pistons 33 held in contact with and held by the swash plate 32 sequentially expanding and contracting at predetermined rotational angle positions.
  • the rotating shaft 36 rotates integrally with the cylinder block 31 and outputs rotational torque as traveling power for the hydraulic excavator.
  • the swash plate 32 is tiltably supported by the motor casing 30 via a pair of ball bearings.
  • the swash plate 32 is driven by the pair of motor capacity switching actuators 10 to change the tilt angle.
  • the swash plate 32 is switched between two positions, a maximum tilt angle corresponding to the low speed position and a minimum tilt angle corresponding to the high speed position.
  • the figure represents the swash plate 32 with the maximum tilt angle.
  • the motor capacity switching actuator 10 includes a bottomed cylindrical driving piston 70.
  • the drive piston 70 is slidably accommodated in a cylinder 71 formed in the motor casing 30.
  • a drive pressure chamber 72 is defined between the cylinder 71 and the drive piston 70.
  • the actuator passage 24 is connected to the driving pressure chamber 72.
  • the driving pressure chamber 72 is provided with a spring 73 in a compressed state that urges the swash plate 32 in the direction of decreasing the tilt angle via the driving piston 70.
  • the drive piston 70 is always pressed against the back surface of the swash plate 32 by the repulsive force of the spring 73.
  • FIG. 1 The pressurized hydraulic fluid guided from the one branch passages 21 and 22 is guided to the driving pressure chamber 72 through the actuator passage 24.
  • the drive piston 70 protrudes from the cylinder 71 by the hydraulic oil pressure in the drive pressure chamber 72 and presses the back surface of the swash plate 32 toward the high speed position together with the repulsive force of the spring 73.
  • the pressing force exerted by each piston 33 on the swash plate 32 urges the swash plate 32 to the low speed position. In this way, the swash plate 32 is displaced between the high speed position and the low speed position in accordance with the hydraulic oil pressure in the drive pressure chamber 72.
  • FIG. 4 Referring to FIG. 4, the counter balance valve 2, the motor capacity switching valve 20, and the pair of flow control valves 15 are housed in an integrated port block 40.
  • the counter balance valve 2 is interposed between the ports P1 and P2 formed in the port block 40 and the main passages 11 and 12.
  • the branch passage 21 branches from the main passage 11 and the branch passage 22 branches from the main passage 12.
  • the motor capacity switching valve 20 is provided between the branch passages 21 and 22 and a pair of actuator passages 24 formed in the port block 40.
  • the flow control valve 15 is provided in the middle of each actuator passage 24.
  • the counter balance valve 2 includes a spool 50 that is slidably mounted in a valve hole 48 formed in the port block 40. Pilot pressure chambers 43 and 44 are formed in the port block 40 facing both ends of the spool 50.
  • the pressure at the port P 1 or the port P 2 on the high pressure side is guided to the pilot pressure chamber 43 or the pilot pressure chamber 44 via the pilot passage 5 or the pilot passage 6.
  • the spool 50 is displaced from the stop position C to the operation position A or the operation position B in response to the pilot pressure introduced to the pilot pressure chamber 43 or the pilot pressure chamber 44.
  • the port P1 and the main passage 11 communicate with each other
  • the port P2 and the main passage 12 communicate with each other.
  • a fixed orifice 16 is interposed in each of the pilot passage 5 and the pilot passage 6.
  • a spring 3 for urging the spool 50 toward the stop position C is accommodated in the pilot pressure chamber 43.
  • a spring 4 for urging the spool 50 toward the stop position C is accommodated in the pilot pressure chamber 44.
  • the spool 50 is held at the stop position C shown in the drawing in a state where the pilot pressure does not act by the biasing force of the springs 3 and 4. In the stop position C, hydraulic oil outflow from the main passages 11 and 12 is blocked.
  • Check valves 53 and 54 forming a part of the counter balance valve 2 are accommodated in the spool 50. Even when the spool 50 is positioned at the stop position C, the check valve 53 allows the flow of hydraulic fluid from the port P1 toward the motor port M1, while blocking the reverse flow. Even when the spool 50 is located at the stop position C, the check valve 54 allows the flow of hydraulic fluid from the port P2 toward the motor port M2, but blocks the reverse flow.
  • the motor capacity switching valve 20 includes a motor capacity switching spool 60 slidably received in a valve hole 49 formed in the port block 40.
  • a motor capacity switching pilot pressure chamber 67 is defined in the valve hole 49 facing one end of the motor capacity switching spool 60.
  • the other end of the motor capacity switching spool 60 is elastically supported by the spring 41.
  • the spring 41 biases the motor capacity switching spool 60 toward the low speed position L.
  • the motor capacity switching valve 20 is
  • the motor capacity switching spool 60 When the pilot pressure guided from the pilot port PS to the motor capacity switching pilot pressure chamber 67 increases, the motor capacity switching spool 60 is displaced to the right in the figure against the spring 41, and the motor capacity switching valve 20 is moved from the low speed side position L. It is switched to the high speed side position H.
  • the branch passage 21 and one actuator passage 24 communicate with each other through an annular groove formed on the outer periphery of the motor capacity switching spool 60. Further, the branch passage 22 and the other actuator passage 24 communicate with each other through another similar annular groove.
  • the motor capacity switching actuator 10 to which the pressurized hydraulic oil is supplied extends to reduce the tilt angle of the swash plate 32 and increase the rotational speed of the hydraulic motor 1.
  • each motor capacity switching actuator 10 flows out from the actuator passage 24 to the drain passage 23.
  • Each motor capacity switching actuator 10 contracts to increase the tilt angle of the swash plate 32 and decrease the rotational speed of the hydraulic motor 1.
  • the flow control valve 15 interposed in the actuator passage 24 includes a flow control spool 63 slidably inserted in a valve hole 42 formed in the port block 40.
  • a portion of the actuator passage 24 between the flow control valve 15 and the motor capacity switching actuator 10 is referred to as a passage 24A, and a portion between the flow control valve 15 and the motor capacity switching valve 20 is referred to as a passage 24B.
  • the flow rate control spool 63 is formed in a cylindrical shape including a cylindrical wall 63A and a bottom 63B formed at one end of the cylindrical wall 63A.
  • a metering orifice 61, a through hole 62, and an annular groove 64 are formed in the flow control spool 63.
  • the metering orifice 61 passes through the center of the bottom 63B of the flow control spool 63, and always communicates the passage 24A and the inside of the flow control spool 63 with a small flow cross-sectional area.
  • the flow control spool 63 is urged by the spring 65 to the right in the drawing, that is, toward the passage 24A.
  • the annular groove 64 is formed on the outer periphery of the cylindrical wall 63 ⁇ / b> A of the flow control spool 63.
  • the through hole 62 passes through the cylindrical wall 63 ⁇ / b> A and communicates the inside of the flow control spool 63 with the annular groove 64.
  • the pressure of the passage 24 ⁇ / b> A acts on the bottom 63 ⁇ / b> B of the flow control spool 63 around the metering orifice 61.
  • the pressure inside the flow control spool 63 and the elastic support force of the spring 65 act on the flow control spool 63 in the opposite direction to this pressure.
  • the flow control spool 63 slides in the valve hole 42 in accordance with the pressure difference between the passage 24B and the passage 24A, in other words, the pressure loss of the metering orifice 61.
  • FIG. 3A when the pressure in the passage 24A is low, the flow control spool 63 is located on the rightmost side in the figure.
  • the flow control spool 63 When the flow control spool 63 is in this position, for example, hydraulic oil can flow between the passage 24A and the passage 24B via the metering orifice 61, the through hole 62, and the annular groove 64 as shown by the arrows in the figure. .
  • This position of the flow control spool 63 is referred to as a fully open position of the flow control valve 15.
  • the flow resistance of the flow control valve 15 at the fully open position is generated at the metering orifice 61.
