WO2011048724A1 - 流路切換弁、及びそれを備えた空気調和機 - Google Patents

流路切換弁、及びそれを備えた空気調和機 Download PDF

Info

Publication number
WO2011048724A1
WO2011048724A1 PCT/JP2010/004039 JP2010004039W WO2011048724A1 WO 2011048724 A1 WO2011048724 A1 WO 2011048724A1 JP 2010004039 W JP2010004039 W JP 2010004039W WO 2011048724 A1 WO2011048724 A1 WO 2011048724A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe connection
flow path
switching valve
refrigerant
heat exchanger
Prior art date
Application number
PCT/JP2010/004039
Other languages
English (en)
French (fr)
Inventor
南田知厚
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201080048141.0A priority Critical patent/CN102667276B/zh
Priority to JP2011537101A priority patent/JP5578178B2/ja
Publication of WO2011048724A1 publication Critical patent/WO2011048724A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/08Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks
    • F16K11/085Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug
    • F16K11/0856Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only taps or cocks with cylindrical plug having all the connecting conduits situated in more than one plane perpendicular to the axis of the plug
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle

Definitions

  • the present invention relates to a flow path switching valve that switches a fluid flow path or distributes fluid in multiple directions.
  • the number of passes of the refrigerant that maximizes the capacity of the evaporator and the condenser varies depending on the selected operation mode such as cooling operation or heating operation. Can be switched.
  • a refrigerant distributor as disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 60-132179) is employed.
  • the defrosting operation mode the flow of the refrigerant exiting the compressor is switched by a bypass valve, the refrigerant bypasses the condenser and flows to the evaporator, and the frost formation on the evaporator is melted by the heat of condensation.
  • Patent Document 2 Japanese Patent Laid-Open No. 11-132603
  • the flow path switching valve includes a main body and a movable member.
  • the main body includes a pipe connection portion group that constitutes a plurality of fluid circulation ports.
  • the movable member is disposed in the internal space of the main body and forms a flow path for allowing fluid circulation ports to communicate with each other.
  • the pipe connection part group includes at least a first pipe connection part, a second pipe connection part, a third pipe connection part, a fourth pipe connection part, and a fifth pipe connection part.
  • the first pipe connection portion serves as a fluid inlet or outlet.
  • the second pipe connection part serves as a fluid outlet or inlet separately from the first pipe connection part.
  • the third pipe connection part, the fourth pipe connection part, and the fifth pipe connection part serve as a circulation port separately from the first pipe connection part and the second pipe connection part.
  • the movable member moves in the main body and switches between the first state and the second state.
  • the first state is a state in which the first pipe connection part is connected to one or more pipe connection parts in the pipe connection part group.
  • the second state is a state in which the first pipe connection portion is connected to a plurality of pipe connection portions that are more than the first state in the pipe connection portion group.
  • the flow path switching valve allows the fluid flowing in from the first pipe connection portion to be less in the third pipe connection portion, the fourth pipe connection portion, and the fifth pipe connection portion than in the second state. Since it can be returned from the second pipe connection portion toward any one or more, it can be applied, for example, in an air conditioner when it is desired to reduce the refrigerant path that the refrigerant should flow and return from the second state. It is.
  • this flow path switching valve can return the fluid which flowed in from the 1st piping connection part from the 2nd piping connection part by switching to a 1st state, a 1st piping connection part and a 2nd piping By connecting the connecting portion to the inlet and outlet of the heat exchanger, it is possible to bypass the heat exchanger. Further, the flow path switching valve switches the second state to allow the refrigerant flowing from the second pipe connection portion to be the first of the third pipe connection portion, the fourth pipe connection portion, and the fifth pipe connection portion.
  • a flow path switching valve is the flow path switching valve according to the first aspect of the present invention, in which the first state is other than the second pipe connection part excepting the second pipe connection part in the pipe connection part group. Includes a state of being connected to one or more pipe connections.
  • the flow path switching valve allows the fluid flowing in from the first pipe connection portion to any one or more of the third pipe connection portion, the fourth pipe connection portion, and the fifth pipe connection portion.
  • the present invention can be applied to a case where it is desired to reduce the refrigerant path that the refrigerant should flow and return from the second state.
  • a flow path switching valve is the flow path switching valve according to the first aspect of the present invention, wherein the first state is such that the first pipe connection portion is connected only to the second pipe connection portion in the pipe connection portion group. State. Since this flow path switching valve can return the fluid flowing in from the first pipe connection part from the second pipe connection part by switching to the first state, the first pipe connection part and the second pipe connection part Is connected to the inlet and outlet of the heat exchanger, the heat exchanger can be bypassed.
  • the flow path switching valve according to the fourth aspect of the present invention is the flow path switching valve according to the first aspect of the present invention, wherein the pipe connection part group is an even number of 4 or more even if the first pipe connection part and the second pipe connection part are excluded. Individual pipe connections.
  • the flow path switching valve causes the refrigerant flowing from the second pipe connection portion to be an even number of four or more including the third pipe connection portion, the fourth pipe connection portion, and the fifth pipe connection portion.
  • the refrigerant path to which the refrigerant flows and returns should be returned to any two or more of the pipe connection portions. This is applicable when it is desired to increase more than the first state.
  • a flow path switching valve is the flow path switching valve according to the fourth aspect of the present invention, wherein the first state is an even number of four or more pipe connections excluding the first pipe connection part and the second pipe connection part. This is a state in which at least two pipe connection parts of the part are connected.
  • the third pipe connection part, the fourth pipe connection part, and the fifth pipe connection part are connected to form a flow path that is isolated from the first pipe connection part and the second pipe connection part.
  • the refrigerant in the condenser is kept in a flow path formed by connecting the third pipe connection part, the fourth pipe connection part, and the fifth pipe connection part during the defrosting operation. As a result, a decrease in the room temperature is also suppressed.
  • a flow path switching valve is the flow path switching valve according to any one of the first to fifth aspects, wherein the main body has a hollow cylindrical portion to which the movable member moves.
  • the hollow cylinder is easy to process, and an increase in processing cost is suppressed.
  • a flow path switching valve is the flow path switching valve according to the sixth aspect of the present invention, wherein the movable member rotates along the inner peripheral surface of the hollow cylindrical portion to form the flow path.
  • the pipe connection portion is disposed along the circumferential direction, the axial length of the valve is suppressed.
  • a flow path switching valve is the flow path switching valve according to the seventh aspect of the present invention, wherein the movable member changes the rotation angle and adjusts the flow rate of the fluid passing through the flow path.
  • the flow path switching valve directs the refrigerant flowing from the second pipe connection part to any two of the third pipe connection part, the fourth pipe connection part, and the fifth pipe connection part. Therefore, for example, in an air conditioner, in the air conditioner, it can be applied when there are two refrigerant paths that should flow back toward the refrigerant, and further, the amount of refrigerant flowing in one side Can be increased or decreased from the other.
  • a flow path switching valve is the flow path switching valve according to any one of the fifth to eighth aspects, wherein the flow path formed by the movable member is the first flow path and the second flow path. And a flow path.
  • the second channel has a smaller channel cross-sectional area than the first channel.
  • the first pipe connection portion is one or more of four or more even number of pipe connection portions excluding the first pipe connection portion and the second pipe connection portion via the first flow path.
  • two of the pipe connection portions not connected to the first pipe connection portion and the second pipe connection portion are connected via the second flow path.
  • the second flow path of the flow path switching valve can be used as a pressure reducing mechanism. can do.
  • An air conditioner is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the indoor heat exchanger,
  • a flow path switching valve according to any one of the first to eighth aspects of the invention and a control unit are provided.
  • An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the control unit switches the flow path switching valve to the first state during the heating operation, and switches the flow path switching valve to the second state during the cooling operation.
  • the amount of heat exchange increases as the heat transmissivity K and the temperature difference ⁇ T between the air and the refrigerant increase. Since the condenser has a high pressure, the flow rate of the flowing gas-phase refrigerant is small, the pressure loss caused by the flow is small, and the temperature difference ⁇ T is large. Therefore, in order to increase the heat exchange amount of the condenser, it is preferable to increase the flow rate by increasing the flow velocity by reducing the branch path of the condenser.
  • the vaporizer has a larger gas phase ratio than the condenser and has a low pressure, so that the flow velocity of the flowing vapor phase refrigerant is large, and the heat transmissivity K is large, but the pressure loss caused by the flow is large. Therefore, in order to increase the heat exchange amount of the evaporator, it is preferable to increase the branch path of the evaporator to reduce the flow velocity and to reduce the pressure loss. Then, in this air conditioner, the flow path switching valve can be switched to the first state during the heating operation, the branch path of the indoor heat exchanger (condenser) can be reduced to increase the flow velocity, and the flow rate can be increased during the cooling operation. By switching the path switching valve to the second state and increasing the branch path of the indoor heat exchanger (evaporator) to reduce the flow velocity, it is possible to improve the air conditioning capability and save energy.
  • An air conditioner is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the outdoor heat exchanger,
  • a flow path switching valve according to any one of the first to eighth aspects of the present invention and a control unit are provided.
  • the outdoor heat exchanger serves as an evaporator during heating operation, and serves as a condenser during cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the outdoor heat exchanger or in the middle of the outdoor heat exchanger.
