WO2011048878A1 - 溶解炉用の燃焼装置及び溶解炉 - Google Patents

溶解炉用の燃焼装置及び溶解炉 Download PDF

Info

Publication number
WO2011048878A1
WO2011048878A1 PCT/JP2010/065315 JP2010065315W WO2011048878A1 WO 2011048878 A1 WO2011048878 A1 WO 2011048878A1 JP 2010065315 W JP2010065315 W JP 2010065315W WO 2011048878 A1 WO2011048878 A1 WO 2011048878A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
fuel injection
combustion
fuel ejection
ejection
Prior art date
Application number
PCT/JP2010/065315
Other languages
English (en)
French (fr)
Inventor
平野誠
井上仁司
Original Assignee
大阪瓦斯株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大阪瓦斯株式会社 filed Critical 大阪瓦斯株式会社
Priority to CN201080047710.XA priority Critical patent/CN102549368B/zh
Priority to US13/503,259 priority patent/US9109836B2/en
Priority to EP10824730.5A priority patent/EP2492625A4/en
Priority to CA2778398A priority patent/CA2778398C/en
Priority to KR1020127013153A priority patent/KR101792124B1/ko
Publication of WO2011048878A1 publication Critical patent/WO2011048878A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B3/00Hearth-type furnaces, e.g. of reverberatory type; Tank furnaces
    • F27B3/10Details, accessories, or equipment peculiar to hearth-type furnaces
    • F27B3/20Arrangements of heating devices
    • F27B3/205Burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/235Heating the glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/28Disposition of burners to obtain flames in opposing directions, e.g. impacting flames
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • F23D14/22Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone with separate air and gas feed ducts, e.g. with ducts running parallel or crossing each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D23/00Assemblies of two or more burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/008Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases cleaning gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07021Details of lances