  • FIG. 3C when the pressure in the passage 24A is high, the flow control spool 63 is located at the leftmost position in the drawing against the spring 65. When the flow control spool 63 is in this position, the communication between the annular groove 64 and the passage 24B is blocked. As a result, the flow of hydraulic oil in the actuator passage 24 is blocked. This position is referred to as a blocking position.
  • FIG. 3B when the flow control spool 63 is located between the fully open position and the shut-off position, hydraulic oil with a limited flow rate can flow between the passage 24A and the passage 24B.
  • the flow resistance of the flow rate control valve 15 at this position is generated depending on the flow cross-sectional area of the hydraulic oil between the annular groove 64 and the passage 24B.
  • the flow cross-sectional area of the annular groove 64 and the passage 24B decreases as the pressure in the passage 24A increases. Further, the hydraulic oil pressure inside the flow rate control spool 63 increases due to the pressure increase in the passage 24B, so that the flow sectional area of the annular groove 64 and the passage 24B increases.
  • the motor capacity switching valve 20 When the motor capacity switching valve 20 is in the H position, the pressure in the passage 24B is high, and the flow control valve 15 is in the fully open position. In this case, pressurized hydraulic fluid is supplied from the branch passage 21 or 22 to the motor capacity switching actuator 10 through the passage 24B, the annular groove 64, the through hole 62, the metering orifice 61, and the passage 24A, and the motor capacity switching.
  • the actuator 10 extends to reduce the tilt angle of the swash plate 32.
  • hydraulic fluid flows from the passage 24A to the passage 24B through the metering orifice 61, the through hole 62, and the annular groove 64, and the circulation between the annular groove 64 and the passage 24B.
  • a flow resistance corresponding to the cross-sectional area is generated. Since the flow cross-sectional area is reduced as the pressure in the passage 24A increases, the flow rate of the hydraulic oil flowing out from the motor capacity switching actuator 10 to the drain passage 23 via the actuator passage 24 is suppressed to a certain level or less.
  • the flow rate control valve 15 keeps the flow rate of the working fluid flowing out from the motor capacity switching actuator 10 through the actuator path 24 to the drain path 23 below, so that the swash plate 32 is tilted by the motor capacity switching actuator 10.
  • the increasing speed of the rolling angle is suppressed to a certain value or less. Therefore, it is possible to prevent the occurrence of an impact when the hydraulic motor 1 is decelerated.
  • the motor capacity switching valve 20 is related to the flow of the hydraulic fluid flowing out from the motor capacity switching actuator 10. Located downstream of. A part of the hydraulic fluid flowing out from the motor capacity switching actuator 10 may leak to the drain from the gap between the motor capacity switching spool 60 of the motor capacity switching valve 20 and the valve hole 49. However, the leakage of hydraulic oil in the motor capacity switching valve 20 does not affect the contraction speed of the motor capacity switching actuator 10. Therefore, the flow control valve 15 can sufficiently mitigate the impact when the hydraulic motor 1 is decelerated.
  • the flow control valve 15 Since the flow control valve 15 has a structure in which the flow cross-sectional area of the hydraulic oil is reduced as the pressure in the passage 24A is higher, the maximum value of the flow cross-sectional area can be set larger than that of the fixed orifice. Therefore, it is difficult to be influenced by contamination of the hydraulic oil, and preferable characteristics can be maintained for a long time.
  • FIG. A second embodiment of the present invention will be described with reference to 5-7.
  • FIG. 5 and 6 in the hydraulic motor driving apparatus according to this embodiment, the flow control valve 15 is built in the motor capacity switching actuator 10.
  • the flow control spool 63 of the flow control valve 15 is freely slidably received in the valve hole 82 formed in the drive piston 70 of the motor capacity switching actuator 10.
  • the flow rate control spool 63 is formed in a cylindrical shape composed of a cylindrical wall 63A and a bottom portion 63B, as in the first embodiment.
  • a metering orifice 61, a through hole 62, and an annular groove 64 are formed in the flow rate control spool 63 as in the first embodiment.
  • the flow control spool 63 is elastically supported toward the driving pressure chamber 72 by a spring 65 supported by the driving piston 70.
  • a stopper 77 that restricts the displacement of the flow control spool 63 in the direction of the driving pressure chamber 72 is fixed to the valve hole 82.
  • a port 75 is formed in the drive piston 70 at a position overlapping the annular groove 64.
  • an actuator passage 24 that is always in communication with the port 75 is formed regardless of the sliding position of the drive piston 70.
  • the flow control spool 63 slides in the valve hole 82 in accordance with the pressure difference between the driving pressure chamber 72 and the port 75, in other words, the pressure loss of the metering orifice 61.
  • the flow cross-sectional area between the annular groove 64 and the port 75 changes according to the sliding position of the flow control spool 63 in the valve hole 82. That is, the flow cross-sectional area between the annular groove 64 and the port 75 is maximized at the position shown in the figure where the flow control spool 63 contacts the stopper 77. From this position, the flow cross-sectional area between the annular groove 64 and the port 75 decreases as the flow control spool 63 slides in the drive piston 70 in the axial direction in the direction in which the spring 65 is compressed.
  • the drive piston 70 of the motor capacity switching actuator 10 When the drive piston 70 of the motor capacity switching actuator 10 receives a reaction force of the swash plate 32 and is displaced in a direction that increases the tilt angle, that is, a direction that decreases the rotational speed of the hydraulic motor 1, the drive pressure chamber 72 contracts, The hydraulic fluid flows from the driving pressure chamber 72 into the drain passage 23 through the actuator passage 24 and the motor capacity switching valve 20 at the low speed position L.
  • the flow control spool 63 As the hydraulic oil pressure in the drive pressure chamber 72 increases, the flow control spool 63 is displaced in the direction in which the spring 65 is compressed. As a result, the flow cross-sectional area between the annular groove 64 and the port 75 is reduced. Since the flow cross-sectional area is reduced as the pressure in the drive pressure chamber 72 increases, the flow rate of the hydraulic oil flowing out from the motor capacity switching actuator 10 to the drain passage 23 via the actuator passage 24 is suppressed to a certain level or less. The increasing speed of the tilt angle is suppressed below a certain level.
  • the impact during deceleration of the hydraulic motor 1 can be sufficiently mitigated without being affected by the leakage of hydraulic oil in the motor capacity switching valve 20 as in the first embodiment.
  • the flow control valve 15 and the motor capacity switching actuator 10 can be unitized, and the number of components constituting the hydraulic motor driving device is reduced. be able to.
  • the hydraulic motor driving apparatus using hydraulic oil has been described.
  • the present invention can be applied to a hydraulic motor driving apparatus using various hydraulic fluids other than hydraulic oil.
  • the hydraulic motor driving apparatus is directed to the swash plate type hydraulic motor 1, but the present invention is applicable to any type of hydraulic motor driving apparatus whose capacity can be changed using an actuator. .
  • the hydraulic motor driving apparatus is directed to the bidirectionally rotating hydraulic motor 1 and includes a pair of motor capacity switching actuators 10 that operate according to the rotation direction of the hydraulic motor 1.
  • the present invention can also be applied to a unidirectionally rotating hydraulic motor driving device, in which case the hydraulic motor driving device includes one motor capacity switching actuator 10 and a flow control valve 15. Just do it.
  • the present invention brings about a preferable effect for mitigating the impact at the time of deceleration of a hydraulic motor for traveling power of construction machines such as a hydraulic excavator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Hydraulic Motors (AREA)