  • the 2nd piping connection part of a flow-path switching valve is connected between the pressure reduction device and an outdoor heat exchanger, or in the middle of an outdoor heat exchanger.
  • the control unit switches the flow path switching valve to the second state during the heating operation, and switches the flow path switching valve to the first state during the cooling operation.
  • the amount of heat exchange increases as the heat transmissivity K and the temperature difference ⁇ T between the air and the refrigerant increase. Since the condenser has a high pressure, the flow rate of the flowing gas-phase refrigerant is small, the pressure loss caused by the flow is small, and the temperature difference ⁇ T is large.
  • the vaporizer has a larger gas phase ratio than the condenser and has a low pressure, so that the flow velocity of the flowing vapor phase refrigerant is large, and the heat transmissivity K is large, but the pressure loss caused by the flow is large. Therefore, in order to increase the heat exchange amount of the evaporator, it is preferable to increase the branch path of the evaporator to reduce the flow velocity and to reduce the pressure loss.
  • the flow path switching valve can be switched to the second state during the heating operation, and the branch path of the outdoor heat exchanger (evaporator) can be increased to reduce the flow velocity.
  • An air conditioner is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the indoor heat exchanger,
  • a flow path switching valve according to any one of the first to eighth aspects of the invention and a control unit are provided.
  • An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the control unit switches the flow path switching valve to either the first state or the second state according to the amount of refrigerant circulation.
  • the flow rate changes depending on the amount of refrigerant circulation, so the balance between the heat transmissivity K in the condenser and the evaporator and the temperature difference ⁇ T between the air and the refrigerant changes.
  • the circulation amount of the refrigerant is extremely small, it is not necessary to attach importance to pressure loss even with an evaporator, and it is preferable to increase the flow rate K by increasing the flow rate.
  • the circulation amount of the refrigerant is extremely large, the pressure loss must be emphasized even in the condenser, and it is preferable to reduce the flow rate to reduce the temperature difference ⁇ T between the air and the refrigerant.
  • An air conditioner is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the outdoor heat exchanger,
  • a flow path switching valve according to any one of the first to eighth aspects of the invention and a control unit are provided.
  • the outdoor heat exchanger serves as an evaporator during heating operation, and serves as a condenser during cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the outdoor heat exchanger or in the middle of the outdoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the outdoor heat exchanger or in the middle of the outdoor heat exchanger.
  • the control unit switches the flow path switching valve to either the first state or the second state according to the amount of refrigerant circulation.
  • the flow rate changes depending on the amount of refrigerant circulation, so the balance between the heat transmissivity K in the condenser and the evaporator and the temperature difference ⁇ T between the air and the refrigerant changes. .
  • the circulation amount of the refrigerant is extremely small, it is not necessary to attach importance to pressure loss even with an evaporator, and it is preferable to increase the flow rate K by increasing the flow rate.
  • the circulation amount of the refrigerant is extremely large, the pressure loss must be emphasized even in the condenser, and it is preferable to reduce the flow rate to reduce the temperature difference ⁇ T between the air and the refrigerant.
  • the flow path switching valve when the refrigerant circulation amount is extremely small during the cooling operation, the flow path switching valve is switched to the second state, the branch path of the outdoor heat exchanger (condenser) is increased, and the flow rate is increased. If the refrigerant circulation rate is extremely large during heating operation, switch the flow path switching valve to the first state to reduce the branch path of the outdoor heat exchanger (evaporator) and reduce the flow rate. Since it can be enlarged, it is possible to improve the air conditioning capability and save energy in the variable capacity type air conditioner.
  • An air conditioner according to a fourteenth aspect of the present invention is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the indoor heat exchanger,
  • a flow path switching valve according to any one of the first to eighth aspects of the present invention and a control unit are provided.
  • An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • a control part makes a decompressor fully open at the time of a defrost operation, and connects the 1st piping connection part and 2nd piping connection part of a flow-path switching valve.
  • the defrosting operation of an air conditioner uses a four-way switching valve to switch the heating operation cycle to the cooling operation cycle, so it is necessary to take measures against shock and noise due to instantaneous switching between high and low pressures.
  • the defrosting operation can be executed while the heating operation cycle is performed by the flow path switching valve, no special measures against impact and noise are required.
  • An air conditioner is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the indoor heat exchanger and the outdoor A heat exchanger, a flow path switching valve according to any one of the first to eighth inventions, and a control unit are provided.
  • An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation.
  • the outdoor heat exchanger serves as an evaporator during heating operation, and serves as a condenser during cooling operation.
  • the control unit controls the flow path switching valve.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the outdoor heat exchanger or in the middle of the outdoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the outdoor heat exchanger or in the middle of the outdoor heat exchanger.
  • the indoor heat exchanger includes a first heat exchange unit, a second heat exchange unit, and a decompression unit.
  • the decompression unit is connected between the first heat exchange unit and the second heat exchange unit, and is controlled by the control unit.
  • the control unit performs a reheat dehumidification operation in which the decompressor is fully opened or has an unintended opening, and the refrigerant is depressurized by the decompression unit, and at the time of the reheat dehumidification operation, 2 Connect the pipe connections.
  • the reheat dehumidification operation is a dehumidification by condensing the air with the evaporator and an operation for returning the air temperature by warming the air cooled by the evaporator with the condenser.
  • heat exchange in the outdoor heat exchanger can be eliminated. Therefore, the heat of condensation and the heat of evaporation can be utilized to the maximum in the indoor heat exchanger.
  • it can provide an air conditioner that achieves both large dehumidification capacity and reheat capacity, and the effect of increasing the efficiency of reheat dehumidification operation can be directed to heat exchanger designs that are more specialized for cooling and heating performance. Can provide energy savings throughout the year.
  • An air conditioner according to a sixteenth aspect of the present invention is the air conditioner according to the fifteenth aspect of the present invention, wherein during the reheat dehumidifying operation, the refrigerant discharged from the compressor is first flowed to the outdoor heat exchanger side and then the indoor heat exchanger. Flush to the side.
  • the reheat dehumidification operation is performed in such a manner that the high-temperature and high-pressure refrigerant discharged from the compressor flows to the indoor heat exchanger after passing through the outdoor heat exchanger and the decompressor in this order, and again to the compressor. It takes the form of inhaled flow.
  • the high-temperature and high-pressure refrigerant discharged from the compressor flows through the outdoor heat exchanger and the decompressor in this order, and then flows into the indoor heat exchanger.
  • the reason for taking the form of the flow sucked into is to obtain maximum dehumidification, which is the most important function of the reheat dehumidification operation.
  • bypassing the outdoor heat exchanger eliminates this flow restriction, so the effect of improving the efficiency of reheat dehumidification operation is more specialized in cooling and heating performance. It can also be used for heat exchanger design, providing energy savings throughout the year.
  • An air conditioner pertaining to a seventeenth aspect of the invention is the air conditioner pertaining to the fifteenth aspect of the invention, wherein during the reheat dehumidifying operation, the refrigerant discharged from the compressor is first flowed to the indoor heat exchanger side and then the outdoor heat exchanger. Flush to the side.
  • this air conditioner by bypassing the outdoor heat exchanger, it is possible to sufficiently blow air to cool the electrical components, and as a result, flexibility in thermal design such as the adoption of electrical components with low heat resistance is adopted. Therefore, an air conditioner with reduced costs can be provided.
  • the high-temperature and high-pressure refrigerant discharged from the compressor flows through the outdoor heat exchanger and the decompressor in this order, and then flows into the indoor heat exchanger.
  • the reason for taking the form of the flow sucked into is to obtain maximum dehumidification, which is the most important function of the reheat dehumidification operation.
  • bypassing the outdoor heat exchanger eliminates this flow restriction, so the effect of improving the efficiency of reheat dehumidification operation is more specialized in cooling and heating performance. It can also be used for heat exchanger design, providing energy savings throughout the year.
  • An air conditioner according to an eighteenth aspect of the present invention is an air conditioner that uses a vapor compression refrigeration cycle in which refrigerant circulates in the order of a compressor, a condenser, a decompressor, and an evaporator, the indoor heat exchanger, 9 includes a flow path switching valve and a control unit.
  • An indoor heat exchanger becomes a condenser at the time of heating operation, and becomes an evaporator at the time of cooling operation.
  • the control unit controls the flow path switching valve.
  • the indoor heat exchanger includes a first heat exchange unit and a second heat exchange unit.
  • the first pipe connection portion of the flow path switching valve is connected between the compressor and the indoor heat exchanger or in the middle of the indoor heat exchanger.
  • the second pipe connection portion of the flow path switching valve is connected between the decompressor and the indoor heat exchanger or in the middle of the indoor heat exchanger. Two of the four or more even number of pipe connection parts excluding the first pipe connection part and the second pipe connection part are connected between the first heat exchange part and the second heat exchange part.
  • the control unit communicates the two pipe connection parts connected between the first heat exchange part and the second heat exchange part via the second flow path formed by the movable member of the flow path switching valve, A reheat dehumidifying operation is performed to reduce the pressure between the first heat exchange unit and the second heat exchange unit.