Definitions

  • a fuel injection nozzle for injecting gaseous fuel into a combustion space above a dissolution target object existing region in a dissolution tank is provided so as to eject gaseous fuel from a side portion of the combustion space, and the combustion space is provided in the combustion space.
  • Combustion air supply unit for supplying combustion air obliquely downward, a combustion apparatus for a melting furnace provided at an upper portion of the fuel injection nozzle, and a melting furnace provided with a combustion apparatus for the melting furnace About.
  • Such a combustion apparatus for a melting furnace is used for a melting furnace for melting a melting object such as glass or metal. And as a melting furnace equipped with such a combustion apparatus for a melting furnace, the combustion apparatus for the melting furnace is arranged along the direction in which the inlet for feeding the raw material in the melting tank and the outlet for taking out the melt are aligned. There is a so-called side-port type melting furnace arranged on the lateral side of the melting layer.
  • a fuel ejection portion provided in a fuel ejection nozzle with a plurality of fuel ejection holes arranged in a horizontal direction when viewed in the fuel ejection direction is provided at one location in the vertical direction. Some fuel ejection holes are formed radially in plan view (see, for example, Patent Document 1).
  • the fuel injection nozzle is provided with a fuel injection portion provided with a plurality of fuel injection holes arranged in a horizontal direction at only one place in the vertical direction.
  • a fuel injection portion provided with a plurality of fuel injection holes arranged in a horizontal direction at only one place in the vertical direction.
  • the object to be melted is heated by the radiant heat generated by the combustion flame.
  • the ceiling portion of the melting furnace is also heated by the radiant heat generated by the combustion flame, and the object to be melted is also heated by the radiant heat of the heated ceiling portion of the melting furnace.
  • the melting object is heated by the radiant heat of the combustion flame and the radiant heat of the ceiling of the melting furnace, so that the melting object is heated by the radiant heat of the combustion flame, It is desired that both the heating of the melting furnace ceiling with radiant heat be performed satisfactorily.
  • the fuel injection nozzle is provided with a fuel injection portion provided with a plurality of fuel injection holes arranged in a horizontal direction only at one vertical position.
  • the combustion flame generated when the gas fuel ejected from the fuel ejection nozzle is burned by the combustion air supplied from the combustion air supply unit becomes narrow in the vertical direction, and the object to be melted is burned.
  • Both heating with the radiant heat and heating the ceiling of the melting furnace with the radiant heat of the combustion flame are difficult to achieve, and improvements are desired.
  • the combustion flame is in a state where the vertical width is narrow, the amount of heat released inside the melting furnace is reduced, and the temperature of the combustion exhaust gas flowing through the flue is increased.
  • the combustion apparatus for the melting furnace is arranged on the lateral side of the melting layer along the direction in which the inlet for charging the raw material in the melting tank and the outlet for taking out the melt are aligned
  • the object to be dissolved exists in a state of being uneven in the vertical direction
  • the dissolved object to be dissolved exists in a state where the upper surface is flat.
  • the object to be dissolved is not larger than the location close to the inlet, but is present in an uneven state in the vertical direction.
  • the combustion flame extends obliquely upward in order to avoid the combustion flame coming into contact with the object to be melted at a location near the inlet.
  • the combustion flame greatly expands along the upper surface of the object to be melted so that the entire object to be melted can be uniformly heated by the combustion flame.
  • the combustion flame should be diagonally upward to avoid contact with the object to be melted. Elongation is preferred.
  • the present invention has been made in view of the above circumstances, and the object thereof is to satisfactorily perform heating of an object to be melted by radiant heat of a combustion flame and heating of a ceiling portion of a melting furnace by radiant heat of a combustion flame.
  • the object is to provide a combustion apparatus for a melting furnace.
  • Another object of the present invention is to provide a melting furnace capable of forming a combustion flame suitable for heating while simplifying the installation work of the combustion apparatus.
  • the fuel injection nozzle for injecting the gas fuel into the combustion space above the melting target object existence region in the melting tank injects the gas fuel from the side portion of the combustion space.
  • a combustion air supply part for supplying combustion air to the combustion space obliquely downward is provided at an upper portion of the fuel injection nozzle, and the first characteristic configuration thereof is: A plurality of fuel ejection portions provided in the fuel ejection nozzle in a state where a plurality of fuel ejection holes are aligned in the horizontal direction when viewed in the fuel ejection direction are arranged side by side in the vertical direction, The fuel ejection holes of the plurality of fuel ejection portions are arranged in a radial manner in a side view, and an angle between the fuel ejection direction of the uppermost fuel ejection hole and the fuel ejection direction of the lowermost fuel ejection hole It is formed in a state where the direction along the central angle in the range is obliquely upward, Among
  • the fuel ejection holes of the plurality of fuel ejection portions formed side by side in the vertical direction on the fuel ejection nozzle are formed in a radially aligned state when viewed from the side, the gas fuel is ejected radially to expand vertically. Therefore, a combustion flame spreading up and down is formed.
  • the fuel injection holes of the plurality of fuel injection parts are formed in a radially aligned state in side view, and the fuel injection direction of the uppermost fuel injection hole and the fuel injection of the lowermost fuel injection hole The direction along the central angle in the angle range between the direction and the direction is formed so as to be obliquely upward.
  • the gas fuel that is ejected in a radially expanding manner is ejected obliquely upward, so that a combustion flame extending obliquely upward is formed.
  • the combustion flame formed by burning the gas fuel ejected from the fuel ejection holes of the plurality of fuel ejection portions formed side by side in the vertical direction on the fuel ejection nozzle by the air supplied from the combustion air supply portion As a whole, it is in a state where it extends obliquely upward and expands up and down. As a whole, it extends diagonally upward, avoiding contact with the object to be melted, but spreading up and down to heat the object to be melted with the radiant heat of the combustion flame, and radiant heat of the combustion flame. It is possible to satisfactorily perform both of heating the ceiling portion of the melting furnace.
  • the state in which the direction along the central angle in the range is obliquely upward includes the following three cases.
  • the first case is a case where all of the plurality of fuel ejection holes are formed in a state of going obliquely upward.
  • the fuel injection direction of the lowermost fuel injection hole among the plurality of fuel injection holes is the horizontal direction, and all of the remaining fuel injection holes are formed in a state of being directed obliquely upward. is there.
  • the fuel ejection direction of one or more lower fuel ejection holes of the plurality of fuel ejection holes is obliquely downward and the fuel ejection holes whose fuel ejection direction is obliquely downward are excluded.
  • the fuel ejection direction of the lowermost fuel ejection hole is the horizontal direction in the state where all of the fuel ejection holes are obliquely upward or the fuel ejection holes except for the fuel ejection hole whose fuel ejection direction is obliquely downward This is a case where all of the remaining fuel injection holes are formed in a state of going obliquely upward.
  • the fuel ejection holes in the upper fuel ejection portion among the plurality of fuel ejection portions are formed in a radially aligned state in a plan view, and the lower fuel ejection portion
  • the fuel injection holes are formed in a radially aligned state or a parallel aligned state in plan view. Therefore, it is possible to suppress the formation of a combustion flame extending upward unnecessarily, to heat the object to be melted with the radiant heat of the combustion flame, and to heat the ceiling portion of the melting furnace with the radiant heat of the combustion flame. Both of these can be performed appropriately.
  • the supply speed of combustion air supplied obliquely downward from the combustion air supply unit is 8 to 15 m / S.
  • the ejection speed of the gas fuel ejected from the fuel ejection nozzle is 30 to 50 m / S, and the ejection speed of the gas fuel is several times faster than the supply speed of the combustion air.
  • the fuel injection speed is several times faster than the supply speed of the combustion air.
  • the fuel injection holes in the upper fuel injection section are radial in plan view. It is formed in a lined up state. Accordingly, since the ejected gas fuel is dispersed in the left-right direction, it is avoided that the ejected gas fuel burns in a state where the combustion air supplied from the combustion air supply unit is pushed up. It is possible to suppress the formation of a combustion flame extending upward as necessary.
  • the injected gas fuel is dispersed in the left-right direction. Because it flows without being concentrated, it burns with the combustion air pushed up. As a result, a combustion flame extending upwards unnecessarily is formed, which may cause inconveniences such as early contact with the ceiling of the melting furnace and damaging the ceiling, and melting with the radiant heat of the combustion flame. Both heating the object and heating the ceiling of the melting furnace with the radiant heat of the combustion flame cannot be performed properly.
  • the gas fuel ejected from the fuel ejection hole in the lower fuel ejection portion is downward than the gas fuel ejected from the fuel ejection hole in the upper fuel ejection portion, It is less likely to push up the combustion air. Therefore, the fuel injection holes in the lower fuel injection portion are formed in a radially aligned state or a parallel aligned state in plan view in accordance with the required heating condition.
  • the fuel injection holes in the fuel injection portion on the lower side are formed in a state of being arranged radially in plan view, a combustion flame spreading in the lateral width direction can be formed.
  • the fuel injection holes in the lower fuel injection part are formed in a state of being arranged in parallel in a plan view, a combustion flame that extends sufficiently in the gas fuel injection direction can be formed.
  • the combustion for the melting furnace capable of satisfactorily performing the heating of the object to be melted by the radiant heat of the combustion flame and the heating of the ceiling portion of the melting furnace by the radiant heat of the combustion flame.
  • Equipment can be provided.
  • the second feature configuration of the present invention includes: Among the plurality of fuel ejection portions, the fuel ejection hole in the upper fuel ejection portion is formed to have a larger diameter than the fuel ejection hole in the lower fuel ejection portion.
  • the fuel ejection hole in the upper fuel ejection portion is formed with a larger diameter than the fuel ejection hole in the lower fuel ejection portion.
  • the ejection speed of the gas fuel ejected from the fuel ejection hole of the upper fuel ejection section is the ejection speed of the gas fuel ejected from the fuel ejection hole of the lower fuel ejection section of the plurality of fuel ejection sections. Can be slower.
  • the ejection speed of the gas fuel ejected from the fuel ejection hole of the upper fuel ejection section among the plurality of fuel ejection sections is determined by the fuel ejection of the lower fuel ejection section of the plurality of fuel ejection sections.
  • the gas fuel ejected from the fuel ejection hole of the upper fuel ejection part among the plurality of fuel ejection parts is made to flow from the combustion air supply part by making it slower than the ejection speed of the gas fuel ejected from the hole. Combustion in a state where the supplied combustion air is pushed up can be accurately avoided.
  • the gas fuel ejected from the fuel ejection hole of the upper fuel ejection portion among the plurality of fuel ejection portions is thus provided.
  • the third feature configuration of the present invention includes: It is characterized in that a change adjusting means for changing and adjusting the gas supply ratio with respect to the upper and lower multi-stage fuel ejection portions is provided.
  • the upper fuel jet part of the upper and lower multi-stage fuel jet parts has a larger amount of gas fuel jet than the lower fuel jet part
  • the lower part of the upper and lower multi-stage fuel jet parts The fuel injection portion on the side has a larger amount of gas fuel than the fuel injection portion on the upper side, and the upper and lower fuel injection portions of the upper and lower fuel injection portions.
  • the amount of gas fuel jetted with the unit can be adjusted to be the same.
  • the state in which the amount of gas fuel jetted in the upper and lower fuel jets of the upper and lower fuel jets is the same is the same in both gas fuel jets. Not only in some cases. For example, it includes a case where the amount of gas fuel jetted between the upper fuel jetting portion and the lower fuel jetting portion is different within a range corresponding to 5% of the jetting amount of gas fuel jetted from the fuel jet nozzle. That is, it includes a state in which the amount of gas fuel jetted between the upper fuel jetting portion and the lower fuel jetting portion is substantially the same.
  • the combustion flame extends obliquely upward It becomes.
  • the lower fuel ejection section is larger in the amount of gas fuel ejection than the upper fuel ejection section, and the combustion flame is longer in the horizontal direction. It becomes a state. Further, when the amount of gas fuel jetted in the upper and lower fuel jets of the upper and lower fuel jets is the same, the upper fuel jet is lower.
  • the combustion flame extends obliquely upward, and the lower fuel injection portion is on the upper side.