Abstract

 モータ容量切換アクチュエータ10は駆動圧室72への作動液の出入りに応じて油圧モータ1の容量を変化させる。モータ容量切換弁20は供給ポジションHにおいて駆動圧室72に作動液を供給し、排出ポジションLにおいて駆動圧室72から作動液を排出する。駆動圧室72とモータ容量切換弁20の間に流量制御弁15を介在させることで、モータ容量切換弁20内の作動液のリークに影響されずに、油圧モータ1の減速時に生じる衝撃を緩和することができる。

Description

液圧モータ駆動装置
この発明は、モータ容量切換アクチュエータを備えた、液圧モータの駆動装置に関する。
日本国特許庁が1996年に発行したJP08-219004Aは、液圧ショベルの走行用動力に用いる斜板式液圧モータの駆動装置を提案している。
FIG.8を参照すると、この駆動装置は、液圧モータ91の斜板の傾転角度を切換えるモータ容量切換アクチュエータ93と、モータ容量切換アクチュエータ93を駆動する作動液圧力を切り換えるモータ容量切換弁95とを備えている。
モータ容量切換弁95は高速ポジションXにおいて、高圧ポート94Bの加圧作動液をモータ容量切換アクチュエータ93に供給する。モータ容量切換アクチュエータ93は加圧作動液により伸張駆動し、液圧モータ91の斜板92の傾転角を減少させる。その結果、液圧モータ91の回転速度が上昇する。
液圧モータ91を減速する際は、モータ容量切換弁95が高速ポジションXから低速ポジションYに切り換えられる。低速ポジションYにおいては、タンクポート94Cがモータ容量切換アクチュエータ93に連通する。モータ容量切換アクチュエータ93は斜板92からの反力により、作動液をタンク100へと排出しつつ収縮作動する。その結果、液圧モータ91の斜板92の傾転角が増大し、液圧モータ91の回転速度が低下する。
モータ容量切換弁95とタンクポート94Cとの間に、固定オリフィス96と減圧弁97とからなる流量制御弁98が設けられている。
流量制御弁98は、液圧モータ91の減速時にモータ容量切換アクチュエータ93からタンクポート94Cを介してタンク100に流出する作動液の流量をほぼ一定に保つ。流量制御弁98により、モータ容量切換アクチュエータ93の収縮作動速度が一定に保たれることで、液圧モータ91の減速に伴って生じる衝撃が緩和される。
この液圧モータ駆動装置において、流量制御弁98はモータ容量切換弁95とタンクポート94Cとの間に設けられている。液圧モータ91の減速時に流量制御弁98の上流側が高圧になると、作動液の一部がモータ容量切換弁95の隙間からドレンに洩れる。作動液のこの漏出はモータ容量切換アクチュエータ93の収縮速度を上昇させ、液圧モータ91の減速に伴う衝撃の緩和を阻害する可能性がある。
この発明の目的は、したがって、液圧モータの減速時に生じる衝撃を十分に緩和できる液圧モータ駆動装置を提供することである。
以上の目的を達成するために、この発明は、液圧モータの容量を作動液を用いて変化させる液圧モータ駆動装置において、モータ容量切換アクチュエータを備える。モータ容量切換アクチュエータは作動液の供給と排出に応じて液圧モータの容量を変化させる駆動圧室を備える。液圧モータ駆動装置は、駆動圧室に作動液を供給する供給ポジションと、駆動圧室の作動液を排出する排出ポジションとを切り換えるモータ容量切換弁と、駆動圧室とモータ容量切換弁の間に配置され、駆動圧室から排出される作動液の流量を調整する流量制御弁とをさらに備える。
この発明の詳細並びに他の特徴や利点は、明細書の以下の記載の中で説明されるとともに、添付された図面に示される。
FIG.1はこの発明による油圧モータ駆動装置の油圧回路図である。
FIG.2はこの発明による油圧モータ駆動装置を適用する油圧モータの縦断面図である。
FIG.3Aはこの発明による全開位置の流量制御弁の要部縦断面図である。
FIG.3Bは中間位置の流量制御弁の要部縦断面図である。
FIG.3Cは遮断位置の流量制御弁の要部縦断面図である。
FIG.4はFIG.2のIV-IV線で切り取った、この発明による流量制御弁とカウンタバランス弁の縦断面図である。
FIG.5はFIG.1に類似するが、この発明の第2の実施例を示す。
FIG.6はこの発明の第2の実施例による油圧モータ駆動装置を適用する油圧モータの縦断面図である。
FIG.7はこの発明の第2の実施例による流量制御弁の要部縦断面図である。
FIG.8は従来技術による油圧モータ駆動装置の油圧回路図である。
図面のFIG.1を参照すると、油圧ショベルに走行用動力源として搭載される斜板式可変容量型の油圧モータ1は、油圧モータ駆動装置に形成されたポートP1とP2に選択的に供給される油圧により作動する。作動油の代わりに水溶液を用いることも可能である
油圧モータ駆動装置は油圧モータ1のモータポートM1とポートP1を結ぶ主通路11と、油圧モータ1のモータポートM2とポートP2を結ぶ主通路12とを備える。
油圧モータ1はポートP1から主通路11を介してモータポートM1へ供給される作動油により正転方向に回転し、走行装置を介して油圧ショベルを前進させる。また、ポートP2から主通路12を介してモータポートM2へ供給される作動油輪によって逆転方向に回転し、走行装置を介して油圧ショベルを後進させる。
主通路11と12にはカウンタバランス弁2が介装される。カウンタバランス弁2は、パイロット通路5と6を介してポートP1とP2からそれぞれ導かれるパイロット圧の圧力バランスに応動する。
油圧モータ1の正転時には、ポートP1に加圧作動油が供給される。カウンタバランス弁2は、パイロット通路5に加圧作動油が導かれることで正転ポジションAに維持される。油圧モータ1の逆転時には、ポートP2に加圧作動油が供給される。カウンタバランス弁2は、パイロット通路6に加圧作動油が導かれることで逆転ポジションBに維持される。
油圧モータ1の運転停止時には、ポートP1とP2はともに低圧となる。ポートP1とP2からパイロット通路5と6を介して導かれるパイロット圧がともに低圧となることでカウンタバランス弁2は停止ポジションCに切換えられ、主通路11と12が閉鎖される。
パイロット通路5と6には固定オリフィス16がそれぞれ介装される。固定オリフィス16は、カウンタバランス弁2がポジションAまたはBから停止ポジションCへと切り換わる際に、パイロット通路5またはパイロット通路6を通ってドレンへと流出する作動油の流れに抵抗を付える。固定オリフィス16が流出作動油に及ぼす抵抗は、カウンタバランス弁2の切り換わり速度を低下させ、油圧モータ1を正転状態または逆転状態から緩やかに停止させる。
可変容量型の油圧モータ1は、斜板32と、斜板32の傾転角、すなわちポンプ容量を変化させるための一対のモータ容量切換アクチュエータ10とを備える。各モータ容量切換アクチュエータ10は斜板32の傾転角を変化させることで、油圧モータ1のピストンの押しのけ容積を2段階に変化させる。その結果、油圧モータ1の回転速度は低速と高速との間で変化する。