  • a depressurization mechanism is required between the first heat exchange unit and the second heat exchange unit in order to perform the reheat dehumidification operation. Since the second flow path of the valve functions as a decompression mechanism, a dedicated decompression mechanism becomes unnecessary. Therefore, an increase in cost can be suppressed.
  • the flow path switching valve according to any one of the first to fourth inventions can switch the number of refrigerant paths and switch to a bypass circuit.
  • the flow isolated from the first pipe connection part and the second pipe connection part by connecting the third pipe connection part, the fourth pipe connection part and the fifth pipe connection part.
  • a path is formed.
  • the refrigerant in the condenser is kept in a flow path formed by connecting the third pipe connection part, the fourth pipe connection part, and the fifth pipe connection part during the defrosting operation. As a result, a decrease in the room temperature is also suppressed.
  • the hollow cylinder is easy to process, and an increase in processing cost is suppressed.
  • the pipe connecting portion is disposed along the circumferential direction, an increase in the axial direction of the valve is suppressed.
  • the flow path switching valve according to the eighth aspect of the present invention is applicable when there are two refrigerant paths, such as an evaporator of an air conditioner, to which the refrigerant flows and returns, and further flows to one side. It is also possible to increase or decrease the amount of refrigerant than the other.
  • the second flow path of the flow path switching valve when the application is an air conditioner, can be used as a pressure reducing mechanism, so that both the flow path switching and the pressure reduction are required. It can be applied to refrigerant circuits.
  • the flow path switching valve can be switched to the first state, the branch path of the indoor heat exchanger (condenser) can be reduced, and the flow rate can be increased.
  • the flow path switching valve can be switched to the second state to increase the branch path of the indoor heat exchanger (evaporator) to reduce the flow velocity, thereby improving the air conditioning capability and saving energy.
  • the flow path switching valve can be switched to the second state during heating operation to increase the branch path of the outdoor heat exchanger (evaporator) to reduce the flow velocity,
  • the flow path switching valve is switched to the first state to reduce the branch path of the outdoor heat exchanger (condenser) and increase the flow velocity, so that the air conditioning capability can be improved and the energy can be saved.
  • the flow path switching valve if the refrigerant circulation amount is extremely large during cooling operation, the flow path switching valve is switched to the first state to reduce the branch path of the indoor heat exchanger (evaporator).
  • the refrigerant circulation amount is extremely small during heating operation, switch the flow path switching valve to the second state and increase the branch path of the indoor heat exchanger (condenser). Since the flow velocity can be reduced, the air conditioning capacity can be improved and the energy can be saved in the variable capacity type air conditioner.
  • the flow path switching valve is switched to the second state to increase the branch path of the outdoor heat exchanger (condenser). If the refrigerant circulation rate is extremely large during heating operation, switch the flow path switching valve to the first state to reduce the branch path of the outdoor heat exchanger (evaporator). Since the flow velocity can be increased, it is possible to improve the air conditioning capability and save energy in the variable capacity type air conditioner.
  • the defrosting operation can be executed while the heating operation cycle is being performed by the flow path switching valve, so that no special measures against impact and noise are required.
  • the heat of condensation and the heat of evaporation can be utilized to the maximum extent in the indoor heat exchanger.
  • it can provide an air conditioner that achieves both large dehumidification capacity and reheat capacity, and the effect of increasing the efficiency of reheat dehumidification operation can be directed to heat exchanger designs that are more specialized for cooling and heating performance. Can provide energy savings throughout the year.
  • the air conditioner according to the sixteenth aspect or the seventeenth aspect by bypassing the outdoor heat exchanger, air can be sufficiently blown for cooling the electric parts, and consequently, the electric parts having a low heat resistance. Since it is possible to provide flexibility in thermal design such as adoption, it is possible to provide an air conditioner with reduced costs. By bypassing the outdoor heat exchanger, it is also possible to direct the effect of improving the efficiency of reheat dehumidification operation to a heat exchanger design that is more specialized for cooling and heating performance. Energy saving can be provided. In the air conditioner pertaining to the eighteenth aspect of the invention, since the second flow path of the flow path switching valve functions as a pressure reducing mechanism, a dedicated pressure reducing mechanism is not required. Therefore, an increase in cost can be suppressed.
  • the perspective view of the flow-path switching valve which concerns on 1st Embodiment of this invention.
  • A Sectional drawing when the 1st switching part is cut
  • B Sectional drawing when the 2nd switching part is cut
  • A The disassembled perspective view of a valve body.
  • B The perspective view of the valve body seen from the angle different from (a).
  • pass simultaneously.
  • the piping diagram which shows the connection state of the refrigerant path of the evaporator in the air conditioner at the time of air_conditionaing
  • the piping diagram which shows the connection state of the condenser in the air conditioner at the time of a defrost operation, and the flow-path switching valve concerning 2nd Embodiment.
  • A Sectional drawing when the 1st switching part of the flow-path switching valve which concerns on 3rd Embodiment is cut
  • B Sectional drawing when the 2nd switching part is cut
  • the piping diagram which shows the connection state of the refrigerant path of the evaporator in the air conditioner at the time of air_conditionaing
  • the block diagram of the air conditioner which shows the connection state of the indoor heat exchanger at the time of air_conditionaing
  • the block diagram of the air conditioner which shows the connection state of the indoor heat exchanger at the time of a defrost operation, and the flow-path switching valve which concerns on 1st Embodiment.
  • the block diagram of the air conditioner which shows the connection state of the outdoor heat exchanger at the time of heating operation, and the flow-path switching valve concerning 1st Embodiment.
  • the block diagram of the air conditioner which shows the connection state of the outdoor heat exchanger at the time of air_conditionaing
  • the block diagram of the air conditioner which shows the connection state of the outdoor heat exchanger at the time of a reheat dehumidification driving
  • the block diagram of the air conditioner which shows the other connection state of the outdoor heat exchanger at the time of a reheat dehumidification driving
  • the block diagram of the air conditioner which shows the connection state of the indoor heat exchanger at the time of heating operation, and the flow-path switching valve concerning 4th Embodiment.
  • the block diagram of the air conditioner which shows the connection state of the indoor heat exchanger at the time of air_conditionaing
  • FIG. 1 is a perspective view of a flow path switching valve according to a first embodiment of the present invention.
  • the flow path switching valve 1 includes a main body 10, a valve body 20, and a motor 30.
  • the main body 10 is a cylindrical tube with one end closed. Six holes are made in advance in the body portion 10a of the main body 10, and pipes for pipe connection are fitted into each hole and brazed.
  • these six pipes are respectively connected to the first pipe connection part 11, the second pipe connection part 12, the third pipe connection part 13, the fourth pipe connection part 14, the fifth pipe connection part 15, and the sixth pipe connection part. It is called 16.
  • the first pipe connection part 11, the third pipe connection part 13 and the fifth pipe connection part 15 are arranged around the trunk part 10a at the same height as viewed from the bottom surface 10b side of the main body 10, 1 switching unit 101 (refer to FIG. 2A).
  • the 2nd piping connection part 12, the 4th piping connection part 14, and the 6th piping connection part 16 are arranged around body part 10a in the same height position seeing from the bottom face 10b side of main part 10, These are called the second switching unit 102 (see FIG. 2B).
  • the second switching unit 102 is closer to the bottom surface 10 b than the first switching unit 101.
  • FIG. 2A is a cross-sectional view when the first switching unit is cut along a plane perpendicular to the central axis of the main body
  • FIG. 2B is a cross-sectional view when the second switching unit is cut along a plane orthogonal to the central axis of the main body.
  • the third pipe connecting portion 13 is fixed at a position 90 ° away from the first pipe connecting portion 11 in the counterclockwise direction with respect to the central axis of the trunk portion 10a.
  • the fifth pipe connection portion 15 is fixed at a position 90 ° clockwise from the first pipe connection portion 11 with respect to the central axis of the trunk portion 10a.
  • the fourth pipe connection unit 14 is positioned 90 ° away from the second pipe connection unit 12 counterclockwise with respect to the central axis of the body 10 a. It is fixed.
  • the sixth pipe connection portion 16 is fixed at a position 90 degrees clockwise from the second pipe connection portion 12 with respect to the central axis of the trunk portion 10a.
  • FIG. 3A is an exploded perspective view of the valve body
  • FIG. 3B is a perspective view of the valve body viewed from an angle different from FIG. 3A and 3B
  • the valve body 20 includes a first valve body 201, a second valve body 202, a partition member 210, a first seal member 211, and a second seal member 212.
  • the 1st valve body 201 is a fan-shaped rotary body, and has the seal
  • the seal portion 201 a rotates and moves along the inner periphery of the main body 10.
  • the convex portion 201b is formed in a streamline shape, and protrudes in a direction opposite to the seal portion 201a from the center of rotation.
  • the recess 201c is formed in a U shape and is recessed from the arc surface of the seal portion 201a toward the center of rotation.
  • the 2nd valve body 202 is the same fan-shaped rotary body as the 1st valve body 201, and has the seal
  • the seal portion 202 a rotates and moves along the inner periphery of the main body 10.
  • the convex portion 202b is formed in a streamline shape, and protrudes in a direction opposite to the seal portion 202a from the center of rotation.
  • the recess 202c is formed in a U-shape and is recessed from the arc surface of the seal portion 202a toward the center of rotation.