  • the length of the combustion flame in the horizontal direction is increased, although the length is not longer than that in the case where the amount of gas fuel ejected is greater than that of the fuel ejection portion.
  • the combustion apparatus for the melting furnace is configured as a melting furnace arranged on the lateral side of the melting layer along the direction in which the inlet for feeding the raw material in the melting tank and the outlet for taking out the melt are arranged, If it is installed as a combustion apparatus for the melting furnace, a combustion flame desired in the melting furnace can be formed.
  • the combustion flame extends obliquely upward to avoid contact with the object to be melted. It is preferable.
  • the upper fuel ejection portion of the upper and lower fuel ejection portions is in a state where the amount of gas fuel ejection is greater than the lower fuel ejection portion, A combustion flame that extends obliquely upward can be formed.
  • the combustion flame should be able to uniformly heat the entire object to be dissolved by the combustion flame. It is preferable to extend greatly along the upper surface of the object to be dissolved.
  • the object to be melted in the middle of dissolution is not larger than the part close to the inlet, but is present in an uneven state in the vertical direction.
  • the combustion flame extends obliquely upward in order to avoid the combustion flame from coming into contact with the object to be melted.
  • the upper fuel injection part is not directed upwards more greatly than the case where the amount of gas fuel injection is larger than the lower fuel injection part, but it extends obliquely upward
  • the length of the fuel jet part on the lower side is in the horizontal direction, it is not longer than the case in which the amount of gas fuel jetted is greater than that on the fuel jet part on the upper side. It is possible to form a combustion flame in a state in which the gas becomes large.
  • the third characteristic configuration of the present invention it is possible to provide a combustion apparatus for a melting furnace capable of forming a combustion flame according to the installation position with respect to the melting tank, in addition to the operational effects of the first or second characteristic configuration. .
  • the combustion apparatus for a melting furnace according to any one of the first characteristic configuration to the third characteristic configuration has a charging port for charging a raw material and an outlet for discharging a melt in the melting tank.
  • a charging port for charging a raw material for charging a raw material
  • an outlet for discharging a melt in the melting tank Three or more are provided side by side on the lateral side of the dissolved layer along the direction of alignment,
  • the gas supply ratio to the fuel injection portions of the upper and lower stages of the fuel injection nozzle of the combustion device close to the input port is such that the upper fuel injection portion is the lower side.
  • the gas supply ratio with respect to the upper and lower plurality of fuel ejection portions in the fuel ejection nozzle of the intermediate combustion device between the inlet and the outlet is an upper side fuel.
  • the ejection part and the lower fuel ejection part are set to be the same,
  • the gas supply ratio to the fuel injection portions of the upper and lower stages of the fuel injection nozzle of the combustion device close to the outlet is such that the lower fuel injection portion is the upper side. It is characterized in that it is set to be larger than the fuel ejection portion.
  • the combustion device close to the input port has a gas supply ratio with respect to the upper and lower fuel injection portions of the fuel injection nozzle, and the upper fuel injection portion has a lower side. Since the fuel injection part is set to be larger than the fuel injection part, the upper fuel injection part is in a state where the amount of gas fuel injection is larger than the lower fuel injection part, and the combustion flame is obliquely upward. It will be in a state of stretching.
  • the combustion device close to the outlet has a gas supply ratio with respect to the upper and lower multi-stage fuel ejection portions of the fuel ejection nozzle, and the lower fuel ejection portion has an upper side. Since the fuel injection portion is set to be larger than the fuel injection portion, the lower fuel injection portion is in a state where the amount of gas fuel injection is larger than that of the upper fuel injection portion, and is directed in the horizontal direction of the combustion flame. The length is increased.
  • the gas supply ratio with respect to the upper and lower stages of the fuel injection nozzle of the fuel injection nozzle of the intermediate combustion device between the inlet and the outlet is the upper fuel injection portion
  • the lower fuel ejection portion are set to be the same, the amount of gas fuel ejected by the upper fuel ejection portion and the lower fuel ejection portion is the same.
  • the upper fuel injection part is not directed upward as compared with the case where the amount of gas fuel injection is larger than that of the lower fuel injection part, the combustion flame extends obliquely upward and below.
  • the fuel injection part on the side does not become longer than the state in which the amount of gas fuel injection is larger than the fuel injection part on the upper side, the length of the combustion flame in the horizontal direction becomes larger .
  • the gas supply ratio with respect to the upper and lower multi-stage fuel ejection portions of the fuel ejection nozzle of the intermediate combustion device between the inlet and the outlet is the upper side.
  • the gas fuel ejection amount of the upper side fuel ejection part and the lower side fuel ejection part are the same Not only if.
  • the upper and lower fuel injection portions are set to be different from each other in a range corresponding to 5% of the injection amount of the gas fuel ejected from the fuel ejection nozzle. Is included. That is, the case where it sets so that the amount of jets of gas fuel by the upper side fuel injection part and the lower side fuel injection part may become substantially the same is included.
  • a combustion flame is extended diagonally upward. Is preferable. In the combustion device close to the inlet, a combustion flame that extends obliquely upward can be formed.
  • the combustion flame should be able to uniformly heat the entire object to be dissolved by the combustion flame. It is preferable to extend greatly along the upper surface of the object to be dissolved. A combustion flame in a state where the length in the horizontal direction becomes large can be formed in the combustion device close to the outlet.
  • the object to be melted in the middle of dissolution is not larger than the part close to the inlet, but is present in an uneven state in the vertical direction.
  • the combustion flame extends obliquely upward in order to avoid the combustion flame from coming into contact with the object to be melted.
  • An intermediate combustion device between the inlet and the outlet can form a combustion flame that extends obliquely upward, although it is not much upward than the combustion flame formed by the combustion device close to the inlet.
  • the combustion flame of the state where the length which goes to a horizontal direction becomes large can be formed.
  • the combustion apparatus for the melting furnace is configured as a melting furnace arranged on the lateral side of the melting layer along the direction in which the inlet for feeding the raw material in the melting tank and the outlet for taking out the melt are arranged,
  • the desired combustion flame can be formed in the melting furnace.
  • the combustion apparatus for the melting furnace by setting the gas supply ratio for the upper and lower fuel injection portions of the fuel injection nozzle according to the installation position of the combustion apparatus for the melting furnace with respect to the dissolution tank, the combustion flame corresponding to the installation position with respect to the melting tank is generated. Since it forms, the combustion apparatus for several melting furnaces juxtaposed in the side part of a melting tank should just be installed in the same state, and the installation operation
  • the gas supply ratio can be set by the change adjusting means that changes and adjusts the gas supply ratio with respect to the upper and lower stages of the fuel ejection portions.
  • the gas supply ratio can be set by arranging a throttle for setting the gas supply ratio in the gas fuel supply path to the upper and lower stages of the fuel ejection section.
  • the melting furnace of the present invention can provide a melting furnace capable of forming a combustion flame suitable for heating while simplifying the installation work of the combustion apparatus.
  • a glass melting furnace as a melting furnace has a plan view in a lower part of a furnace body 1 in which a ceiling is formed in an arch shape.
  • a rectangular dissolution tank 2 is provided.
  • An inlet 4i for introducing a glass raw material as an object to be melted is formed on the front surface of the furnace wall 4 that defines the melting tank 2, and an outlet 4e for taking out the molten glass is formed on the rear surface of the furnace wall 4.
  • a working tank 3 communicating with the melting tank 2 at the outlet 4e is provided outside the furnace wall portion where the outlet 4e is formed.
  • Combustion apparatuses N for melting furnaces that burn gas fuel in a combustion space above the melting target object existence region in the melting tank 2 are provided on both lateral sides of the melting tank 2.
  • the glass raw material charged from the inlet 4i is caused to flow toward the work tank 3 while being melted in the melting tank 2, and clean molten glass is transferred to the work tank 3 through the outlet 4e. It is configured to guide.
  • the combustion devices N are provided in a state in which three combustion devices N are arranged side by side along the direction in which the inlet 4i and the outlet 4e are arranged (the flow direction of the glass raw material) on each of the left and right lateral sides of the melting tank 2. .
  • the three combustion devices N on the left side and the three combustion devices N on the right side are configured to alternately burn every certain time (for example, about 15 to 30 minutes).
  • a heat storage chamber T extending in the front-rear direction of the melting tank is provided in each of the left and right lateral outer portions of the furnace body 1, and the combustion device N passes through the heat storage chamber T as described later and is heated (1000 to 1200 ° C.).
  • the gas fuel is combusted by the combustion air A preheated to a high temperature.
  • the heat storage chamber T is configured to store the heat held by the exhaust gas E when the exhaust gas E after combustion by the combustion device N passes therethrough.
  • each of the combustion devices N is provided with a fuel supply unit W that ejects gaseous fuel from the lateral side portion of the combustion space to the combustion space, and an upper portion of the fuel supply unit W to perform combustion. And a combustion air supply unit K that supplies combustion air obliquely downward to the space.
  • the combustion air supply unit K is composed of an air port 5 opened in the furnace wall 4 and an air supply path 6 that connects the heat storage chamber T and the air port 5, and passes through the heat storage chamber T as described above.
  • the preheated combustion air A is supplied to a gas fuel combustion zone.
  • the supply speed of the combustion air A is, for example, 8 to 15 m / S.
  • the cross-sectional shape of the air supply path 6 and the shape of the air port 5 at the tip of the air supply path 6 are curved tops protruding upward connecting the ends of the straight lower edges. It is a crumb-like shape formed in a state having an edge.
  • the lower edge portion of the air supply path 6 is inclined 10 degrees with respect to the horizontal direction in a side view, and the top portion of the upper edge of the air supply path 20 degrees with respect to the horizontal direction in a side view. It is formed to be inclined.
  • a flow path switching mechanism V for switching to a state in which the exhaust gas supplied to the other of the chambers T and discharged from one of the heat storage chambers T is discharged to the outside is provided.
  • the configuration is such that the left three combustion devices N are combusted and the right three combustion devices N are combusted.
  • the fuel supply unit W includes a gas supply pipe unit 10 to which gas fuel is supplied from a gas fuel supply source, a gas supply chamber unit 11 connected to the tip of the gas supply pipe unit 10, and The fuel supply nozzle 12 is connected to the tip of the gas supply chamber and is configured to inject gas fuel into the combustion space. That is, the fuel supply unit W is configured in a unit shape in which the gas supply pipe unit 10, the gas supply chamber unit 11, and the fuel injection nozzle 12 are assembled together.
  • the fuel supply unit W is attached to the furnace wall 4 in a state where the fuel injection nozzle 12 is inserted into the mounting hole 4 s of the furnace wall 4.
  • the fuel supply unit W is attached so that the longitudinal direction of the gas supply pipe unit 10 is inclined upward by 5 to 15 degrees with respect to the horizontal direction. In the exemplary view of this embodiment, it is inclined upward by 10 degrees.
  • the fuel injection nozzle 12 has two fuel injection portions F1 and F2 arranged in the vertical direction, and each of the two fuel injection portions F1 and F2 is viewed in the fuel injection direction.
  • a plurality of fuel injection holes 13 and 14 are arranged in a horizontal direction.
  • the fuel ejection holes 13 and 14 of the two fuel ejection portions F1 and F2 are formed in a radially aligned state in a side view. Further, the fuel ejection directions of the fuel ejection holes 13 and 14 of the two fuel ejection portions F1 and F2 are both formed obliquely upward, and the upper fuel ejection hole 13 as the uppermost fuel ejection hole.
  • the fuel injection holes 14 in the lower fuel injection portion F2 of the two fuel injection portions F1 and F2 are formed in a radially aligned state in a plan view.
  • the fuel injection holes 13 in the upper fuel injection part F1 are formed in a state of being arranged radially in plan view.
  • the fuel ejection hole 13 in the upper fuel ejection portion F1 is formed with a larger diameter within a range of 10% than the fuel ejection hole 14 in the lower fuel ejection portion F2. .
  • the fuel injection holes 13 and 14 of the two fuel injection portions F1 and F2 are formed so that the length of the holes is twice or more than the diameter of the holes.