各モータ容量切換アクチュエータ10にはモータ容量切換弁20を介して作動油が供給される。
モータ容量切換弁20には、主通路11から分岐した分岐通路21と、主通路12から分岐した分岐通路22と、タンクポートT1に連通するドレン通路23と、一対のモータ容量切換アクチュエータ10に連通する一対のアクチュエータ通路24とが接続される。
モータ容量切換弁20は、パイロットポートPSのパイロット圧に応動して、高速ポジションHと低速ポジションLとの2つのポジションとの間で切り換わる。パイロットポートPSのパイロット圧はモータ容量切換弁20を高速ポジションHに向けて付勢する。一方、モータ容量切換弁20はバネ41により低速ポジションLに向けて付勢される。
パイロットポートPSのパイロット圧が低い場合には、モータ容量切換弁20はバネ41の付勢力によって低速ポジションLに保持される。モータ容量切換弁20は低速ポジションLにおいては、一対のアクチュエータ通路24の各々をドレン通路23に接続する。一対のアクチュエータ通路24がドレン通路23に接続されていると、斜板32を支持するモータ容量切換アクチュエータ10は斜板32から受ける反力で収縮位置に保持される。その結果、斜板32は大きな傾転角を保ち、油圧モータ1は低速で回転する。
パイロットポートPSのパイロット圧が高い場合には、モータ容量切換弁20はバネ41の付勢力に抗して高速ポジションHに保持される。モータ容量切換弁20は高速側ポジションHにおいては、一対のアクチュエータ通路24を分岐通路21と22に接続する。分岐通路21または分岐通路22からアクチュエータ通路24を介して供給される加圧作動油により、一方のモータ容量切換アクチュエータ10が伸張駆動される。その結果、斜板32は小さな傾転角となり、油圧モータ1は高速で回転する。
モータ容量切換弁20はパイロットポートPSのパイロット圧の変化に応じて低速ポジションLと高速ポジションHの間で切り換わる。高速ポジョンHはモータ容量切換アクチュエータ10に作動油を供給する供給ポシジョンに対応し、低速ポジションはモータ容量切換アクチュエータ10から作動油を排出する排出ポジションに相当する。
ところで、油圧モータ1の回転を減速させる際に、一対のモータ容量切換アクチュエータ10が高速で収縮すると、油圧モータ1の回転速度が急低下して減速ショックが生じる。
油圧モータ駆動装置は、減速ショックを防止するために、各アクチュエータ通路24に流量制御弁15を備えている。流量制御弁15は対応するモータ容量切換アクチュエータ10から流出する作動液の流量を一定以下に抑えることで、油圧モータ1の回転速度の低下を緩やかにする。
FIG.2を参照して、油圧モータ1の構成を説明する。
油圧モータ1は、モータケーシング30とポートブロック40とで画成した内部スペースを備える。内部スペースには、シリンダブロック31と斜板32が収装される。
シリンダブロック31はモータケーシング30とポートブロック40に支持された回転軸36の外周に固定される。シリンダブロック31には回転軸36と並行な複数のシリンダ34が周方向に等しい角度間隔で形成される。各シリンダ34にはピストン33が収装される。ピストン33はシューを介して斜板32に当接状態に保持される。
各シリンダ34にはFIG.1の主通路11または12から加圧作動油が供給される。シリンダ34に供給された加圧作動油はピストン33をシリンダ34に対して軸方向に伸縮駆動する。斜板32に当接保持された複数のピストン33が所定の回転角度位置で順次伸縮運動を行うことで、シリンダブロック31は回転駆動される。回転軸36はシリンダブロック31と一体回転し、回転トルクを油圧ショベルの走行用動力として出力する。
すべてのピストン33がシリンダ34内を一往復することで、シリンダブロック31が一回転する。
斜板32は、一対のボール軸受を介してモータケーシング30に傾転可能に支持される。斜板32は一対のモータ容量切換アクチュエータ10に駆動されて傾転角を変化させる。斜板32は低速位置に相当する最大傾転角度と、高速位置に相当する最小傾転角度の2位置間で切り換えられる。図は最大傾転角度の斜板32を表す。
モータ容量切換アクチュエータ10は、有底筒状の駆動ピストン70を備える。駆動ピストン70はモータケーシング30に形成されたシリンダ71に摺動自由に収装される。
シリンダ71と駆動ピストン70の間に駆動圧室72が画成される。駆動圧室72にアクチュエータ通路24が接続される。
駆動圧室72には駆動ピストン70を介して斜板32を傾転角減少方向に付勢する圧縮状態のバネ73が配置される。バネ73の反発力で駆動ピストン70は常に斜板32の背面に押し付けられる。
FIG.1の分岐通路21と22から導かれる加圧作動液はアクチュエータ通路24を通って駆動圧室72に導かれる。駆動圧室72の作動油圧力で駆動ピストン70はシリンダ71から突出し、バネ73の反発力とともに斜板32の背面を高速位置に向けて押圧する。一方、各ピストン33が斜板32に及ぼす押し付け力は斜板32を低速位置へと付勢する。斜板32は、このようにして、駆動圧室72の作動油圧力に応じて高速位置と低速位置の間で変位する。斜板32の傾転角が高速位置と低速位置の間で切り換えられると、シリンダ34内を往復動するピストン33のストローク距離が変化し、結果としてシリンダブロック31の回転速度が変化する。
FIG.4を参照すると、カウンタバランス弁2とモータ容量切換弁20と一対の流量制御弁15とは一体のポートブロック40に収装される。
カウンタバランス弁2はポートブロック40に形成されたポートP1とP2と、主通路11と12との間に介装される。ポートブロック40内において、主通路11から分岐通路21が分岐し、主通路12から分岐通路22が分岐する。モータ容量切換弁20は、分岐通路21及び22と、ポートブロック40内に形成された一対のアクチュエータ通路24との間に設けられる。流量制御弁15は各アクチュエータ通路24の途中に設けられる。
カウンタバランス弁2は、ポートブロック40に形成されたバルブ孔48に摺動自由に収装されたスプール50を備える。スプール50の両端に臨んでポートブロック40内にパイロット圧室43と44が形成される。
油圧モータ1の正転または逆転作動時には、高圧側となるポートP1またはポートP2の圧力がパイロット通路5またはパイロット通路6を介してパイロット圧室43またはパイロット圧室44に導かれる。スプール50はパイロット圧室43またはパイロット圧室44に導かれたパイロット圧に応動して、停止ポジションCから作動ポジションAまたは作動ポジョンBへと変位する。これにより、ポートP1と主通路11が、ポートP2と主通路12がそれぞれ連通する。パイロット通路5とパイロット通路6には固定オリフィス16がそれぞれ介装される。