  • the partition member 210 is a columnar rotating body that is disposed between the first valve body 201 and the second valve body 202.
  • the partition member 210 faces the inner peripheral surface of the main body 10 with a slight gap.
  • the partition member 210 has a communication hole 210 a that connects the recess 201 c of the first valve body 201 and the recess 202 c of the second valve body 202.
  • the first valve body 201, the second valve body 202, and the partition member 210 are fixed to a single rotation shaft, and the rotation shaft is coupled to the output shaft of the motor 30.
  • the first seal member 211 has a cylindrical shape and is disposed between the first valve body 201 and the end of the main body 10 on the motor 30 side. The first seal member 211 seals so that fluid passing through the first valve body 201 does not leak to the motor 30 side.
  • a shaft hole is formed in the center of the first seal member 211, and the rotation shaft passes therethrough.
  • the second seal member 212 has a cylindrical shape, and is disposed between the second valve body 202 and the bottom surface 10 b of the main body 10.
  • the second seal member 212 seals so that the fluid passing through the second valve body 202 does not leak to the bottom surface 10b side.
  • a shaft hole is formed in the center of the second seal member 212, and the rotation shaft passes therethrough.
  • FIG. 4 is a piping diagram showing a connection state between the evaporator and the flow path switching valve in the air conditioner during the cooling operation.
  • the 4th piping connection part 14 is connected to the end of the 1st refrigerant path 401 which passes along the 1st heat exchange part 40a of the indoor heat exchanger 40 which is an evaporator.
  • the other end of the first refrigerant path 401 is connected to the fifth pipe connection portion 15. Further, the sixth pipe connection part 16 is connected to one end of the second refrigerant path 402 passing through the second heat exchange part 40b of the indoor heat exchanger 40. The other end of the second refrigerant path 402 is connected to the third pipe connection portion 13. The state of the valve body 20 at this time will be described with reference to FIG.
  • FIG. 5 is a piping diagram showing the inside of the flow path switching valve of FIG. 4 and the refrigerant path at the same time.
  • the convex part 202 b faces the second pipe connection part 12.
  • the refrigerant that has flowed in from the second pipe connection part 12 is divided into two directions by the convex part 202 b, one going to the fourth pipe connection part 14 and the other going to the sixth pipe connection part 16.
  • the convex part 201 b faces the first pipe connection part 11.
  • the refrigerant flowing in from the third pipe connection portion 13 and the refrigerant flowing in from the fifth pipe connection portion 15 merge at the tip of the convex portion 201b.
  • the refrigerant that has entered the second switching unit 102 from the second pipe connection unit 12 is diverted in two directions, and one side passes through the fourth pipe connection unit 14, the first refrigerant path 401, and the fifth pipe connection unit 15.
  • the other passes through the sixth pipe connection part 16, the second refrigerant path 402 and the third pipe connection part 13, and both merge at the first switching part 101 and flow out from the first pipe connection part 11. That is, during the cooling operation, the first refrigerant path 401 and the second refrigerant path 402 are connected in parallel.
  • FIG. 6 is a piping diagram simultaneously showing the inside of the flow path switching valve and the refrigerant path when the flow path switching valve of FIG. 5 adjusts the flow rate.
  • the convex portion 202 b slightly swings counterclockwise, so that the flow area of the refrigerant toward the fourth pipe connection portion 14 is reduced and the sixth pipe connection portion 16 is reached.
  • the convex portion 201b slightly swings counterclockwise, the flow area of the refrigerant from the fifth pipe connecting portion 15 to the first pipe connecting portion 11 is enlarged, and conversely, The flow path area from the three pipe connection portions 13 toward the first pipe connection portion 11 is reduced. That is, the refrigerant that has passed through the narrow side of the flow path area in the second switching unit 102 passes through the wide side of the flow path area in the first switching unit 101 and passes through the wide side of the flow path area in the second switching unit 102. The refrigerant passes through the narrow side of the flow path area in the first switching unit 101.
  • FIG. 7 is a piping diagram showing a connection state between the condenser and the flow path switching valve in the air conditioner during heating operation.
  • the refrigerant is not divided into a plurality of refrigerant paths like the first refrigerant path 401 and the second refrigerant path 402 during the cooling operation, and the first refrigerant path 401 and the second refrigerant path 402 Are connected in series by the flow path switching valve 1 to constitute one refrigerant path.
  • the flow of the refrigerant will be described using the names of the first refrigerant path 401 and the second refrigerant path 402 as they are.
  • the third pipe connection part 13 is connected to one end of the second refrigerant path 402.
  • the other end of the second refrigerant path 402 is connected to the sixth pipe connection portion 16.
  • the sixth pipe connection part 16 and the fifth pipe connection part 15 are connected in the main body 10.
  • the fifth pipe connection unit 15 is connected to one end of the first refrigerant path 401.
  • the other end of the first refrigerant path 401 is connected to the fourth pipe connection portion 14. The state of the valve body 20 at this time will be described with reference to FIG.
  • FIG. 8 is a piping diagram showing the inside of the flow path switching valve and the refrigerant path of FIG. 7 at the same time.
  • the convex portion 201 b faces the third pipe connecting portion 13.
  • the refrigerant that has flowed in from the first pipe connection portion 11 is directed to the third pipe connection portion 13 by the convex portion 201b.
  • the refrigerant that has exited the third pipe connection portion 13 enters the sixth pipe connection portion 16 through the second refrigerant path 402. Since the 6th pipe connection part 16 and the 5th pipe connection part 15 are connected by the communication hole 210a, a refrigerant
  • coolant reaches the recessed part 201c through the communication hole 210a from the recessed part 202c.
  • the refrigerant enters the first refrigerant path 401 from the fifth pipe connection part 15 and flows out from the second pipe connection part 12 through the fourth pipe connection part 14. That is, the refrigerant that has entered the flow path switching valve 1 from the first pipe connection part 11 is the third pipe connection part 13, the second refrigerant path 402, the sixth pipe connection part 16, the fifth pipe connection part 15, and the first refrigerant. It flows out from the 2nd piping connection part 12 through the path
  • FIG. 9 is a piping diagram showing a connection state between the condenser and the flow path switching valve in the air conditioner during the defrosting operation.
  • the flow path switching valve 1 directs the refrigerant flowing from the first pipe connection portion 11 directly to the second pipe connection portion 12, and the third pipe connection portion 13, the fourth pipe connection portion 14, It does not flow to any of the 5 pipe connection part 15 and the 6th pipe connection part 16.
  • the state of the valve body 20 at this time will be described with reference to FIG.
  • FIG. 10 is a piping diagram showing the inside of the flow path switching valve of FIG.
  • the recess 201 c faces the first pipe connection unit 11.
  • the recess 202 c faces the second pipe connection unit 12.
  • the refrigerant flowing in from the first pipe connection part 11 reaches the recess 202c of the second valve body 202 through the communication hole 210a from the recess 201c, and flows out from the second pipe connection part 12.
  • FIG. 11 is a piping diagram illustrating a connection state between the refrigerant path of the evaporator and the flow path switching valve according to the present modification in the air conditioner during the cooling operation.
  • FIG. 12 is a piping diagram showing a connection state between the refrigerant path of the condenser in the air conditioner during the heating operation and the flow path switching valve according to this modification.
  • FIG. 13 is a piping diagram showing a connection state between the condenser in the air conditioner during the defrosting operation and the flow path switching valve according to this modification.
  • 11, 12, and 13 each of the first pipe connection part 11, the third pipe connection part 13, and the fifth pipe connection part 15 is separated from the center of the body part 10a by an angle of 120 °.
  • the second pipe connection part 12, the fourth pipe connection part 14, and the sixth pipe connection part 16 are separated from each other at an angle of 120 ° with respect to the center of the body part 10a.
  • this flow path switching valve is the same as that of the flow path switching valve 1 of the first embodiment, but the pipe connection portions are arranged at intervals of 120 ° with respect to the center of the body portion 10a. If the body 20 is also moved at intervals of 120 °, the flow path is switched and the control of the motor 30 is simple.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner allows the refrigerant flowing from the second pipe connection part 12 to pass through the first refrigerant path 401 from the fourth pipe connection part 14 to the fifth pipe connection part.
  • the present invention can be applied to the case where there are two refrigerant paths to which the refrigerant flows and returns as in the indoor heat exchanger 40 during the cooling operation.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner connects the refrigerant flowing from the first pipe connection part 11 to the third pipe connection part 13, the second refrigerant path 402, and the sixth pipe connection.
  • the part 16, the fifth pipe connection part 15, the first refrigerant path 401 and the fourth pipe connection part 14 can be flowed in this order.
  • the refrigerant that has returned from the fourth pipe connection portion 14 into the main body 10 flows out of the second pipe connection portion 12. Therefore, the present invention is applicable when there is one refrigerant path to which the refrigerant should flow and return, like the indoor heat exchanger 40 during heating operation.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner can cause the refrigerant flowing in from the first pipe connection portion 11 to flow out from the second pipe connection portion 12 directly. Therefore, the present invention can be applied to a case where the refrigerant bypasses the indoor heat exchanger 40 and flows to the evaporator during the defrosting operation.