  • the gas supply chamber portion 11 is divided into two fuel supply chambers G ⁇ b> 1 and G ⁇ b> 2 in accordance with the two fuel injection portions F ⁇ b> 1 and F ⁇ b> 2 of the fuel injection nozzle 12. Yes. Specifically, the distal end portion of the rectangular cylindrical main body portion 11A is connected to the back surface portion of the fuel injection nozzle 12, and the back portion of the cylindrical main body portion 11A is connected to the gas supply pipe portion 10. A wall portion 11B is provided. The inside of the quadrangular cylindrical main body 11A is vertically partitioned by a partition wall 11C.
  • the gas supply pipe portion 10 includes a base end side pipe portion 10A that branches into a bifurcated shape from a connection portion of a gas supply pipe (not shown), and two fuel supply chambers G1 and G2 in the gas supply chamber portion 11.
  • a pair of separately connected pipe sections 10B are configured as main parts, and flow rate adjusting valves R1 and R2 are disposed between the proximal end pipe section 10A and the pair of pipe sections 10B.
  • a change adjusting means H is provided for changing and adjusting the gas supply ratio with respect to the two fuel injection portions F1 and F2 in the fuel injection nozzle 12.
  • the change adjusting means H is configured by using flow rate adjusting valves R1 and R2 disposed between the proximal end side pipe portion 10A and the pair of pipe line portions 10B. That is, the pair of flow rate adjusting valves R1, R2 are linked so as to be integrally opened / closed by the connecting shaft 20 (reciprocating swinging) for opening / closing the flow rate adjusting valves R1, R2 integrally (simultaneously).
  • An operation type operation lever 21 is provided.
  • the opening degree on one side increases and the opening degree on the other side decreases, and the operation lever 21 moves to the other side.
  • the opening degree is changed in the reverse direction so that the opening degree on the other side becomes larger and the opening degree on the one side becomes smaller as it is swung.
  • the gas supply ratio with respect to the two fuel injection parts F1 and F2 in the fuel injection nozzle 12 of the combustion apparatus N provided in a state where three are arranged in each of the left and right side parts of the dissolution tank 2 is changed by the change adjusting means H.
  • the gas supply ratio to the two fuel ejection portions F1 and F2 is set so that the upper fuel ejection portion F1 is larger than the lower fuel ejection portion F2. Specifically, the ratio is set to 8: 2.
  • an intermediate combustion device between the inlet 4i and the outlet 4e.
  • the gas supply ratio of the fuel injection nozzle 12 to the two fuel injection portions F1, F2 in N is set so that the upper fuel injection portion F1 and the lower fuel injection portion F2 are the same. If the gas supply ratio to the two fuel ejection portions F1 and F2 is set so that the upper fuel ejection portion F1 and the lower fuel ejection portion F2 are the same, the upper fuel ejection portion F1 It is not only when setting the state where the amount of gas fuel jetted to the lower fuel jetting section F2 is the same.
  • the upper and lower fuel ejection portions F1 and F2 are set to have different gas fuel ejection amounts. It includes the case of doing. That is, the case where it sets so that the amount of jets of gas fuel by the upper side fuel injection part and the lower side fuel injection part may become substantially the same is included.
  • the gas supply ratio with respect to the fuel ejection portions F1 and F2 is set so that the lower fuel ejection portion is larger than the upper fuel ejection portion. Specifically, it is set to be 3: 7.
  • the flame formed by the combustion device N close to the inlet 4i is more than the flame formed in the intermediate combustion device N between the inlet 4i and the outlet 4e.
  • the length of the flame formed in each combustion device N is changed so that the flame formed in the short combustion device N is shorter than the combustion device N close to the outlet 4e.
  • the flame formed by the combustion device N close to the inlet 4i tends to spread upward without spreading downward.
  • the flame formed by the combustion device N close to the outlet 4 e does not spread upward, but greatly extends along the melting target object existing region in the melting tank 2.
  • the combustion flame should be prevented from contacting the melting target object (glass raw material). It is preferable that the combustion flame extends obliquely upward. In the combustion device N close to the inlet 4i, a combustion flame that extends obliquely upward can be formed.
  • dissolved target object exists in the state which makes the upper surface flat in the location near the outlet 4e
  • the whole melt target object is uniformly heated with a combustion flame.
  • the combustion flame extends greatly along the upper surface of the object to be melted.
  • a combustion flame having a length that extends in the horizontal direction can be formed.
  • the object to be melted (glass raw material) in the middle of melting is not larger than the location near the inlet 4i, but exists in an uneven state in the vertical direction. Therefore, the combustion flame does not need to be larger upward than a portion close to the inlet 4i, but the combustion flame may extend obliquely upward in order to prevent the combustion flame from coming into contact with the object to be melted (glass raw material). This is preferable.
  • the combustion flame N formed in the combustion device N close to the inlet 4i is not greatly upward, but extends obliquely upward.
  • a combustion flame can be formed, and a combustion flame that is not longer than the combustion flame formed by the combustion device N close to the outlet 4e, but that has a length in the horizontal direction, can be formed.
  • each of the three combustion devices N arranged in the direction in which the inlet 4i for introducing the raw material in the melting tank 2 and the outlet 4e for taking out the melt are arranged form a combustion flame desired in the melting furnace. become.
  • the experimental heating furnace 30 has a depth D of 8.8 m, a height Y of 1.6 m, and a lateral width L of 1.8 m.
  • the cross-sectional shape of the air port 31 that supplies the combustion air A and the air supply path 32 that follows the air port 31 is a horizontally long rectangular shape as shown in FIG. Specifically, the width is 0.9 m, the height is 0.45 m, the lower surface of the air supply path 32 is inclined 10 degrees with respect to the horizontal direction, and the upper surface is inclined 20 degrees with respect to the horizontal direction. is doing.
  • As the combustion air A air at 1000 ° C. is supplied at 4 m / S.
  • a damper 34 for adjusting the exhaust resistance is provided in the flue 33.
  • the bottom of the heating furnace 30 is formed on a simple floor surface 35.
  • the change adjustment means H provided in the fuel supply unit W allows the gas supply ratio of the fuel injection nozzle 12 to the two fuel injection units F1 and F2 to be set lower on the upper fuel injection unit F1. More specifically, the ratio is set to 8: 2 (hereinafter, abbreviated as upward setting), the upper fuel ejection portion F1 and the lower fuel ejection portion F2.
  • a state in which the fuel ejection part F2 is set to be the same hereinafter, abbreviated as standard setting
  • the lower fuel ejection part F2 is more than the upper fuel ejection part F2.
  • the fuel ejection holes 13 and 14 of the two fuel ejection portions F1 and F2 are arranged in a radial manner in a side view, and the fuel ejection direction of the upper fuel ejection hole 13 as the uppermost fuel ejection hole A direction (hereinafter, abbreviated as the center direction) B along a central angle in an angular range between the fuel injection direction of the lower fuel injection hole 14 as the lowermost fuel injection hole is formed in a state where it is obliquely upward.
  • the center direction B along a central angle in an angular range between the fuel injection direction of the lower fuel injection hole 14 as the lowermost fuel injection hole is formed in a state where it is obliquely upward.
  • each of the several fuel injection holes 13 and 14 of the two fuel injection parts F1 and F2 is provided in the state where it arranged radially in planar view.
  • the difference from the above embodiment is that the fuel ejection direction of the fuel ejection hole 13 of the upper fuel ejection portion F1 of the two fuel ejection portions F1 and F2 is obliquely upward, whereas the lower fuel ejection Although the fuel ejection direction of the fuel ejection hole 14 of the part F2 is obliquely upward, it is a point close to the horizontal direction.
  • the fuel ejection nozzle 12 is formed with three fuel ejection portions F1, F2, and F3 arranged in the vertical direction.
  • Each of the three fuel ejection portions F1, F2, and F3 includes a plurality of fuel ejection holes 13, 14, and 15 aligned in the horizontal direction when viewed in the fuel ejection direction.
  • the plurality of fuel ejection holes 13, 14, 15 of the three fuel ejection portions F1, F2, F3 are formed in a state of being radially arranged in a plan view.
  • the fuel injection holes 13, 14, and 15 of the three fuel injection portions F1, F2, and F3 are arranged radially in a side view, and the upper fuel injection hole 13 is the uppermost fuel injection hole.
  • State along the central angle (hereinafter referred to as the center direction) B in an angle range between the fuel ejection direction and the fuel ejection direction of the lower fuel ejection hole 15 as the lowermost fuel ejection hole is a state in which it is obliquely upward Is formed.
  • the fuel injection direction of the fuel injection holes 13 and 14 of the upper fuel injection part F1 and the upper and lower fuel injection parts F2 of the three fuel injection parts F1, F2 and F3 is obliquely upward, while Although the fuel ejection direction of the fuel ejection hole 15 of the fuel ejection part F3 is obliquely upward, it is a direction close to the horizontal direction.
  • the gas supply pipe section 10 is provided with three pipe portions 10B, and the gas supply chamber section 11 is partitioned into three fuel chambers G1, G2, G3, thereby constituting the change adjusting means H.
  • the three flow rate adjusting valves R1, R2, and R3 are provided so as to correspond to each of the three pipe portions 10B described above, in a state that can be operated separately.
  • the fuel injection nozzle 12 includes four fuel injection portions F1, F2, F3, and F4 that are arranged side by side in the vertical direction, and the four fuel injection portions F1, Each of F2, F3, and F4 includes a plurality of fuel ejection holes 13, 14, 15, and 16 arranged in a horizontal direction when viewed in the fuel ejection direction.
  • the fuel injection holes 13 to 16 of the four fuel injection parts F1, F2, F3, and F4 are arranged in a radial manner in a side view, and the upper fuel injection hole 13 serving as the uppermost fuel injection hole 13 A state in which the direction B (hereinafter referred to as the central direction) B along the central angle in the angle range between the fuel injection direction and the fuel injection direction of the lower fuel injection hole 16 as the lowest fuel injection hole is obliquely upward Is formed.
  • the fuel ejection direction of the upper fuel ejection portion F1 and the fuel ejection holes 13, 14 and 15 of the upper and lower middle fuel ejection portions F2 and F3 is obliquely upward.
  • the fuel ejection direction of the fuel ejection hole 16 of the lower fuel ejection part F4 is obliquely downward, although it is close to the horizontal direction.
  • the gas supply chamber portion 11 is divided into three fuel chambers G1, G2, G3, and G4.
  • the four flow rate adjusting valves R1, R2, R3, and R4 constituting the change adjusting means H are provided in correspondence with each of the four pipe portions 10B described above in a state that can be operated separately.
  • the combustion apparatus for a melting furnace according to the present invention is, as illustrated in the above-described embodiment, a direction (glass It is preferable to arrange them along the flow direction of the raw materials, but it is not always necessary to provide them in such a form and can be applied to melting furnaces of various forms.
  • the combustion apparatus for a melting furnace of the present invention is used as a combustion apparatus in various melting furnaces, such as a melting furnace for melting metals other than glass raw materials, in addition to being applied to the glass melting furnace exemplified in the above embodiment. It is something that can be done.
  • the fuel device for the melting furnace is along the direction (the flow direction of the glass raw material) in which the inlet port for introducing the raw material and the outlet port for taking out the melt are aligned on the lateral side portion of the melting tank.
  • the case where three are arranged side by side is illustrated.
  • Two combustion apparatuses for the melting furnace may be provided side by side along the direction (the flow direction of the glass raw material) in which the inlet for charging the raw material and the outlet for taking out the melt are aligned.
  • four or more combustion apparatuses for melting furnaces may be provided side by side along the direction (the flow direction of the glass raw material) in which the inlet for charging the raw material and the outlet for taking out the melt are aligned.
  • the combustion device close to the inlet forms a combustion flame that extends obliquely upward, and the combustion device close to the outlet has a large length in the horizontal direction.
  • the combustion flame that is in a state that is not much larger than the combustion flame formed in the combustion device close to the inlet It is preferable to form a combustion flame that extends obliquely upward and that is not longer than the combustion flame formed by the combustion device close to the outlet, but that is longer in the horizontal direction.
  • a fuel injection nozzle for injecting gaseous fuel into a combustion space above a dissolution target object existing region in a dissolution tank is provided so as to eject gaseous fuel from a side portion of the combustion space, and the combustion space is provided in the combustion space.
  • a combustion air supply section for supplying combustion air obliquely downward is provided at an upper portion of the fuel injection nozzle, and heats the object to be melted by the radiant heat of the combustion flame and the ceiling part of the melting furnace by the radiant heat of the combustion flame.
  • the present invention can be applied to various types of combustion apparatuses for melting furnaces that can perform each of the above-mentioned heating well.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Environmental & Geological Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)
  • Furnace Details (AREA)
  • Gasification And Melting Of Waste (AREA)
  • Gas Burners (AREA)