パイロット圧室43にはスプール50を停止ポジションCに向けて付勢するバネ3が収装される。パイロット圧室44にはスプール50を停止ポジションCに向けて付勢するバネ4が収装される。これらの、バネ3と4の付勢力によってスプール50はパイロット圧が作用しない状態では、図に示す停止ポジションCに保持される。停止ポジションCにおいては、主通路11と12からの作動油流出が遮断される。
スプール50には、カウンタバランス弁2の一部をなすチェック弁53と54が収装される。チェック弁53はスプール50が停止ポジションCに位置している場合でも、ポートP1からモータポートM1へ向かう作動液の流れを許容するする一方、逆向きの流れを遮断する。チェック弁54はスプール50が停止ポジションCに位置している場合でも、ポートP2からモータポートM2へ向かう作動液の流れを許容する一方、逆向きの流れを遮断する。
モータ容量切換弁20はポートブロック40に形成されたバルブ孔49に摺動可能に収装されたモータ容量切換スプール60を備える。
モータ容量切換スプール60の一端に臨んでバルブ孔49内にはモータ容量切換パイロット圧室67が画成される。モータ容量切換スプール60のもう一端はバネ41に弾性支持される。バネ41はモータ容量切換スプール60を低速側ポジションLに向けて付勢する。モータ容量切換弁20は低速側ポジションLにおいては、
パイロットポートPSからモータ容量切換パイロット圧室67に導かれるパイロット圧が高くなると、モータ容量切換スプール60がバネ41に抗して図の右向きに変位し、モータ容量切換弁20は低速側ポジションLから高速側ポジションHに切換えられる。高速側ポジションHにおいては、モータ容量切換スプール60の外周に形成された環状溝を介して、分岐通路21と一方のアクチュエータ通路24とが連通する。また、同様の別の環状溝を介して分岐通路22ともう一方のアクチュエータ通路24とが連通する。これにより、一対のモータ容量切換アクチュエータ10の一方に加圧作動液が供給される。加圧作動油を供給されたモータ容量切換アクチュエータ10が伸張し、斜板32の傾転角を減少させて、油圧モータ1の回転速度を上昇させる。
パイロットポートPSからモータ容量切換パイロット圧室67に導かれるパイロット圧が低下すると、モータ容量切換スプール60がバネ41の反発力で図の左向きに変位し、モータ容量切換弁20は高速側ポジションHから低速側ポジションLへと切り換わる。その結果、分岐通路21と22のアクチュエータ通路24との連通は遮断され、一対のアクチュエータ通路24はそれぞれドレン通路23に連通する。
低速側ポジションLにおいて。各モータ容量切換アクチュエータ10の作動油は、アクチュエータ通路24からドレン通路23に流出する。各モータ容量切換アクチュエータ10は収縮し、斜板32の傾転角を増大させて、油圧モータ1の回転速度を低下させる。
FIGS.3A-3Cを参照すると、アクチュエータ通路24に介装される流量制御弁15は、ポートブロック40に形成されたバルブ孔42に摺動可能に介装される流量制御スプール63を備える。説明の都合上、アクチュエータ通路24のうち、流量制御弁15とモータ容量切換アクチュエータ10の間の部分を通路24A、流量制御弁15とモータ容量切換弁20の間の部分を通路24Bと称する。
流量制御スプール63は円筒壁63Aと、円筒壁63Aの一端に形成された底部63Bとからなる円筒形に形成される。流量制御スプール63には、メータリングオリフィス61と通孔62と環状溝64とが形成される。メータリングオリフィス61は流量制御スプール63の底部63Bの中心を貫通し、通路24Aと流量制御スプール63の内側とを小さな流通断面積のもとで常時連通する。 流量制御スプール63はバネ65により図の右向き、すなわち通路24Aに向けて付勢される。
環状溝64は流量制御スプール63の円筒壁63Aの外周に形成される。通孔62は円筒壁63Aを貫通して流量制御スプール63の内側と環状溝64とを連通する。
流量制御スプール63の円筒壁63Aに臨んで、ポートブロック40にはモータ容量切換弁20に至る通路24Bが形成される。
メータリングオリフィス61の周囲の流量制御スプール63の底部63Bには通路24Aの圧力が作用する。この圧力と逆向きに、流量制御スプール63の内側の圧力とバネ65の弾性支持力が流量制御スプール63に作用する。流量制御スプール63は、通路24Bと通路24Aの圧力差、言い替えればメータリングオリフィス61の圧力損失に応じてバルブ孔42内を摺動する。
FIG.3Aを参照すると、通路24Aの圧力が低い場合には、流量制御スプール63は図の最も右寄りに位置している。流量制御スプール63がこの位置にあると、例えば図の矢印に示すようにメータリングオリフィス61、通孔62、及び環状溝64を介して通路24Aと通路24Bの間で作動油が流通可能である。流量制御スプール63のこの位置を流量制御弁15の全開位置と称する。全開位置における流量制御弁15の流通抵抗はメータリングオリフィス61で発生する。
FIG.3Cを参照すると、通路24Aの圧力が高い場合には、流量制御スプール63はバネ65に抗して図の最も左寄りに位置している。流量制御スプール63がこの位置にあると、環状溝64と通路24Bとの連通が遮断される。その結果、アクチュエータ通路24の作動油の流通が遮断される。この位置を遮断位置と称する。
FIG.3Bを参照すると、流量制御スプール63が全開位置と遮断位置の間に位置している場合には、限定された流量の作動油が通路24Aと通路24Bの間で流通可能である。
この位置における流量制御弁15の流通抵抗は環状溝64と通路24Bの間の作動油の流通断面積に依存して発生する。環状溝64と通路24Bの流通断面積は通路24Aの圧力上昇に応じて減少する。また、通路24Bの圧力上昇により、流量制御スプール63の内側の作動油圧力が上昇することで、環状溝64と通路24Bの流通断面積は増大する。
モータ容量切換弁20がHポジションにある場合には、通路24Bの圧力が高く、流量制御弁15は全開位置にある。この場合には、分岐通路21または22から加圧作動油が通路24B、環状溝64、通孔62、メータリングオリフィス61、及び通路24Aを通ってモータ容量切換アクチュエータ10に供給され、モータ容量切換アクチュエータ10が伸張して斜板32の傾転角を減少させる。
モータ容量切換弁20がLポジションにある場合には、モータ容量切換弁20がHポジションにある場合よりも通路24Bの圧力が低く、流量制御弁15はFIG.3Bに示すように流量制御スプール63を全開位置から閉鎖方向に変位した位置に保つ。
この状態では、斜板32がモータ容量切換アクチュエータ10に及ぼす反力で、モータ容量切換アクチュエータ10が収縮し、モータ容量切換アクチュエータ10内の作動油がアクチュエータ通路24、モータ容量切換弁20を介してドレン通路23に流出する。