  • the main body 10 of the flow path switching valve 1 has a hollow cylindrical body 10a in which the valve body 20 moves. Since the hollow cylinder is easy to process, an increase in processing cost is suppressed.
  • the valve body 20 of the flow path switching valve 1 forms a flow path by rotating along the inner peripheral surface of the trunk portion 10a.
  • the 1st piping connection part 11, the 3rd piping connection part 13, and the 5th piping connection part 15 are arrange
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 can increase or decrease the amount of refrigerant flowing in one of the two refrigerant paths during the cooling operation as compared with the other.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner converts the refrigerant in the indoor heat exchanger 40 during the defrosting operation into the third pipe connecting part 13, the fourth pipe connecting part 14,
  • the fifth pipe connection part 15 and the sixth pipe connection part 16 can be held in a flow path formed by being connected. As a result, a rapid temperature drop of the indoor heat exchanger 40 is suppressed, and a drop in the room temperature is also suppressed.
  • FIG. 14 is a cross-sectional view when the first switching portion of the flow path switching valve according to the second embodiment is cut along a plane orthogonal to the central axis of the main body, and (b) is a diagram illustrating the second switching portion being the central axis of the main body. It is sectional drawing when cut
  • the 2nd piping connection part 52, the 4th piping connection part 54, the 6th piping connection part 56, and the 8th piping connection part 58 are arrange
  • the first valve body 601 includes a first seal A portion 611a, a first seal B portion 611b, a first convex A portion 621a, a first convex B portion 621b, a first concave A portion 631a, a first concave B portion 631b, and a center.
  • a flow path 641 is provided. Both the first seal A part 611a and the first seal B part 611b rotate and move simultaneously along the inner peripheral surface of the body part 50a. Both the 1st convex A part 621a and the 1st convex B part 621b are shape
  • the first concave A portion 631a and the first concave B portion 631b are both formed in a U shape, and the first concave A portion 631a is recessed from the arc surface of the first seal A portion 611a toward the rotation center, The first concave B portion 631b is recessed from the arc surface of the first seal B portion 611b toward the center of rotation.
  • the central flow path 641 is a fluid passage that passes between the first convex A portion 621a and the first convex B portion 621b and between the first seal A portion 611a and the first seal B portion 611b.
  • the second valve body 602 includes a second seal A portion 612a, a second seal B portion 612b, a second convex A portion 622a, a second convex B portion 622b, a second concave A portion 632a, a second concave B portion 632b, and a center.
  • a flow path 642 is provided. Both the second seal A part 612a and the second seal B part 612b rotate and move simultaneously along the inner peripheral surface of the body part 50a. Both the 2nd convex A part 622a and the 2nd convex B part 622b are shape
  • the second concave A portion 632a and the second concave B portion 632b are both formed in a U shape, and the second concave A portion 632a is recessed from the arc surface of the second seal A portion 612a toward the center of rotation.
  • the second concave B portion 632b is recessed from the arc surface of the second seal B portion 612b toward the center of rotation.
  • the central flow path 642 is a fluid passage that passes between the second convex A portion 622a and the second convex B portion 622b and between the second seal A portion 612a and the second seal B portion 612b.
  • the partition member 650 is a columnar rotating body that is disposed between the first valve body 601 and the second valve body 602.
  • the partition member 650 is opposed to the inner peripheral surface of the trunk portion 50a with a slight gap.
  • the partition member 650 includes a communication A hole 650 a that connects the first concave A portion 631 a of the first valve body 601 and the second concave A portion 632 a of the second valve body 602, and the first concave of the first valve body 601.
  • a communication B hole 650b that connects the B part 631b and the second concave B part 632b of the second valve body 602 is provided.
  • FIG. 15 is a piping diagram illustrating a connection state between the refrigerant path of the evaporator and the flow path switching valve according to the second embodiment in the air conditioner during the cooling operation.
  • the second convex A portion 622 a and the second convex B portion 622 b are opposed to the second pipe connecting portion 52.
  • the refrigerant flowing in from the second pipe connection part 52 is directed to the fourth pipe connection part 54, the sixth pipe connection part 56, and the eighth pipe connection part 58 by the second convex A part 622a and the second convex B part 622b. Divided into flows.
  • the first convex A part 621a and the first convex B part 621b are opposed to the first pipe connecting part 51.
  • the refrigerant flowing in from the third pipe connection part 53, the fifth pipe connection part 55, and the seventh pipe connection part 57 joins at the tips of the first convex A part 621a and the first convex B part 621b.
  • the 4th piping connection part 54 is connected to the end of the 1st refrigerant path 401 which passes along the 1st heat exchange part 40a.
  • the other end of the first refrigerant path 401 is connected to the fifth pipe connection portion 55.
  • the sixth pipe connection part 56 is connected to one end of the second refrigerant path 402 passing through the second heat exchange part 40b.
  • the other end of the second refrigerant path 402 is connected to the seventh pipe connection portion 57.
  • the eighth pipe connection portion 58 is connected to one end of the third refrigerant path 403 that passes through the third heat exchange portion 40c.
  • the other end of the third refrigerant path 403 is connected to the third pipe connection portion 53.
  • the other passes through the sixth pipe connection 56, the second refrigerant path 402 and the seventh pipe connection 57, and the other one passes through the eighth pipe connection 58, the third refrigerant path 403 and the second.
  • the three members join at the first pipe connection part 51 through the three pipe connection parts 53. That is, during the cooling operation, the first refrigerant path 401, the second refrigerant path 402, and the third refrigerant path 403 are connected in parallel.
  • FIG. 16 is a piping diagram showing a connection state between the refrigerant path of the condenser in the air conditioner during heating operation and the flow path switching valve according to the second embodiment.
  • the 1st convex A part 621a and the 1st convex B part 621b are facing the wall surface between the 1st piping connection part 51 and the 3rd piping connection part 53.
  • the first concave A portion 631 a faces the fifth pipe connecting portion 55
  • the first concave B portion 631 b faces the seventh pipe connecting portion 57.
  • the central flow path 641 is blocked by a wall surface between the fifth pipe connection part 55 and the seventh pipe connection part 57.
  • the refrigerant that has flowed from the first pipe connection portion 51 flows out from the third pipe connection portion 53.
  • the refrigerant that has exited the third pipe connection portion 53 enters the eighth pipe connection portion 58 through the third refrigerant path 403. Since the eighth pipe connection part 58 and the seventh pipe connection part 57 are connected by the communication B hole 650b, the refrigerant passes from the second concave B part 632b to the first concave B part 631b via the communication B hole 650b. It reaches. Thereafter, the refrigerant enters the sixth pipe connection part 56 from the seventh pipe connection part 57 through the second refrigerant path 402.
  • the refrigerant passes from the second concave A portion 632a to the first concave A portion 631a via the communication A hole 650a. It reaches. Thereafter, the refrigerant enters the fourth pipe connection part 54 through the first refrigerant path 401 from the fifth pipe connection part 55 and flows out from the second pipe connection part 52.
  • the flow path switching valve 1 can form the one long refrigerant path by connecting the first refrigerant path 401, the second refrigerant path 402, and the third refrigerant path 403 in series during the heating operation. it can.
  • FIG. 17 is a piping diagram illustrating a connection state between the condenser in the air conditioner during the defrosting operation and the flow path switching valve according to the second embodiment.
  • the first concave B part 631 b faces the first pipe connection part 51.
  • the second concave B part 632 b faces the second pipe connection part 52.
  • the refrigerant flowing in from the first pipe connection portion 51 reaches the second recess B portion 632b of the second valve body 602 through the communication B hole 650b from the first recess B portion 631b, and flows out from the second pipe connection portion 52.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner connects the first refrigerant path 401, the second refrigerant path 402, and the third refrigerant path 403 in parallel during the cooling operation. Further, during the heating operation, the flow path switching valve 1 connects the first refrigerant path 401, the second refrigerant path 402, and the third refrigerant path 403 in series to form one long refrigerant path. Further, during the defrosting operation, the flow path switching valve 1 does not flow the refrigerant through the indoor heat exchanger 40.
  • FIG. 18A is a cross-sectional view when the first switching portion of the flow path switching valve according to the third embodiment is cut along a plane orthogonal to the central axis of the main body
  • FIG. 18B is a sectional view of the second switching portion of the main body. It is sectional drawing when cut
  • the third pipe connecting portion 73, the fifth pipe connecting portion 75, the seventh pipe connecting portion 77, and the ninth pipe connecting portion 79 are 90 with respect to the central axis of the trunk portion 70a.
  • the first pipe connection part 71 is arranged between the third pipe connection part 73 and the ninth pipe connection part 79.
  • the 4th pipe connection part 74, the 6th pipe connection part 76, the 8th pipe connection part 78, and the 10th pipe connection part 80 are arrange
  • the pipe connection part 72 is disposed between the fourth pipe connection part 74 and the tenth pipe connection part 80.
  • the first valve body 801 includes a first seal A part 811a, a first seal B part 811b, a first convex A part 821a, a first convex B part 821b, a first concave A part 831a, a first concave B part 831b, and a center.
  • a flow path 841 and a central protrusion 851 are provided.
  • Both the first seal A part 811a and the first seal B part 811b rotate and move simultaneously along the inner peripheral surface of the body part 70a.