Abstract

 燃焼炎の輻射熱による溶解対象物の加熱及び燃焼炎の輻射熱による溶解炉の天井部の加熱の夫々を良好に行うことができる溶解炉用の燃焼装置を提供する。溶解槽2における溶解対象物存在領域の上方の燃焼空間にガス燃料を噴出する燃料噴出ノズル12に、燃料噴出方向視において複数の燃料噴出孔13、14を水平方向に並ぶ状態で備える複数の燃料噴出部F1、F2が、上下方向に並べて形成され、複数の燃料噴出部F1、F2の燃料噴出孔13、14が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔13の燃料噴出方向と最も下方の燃料噴出孔14の燃料噴出方向との間の角度範囲における中央の角度に沿う方向Bが斜め上方となる状態に形成され、複数の燃料噴出部F1、F2のうち、上方側の燃料噴出部F1における燃料噴出孔13が、平面視にて放射状に並ぶ状態に形成されている。

Description

溶解炉用の燃焼装置及び溶解炉
 本発明は、溶解槽における溶解対象物存在領域の上方の燃焼空間にガス燃料を噴出する燃料噴出ノズルが、前記燃焼空間の横側箇所からガス燃料を噴出するように設けられ、前記燃焼空間に対して燃焼用空気を斜め下向きに供給する燃焼用空気供給部が、前記燃料噴出ノズルの上部箇所に設けられた溶解炉用の燃焼装置、及び、その溶解炉用の燃焼装置を備えた溶解炉に関する。
 かかる溶解炉用の燃焼装置は、ガラスや金属等の溶解対象物を溶解する溶解炉に用いられるものである。そして、このような溶解炉用の燃焼装置を装備した溶解炉としては、溶解炉用の燃焼装置が、溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、溶解層の横側部に並べられた、いわゆるサイドポート型の溶解炉がある。
 このような溶解炉用の燃焼装置として、燃料噴出ノズルに、燃料噴出方向視において複数の燃料噴出孔を水平方向に並ぶ状態で備える燃料噴出部が、上下方向の一箇所に設けられ、複数の燃料噴出孔が、平面視にて、放射状に形成されたものがある(例えば、特許文献1参照)。
日本国特開2004-301369号公報(図3、図4、図9)
 従来の溶解炉用の燃焼装置では、燃料噴出ノズルには、複数の燃料噴出孔を水平方向に並ぶ状態で備える燃料噴出部が上下方向の一箇所にのみ設けられるものであるため、溶解対象物を効率良く加熱できないものであった。
 すなわち、燃料噴出ノズルから噴出されたガス燃料を燃焼用空気供給部から供給される空気により燃焼させると、その燃焼炎による輻射熱にて溶解対象物が加熱されることになる。燃焼炎による輻射熱により、溶解炉の天井部も加熱されることになり、加熱された溶解炉の天井部の輻射熱にても溶解対象物が加熱されることになる。
 つまり、溶解対象物は、燃焼炎の輻射熱と溶解炉の天井部の輻射熱とによって加熱されることになるものであるから、燃焼炎の輻射熱にて溶解対象物を加熱することと、燃焼炎の輻射熱にて溶解炉の天井部を加熱することの両者が良好に行われることが望まれるものとなる。
 しかしながら、従来の溶解炉用の燃焼装置は、燃料噴出ノズルには、複数の燃料噴出孔を水平方向に並ぶ状態で備える燃料噴出部が上下方向の一箇所にのみ設けられるものである。燃料噴出ノズルから噴出されたガス燃料を燃焼用空気供給部から供給される燃焼用空気により燃焼させたときに生成される燃焼炎は、上下方向の幅が狭い状態となり、溶解対象物を燃焼炎の輻射熱にて加熱することと、溶解炉の天井部を燃焼炎の輻射熱にて加熱することの両者が良好に行われ難いものであり、改善が望まれるものであった。
 ちなみに、燃焼炎が上下方向の幅が狭い状態となる場合においては、溶解炉の内部にて放出される熱量が少なくなり、煙道を流動する燃焼排ガスの温度が高くなるものとなる。
 また、溶解炉用の燃焼装置が、溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、溶解層の横側部に並べられた溶解炉においては、投入口に近い箇所では、溶解前の溶解対象物が上下方向に凹凸する状態で存在し、取出口に近い箇所では、溶解された溶解対象物が上面を平坦状とする状態で存在し、投入口と取出口との間の中間箇所では、溶解途中の溶解対象物が投入口に近い箇所よりも大きくはないものの、上下方向に凹凸する状態で存在するものとなる。
 したがって、投入口に近い箇所では、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。取出口に近い箇所では、燃焼炎にて溶解対象物の全体を均一に加熱できるようにすべく、燃焼炎が溶解対象物の上面に沿って大きく伸びることが好ましいものとなる。投入口と取出口との間の中間箇所では、投入口に近い箇所より大きく上向きにする必要はないものの、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。
 このため、従来の溶解炉用の燃焼装置においては、投入口に近い箇所と取出口に近い箇所とで、燃料噴出ノズルの設置角度を変えるようにして、燃焼炎の形成状態を変更させることが行われている。燃料噴出ノズルの設置角度を変えるようにすると、燃焼装置の設置作業が煩雑となるものであった。
 本発明は、上記実情に鑑みて為されたものであって、その目的は、燃焼炎の輻射熱による溶解対象物の加熱及び燃焼炎の輻射熱による溶解炉の天井部の加熱の夫々を良好に行うことができる溶解炉用の燃焼装置を提供する点にある。
 また、本発明の別の目的は、燃焼装置の設置作業の簡略化を図りながらも、加熱に適した燃焼炎を形成できる溶解炉を提供する点にある。
 本発明の溶解炉用の燃焼装置は、溶解槽における溶解対象物存在領域の上方の燃焼空間にガス燃料を噴出する燃料噴出ノズルが、前記燃焼空間の横側箇所からガス燃料を噴出するように設けられ、
 前記燃焼空間に対して燃焼用空気を斜め下向きに供給する燃焼用空気供給部が、前記燃料噴出ノズルの上部箇所に設けられたものであって、その第1特徴構成は、
 前記燃料噴出ノズルに、燃料噴出方向視において複数の燃料噴出孔を水平方向に並ぶ状態で備える複数の燃料噴出部が、上下方向に並べて形成され、
 前記複数の燃料噴出部の燃料噴出孔が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔の燃料噴出方向と最も下方の燃料噴出孔の燃料噴出方向との間の角度範囲における中央の角度に沿う方向が斜め上方となる状態に形成され、
 前記複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、平面視にて放射状に並ぶ状態に形成され、かつ、下方側の燃料噴出部における燃料噴出孔が、平面視にて、放射状に並ぶ状態又は平行状に並ぶ状態に形成されている点を特徴とする。
 すなわち、燃料噴出ノズルに上下方向に並べて形成された複数の燃料噴出部の燃料噴出孔が、側面視において、放射状に並ぶ状態に形成されているから、ガス燃料が上下に拡がる放射状に噴出されるため、上下に拡がる燃焼炎が形成されることになる。
 そして、複数の燃料噴出部の燃料噴出孔が、側面視にて、放射状に並ぶ状態に形成されるに加えて、最も上方の燃料噴出孔の燃料噴出方向と最も下方の燃料噴出孔の燃料噴出方向との間の角度範囲における中央の角度に沿う方向が斜め上方となる状態に形成されている。上下に拡がる放射状に噴出されるガス燃料は、全体として見れば、斜め上方に向けて噴出されるため、斜め上方に向けて伸びる燃焼炎が形成されるものとなる。
 したがって、燃料噴出ノズルに上下方向に並べて形成された複数の燃料噴出部の燃料噴出孔から噴出されたガス燃料が燃焼用空気供給部から供給された空気によって燃焼して形成される燃焼炎は、全体としては斜め上方に向けて伸びる状態で、上下に拡がる状態となる。全体としては斜め上方に向けて伸びることにより、溶解対象物に接触することが回避されながらも、上下に拡がることにより、燃焼炎の輻射熱にて溶解対象物を加熱することと、燃焼炎の輻射熱にて溶解炉の天井部を加熱することの両者を良好に行うことができる。
 ちなみに、側面視にて放射状に形成される複数の燃料噴出部の燃料噴出孔のうちの、最も上方の燃料噴出孔の燃料噴出方向と最も下方の燃料噴出孔の燃料噴出方向との間の角度範囲における中央の角度に沿う方向が斜め上方となる状態とは、次の三つの場合がある。
 第1の場合は、複数の燃料噴出孔の全てが斜め上方に向かう状態に形成される場合である。第2の場合は、複数の燃料噴出孔のうちの、最も下方の燃料噴出孔の燃料噴出方向が水平方向であり、残りの燃料噴出孔の全てが斜め上方に向かう状態に形成される場合である。
 第3の場合は、複数の燃料噴出孔のうちの、下方側の1つ又は複数の燃料噴出孔の燃料噴出方向が斜め下向きであり、燃料噴出方向が斜め下向きである燃料噴出孔を除いた燃料噴出孔の全てが斜め上方に向かう状態、あるいは、燃料噴出方向が斜め下向きである燃料噴出孔を除いた燃料噴出孔のうちの、最も下方の燃料噴出孔の燃料噴出方向が水平方向であり、残りの燃料噴出孔の全てが斜め上方に向かう状態に形成される場合である。
 第3の場合のように、燃料噴出方向が下向きである燃料噴出孔を備えさせる必要がある場合とは、溶解槽における溶解対象物存在領域と燃料噴出ノズルの設置箇所との間の上下間隔が大きいときが考えられるものである。そして、下方側の燃料噴出孔の燃料噴出方向を斜め下向きに向ける際に、どの程度下向きに向けるかは、溶解槽における溶解対象物存在領域と燃料噴出ノズルとの間の上下間隔に応じて決めることになる。
 しかも、第1特徴構成によれば、複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、平面視にて放射状に並ぶ状態に形成され、かつ、下方側の燃料噴出部における燃料噴出孔が、平面視にて、放射状に並ぶ状態又は平行状に並ぶ状態に形成されている。したがって、不必要に上方に伸びる燃焼炎が形成されることを抑制して、燃焼炎の輻射熱にて溶解対象物を加熱することと、燃焼炎の輻射熱にて溶解炉の天井部を加熱することの両者を適切に行えるものとなる。
 すなわち、一般に、ガス燃料を燃焼用空気にて燃焼させる場合には、例えば、燃焼用空気供給部から斜め下向きに供給される燃焼用空気の供給速度が、8~15m/Sであるのに対して、燃料噴出ノズルから噴出されるガス燃料の噴出速度が、30~50m/Sとなる等、ガス燃料の噴出速度が燃焼用空気の供給速度よりも数倍速いものとなる。
 このようにガス燃料の噴出速度が燃焼用空気の供給速度よりも数倍速いものではあるもの、複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、平面視にて放射状に並ぶ状態に形成されている。したがって、噴出されるガス燃料が左右方向に分散されるものとなるため、噴出されるガス燃料が燃焼用空気供給部から供給される燃焼用空気を押し上げる状態で燃焼することを回避して、不必要に上方に伸びる燃焼炎が形成されることを抑制できるものとなる。
 ちなみに、複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、平面視にて平行状に並ぶ状態に形成されていると、噴出されるガス燃料が左右方向に分散されることなく集中して流動するため、燃焼用空気を押し上げる状態で燃焼する。その結果、不必要に上方に伸びる燃焼炎が形成されるものとなり、溶解炉の天井に接触して、その天井を早期に損傷させる等の不都合を招く虞があり、燃焼炎の輻射熱にて溶解対象物を加熱することと、燃焼炎の輻射熱にて溶解炉の天井部を加熱することの両者を適切に行えないものとなる。
 そして、複数の燃料噴出部のうち、下方側の燃料噴出部における燃料噴出孔から噴出さされるガス燃料は、上方側の燃料噴出部における燃料噴出孔から噴出されるガス燃料よりも下向きであり、燃焼用空気を押し上げることが少ないものである。したがって、必要とする加熱状況に合わせて、下方側の燃料噴出部における燃料噴出孔が、平面視にて、放射状に並ぶ状態又は平行状に並ぶ状態に形成されることになる。
 ちなみに、下方側の燃料噴出部における燃料噴出孔を、平面視にて、放射状に並ぶ状態に形成すると、横幅方向に拡がった燃焼炎を形成できるものとなる。下方側の燃料噴出部における燃料噴出孔を、平面視にて、平行状に並ぶ状態に形成すると、ガス燃料の噴出方向に十分に伸びる燃焼炎を形成できるものとなる。
 要するに、本発明の第1特徴構成によれば、燃焼炎の輻射熱による溶解対象物の加熱及び燃焼炎の輻射熱による溶解炉の天井部の加熱の夫々を良好に行うことができる溶解炉用の燃焼装置を提供できる。
 本発明の第2特徴構成は、上記第1特徴構成に加えて、
 前記複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、下方側の燃料噴出部における燃料噴出孔よりも、大径に形成されている点を特徴とする。
 すなわち、複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、下方側の燃料噴出部における燃料噴出孔よりも、大径に形成されているから、複数の燃料噴出部のうちの上方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料の噴出速度を、複数の燃料噴出部のうちの下方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料の噴出速度よりも低速にできる。
 このように、複数の燃料噴出部のうちの上方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料の噴出速度を、複数の燃料噴出部のうちの下方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料の噴出速度よりも低速にすることにより、複数の燃料噴出部のうちの上方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料が、燃焼用空気供給部から供給される燃焼用空気を押し上げる状態で燃焼することを的確に回避できるものとなる。
 要するに、本発明の第2特徴構成によれば、上記第1特徴構成による作用効果に加えて、複数の燃料噴出部のうちの上方側の燃料噴出部の燃料噴出孔から噴出されるガス燃料が、燃焼用空気供給部から供給される燃焼用空気を押し上げる状態で燃焼することを的確に回避できる溶解炉用の燃焼装置を提供できる。
 本発明の第3特徴構成は、上記第1特徴構成又は第2特徴構成に加えて、
 前記上下複数段の燃料噴出部に対するガス供給比率を変更調節する変更調節手段が設けられている点を特徴とする。
 すなわち、変更調節手段により上下複数段の燃料噴出部に対するガス供給比率を変更調節するできるものとなる。
 つまり、上下複数段の燃料噴出部のうちの上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態、上下複数段の燃料噴出部のうちの下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態、及び、上下複数段の燃料噴出部のうちの上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同じになる状態に調節できるものとなる。
 尚、上下複数段の燃料噴出部のうちの上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同じになる状態とは、両者のガス燃料の噴出量が同一である場合のみではない。例えば、燃料噴出ノズルから噴出されるガス燃料の噴出量の5%に相当する範囲で上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が相違する場合を含むものである。つまり、上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が略同じとなる状態をも含むものである。
 そして、上下複数段の燃料噴出部のうちの上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にすると、燃焼炎が斜め上方側に伸びる状態となる。上下複数段の燃料噴出部のうちの下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にすると、燃焼炎が水平方向に向かう長さの大きい状態となる。
 また、上下複数段の燃料噴出部のうちの上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同じになる状態にすると、上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも大きく上方に向かないものの、燃焼炎が斜め上方側に伸び、且つ、下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも長くはならないものの、燃焼炎の水平方向に向かう長さが大きくなる状態となる。