アクチュエータ通路24に介装された流量制御弁15においては、通路24Aからメータリングオリフィス61、通孔62、及び環状溝64を通って通路24Bへ作動油が流れ、環状溝64と通路24Bの流通断面積に応じた流通抵抗を発生させる。流通断面積は通路24Aの圧力が高いほど絞られるので、モータ容量切換アクチュエータ10からアクチュエータ通路24を介してドレン通路23に流出する作動油の流量は一定以下に抑えられる。
このようにして流量制御弁15がモータ容量切換アクチュエータ10からアクチュエータ通路24を介してドレン通路23に流出する作動液の流量を一定以下に保つことで、モータ容量切換アクチュエータ10による斜板32の傾転角度の増加速度は一定以下に抑制される。したがって、油圧モータ1の減速時の衝撃発生を防止することができる。
流量制御弁15はモータ容量切換アクチュエータ10とモータ容量切換弁20との間に配置されているので、モータ容量切換アクチュエータ10から流出する作動液の流れに関して、モータ容量切換弁20は流量制御弁15の下流に位置する。モータ容量切換アクチュエータ10から流出する作動液の一部はモータ容量切換弁20のモータ容量切換スプール60とバルブ孔49の隙間からドレンにリークする可能性がある。しかし、モータ容量切換弁20内の作動油のリークはモータ容量切換アクチュエータ10の収縮速度に影響を与えない。したがって、流量制御弁15により油圧モータ1の減速時の衝撃を十分に緩和できる。
モータ容量切換弁20が低速側ポジションLから高速側ポジションHに切換わり、分岐通路21、22から導かれる加圧作動液がモータ容量切換アクチュエータ10に流入する際は、流量制御弁15は全開位置となり、通孔62と環状溝64の間の作動油の流通断面積は最大になる。したがって、ポートP1(P2)に供給される加圧作動油は分岐通路21(22)とアクチュエータ通路24を介してモータ容量切換アクチュエータ10に速やかに流入し、油圧モータ1の加速応答性も確保される。
流量制御弁15は通路24Aの圧力が高いほど作動油の流通断面積を絞る構造のため、流通断面積の最大値を固定オリフィスに比べてを大きく設定することができる。したがって、作動油のコンタミネーションによる影響を受けにくく、好ましい特性を長期に渡って維持することができる。
FIGS.5-7を参照して、この発明の第2の実施例を説明する。
FIGS.5と6を参照すると、この実施例による油圧モータ駆動装置においては、流量制御弁15がモータ容量切換アクチュエータ10に内蔵される。
FIG.7を参照すると、流量制御弁15の流量制御スプール63は、モータ容量切換アクチュエータ10の駆動ピストン70に形成されたバルブ孔82に摺動自由に収装される。流量制御スプール63は第1の実施例と同様に円筒壁63Aと底部63Bからなる円筒形に形成される。流量制御スプール63には第1の実施例と同様にメータリングオリフィス61と通孔62と環状溝64とが形成される。流量制御スプール63は駆動ピストン70に支持されたバネ65により駆動圧室72に向けて弾性支持される。バルブ孔82には流量制御スプール63の駆動圧室72方向への変位を規制するストッパ77が固定される。
駆動ピストン70には、環状溝64と重なり合う位置にポート75が形成される。モータケーシング30には駆動ピストン70の摺動位置によらず、ポート75に常時連通するアクチュエータ通路24が形成される。
流量制御スプール63は、駆動圧室72とポート75の圧力差、言い替えればメータリングオリフィス61の圧力損失に応じてバルブ孔82内を摺動する。環状溝64とポート75の間の流通断面積は、バルブ孔82内の流量制御スプール63の摺動位置に応じて変化する。すなわち、流量制御スプール63がストッパ77に当接する図の位置において環状溝64とポート75の間の流通断面積は最大となる。この位置から、流量制御スプール63がバネ65を押し縮める方向に駆動ピストン70内を軸方向に摺動するのに従って、環状溝64とポート75の間の流通断面積は減少する。
モータ容量切換アクチュエータ10の駆動ピストン70が斜板32の反力を受けて傾転角を増大させる方向、すなわち油圧モータ1の回転速度を低下させる方向へ変位すると、駆動圧室72が収縮し、駆動圧室72からアクチュエータ通路24と低速ポジションLのモータ容量切換弁20とを介してドレン通路23に作動油が流出する。
このとき、流量制御弁15においては、図の矢印に示すように、駆動圧室72からメータリングオリフィス61を通って流量制御スプール63の内側へ流入した作動油が、通孔62、環状溝64、及びポート75を通ってアクチュエータ通路24へと流出する。
駆動圧室72の作動油圧力が上昇するにつれて、流量制御スプール63はバネ65を押し縮める方向へ変位する。その結果、環状溝64とポート75の間の流通断面積が減少する。流通断面積は駆動圧室72の圧力が高いほど絞られるので、モータ容量切換アクチュエータ10からアクチュエータ通路24を介してドレン通路23に流出する作動油の流量は一定以下に抑えられ、斜板32の傾転角度の増加速度は一定以下に抑制される。
この実施例においても、第1の実施例と同様にモータ容量切換弁20内の作動油のリークに影響されずに、油圧モータ1の減速時の衝撃を十分に緩和することができる。
この実施例ではさらに、流量制御弁15をモータ容量切換アクチュエータ10に内蔵することで、流量制御弁15とモータ容量切換アクチュエータ10とをユニット化でき、油圧モータ駆動装置を構成する部品の数を減らすことができる。
以上の説明に関して2009年10月19日を出願日とする日本国における特願2009-240330号、の内容をここに引用により合体する。
以上、この発明をいくつかの特定の実施例を通じて説明してきたが、この発明は上記の各実施例に限定されるものではない。当業者にとっては、クレームの技術範囲でこれらの実施例にさまざまな修正あるいは変更を加えることが可能である。
例えば以上の各実施例においては、作動油を用いた油圧モータ駆動装置について説明したが、この発明は作動油以外の様々な作動液体を用いた液圧モータの駆動装置に適用可能である。
以上の各実施例による油圧モータ駆動装置は斜板式の油圧モータ1を対象としているが、この発明は、アクチュエータを用いて容量を変化可能なあらゆるタイプの液圧モータの駆動装置に適用可能である。
以上の各実施例による油圧モータ駆動装置は両方向回転型の油圧モータ1を対象とし、油圧モータ1の回転方向に応じて作動する一対のモータ容量切換アクチュエータ10を備えている。この発明は、しかしながら、一方向回転型の液圧モータの駆動装置にも適用可能であり、その場合には液圧モータ駆動装置は各1基のモータ容量切換アクチュエータ10と流量制御弁15を備えれば良い。
以上のように、この発明は液圧ショベルなどの建設機械の走行動力用の液圧モータの減速時の衝撃緩和に好ましい効果をもたらす。
この発明の実施例が包含する排他的性質あるいは特長は以下のようにクレームされる。