  • Both the first convex A part 821a and the first convex B part 821b are shaped like a spire.
  • the first concave A portion 831a and the first concave B portion 831b are both formed in a U shape, and the first concave A portion 831a is recessed from the arc surface of the first seal A portion 811a toward the rotation center, The first concave B portion 831b is recessed from the arc surface of the first seal B portion 811b toward the center of rotation.
  • the central channel 841 is a fluid passage that passes between the first convex A portion 821a and the first convex B portion 821b and between the first seal A portion 811a and the first seal B portion 811b.
  • the central protrusion 851 is a streamlined protrusion that divides the fluid passing through the central flow path 841 in two directions.
  • the second valve body 802 includes a second seal A portion 812a, a second seal B portion 812b, a second convex A portion 822a, a second convex B portion 822b, a second concave A portion 832a, a second concave B portion 832b, and a center.
  • a channel 842 and a central protrusion 852 are provided.
  • Both the second seal A part 812a and the second seal B part 812b rotate and move simultaneously along the inner peripheral surface of the body part 70a.
  • Both the 2nd convex A part 822a and the 2nd convex B part 822b are shape
  • the second concave A portion 832a and the second concave B portion 832b are both formed in a U shape, and the second concave A portion 832a is recessed from the arc surface of the second seal A portion 812a toward the center of rotation.
  • the second concave B portion 832b is recessed from the arc surface of the second seal B portion 812b toward the center of rotation.
  • the central flow path 842 is a fluid passage that passes between the second convex A portion 822a and the second convex B portion 822b and between the second seal A portion 812a and the second seal B portion 812b.
  • the central protrusion 852 is a streamlined protrusion that divides the fluid passing through the central flow path 842 in two directions.
  • the partition member 860 is a columnar rotating body that is disposed between the first valve body 801 and the second valve body 802.
  • the partition member 860 is opposed to the inner peripheral surface of the body portion 70a with a slight gap.
  • the partition member 860 includes a communication A hole 860a that connects the first concave A portion 831a of the first valve body 801 and the second concave A portion 832a of the second valve body 802, and the first concave portion of the first valve body 801.
  • a communication B hole 860b that connects the B portion 831b and the second concave B portion 832b of the second valve body 802 is provided.
  • FIG. 19 is a piping diagram illustrating a connection state between the refrigerant path of the evaporator and the flow path switching valve according to the third embodiment in the air conditioner during the cooling operation.
  • the tips of the second convex A portion 822 a, the second convex B portion 822 b, and the central protrusion 852 are opposed to the second pipe connecting portion 72.
  • the refrigerant that has flowed in from the second pipe connection portion 72 passes through the second protrusion A portion 822a, the second protrusion B portion 822b, and the central protrusion 852, so that the fourth pipe connection portion 74, the sixth pipe connection portion 76, and the eighth pipe connection portion. 78 and the flow toward the tenth pipe connecting portion 80.
  • the first convex A part 821 a, the first convex B part 821 b, and the central protrusion 851 are opposed to the first pipe connecting part 71.
  • the refrigerant flowing in from the third pipe connection part 73, the fifth pipe connection part 75, the seventh pipe connection part 77, and the ninth pipe connection part 79 flows into the first convex A part 821a, the first convex B part 821b, and the central protrusion 851. It merges at the tip and flows out from the first pipe connection portion 71.
  • the 4th piping connection part 74 is connected to the end of the 1st refrigerant path 401 which passes along the 1st heat exchange part 40a.
  • the other end of the first refrigerant path 401 is connected to the fifth pipe connection part 75. Further, the sixth pipe connection part 76 is connected to one end of the second refrigerant path 402 passing through the second heat exchange part 40b. The other end of the second refrigerant path 402 is connected to the seventh pipe connection portion 77. Further, the eighth pipe connection part 78 is connected to one end of the third refrigerant path 403 that passes through the third heat exchange part 40c. The other end of the third refrigerant path 403 is connected to the ninth pipe connection part 79.
  • the tenth pipe connection part 80 is connected to one end of the fourth refrigerant path 404 that passes through the fourth heat exchange part 40d.
  • the other end of the fourth refrigerant path 404 is connected to the third pipe connection portion 73.
  • the refrigerant that has entered the flow path switching valve 1 from the second pipe connection part 72 is divided into four directions, one of which is the fourth pipe connection part 74, the first refrigerant path 401, and the fifth pipe connection part 75.
  • the other passes through the sixth pipe connection 76, the second refrigerant path 402 and the seventh pipe connection 77, and the other passes through the eighth pipe connection 78, the third refrigerant path 403 and the second.
  • the nine pipe connections 79 pass through, the remaining one passes through the tenth pipe connection 80, the fourth refrigerant path 404 and the third pipe connection 73, and the four join at the first pipe connection 71. That is, during the cooling operation, the first refrigerant path 401, the second refrigerant path 402, the third refrigerant path 403, and the fourth refrigerant path 404 are connected in parallel.
  • FIG. 20 is a piping diagram showing a connection state between the refrigerant path of the condenser in the air conditioner during heating operation and the flow path switching valve according to the third embodiment.
  • the first convex A part 821 a, the first convex B part 821 b, and the central protrusion 851 are opposed to the third pipe connecting part 73.
  • the first concave A portion 831 a faces the fifth pipe connecting portion 75
  • the first concave B portion 831 b faces the ninth pipe connecting portion 79.
  • the central flow path 841 faces the seventh pipe connection part 77.
  • the refrigerant that has flowed in from the first pipe connection portion 71 is divided into a refrigerant that goes to the third pipe connection portion 73 and a refrigerant that goes to the seventh pipe connection portion 77.
  • the refrigerant that has exited the third pipe connection portion 73 enters the tenth pipe connection portion 80 through the fourth refrigerant path 404. Since the tenth pipe connecting portion 80 and the ninth pipe connecting portion 79 are connected by the communication B hole 860b, the refrigerant passes from the second concave B portion 832b to the first concave B portion 831b via the communication B hole 860b. It reaches. Thereafter, the refrigerant enters the eighth pipe connection part 78 from the ninth pipe connection part 79 through the third refrigerant path 403 and flows out from the second pipe connection part 72.
  • the refrigerant that has exited the seventh pipe connection part 77 enters the sixth pipe connection part 76 through the second refrigerant path 402. Since the sixth pipe connecting portion 76 and the fifth pipe connecting portion 75 are connected by the communication A hole 860a, the refrigerant passes from the second concave A portion 832a to the first concave A portion 831a via the communication A hole 860a. It reaches. Thereafter, the refrigerant enters the fourth pipe connection part 74 through the first refrigerant path 401 from the fifth pipe connection part 75 and flows out from the second pipe connection part 72.
  • FIG. 21 is a piping diagram showing a connection state between a refrigerant path different from that in FIG. 20 of the condenser in the air conditioner during heating operation and the flow path switching valve according to the third embodiment.
  • the first switching part 701 in the first switching part 701, the first convex A part 821 a, the first convex B part 821 b, and the central protrusion 851 are opposed to the ninth pipe connecting part 79.
  • first concave A portion 831 a faces the third pipe connection portion 73
  • first concave B portion 831 b faces the seventh pipe connection portion 77
  • the central flow path 841 faces the fifth pipe connection portion 75.
  • coolant passes through the communication A hole 860a from the 2nd recessed A part 832a, and goes to the 1st recessed A part 831a. It reaches. Thereafter, the refrigerant enters the tenth pipe connection part 80 from the third pipe connection part 73 through the fourth refrigerant path 404 and flows out from the second pipe connection part 72.
  • the refrigerant that has exited the ninth pipe connection portion 79 enters the eighth pipe connection portion 78 through the third refrigerant path 403. Since the eighth pipe connection part 78 and the seventh pipe connection part 77 are connected by the communication B hole 860b, the refrigerant passes from the second concave B part 832b to the first concave B part 831b via the communication B hole 860b. It reaches. Thereafter, the refrigerant enters the sixth pipe connection part 76 from the seventh pipe connection part 77 through the second refrigerant path 402 and flows out from the second pipe connection part 72.
  • FIG. 22 is a piping diagram illustrating a connection state between the condenser in the air conditioner during the defrosting operation and the flow path switching valve according to the third embodiment.
  • the first concave B part 831 b faces the first pipe connection part 71.
  • the second concave B part 832 b faces the second pipe connection part 72.
  • the refrigerant flowing in from the first pipe connection portion 71 reaches the second recess B portion 832b from the first recess B portion 831b through the communication B hole 860b, and flows out from the second pipe connection portion 72.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner has the first refrigerant path 401, the second refrigerant path 402, the third refrigerant path 403, and the fourth refrigerant path 404 in parallel during the cooling operation. Connecting. Further, during the heating operation, the flow path switching valve 1 connects the first refrigerant path 401 and the second refrigerant path 404 in series to form one long refrigerant path, and the third refrigerant path 403 and the fourth refrigerant. The path 404 is connected in series to form another long refrigerant path.
  • the flow path switching valve 1 connects the first refrigerant path 401 and the fourth refrigerant path 404 in series to form one long refrigerant path, and the second refrigerant path 402 and the third refrigerant.
  • the path 403 can be connected in series to form another long refrigerant path. Further, during the defrosting operation, the flow path switching valve 1 does not flow the refrigerant through the indoor heat exchanger 40.