 したがって、溶解炉用の燃焼装置を、溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、溶解層の横側部に並べる溶解炉を構成する場合において、その溶解炉用の燃焼装置として設置すれば、その溶解炉において望まれる燃焼炎を形成することができるものなる。
 つまり、投入口に近い箇所では、溶解前の溶解対象物が上下方向に凹凸する状態で存在するため、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましい。投入口に近い箇所に設置するときには、上下複数段の燃料噴出部のうちの上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にすれば、斜め上方側に伸びる状態の燃焼炎を形成できることになる。
 また、取出口に近い箇所では、溶解された溶解対象物が上面を平坦状とする状態で存在するため、燃焼炎にて溶解対象物の全体を均一に加熱できるようにすべく、燃焼炎が溶解対象物の上面に沿って大きく伸びることが好ましい。取出口に近い箇所に設置するときには、上下複数段の燃料噴出部のうちの下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にすれば、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できることになる。
 さらに、投入口と取出口との間の中間箇所では、溶解途中の溶解対象物が投入口に近い箇所よりも大きくはないものの、上下方向に凹凸する状態で存在するものとなるため、投入口に近い箇所より大きく上向きにする必要はないものの、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましい。投入口と取出口との間の中間箇所に設置するときには、上下複数段の燃料噴出部のうちの上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同じになる状態にすれば、上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも大きく上方に向かないものの、斜め上方側に伸びる状態の燃焼炎を形成でき、且つ、下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも長くはならないものの、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できるものとなる。
 要するに、本発明の第3特徴構成によれば、上記第1又は第2特徴構成による作用効果に加えて、溶解槽に対する設置位置に応じた燃焼炎を形成できる溶解炉用の燃焼装置を提供できる。
 本発明の溶解炉は、上記第1特徴構成~第3特徴構成のいずれかに記載の溶解炉用の燃焼装置が、前記溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、前記溶解層の横側部に3つ以上並べて設けられ、
 並べて設けられる複数の燃焼装置のうちの、前記投入口に近い燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部の方が下方側の燃料噴出部よりも多くなるように設定され、
 並べて設けられる複数の燃焼装置のうちの、前記投入口と前記取出口との間の中間の燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部と下方側の燃料噴出部とが同じになるように設定され、
 並べて設けられる複数の燃焼装置のうちの、前記取出口に近い燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、下方側の燃料噴出部の方が上方側の燃料噴出部よりも多くなるように設定されている点を特徴とする。
 すなわち、並べて設けられる複数の燃焼装置のうちの、投入口に近い燃焼装置は、燃料噴出ノズルにおける上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部の方が下方側の燃料噴出部よりも多くなるように設定されているから、上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態となり、燃焼炎が斜め上方側に伸びる状態となる。
 また、並べて設けられる複数の燃焼装置のうちの、取出口に近い燃焼装置は、燃料噴出ノズルにおける上下複数段の燃料噴出部に対するガス供給比率が、下方側の燃料噴出部の方が上方側の燃料噴出部よりも多くなるように設定されているから、下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態となり、燃焼炎の水平方向に向かう長さが大きくなる状態となる。
 さらに、並べて設けられる複数の燃焼装置のうちの、投入口と取出口との間の中間の燃焼装置の燃料噴出ノズルにおける上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部と下方側の燃料噴出部とが同じになるように設定されているから、上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同じになる状態となる。上方側の燃料噴出部の方が下方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも大きく上方に向かないものの、燃焼炎が斜め上方側に伸び、且つ、下方側の燃料噴出部の方が上方側の燃料噴出部よりもガス燃料の噴出量が多くなる状態にする場合よりも長くはならないものの、燃焼炎の水平方向に向かう長さが大きくなる状態となる。
 尚、並べて設けられる複数の燃焼装置のうちの、前記投入口と前記取出口との間の中間の燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部と下方側の燃料噴出部とが同じになるように設定するとは、上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が同一となる状態に設定する場合のみではない。例えば、燃料噴出ノズルから噴出されるガス燃料の噴出量の5%に相当する範囲で上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が相違するように設定する場合を含むものである。つまり、上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が略同じとなる状態となるように設定する場合をも含むものである。
 そして、投入口に近い箇所では、溶解前の溶解対象物が上下方向に凹凸する状態で存在するため、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。投入口に近い燃焼装置にて、斜め上方側に伸びる状態となる燃焼炎を形成できるものとなる。
 また、取出口に近い箇所では、溶解された溶解対象物が上面を平坦状とする状態で存在するため、燃焼炎にて溶解対象物の全体を均一に加熱できるようにすべく、燃焼炎が溶解対象物の上面に沿って大きく伸びることが好ましいものとなる。取出口に近い燃焼装置にて、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できることになる。
 さらに、投入口と取出口との間の中間箇所では、溶解途中の溶解対象物が投入口に近い箇所よりも大きくはないものの、上下方向に凹凸する状態で存在するものとなるため、投入口に近い箇所より大きく上向きにする必要はないものの、燃焼炎が溶解対象物に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。投入口と取出口との間の中間の燃焼装置にて、投入口に近い燃焼装置にて形成される燃焼炎よりも大きく上方に向かないものの、斜め上方側に伸びる状態の燃焼炎を形成でき、且つ、取出口に近い燃焼装置にて形成される燃焼炎よりも長くはならないものの、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できるものとなる。
 したがって、溶解炉用の燃焼装置を、溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、溶解層の横側部に並べる溶解炉を構成する場合において、その溶解炉において望まれる燃焼炎を形成することができるものとなる。
 しかも、燃料噴出ノズルにおける上下複数段の燃料噴出部に対するガス供給比率を、溶解炉用の燃焼装置の溶解槽に対する設置位置に応じて設定することにより、溶解槽に対する設置位置に応じた燃焼炎を形成するものであるから、溶解槽の横側部に並置する複数の溶解炉用の燃焼装置は、同じ状態に設置すれば良いものとなり、燃焼装置の設置作業の簡素化が図れるものとなる。
 ちなみに、燃料噴出ノズルにおける上下複数段の燃料噴出部に対するガス供給比率を、溶解炉用の燃焼装置の溶解槽に対する設置位置に応じて設定するにあたり、第3特徴構成の溶解炉用の燃焼装置の場合には、上下複数段の燃料噴出部に対するガス供給比率を変更調節する変更調節手段にて、ガス供給比率を設定できるものとなる。このような変更調節手段を備えない場合には、上下複数段の燃料噴出部に対するガス燃料の供給路に、ガス供給比率を設定するための絞りを配置する等により、ガス供給比率を設定できる。
 要するに、本発明の溶解炉は、燃焼装置の設置作業の簡略化を図りながらも、加熱に適した燃焼炎を形成できる溶解炉を提供できる。
ガラス溶解炉の縦断正面図 図1のイ-イ矢視図 ガラス溶解炉の縦断正面図 ガラス溶解炉の縦断正面図 ガラス溶解炉における要部の側面図 燃料供給部の一部切欠側面図 図6のロ-ロ矢視図 燃料噴出ノズルの正面図 別実施形態の燃料供給部の一部切欠側面図 別実施形態の燃料噴出ノズルの正面図 別実施形態の燃料供給部の一部切欠側面図 別実施形態の燃料噴出ノズルの正面図 別実施形態の燃料供給部の一部切欠側面図 別実施形態の燃料噴出ノズルの正面図 実験装置の概略正面図 実験装置の概略側面図 天井温度についての実験結果を示す図 床面温度についての実験結果を示す図 煙道温度についての実験結果を示す図
〔実施形態〕
 以下、本発明の実施形態を図面に基づいて説明する
 図1及び図2に示すように、溶解炉としてのガラス溶解炉は、天井がアーチ型に形成された炉本体1の下部に、平面視にて矩形状の溶解槽2を備えている。溶解槽2を区画形成する炉壁4における前面部に、溶解対象物としてのガラス原料を投入する投入口4iが形成され、炉壁4における後面部に、溶解ガラスを取り出す取出口4eが形成され、取出口4eを形成した炉壁部分の外部に、取出口4eにて溶解槽2と連通する作業槽3が設けられている。溶解槽2における溶解対象物存在領域の上方の燃焼空間にてガス燃料を燃焼させる溶解炉用の燃焼装置Nが、溶解槽2の両横側部に設けられている。溶解炉としてのガラス溶解炉は、投入口4iから投入したガラス原料を、溶解槽2にて溶解させながら作業槽3に向かって流動させて、取出口4eを通して清浄な溶解ガラスを作業槽3に導くように構成されている。
 燃焼装置Nは、溶解槽2の左右両横側部の夫々に、投入口4iと取出口4eとが並ぶ方向(ガラス原料の流動方向)に沿って、3個ずつ並ぶ状態で設けられている。そして、左側の3個の燃焼装置Nと、右側の3個の燃焼装置Nとが、一定時間(例えば、約15~30分)毎に、交互に燃焼するように構成されている。
 炉本体1の左右の横外側部の夫々に、溶解槽前後方向に延びる蓄熱室Tが設けられており、燃焼装置Nは、後述の如く、蓄熱室Tを通って高温(1000~1200℃)に予熱された燃焼用空気Aにてガス燃料を燃焼させるように構成されている。
 蓄熱室Tは、燃焼装置Nによる燃焼が行われた後の排ガスEが通過することにより、その排ガスEが保有する熱を蓄熱するように構成されている。
 燃焼装置Nの夫々は、図5にも示すように、燃焼空間の横側箇所からガス燃料を燃焼空間に噴出する燃料供給部Wと、その燃料供給部Wの上方箇所に設けられて、燃焼空間に対して燃焼用空気を斜め下向きに供給する燃焼用空気供給部Kとを備えている。
 燃焼用空気供給部Kは、炉壁4に開口した空気口5と、蓄熱室Tと空気口5とを連通する空気供給路6とから構成され、上述の如く、蓄熱室Tを通って高温に予熱された燃焼用空気Aを、ガス燃料の燃焼域に供給するように構成されている。尚、燃焼用空気Aの供給速度は、例えば、8~15m/Sである。
 空気供給路6の断面形状及びその先端の空気口5の形状は、図5に示すように、下縁が直線状で且つその直線状の下縁の両端を結ぶ上方に突出する湾曲状の上縁を備える状態に形成されたカマボコ状である。
 そして、空気供給路6の下縁部分は、側面視にて、水平方向に対して10度傾斜し、空気供給路の上縁の頂部部分は、側面視にて、水平方向に対して20度傾斜するように形成されている。
 図1に示すように、送風機Sの空気を左右の蓄熱室Tの一方に供給し且つ他方の蓄熱室Tから排出される排ガスEを外部に排出する状態と、送風機Sの空気を左右の蓄熱室Tの他方に供給し且つ一方の蓄熱室Tから排出される排ガスを外部に排出する状態とに切換える流路切換機構Vが設けられている。この流路切換機構Vにより、左側の3個の燃焼装置Nに燃焼用空気を供給する状態と、右側の3個の燃焼装置Nに燃焼用空気を供給する状態とに切換えることにより、上述の如く、左側の3個の燃焼装置Nを燃焼させる状態と右側の3個の燃焼装置Nを燃焼させる状態とに切換えるように構成されている。
 図6に示すように、燃料供給部Wが、ガス燃料供給源からガス燃料が供給されるガス供給管部10、そのガス供給管部10の先端に接続されたガス供給室部11、及び、そのガス供給室部の先端に接続されて、燃焼空間にガス燃料を噴出する燃料噴出ノズル12を備えて構成されている。
 つまり、燃料供給部Wは、ガス供給管部10、ガス供給室部11、及び、燃料噴出ノズル12を一体的に組み付けたユニット状に構成されている。そして、燃料供給部Wは、燃料噴出ノズル12を炉壁4の装着孔4sに挿入させた状態で、炉壁4に取り付けられている。
 ちなみに、燃料供給部Wは、ガス供給管部10の長手方向が、水平方向に対して5~15度上向きに傾斜するように取り付けられることになる。尚、本実施形態の例示図においては、10度上向きに傾斜している。
 燃料噴出ノズル12には、図8にも示すように、2つの燃料噴出部F1、F2が、上下方向に並べて形成され、その2つの燃料噴出部F1、F2の夫々は、燃料噴出方向視において複数の燃料噴出孔13、14を水平方向に並ぶ状態で備えている。
 そして、2つの燃料噴出部F1、F2の燃料噴出孔13、14が、側面視において、放射状に並ぶ状態に形成されている。
 また、2つの燃料噴出部F1、F2の燃料噴出孔13、14の燃料噴出方向が、いずれも、斜め上方となる状態に形成されて、最も上方の燃料噴出孔としての上方の燃料噴出孔13の燃料噴出方向と最も下方の燃料噴出孔としての下方の燃料噴出孔14の燃料噴出方向との間の角度範囲における中央の角度に沿う方向(以下、中央方向と略称)Bが斜め上方となる状態に形成されている
 また、図7に示すように、2つの燃料噴出部F1、F2のうち、下方側の燃料噴出部F2における燃料噴出孔14が、平面視にて、放射状に並ぶ状態に形成され、同様に、上方側の燃料噴出部F1における燃料噴出孔13が、平面視にて放射状に並ぶ状態に形成されている。
 2つの燃料噴出部のうち、上方側の燃料噴出部F1における燃料噴出孔13が、下方側の燃料噴出部F2における燃料噴出孔14よりも、10%の範囲内で大径に形成されている。
 尚、2つの燃料噴出部F1、F2の燃料噴出孔13、14は、孔の長さが孔の直径よりも2倍以上になるように形成されている。
 ガス供給室部11は、図6及び図7に示すように、燃料噴出ノズル12における2つの燃料噴出部F1、F2に合わせて、2つの燃料供給室G1、G2を備える状態に区画形成されている。
 具体的には、4角筒状の本体部11Aの先端部が、燃料噴出ノズル12の背面部に接続され、円筒状の本体部11Aの背部には、ガス供給管部10が接続される背壁部11Bが設けられている。そして、4角筒状の本体部11Aの内部が、仕切り壁11Cにて上下に区画形成されている。