Claims (8)

  1.  液圧モータ(1)の容量を作動液を用いて変化させる液圧モータ駆動装置において:
     モータ容量切換アクチュエータ(10)、モータ容量切換アクチュエータ(10)は作動液の供給と排出に応じて液圧モータ(1)の容量を変化させる駆動圧室(72)を備える、と;
     駆動圧室(72)に作動液を供給する供給ポジション(H)と、駆動圧室(72)の作動液を排出する排出ポジション(L)とを切り換えるモータ容量切換弁(20)と;
     駆動圧室(72)とモータ容量切換弁(20)の間に配置され、駆動圧室(72)から排出される作動液の流量を調整する流量制御弁(15)と;
     を備える液圧モータ駆動装置。
  2.  流量制御弁(15)は、駆動圧室(72)の作動液圧力が高いほど、作動液の流通断面積を絞る、圧力応動型の可変オリフィスで構成される請求項1の液圧モータ駆動装置。
  3.  流量制御弁(15)は、
     ハウジング(40,70)と;
     ハウジング(40,70)に摺動自由に収装された円筒壁(63A)と底部(63B)とを有する流量制御スプール(63)と;
     底部(63B)を貫通して形成された、駆動圧室(72)に連通するメータリングオリフィス(61)、流量制御スプール(63)はメータリングオリフィス(61)の圧力損失に応じてハウジング(40,70)内を摺動する、と;
     円筒壁(63A)を貫通して流量制御スプール(63)の内側と外側とを連通する通孔(62)と;
     通孔(62)に臨んでハウジング(40,70)に形成された通路(24B,75)、通孔(62)と通路(24B,75)との流通断面積は流量制御スプール(63)の摺動位置に応じて変化する、と;
     を備える請求項2の液圧モータ駆動装置。
  4.  流量制御弁(15)がモータ容量切換アクチュエータ(10)に内蔵されている請求項1から3のいずれかの液圧モータ駆動装置。
  5.  液圧モータ(1)は斜板(32)の傾転角に応じて容量を変化させる斜板式液圧モータで構成され、モータ容量切換アクチュエータ(10)はシリンダ(71)と、シリンダ(71)に摺動自由に収装され、斜板(32)を傾転方向に支持する駆動ピストン(70)とを備え、駆動圧室(72)は駆動ピストン(70)に臨んでシリンダ(70)の内側に形成されている請求項4の液圧モータ駆動装置。
  6.  ハウジング(40,70)は駆動ピストン(70)で構成され、流量制御スプール(63)は駆動圧室(72)に底部(63B)を臨ませて駆動ピストン(70)に収装されている、請求項5の液圧モータ駆動装置。
  7.  流量制御スプール(63)の駆動圧室(72)に向けての摺動を規制する、駆動ピストン(70)に固定されたストッパ(77)をさらに備える請求項6の液圧モータ駆動装置。
  8.  液圧モータ(1)はケーシング(30)とケーシング(30)に固定されたポートブロック(40)とを備え、ハウジング(40,70)はポートブロック(40)で構成される請求項5の液圧モータ駆動装置。
PCT/JP2010/067654 2009-10-19 2010-10-07 液圧モータ駆動装置 WO2011048958A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112010004561.5T DE112010004561B4 (de) 2009-10-19 2010-10-07 Hydraulikmotor-Antriebsvorrichtung
US13/255,493 US8776666B2 (en) 2009-10-19 2010-10-07 Hydraulic motor driving device
CN201080016163.9A CN102388217B (zh) 2009-10-19 2010-10-07 液压马达驱动装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-240330 2009-10-19
JP2009240330A JP5571350B2 (ja) 2009-10-19 2009-10-19 液圧モータ駆動装置