  • FIG. 23A is a cross-sectional view when the first switching portion of the flow path switching valve according to the modification of the third embodiment is cut along a plane orthogonal to the central axis of the main body, and FIG. It is sectional drawing when a part is cut
  • 23 (a) and 23 (b) in the first switching portion 701, the third pipe connecting portion 73 is located 90 ° counterclockwise from the first pipe connecting portion 71 with respect to the central axis of the body portion 70a.
  • the fifth pipe connection part 75 is arranged at a position 45 degrees away from the third pipe connection part 73 in the counterclockwise direction with respect to the central axis of the body part 70a.
  • the ninth pipe connection part 79 is disposed at a position 90 ° clockwise from the first pipe connection part 71 with respect to the central axis of the body part 70 a, and the seventh pipe connection part 77 extends from the ninth pipe connection part 79. It arrange
  • the fourth pipe connection part 74 is disposed at a position 90 ° away from the second pipe connection part 72 in the counterclockwise direction with respect to the central axis of the body part 70a.
  • the part 76 is disposed at a position 45 degrees away from the fourth pipe connection part 74 in the counterclockwise direction with respect to the central axis of the body part 70a.
  • the tenth pipe connection portion 80 is disposed at a position 90 ° clockwise from the second pipe connection portion 72 with respect to the central axis of the trunk portion 70a, and the eighth pipe connection portion 78 is separated from the tenth pipe connection portion 80. It arrange
  • the first valve body 801 includes a first seal A portion 811a, a first seal B portion 811b, a first concave A portion 831a, a first concave B portion 831b, a central flow path 841, and a central protrusion 851. Both the first seal A part 811a and the first seal B part 811b rotate and move simultaneously along the inner peripheral surface of the body part 70a.
  • the first concave A portion 831a and the first concave B portion 831b are both formed in a U shape, and the first concave A portion 831a is recessed from the arc surface of the first seal A portion 811a toward the rotation center, The first concave B portion 831b is recessed from the arc surface of the first seal B portion 811b toward the center of rotation.
  • the central flow path 841 is a fluid passage that passes between the first seal A part 811a and the first seal B part 811b.
  • the central protrusion 851 is a substantially rhombic protrusion that divides the fluid passing through the central flow path 841 into two.
  • the second valve body 802 includes a second seal A portion 812a, a second seal B portion 812b, a second concave A portion 832a, a second concave B portion 832b, a central flow path 842, and a central protrusion 852. Both the second seal A part 812a and the second seal B part 812b rotate and move simultaneously along the inner peripheral surface of the body part 70a.
  • the second concave A portion 832a and the second concave B portion 832b are both formed in a U shape, and the second concave A portion 832a is recessed from the arc surface of the second seal A portion 812a toward the center of rotation.
  • the second concave B portion 832b is recessed from the arc surface of the second seal B portion 812b toward the center of rotation.
  • the central channel 842 is a fluid passage that passes between the second seal A part 812a and the second seal B part 812b.
  • the central protrusion 852 is a substantially rhombic protrusion that divides the fluid passing through the central flow path 842 into two.
  • the partition member 860 is a columnar rotating body that is disposed between the first valve body 801 and the second valve body 802. The partition member 860 is opposed to the inner peripheral surface of the body portion 70a with a slight gap.
  • the partition member 860 includes a communication A hole 860a that connects the first concave A portion 831a of the first valve body 801 and the second concave A portion 832a of the second valve body 802, and the first concave portion of the first valve body 801.
  • a communication B hole 860b that connects the B portion 831b and the second concave B portion 832b of the second valve body 802 is provided.
  • the first valve body 801, the second valve body 802, and the partition member 860 are fixed to one rotating shaft, and the rotating shaft is connected to the output shaft of the motor 30. Other configurations are the same as those of the third embodiment.
  • FIG. 24 is a piping diagram showing a connection state between the refrigerant path of the evaporator and the flow path switching valve according to the present modification in the air conditioner during cooling operation.
  • the central flow path 842 faces the second pipe connection part 72.
  • the refrigerant that has flowed in from the second pipe connection portion 72 flows to the fourth pipe connection portion 74, the sixth pipe connection portion 76, the eighth pipe connection portion 78, and the tenth pipe connection portion 80 through the central flow path 842.
  • the central flow path 841 faces the first pipe connection unit 71.
  • the refrigerant that has flowed in from the third pipe connection part 73, the fifth pipe connection part 75, the seventh pipe connection part 77, and the ninth pipe connection part 79 merges in the central flow path 841 and flows out from the first pipe connection part 71.
  • the 4th piping connection part 74 is connected to the end of the 1st refrigerant path 401 which passes along the 1st heat exchange part 40a.
  • the other end of the first refrigerant path 401 is connected to the fifth pipe connection part 75.
  • the sixth pipe connection part 76 is connected to one end of the second refrigerant path 402 passing through the second heat exchange part 40b.
  • the other end of the second refrigerant path 402 is connected to the ninth pipe connection part 79.
  • the eighth pipe connection part 78 is connected to one end of the fourth refrigerant path 404 that passes through the fourth heat exchange part 40d.
  • the other end of the fourth refrigerant path 404 is connected to the third pipe connection portion 73.
  • the tenth pipe connecting portion 80 is connected to one end of the third refrigerant path 403 that passes through the third heat exchanging portion 40c.
  • the other end of the third refrigerant path 403 is connected to the seventh pipe connection portion 77.
  • the refrigerant that has entered the main body 70 from the second pipe connection part 72 is divided into four directions, one passing through the fourth pipe connection part 74, the first refrigerant path 401, and the fifth pipe connection part 75, The other passes through the sixth pipe connection 76, the second refrigerant path 402 and the ninth pipe connection 79, and the other passes through the eighth pipe connection 78, the fourth refrigerant path 404 and the third pipe connection.
  • the remaining one passes through the section 73, the tenth pipe connection section 80, the third refrigerant path 403, and the seventh pipe connection section 77, and the four join at the first pipe connection section 71. That is, during the cooling operation, the first refrigerant path 401, the second refrigerant path 402, the third refrigerant path 403, and the fourth refrigerant path 404 are connected in parallel.
  • FIG. 25 is a piping diagram showing a connection state between the refrigerant path of the condenser in the air conditioner during heating operation and the flow path switching valve according to this modification.
  • the first concave A part 831 a faces the fifth pipe connection part 75
  • the first concave B part 831 b faces the seventh pipe connection part 77.
  • the refrigerant that has flowed from the first pipe connection portion 71 is divided into a refrigerant that goes to the third pipe connection portion 73 and a refrigerant that goes to the ninth pipe connection portion 79.
  • the refrigerant that has exited the third pipe connection portion 73 enters the eighth pipe connection portion 78 through the fourth refrigerant path 404.
  • the refrigerant passes through the communication B hole 860b from the second concave B part 832b, and the first valve body 801 1 concave B portion 831b is reached. Thereafter, the refrigerant enters the tenth pipe connection part 80 from the seventh pipe connection part 77 through the third refrigerant path 403, and flows out from the second pipe connection part 72.
  • the refrigerant that has exited the ninth pipe connection part 79 enters the sixth pipe connection part 76 through the second refrigerant path 402. Since the sixth pipe connecting portion 76 and the fifth pipe connecting portion 75 are connected by the communication A hole 860a, the refrigerant passes from the second concave A portion 832a to the first concave A portion 831a via the communication A hole 860a. It reaches. Thereafter, the refrigerant enters the fourth pipe connection part 74 through the first refrigerant path 401 from the fifth pipe connection part 75 and flows out from the second pipe connection part 72.
  • FIG. 26 is a piping diagram showing a connection state between a refrigerant path different from that in FIG. 25 of the condenser in the air conditioner during heating operation and the flow path switching valve according to this modification.
  • the first concave A part 831 a faces the seventh pipe connection part 77.
  • the refrigerant that has flowed in from the first pipe connection part 71 is divided into refrigerants that go to the third pipe connection part 73, the fifth pipe connection part 75, and the ninth pipe connection part 79.
  • the refrigerant that has exited the third pipe connection portion 73 enters the eighth pipe connection portion 78 through the fourth refrigerant path 404. Since the 8th pipe connection part 78 and the 7th pipe connection part 77 are connected with the communication A hole 860a of the partition member 860, the refrigerant passes through the communication A hole 860a from the second recess A part 832a and is connected to the first recess. It reaches A section 831a. Thereafter, the refrigerant enters the tenth pipe connection part 80 from the seventh pipe connection part 77 through the third refrigerant path 403 and flows out from the second pipe connection part 72.
  • the refrigerant that has exited the fifth pipe connection portion 75 enters the fourth pipe connection portion 74 through the first refrigerant path 401 and flows out from the second pipe connection portion 72.
  • the refrigerant from the ninth pipe connection part 79 enters the sixth pipe connection part 76 through the second refrigerant path 402 and flows out from the second pipe connection part 72.
  • the flow path switching valve 1 can form one long refrigerant path by connecting the third refrigerant path 403 and the fourth refrigerant path 404 in series during the heating operation.
  • FIG. 27 is a piping diagram showing a connection state between the condenser in the air conditioner during the defrosting operation and the flow path switching valve according to the present modification.