 ガス供給管部10は、ガス供給管(図示せず)の接続部から2股状に分岐する基端側管部10A、及び、ガス供給室部11における2つの燃料供給室G1、G2に各別に接続される一対の管路部分10Bを主要部として構成され、基端側管部分10Aと一対の管路部分10Bとの間には、流量調整弁R1、R2が配設されている。
 燃料噴出ノズル12における2つの燃料噴出部F1、F2に対するガス供給比率を変更調節する変更調節手段Hが設けられている。
 この変更調整手段Hは、基端側管部10Aと一対の管路部分10Bとの間に配設された流量調整弁R1、R2を用いて構成されている。
 つまり、一対の流量調整弁R1、R2が連結軸20にて一体的に(同時に)開閉されるように連係され、それら流量調整弁R1、R2を一体的に(同時に)開閉操作する往復揺動操作式の操作レバー21が設けられている。さらに、一対の流量調整弁R1、R2が、操作レバー21を一方側に揺動させるほど、一方側の開度が大きくなって他方側の開度が小さくなり、且つ、操作レバー21を他方側に揺動させるほど、他方側の開度が大きくなって一方側の開度が小さくなるように、開度が逆方向に変更されるように構成されている。
 そして、溶解槽2の左右両横側部の夫々に3個ずつ並ぶ状態で設けられる燃焼装置Nの燃料噴出ノズル12における2つの燃料噴出部F1、F2に対するガス供給比率が、変更調節手段Hによって、下記の如く設定されている。
 つまり、投入口4iと取出口4eとが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けられる3つの燃焼装置Nのうちの、投入口4iに近い燃焼装置Nの燃料噴出ノズル12における2つの燃料噴出部F1、F2に対するガス供給比率が、上方側の燃料噴出部F1の方が下方側の燃料噴出部F2よりも多くなるように設定されている。具体的には、8:2の比率となるように設定されている。
 また、投入口4iと取出口4eとが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けられる3つの燃焼装置Nのうちの、投入口4iと取出口4eとの間の中間の燃焼装置Nにおける燃料噴出ノズル12の2つの燃料噴出部F1、F2に対するガス供給比率が、上方側の燃料噴出部F1と下方側の燃料噴出部F2とが同じになるように設定されている。
 尚、2つの燃料噴出部F1、F2に対するガス供給比率が、上方側の燃料噴出部F1と下方側の燃料噴出部F2とが同じになるように設定するとは、上方側の燃料噴出部F1と下方側の燃料噴出部F2とのガス燃料の噴出量が同一となる状態に設定する場合のみではない。例えば、燃料噴出ノズルから噴出されるガス燃料の噴出量の5%に相当する範囲で上方側の燃料噴出部F1と下方側の燃料噴出部F2とのガス燃料の噴出量が相違するように設定する場合を含むものである。つまり、上方側の燃料噴出部と下方側の燃料噴出部とのガス燃料の噴出量が略同じとなる状態となるように設定する場合をも含むものである。
 さらに、投入口4iと取出口4eとが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けられる3つの燃焼装置のうちの、取出口4eに近い燃焼装置Nの燃料噴出ノズル12における2つの燃料噴出部F1、F2に対するガス供給比率が、下方側の燃料噴出部の方が上方側の燃料噴出部よりも多くなるように設定されている。具体的には、3:7になるように設定されている。
 したがって、図1~図4に示すように、投入口4iに近い燃焼装置Nによって形成される火炎が、投入口4iと取出口4eとの間の中間の燃焼装置Nに形成される火炎よりも短く、その中間の燃焼装置Nに形成される火炎が、取出口4eに近い燃焼装置Nよりも短くなるように、各燃焼装置Nにて形成される火炎の長さが変わることになる。
 また、投入口4iに近い燃焼装置Nによって形成される火炎は、図1に示すように、下方側には拡がることなく、上方に拡がる傾向となる。取出口4eに近い燃焼装置Nによって形成される火炎は、図4に示すように、上方には拡がることなく、溶解槽2における溶解対象物存在領域に沿って、大きく伸びるものとなる。
 そして、投入口4iと取出口4eとの間の中間の燃焼装置Nに形成される火炎は、図3に示すように、投入口4iに近い燃焼装置Nによって形成される火炎よりも上向きとなることはないが、取出口4eに近い燃焼装置Nによって形成される火炎よりも上を向く形状に形成されることになる。
 したがって、投入口4iに近い箇所では、溶解前の溶解対象物(ガラス原料)が上下方向に凹凸する状態で存在するため、燃焼炎が溶解対象物(ガラス原料)に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。投入口4iに近い燃焼装置Nにて、斜め上方側に伸びる状態となる燃焼炎を形成できるものとなる。
 また、取出口4eに近い箇所では、溶解された溶解対象物(ガラス原料)が上面を平坦状とする状態で存在するため、燃焼炎にて溶解対象物(ガラス原料)の全体を均一に加熱できるようにすべく、燃焼炎が溶解対象物の上面に沿って大きく伸びることが好ましいものとなる。取出口4eに近い燃焼装置Nにて、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できることになる。
 さらに、投入口4iと取出口4eとの間の中間箇所では、溶解途中の溶解対象物(ガラス原料)が投入口4iに近い箇所よりも大きくはないものの、上下方向に凹凸する状態で存在するものとなるため、投入口4iに近い箇所より大きく上向きにする必要はないものの、燃焼炎が溶解対象物(ガラス原料)に接触することを回避すべく、燃焼炎が斜め上方側に伸びることが好ましいものとなる。投入口4iと取出口4eとの間の中間の燃焼装置Nにて、投入口4iに近い燃焼装置Nにて形成される燃焼炎よりも大きく上方に向かないものの、斜め上方側に伸びる状態の燃焼炎を形成でき、且つ、取出口4eに近い燃焼装置Nにて形成される燃焼炎よりも長くはならないものの、水平方向に向かう長さが大きくなる状態の燃焼炎を形成できるものとなる。
 要するに、溶解槽2における原料を投入する投入口4iと溶解物を取り出す取出口4eとが並ぶ方向に沿って並ぶ3つの燃焼装置Nの夫々が、その溶解炉において望まれる燃焼炎を形成することになる。
〔実験結果について〕
 次に、上記実施形態で述べた燃焼噴出部Wを、図15及び図16に示すように、実験用加熱炉30に装備し燃焼させた場合の実験結果を説明する。
 実験加熱炉30は、奥行きDが8.8mであり、高さYが1.6mであり、そして、横幅Lが1.8mである。
 燃焼用空気Aを供給する空気口31及びその空気口31に続く空気供給路32の断面形状は、図16に示すように横長の長方形状である。具体的には、横幅が0.9mであり、高さが0.45mであり、空気供給路32の下面が、水平方向に対して10度傾斜し、上面が水平方向に対して20度傾斜している。
 燃焼用空気Aとしては、1000℃の空気が、4m/Sで供給されるものとする。
 煙道33には、排気抵抗を調節するダンパ34が設けられている。また、加熱炉30の底部は単なる床面35に形成されている。
 このような実験設備において、燃料供給部Wが備える変更調節手段Hにより、燃料噴出ノズル12における2つの燃料噴出部F1、F2に対するガス供給比率を、上方側の燃料噴出部F1の方が下方側の燃料噴出部F2よりも多くなるように、具体的には、8:2の比率となるように設定する状態(以下、上向セッティングと略称)、上方側の燃料噴出部F1と下方側の燃料噴出部F2とが同じになるように設定する状態(以下、標準セッティングと略称)、及び、下方側の燃料噴出部F2の方が上方側の燃料噴出部F2よりも多くなるように、具体的には、3:7になるように設定する状態(以下、下向きセッティングと略称)に切換えて燃焼させて、実験用加熱炉30の床温度、天井温度、煙道温度を計測したところ、図17~図19の結果となった。
 この実験結果にて、燃焼装置Nにて形成される火炎が、床及び天井を適切に加熱することが分かった。
 ちなみに、下向きセッティングにおいては、煙道温度が高温となる。その理由は、火炎が床面35に沿って大きく伸びる状態となり、天井を効率よく加熱することなく、煙道に流れる込むことによるものである。
 尚、煙道33を流動する排ガスのNOxを計測した結果、許容できる濃度となる結果も得た。
 上記実験結果により、上記実施形態にて詳細に述べた如く、溶解槽2における原料を投入する投入口4iと溶解物を取り出す取出口4eとが並ぶ方向に沿って並ぶ燃焼装置Nの夫々が、その溶解炉において望まれる燃焼炎を形成することを検証できた。
〔燃料供給部の別実施形態〕
 次に、燃料供給部Wの別実施形態を説明する。
 図9及び図10に示すように、この別実施形態においては、上記実施形態と同様に、燃料噴出ノズル12には、2つの燃料噴出部F1、F2が、上下方向に並べて形成されている。そして、2つの燃料噴出部F1、F2の燃料噴出孔13、14が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔としての上方の燃料噴出孔13の燃料噴出方向と最も下方の燃料噴出孔としての下方の燃料噴出孔14の燃料噴出方向との間の角度範囲における中央の角度に沿う方向(以下、中央方向と略称)Bが斜め上方となる状態に形成されている点において、上記実施形態と同様である。
 また、2つの燃料噴出部F1、F2の複数の燃料噴出孔13、14の夫々が、平面視にて放射状に並ぶ状態で備えられている点も、上記実施形態と同様である。
 上記実施形態と異なる点は、その2つの燃料噴出部F1、F2のうちの上方の燃料噴出部F1の燃料噴出孔13の燃料噴出方向が、斜め上向きであるのに対して、下方の燃料噴出部F2の燃料噴出孔14の燃料噴出方向が、斜め上向きではあるものの、水平方向に近い方向である点である。
 図11及び図12に示すように、この実施形態では、燃料噴出ノズル12には、3つの燃料噴出部F1、F2、F3が、上下方向に並べて形成されている。3つの燃料噴出部F1、F2、F3の夫々は、燃料噴出方向視において複数の燃料噴出孔13、14、15を水平方向に並ぶ状態で備えている。また、3つの燃料噴出部F1、F2、F3の複数の燃料噴出孔13、14、15の夫々が、平面視にて放射状に並ぶ状態に形成されている。
 そして、3つの燃料噴出部F1、F2、F3の燃料噴出孔13、14、15が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔としての上方の燃料噴出孔13の燃料噴出方向と最も下方の燃料噴出孔としての下方の燃料噴出孔15の燃料噴出方向との間の角度範囲における中央の角度に沿う方向(以下、中央方向と略称)Bが斜め上方となる状態に形成されている。
 3つの燃料噴出部F1、F2、F3のうちの上方の燃料噴出部F1及び上下中間の燃料噴出部F2の燃料噴出孔13、14の燃料噴出方向が、斜め上向きであるのに対して、下方の燃料噴出部F3の燃料噴出孔15の燃料噴出方向が、斜め上向きではあるものの、水平方向に近い方向である。
 また、この実施形態においては、ガス供給管部10に、3つの管部分10Bが設けられ、ガス供給室部11が、3つの燃料室G1、G2、G3に区画され、変更調整手段Hを構成する3つの流量調整弁R1、R2、R3が、各別に操作自在な状態で、上記した3つの管部分10Bの夫々に対応させて設けられている。
 図13及び図14に示すように、この実施形態では、燃料噴出ノズル12には、4つの燃料噴出部F1、F2、F3、F4が、上下方向に並べて形成され、4つの燃料噴出部F1、F2、F3、F4の夫々は、燃料噴出方向視において複数の燃料噴出孔13、14、15、16を水平方向に並ぶ状態で備えている。
 そして、4つの燃料噴出部F1、F2、F3、F4の燃料噴出孔13~16が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔としての上方の燃料噴出孔13の燃料噴出方向と最も下方の燃料噴出孔としての下方の燃料噴出孔16の燃料噴出方向との間の角度範囲における中央の角度に沿う方向(以下、中央方向と略称)Bが斜め上方となる状態に形成されている。
 4つの燃料噴出部F1~F4のうちの上方の燃料噴出部F1及び上下中間の燃料噴出部F2、F3の燃料噴出孔13、14、15の燃料噴出方向が、斜め上向きであるのに対して、下方の燃料噴出部F4の燃料噴出孔16の燃料噴出方向が、水平方向に近い方向ではあるものの、斜め下向きである。
 また、この実施形態においては、4つの管部分10Bが設けられ、ガス供給室部11が、3つの燃料室G1、G2、G3、G4に区画されている。そして、変更調整手段Hを構成する4つの流量調整弁R1、R2、R3、R4が、各別に操作自在な状態で、上記した4つの管部分10Bの夫々に対応させて設けられている。
 〔別実施形態〕
 次に別実施形態を説明する。
(イ)本発明の溶解炉用の燃焼装置は、上記の実施形態において例示した如く、溶解槽の横側部に、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けることが好適であるが、必ずしもこのような形態で設ける必要はなく、種々の形態の溶解炉に適用できるものである。
(ロ)本発明の溶解炉用の燃焼装置は、上記の実施形態で例示したガラス溶解炉に適用するほか、ガラス原料以外の金属を溶解させる溶解炉等、種々の溶解炉における燃焼装置として用いることができるものである。
(ハ)上記実施形態では、溶解炉用の燃料装置が、溶解槽の横側部に、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って3個並べて設けられる場合を例示した。2個の溶解炉用の燃焼装置を、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けてもよい。また、4個以上の溶解炉用の燃焼装置を、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って並べて設けてもよい。
 尚、2個の溶解炉用の燃焼装置を、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って並べて設ける場合には、投入口に近い燃焼装置にては上向きの燃焼炎を形成するようにし、取出口に近い燃焼装置にては溶解対象物の上面に沿って大きく伸びる燃焼炎を形成するようにする。
 また、4個以上の溶解炉用の燃焼装置を、原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向(ガラス原料の流動方向)に沿って並べて設ける場合においては、燃焼装置を3個並べる場合と同様に、投入口に近い燃焼装置にては、斜め上方側に伸びる状態となる燃焼炎を形成し、取出口に近い燃焼装置にては、水平方向に向かう長さが大きくなる状態の燃焼炎を形成し、投入口と取出口との間の中間に位置する燃焼装置にては、投入口に近い燃焼装置にて形成される燃焼炎よりも大きく上方に向かないものの、斜め上方側に伸びる状態で、且つ、取出口に近い燃焼装置にて形成される燃焼炎よりも長くはならないものの、水平方向に向かう長さが大きくなる状態の燃焼炎を形成するとよい。
(ニ)上記実施形態では、燃料噴出ノズルに、2~4の燃料噴出部を上下に並べて備えられる場合を例示したが、5個以上の燃料噴出部を備えさせるようにしてもよい。
 また、各燃料噴出部について、水平方向に並べて備えさせる燃料噴出孔の数は、種々変更できるものである。そして、各燃料噴出部について備えさせる燃料噴出孔の数は、必ずしも同じにする必要はなく、変更することが可能である。
(ホ)上記実施形態では、燃料噴出ノズルに備えさせる上下の燃焼噴出部のうちの、下方側の燃料噴出部が備える複数の燃料噴出孔が、平面視にて、放射状に並ぶ状態を例示したが、複数の燃料噴出孔が平行状に並ぶ状態に形成して実施してもよい。
 本発明は、溶解槽における溶解対象物存在領域の上方の燃焼空間にガス燃料を噴出する燃料噴出ノズルが、前記燃焼空間の横側箇所からガス燃料を噴出するように設けられ、前記燃焼空間に対して燃焼用空気を斜め下向きに供給する燃焼用空気供給部が、前記燃料噴出ノズルの上部箇所に設けられ、燃焼炎の輻射熱による溶解対象物の加熱及び燃焼炎の輻射熱による溶解炉の天井部の加熱の夫々を良好に行うことができる各種の溶解炉用の燃焼装置に適応可能である。
2    溶解槽
4i   投入口
4e   取出口
12   燃料噴出ノズル
13   燃料噴出孔
14   燃料噴出孔
15   燃料噴出孔
16   燃料噴出孔
A    燃焼用空気
B    中央の角度に沿う方向
F1   燃料噴出部
F2   燃料噴出部
F3   燃料噴出部
F4   燃料噴出部
H    変更調節手段
K    燃焼用空気供給部
N    溶解炉用の燃焼装置