Publications (1)

Publication Number Publication Date
WO2011048958A1 true WO2011048958A1 (ja) 2011-04-28

Family

ID=43900188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067654 WO2011048958A1 (ja) 2009-10-19 2010-10-07 液圧モータ駆動装置

Country Status (6)

Country Link
US (1) US8776666B2 (ja)
JP (1) JP5571350B2 (ja)
KR (1) KR20110119739A (ja)
CN (1) CN102388217B (ja)
DE (1) DE112010004561B4 (ja)
WO (1) WO2011048958A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053901A (zh) * 2012-02-22 2014-09-17 萱场工业株式会社 液压马达

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948081B2 (ja) 2012-02-22 2016-07-06 Kyb株式会社 液圧モータ
US20140260224A1 (en) * 2013-03-14 2014-09-18 Clark Equipment Company Control System for Variable Displacement Hydraulic Motor
FR3030641B1 (fr) * 2014-12-23 2017-01-13 Poclain Hydraulics Ind Dispositif de commutation automatique de cylindree d'une machine a pistons axiaux
US10322858B2 (en) * 2015-10-15 2019-06-18 Vigourplastic Co., Ltd. Container that prevents from an illegal operation and can be easily identified after being illegally operated
IT201900003929A1 (it) * 2019-03-19 2020-09-19 Dana Motion Sys Italia Srl Motore idraulico a pistoni assiali a piatto inclinato per apparati di sollevamento.
DE102019212074A1 (de) * 2019-08-13 2021-02-18 Robert Bosch Gmbh Motor-Hydromaschinen-Einheit zum Anbau an ein Hydraulikaggregat

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298041U (ja) * 1976-01-23 1977-07-23
JPH01124404U (ja) * 1987-10-09 1989-08-24
JPH0754757A (ja) * 1993-08-11 1995-02-28 Kubota Corp 可変容量型油圧モータの斜板角制御装置
JPH08219004A (ja) * 1995-02-08 1996-08-27 Hitachi Constr Mach Co Ltd 液圧回転機の容量制御装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10041435A1 (de) 2000-02-17 2001-08-23 Mannesmann Rexroth Ag Hydraulische Steuerschaltung für einen Hydromotor mit mindestens zwei Geschwindigkeiten
GB2287069B (en) * 1994-03-02 1997-10-22 Kubota Kk Swash plate type hydraulic motor switchable between high speed and low speed
JP3874308B2 (ja) * 1994-10-18 2007-01-31 株式会社小松製作所 斜板式ピストンポンプ・モータの斜板角度変更装置
JP3623101B2 (ja) * 1998-03-04 2005-02-23 カヤバ工業株式会社 ハイドロスタティックトランスミッションシステム
JP3679300B2 (ja) * 1999-06-10 2005-08-03 日立建機株式会社 可変容量型液圧回転機の容量制御弁
DE10035630C1 (de) * 2000-07-21 2002-03-14 Brueninghaus Hydromatik Gmbh Axialkolbenmaschine mit einer Rückzugeinrichtung
KR100559294B1 (ko) * 2003-02-12 2006-03-15 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 유압 액츄에이터의 속도 제어장치
JP2007303543A (ja) * 2006-05-11 2007-11-22 Nabtesco Corp 可変油圧モータ駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298041U (ja) * 1976-01-23 1977-07-23
JPH01124404U (ja) * 1987-10-09 1989-08-24
JPH0754757A (ja) * 1993-08-11 1995-02-28 Kubota Corp 可変容量型油圧モータの斜板角制御装置
JPH08219004A (ja) * 1995-02-08 1996-08-27 Hitachi Constr Mach Co Ltd 液圧回転機の容量制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104053901A (zh) * 2012-02-22 2014-09-17 萱场工业株式会社 液压马达

Also Published As

Publication number Publication date
DE112010004561B4 (de) 2016-02-11
US20120024145A1 (en) 2012-02-02
US8776666B2 (en) 2014-07-15
CN102388217B (zh) 2014-04-16
JP5571350B2 (ja) 2014-08-13
KR20110119739A (ko) 2011-11-02
JP2011085104A (ja) 2011-04-28
DE112010004561T5 (de) 2012-09-06
CN102388217A (zh) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2011048958A1 (ja) 液圧モータ駆動装置
JP4847242B2 (ja) ミキサドラム駆動装置
US8342817B2 (en) Variable displacement vane pump
JP6075866B2 (ja) ポンプ制御装置
JP4915161B2 (ja) 多連ポンプユニット
JP2008540924A (ja) フローティングカップの原理に基づく液圧ピストン機械
KR101596560B1 (ko) 서보 레귤레이터
KR101582615B1 (ko) 가변 베인 펌프
JP2019065936A (ja) 液圧システム
KR101548432B1 (ko) 가변 베인 펌프
JP6539231B2 (ja) 斜板式ピストンポンプ
JP2011106606A (ja) 液圧モータ駆動装置
JP3974076B2 (ja) 液圧駆動装置
WO2019058711A1 (ja) 液圧モータ制御装置
WO2021172098A1 (ja) 流体圧駆動ユニット
JP4832178B2 (ja) 可変容量型斜板式液圧回転機
JP2017020415A (ja) 可変容量型液圧回転機の傾転アクチュエータ
JP4739912B2 (ja) 可変容量型ポンプ
WO2023187476A1 (en) Hydraulic axial piston unit and method for controlling of a hydraulic axial piston unit
RU2293875C2 (ru) Аксиально-поршневой регулируемый мотор
JPH04259686A (ja) 液圧ポンプの容量制御装置
JP2009030594A (ja) 可変容量ギヤポンプ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080016163.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117019600

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13255493

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100045615

Country of ref document: DE

Ref document number: 112010004561

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10824807

Country of ref document: EP

Kind code of ref document: A1