Claims (4)

  1.  溶解槽における溶解対象物存在領域の上方の燃焼空間にガス燃料を噴出する燃料噴出ノズルが、前記燃焼空間の横側箇所からガス燃料を噴出するように設けられ、
     前記燃焼空間に対して燃焼用空気を斜め下向きに供給する燃焼用空気供給部が、前記燃料噴出ノズルの上部箇所に設けられた溶解炉用の燃焼装置であって、
     前記燃料噴出ノズルに、燃料噴出方向視において複数の燃料噴出孔を水平方向に並ぶ状態で備える複数の燃料噴出部が、上下方向に並べて形成され、
     前記複数の燃料噴出部の燃料噴出孔が、側面視において、放射状に並ぶ状態に、かつ、最も上方の燃料噴出孔の燃料噴出方向と最も下方の燃料噴出孔の燃料噴出方向との間の角度範囲における中央の角度に沿う方向が斜め上方となる状態に形成され、
     前記複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、平面視にて放射状に並ぶ状態に形成され、かつ、下方側の燃料噴出部における燃料噴出孔が、平面視にて、放射状に並ぶ状態又は平行状に並ぶ状態に形成されている溶解炉用の燃焼装置。
  2.  前記複数の燃料噴出部のうち、上方側の燃料噴出部における燃料噴出孔が、下方側の燃料噴出部における燃料噴出孔よりも、大径に形成されている請求項1記載の溶解炉用の燃焼装置。
  3.  前記上下複数段の燃料噴出部に対するガス供給比率を変更調節する変更調節手段が設けられている請求項1又は2記載の溶解炉用の燃焼装置。
  4.  請求項1~3のいずれかに記載の溶解炉用の燃焼装置が、前記溶解槽における原料を投入する投入口と溶解物を取り出す取出口とが並ぶ方向に沿って、前記溶解層の横側部に3つ以上並べて設けられ、
     並べて設けられる複数の燃焼装置のうちの、前記投入口に近い燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部の方が下方側の燃料噴出部よりも多くなるように設定され、
     並べて設けられる複数の燃焼装置のうちの、前記投入口と前記取出口との間の中間の燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、上方側の燃料噴出部と下方側の燃料噴出部とが同じになるように設定され、
     並べて設けられる複数の燃焼装置のうちの、前記取出口に近い燃焼装置の前記燃料噴出ノズルにおける前記上下複数段の燃料噴出部に対するガス供給比率が、下方側の燃料噴出部の方が上方側の燃料噴出部よりも多くなるように設定されている溶解炉。
PCT/JP2010/065315 2009-10-23 2010-09-07 溶解炉用の燃焼装置及び溶解炉 WO2011048878A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201080047710.XA CN102549368B (zh) 2009-10-23 2010-09-07 熔化炉用的燃烧装置及熔化炉
US13/503,259 US9109836B2 (en) 2009-10-23 2010-09-07 Combustion device for melting furnace and melting furnace
EP10824730.5A EP2492625A4 (en) 2009-10-23 2010-09-07 Combustion device for melting furnace, and melting furnace
CA2778398A CA2778398C (en) 2009-10-23 2010-09-07 Combustion device for melting furnace and melting furnace
KR1020127013153A KR101792124B1 (ko) 2009-10-23 2010-09-07 용해로

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-244749 2009-10-23
JP2009244749A JP5421728B2 (ja) 2009-10-23 2009-10-23 溶解炉用の燃焼装置及び溶解炉

Publications (1)

Publication Number Publication Date
WO2011048878A1 true WO2011048878A1 (ja) 2011-04-28

Family

ID=43900118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065315 WO2011048878A1 (ja) 2009-10-23 2010-09-07 溶解炉用の燃焼装置及び溶解炉

Country Status (8)

Country Link
US (1) US9109836B2 (ja)
EP (1) EP2492625A4 (ja)
JP (1) JP5421728B2 (ja)
KR (1) KR101792124B1 (ja)
CN (1) CN102549368B (ja)
CA (1) CA2778398C (ja)
TW (1) TWI547679B (ja)
WO (1) WO2011048878A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061437A (zh) 2004-11-22 2007-10-24 保土谷化学工业株式会社 电子照相感光体
JP5689128B2 (ja) * 2010-09-14 2015-03-25 大阪瓦斯株式会社 ガラス溶解炉用の燃焼装置及びガラス溶解炉
CN105570878B (zh) * 2014-10-10 2017-12-29 五冶集团上海有限公司 一种适合两种燃气的焦炉烘炉装置
BR112017013672A2 (pt) 2014-12-23 2018-03-13 Praxair Technology Inc queimadores inclinados para cima em fornos de vidro
JP6362148B2 (ja) * 2016-01-05 2018-07-25 日本ファーネス株式会社 ロータリーキルン用バーナ装置及びその炉内燃焼方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712473A (ja) * 1993-04-21 1995-01-17 Boc Group Inc:The ガス吹込み装置及び方法
JP2001050668A (ja) * 1999-08-06 2001-02-23 Osaka Gas Co Ltd 加熱炉用の燃焼装置
JP2004301369A (ja) 2003-03-28 2004-10-28 Osaka Gas Co Ltd 加熱炉用の燃焼装置
JP2006105582A (ja) * 2004-09-10 2006-04-20 Air Products & Chemicals Inc 酸化体噴射法
JP2006275334A (ja) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd 加熱炉用の燃焼装置

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3193268A (en) * 1960-10-13 1965-07-06 Brockway Glass Co Inc Multi-port regenerative glass melting furnace
FR1479461A (fr) * 1966-03-22 1967-05-05 Saint Gobain Perfectionnements aux canaux amenant le verre fondu à des postes de travail
US4927357A (en) * 1988-04-01 1990-05-22 The Boc Group, Inc. Method for gas lancing
FR2667928B1 (fr) * 1990-10-16 1995-07-28 Air Liquide Procede de chauffe d'une enceinte thermique.
US5299929A (en) * 1993-02-26 1994-04-05 The Boc Group, Inc. Fuel burner apparatus and method employing divergent flow nozzle
US5601425A (en) * 1994-06-13 1997-02-11 Praxair Technology, Inc. Staged combustion for reducing nitrogen oxides
JP3184774B2 (ja) * 1997-02-10 2001-07-09 三建産業株式会社 連続加熱炉
JPH11132463A (ja) * 1997-11-04 1999-05-21 Osaka Gas Co Ltd 加熱炉用バーナ
JP2002286225A (ja) * 2001-03-28 2002-10-03 Osaka Gas Co Ltd 加熱炉用燃焼装置の運転方法及び運転装置
US6928823B2 (en) * 2001-08-29 2005-08-16 Hitachi, Ltd. Gas turbine combustor and operating method thereof
JP2003269703A (ja) * 2002-03-19 2003-09-25 Osaka Gas Co Ltd 加熱炉用の燃焼装置
ITMI20021526A1 (it) * 2002-07-11 2004-01-12 Danieli Off Mecc Iniettore per forni di fusione di materiale metallico
US6748883B2 (en) * 2002-10-01 2004-06-15 Vitro Global, S.A. Control system for controlling the feeding and burning of a pulverized fuel in a glass melting furnace
US6866503B2 (en) * 2003-01-29 2005-03-15 Air Products And Chemicals, Inc. Slotted injection nozzle and low NOx burner assembly
ITMI20031397A1 (it) * 2003-07-09 2005-01-10 Danieli Off Mecc Dispositivo bruciatore e di iniezione di gas.
US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
KR100590845B1 (ko) * 2004-12-02 2006-06-19 한국기계연구원 배기가스 재순환 산소연소기
JP4326490B2 (ja) * 2005-03-29 2009-09-09 大阪瓦斯株式会社 加熱炉用の燃焼装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712473A (ja) * 1993-04-21 1995-01-17 Boc Group Inc:The ガス吹込み装置及び方法
JP2001050668A (ja) * 1999-08-06 2001-02-23 Osaka Gas Co Ltd 加熱炉用の燃焼装置
JP2004301369A (ja) 2003-03-28 2004-10-28 Osaka Gas Co Ltd 加熱炉用の燃焼装置
JP2006105582A (ja) * 2004-09-10 2006-04-20 Air Products & Chemicals Inc 酸化体噴射法
JP2006275334A (ja) * 2005-03-28 2006-10-12 Osaka Gas Co Ltd 加熱炉用の燃焼装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2492625A4 *

Also Published As

Publication number Publication date
JP2011089730A (ja) 2011-05-06
EP2492625A1 (en) 2012-08-29
US9109836B2 (en) 2015-08-18
CA2778398A1 (en) 2011-04-28
TWI547679B (zh) 2016-09-01
EP2492625A4 (en) 2017-12-13
CA2778398C (en) 2016-11-08
CN102549368A (zh) 2012-07-04
JP5421728B2 (ja) 2014-02-19
US20130137055A1 (en) 2013-05-30
CN102549368B (zh) 2014-09-10
KR20120107469A (ko) 2012-10-02
TW201139962A (en) 2011-11-16
KR101792124B1 (ko) 2017-10-31

Similar Documents

Publication Publication Date Title
WO2011048878A1 (ja) 溶解炉用の燃焼装置及び溶解炉
JP5959224B2 (ja) ガラス溶解炉用の燃焼装置
JP5122369B2 (ja) ガラス溶解炉用の燃焼装置
JP5689128B2 (ja) ガラス溶解炉用の燃焼装置及びガラス溶解炉
JP5892809B2 (ja) 加熱炉用の燃焼装置
JP5313535B2 (ja) 加熱炉用の燃焼装置
JP4836399B2 (ja) 加熱炉用の燃焼装置
JP6494329B2 (ja) 加熱炉
JP2007139380A (ja) 加熱炉用の燃焼装置
JP3888916B2 (ja) 加熱炉用の燃焼装置
JP4201731B2 (ja) 加熱炉用の燃焼装置
JP6868985B2 (ja) 溶解炉
JP5812618B2 (ja) 溶解炉用の燃焼装置および溶解炉
JP7144484B2 (ja) ガラス熔解炉及びガラス熔解炉の運転方法
JP2006070124A (ja) コークス炉及びコークス炉炭化室上部の温度制御方法
JP6642802B2 (ja) ガラス溶解炉
JP3552976B2 (ja) 溶解炉
JP6257422B2 (ja) 加熱炉用燃焼装置
JP2007071530A (ja) 加熱炉用の燃焼装置
JP2007010206A (ja) 蓄熱式バーナ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080047710.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824730

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2778398

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2010824730

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127013153

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13503259

Country of ref document: US