  • the first concave B part 831 b faces the first pipe connection part 71.
  • the second concave B part 832 b faces the second pipe connection part 72.
  • the refrigerant that has flowed in from the first pipe connection portion 71 reaches the recess portion 802b from the first recess B portion 831b through the communication B hole 860b, and flows out from the second pipe connection portion 72.
  • the flow path switching valve 1 connected to the indoor heat exchanger 40 of the air conditioner has the first refrigerant path 401, the second refrigerant path 402, the third refrigerant path 403, and the fourth refrigerant path 404 in parallel during the cooling operation. Connecting. Further, during the heating operation, the flow path switching valve 1 connects the first refrigerant path 401 and the second refrigerant path 402 in series to form one long refrigerant path, and the third refrigerant path 403 and the fourth refrigerant. The path 404 can be connected in series to form another long refrigerant path. Further, during the defrosting operation, the flow path switching valve 1 does not flow the refrigerant through the indoor heat exchanger 40.
  • FIG. 28A is a configuration diagram of the air conditioner illustrating a connection state between the indoor heat exchanger during the heating operation and the flow path switching valve according to the first embodiment.
  • FIG. 28B is a configuration diagram of the air conditioner illustrating a connection state between the indoor heat exchanger during the cooling operation and the flow path switching valve according to the first embodiment.
  • FIG. 28C is a configuration diagram of the air conditioner illustrating a connection state between the indoor heat exchanger during the defrosting operation and the flow path switching valve according to the first embodiment.
  • the air conditioner has an indoor unit 4, an outdoor unit 6, and a control unit 8.
  • the outdoor unit 6 and the indoor unit 4 are connected by a refrigerant communication pipe to form a vapor compression refrigerant circuit.
  • the indoor unit 4 has an indoor heat exchanger 40 and a flow path switching valve 1.
  • the indoor heat exchanger 40 is a fin-and-tube heat exchanger, which cools air by functioning as a refrigerant evaporator during cooling operation, and functions as a refrigerant condenser during heating operation. Heat.
  • the first refrigerant path 401 and the second refrigerant path 402 are connected in series by the flow path switching valve 1 to form one refrigerant path.
  • the flow of the refrigerant will be described using the names of the first refrigerant path 401 and the second refrigerant path 402 as they are.
  • the third pipe connection part 13 is connected to one end of the second refrigerant path 402.
  • the other end of the second refrigerant path 402 is connected to the sixth pipe connection portion 16.
  • the sixth pipe connection part 16 and the fifth pipe connection part 15 are connected in the main body 10.
  • the fifth pipe connection unit 15 is connected to one end of the first refrigerant path 401.
  • the other end of the first refrigerant path 401 is connected to the fourth pipe connection portion 14.
  • the convex part 201 b faces the third pipe connection part 13.
  • the refrigerant that has flowed in from the first pipe connection portion 11 is directed to the third pipe connection portion 13 by the convex portion 201b.
  • the refrigerant that has exited the third pipe connection portion 13 enters the sixth pipe connection portion 16 through the second refrigerant path 402. Since the 6th pipe connection part 16 and the 5th pipe connection part 15 are connected by the communication hole 210a, a refrigerant
  • coolant reaches the recessed part 201c through the communication hole 210a from the recessed part 202c. Thereafter, the refrigerant enters the first refrigerant path 401 from the fifth pipe connection part 15 and flows out from the second pipe connection part 12 through the fourth pipe connection part 14.
  • the refrigerant that has entered the flow path switching valve 1 from the first pipe connection part 11 is the third pipe connection part 13, the second refrigerant path 402, the sixth pipe connection part 16, the fifth pipe connection part 15, and the first refrigerant. It flows out from the 2nd piping connection part 12 through the path
  • the flow path switching valve 1 can form one long refrigerant path by connecting the first refrigerant path 401 and the second refrigerant path 402 in series during the heating operation.
  • Outdoor unit 6 The outdoor unit 6 is mainly installed outdoors, and includes a compressor 5, a four-way switching valve 2, an outdoor heat exchanger 46, and an expansion valve 7.
  • the compressor 5 is a variable capacity compressor adopting an inverter system, and sucks low-pressure gas refrigerant, compresses it into high-pressure gas refrigerant, and discharges it.
  • the four-way switching valve 2 is a valve that switches the direction of the refrigerant flow when switching between the cooling operation and the heating operation.
  • the four-way switching valve 2 connects the discharge side of the compressor 5 and the first piping connection part 11 of the first switching part 101 of the flow path switching valve 1 and the gas side of the outdoor heat exchanger 46 during heating operation.
  • the suction side of the compressor 5 is connected.
  • the outdoor heat exchanger 46 is a heat exchanger that functions as a refrigerant condenser during the cooling operation and functions as a refrigerant evaporator during the heating operation.
  • the expansion valve 7 decompresses the high-pressure liquid refrigerant radiated in the indoor heat exchanger 40 before sending it to the outdoor heat exchanger 46 during the heating operation.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the first pipe connection part 11 of the first switching part 101 of the flow path switching valve 1 through the four-way switching valve 2.
  • the first refrigerant path 401 and the second refrigerant path 402 are connected in series.
  • the refrigerant passes through the refrigerant path 402, the sixth pipe connection part 16, the fifth pipe connection part 15, the first refrigerant path 401 and the fourth pipe connection part 14, and flows out from the second pipe connection part 12. That is, the flow path switching valve 1 is in the first state.
  • the high-pressure refrigerant passing through the second refrigerant path 402 and the first refrigerant path 401 dissipates heat by exchanging heat with air in the first heat exchange section 40a and the second heat exchange section 40b of the indoor heat exchanger 40.
  • the high-pressure refrigerant that has dissipated heat in the indoor heat exchanger 40 is sent to the expansion valve 7 and depressurized to a low pressure, and then sent to the outdoor heat exchanger 46.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 46 evaporates by exchanging heat with the outside air.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 46 is again sucked into the compressor 5 through the four-way switching valve 2.
  • the indoor heat exchanger 40 which functions as a condenser, exchanges heat up to the supercooling zone (liquid state) in order to obtain a large amount of latent heat in the subsequent evaporation step, so that the ratio of the flowing liquid phase refrigerant is higher than that of the evaporator.
  • the refrigerant flow rate is small.
  • the heat transmissivity K is small, but the pressure loss caused by the flow is small, so the temperature difference ⁇ T between the air and the refrigerant is large.
  • the flow path switching valve 1 is switched to the first state, whereby the first refrigerant path 401 and the second refrigerant path 402 of the indoor heat exchanger 40 are connected in series, One long refrigerant path is formed.
  • the number of branch paths is reduced, the flow rate of the refrigerant is increased correspondingly, and the heat exchange performance is improved.
  • the refrigerant is sucked into the compressor 5 and discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 46 through the four-way switching valve 2.
  • the high-pressure refrigerant sent to the outdoor heat exchanger 46 radiates heat by exchanging heat with outdoor air.
  • the high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 46 is sent to the expansion valve 7, depressurized to a low pressure, and sent to the second pipe connection portion 12 of the second switching portion 102 of the flow path switching valve 1.
  • the first refrigerant path 401 and the second refrigerant path 402 are connected in parallel, and the refrigerant flowing in from the second pipe connection portion 12 is divided into two directions by the convex portion 202b,
  • the pipe connection part 14, the first refrigerant path 401 and the fifth pipe connection part 15 pass through, and the other passes through the sixth pipe connection part 16, the second refrigerant path 402 and the third pipe connection part 13. Merges at the part 101 and flows out from the first pipe connection part 11. That is, the flow path switching valve 1 is in the second state.
  • the low-pressure refrigerant that passes through the first refrigerant path 401 evaporates by exchanging heat with indoor air in the first heat exchange section 40a of the indoor heat exchanger 40. Further, the low-pressure refrigerant passing through the second refrigerant path 402 evaporates by exchanging heat with indoor air in the second heat exchange section 40b of the indoor heat exchanger 40. The low-pressure refrigerant evaporated in the indoor heat exchanger 40 is again sucked into the compressor 5 through the four-way switching valve 2. Since the indoor heat exchanger 40 functioning as an evaporator has a low pressure, the ratio of the gas phase state is larger than that of the condenser, and the flow rate of the flowing gas phase refrigerant is large.
  • the heat transmissivity K is large, the pressure loss caused by the flow is also large, and the temperature difference ⁇ T between the air and the refrigerant is small. Further, the pressure loss increases as the temperature approaches the superheat range (the gas phase becomes larger). Then, during cooling operation, in order to increase the heat transfer amount of the indoor heat exchanger 40, it is advantageous to increase the temperature difference ⁇ T between the air and the refrigerant and reduce the pressure loss, and branch to reduce the refrigerant flow rate. It is better to increase the number of routes.
  • the flow path switching valve 1 is switched to the second state, whereby the first refrigerant path 401 and the second refrigerant path 402 of the indoor heat exchanger 40 are connected in parallel, Two refrigerant paths are formed.
  • the number of branch paths increases, and accordingly, the flow rate of the refrigerant is reduced, and the heat exchange performance is improved.
  • the first switching unit 101 has the recess 201c as the first. It faces the pipe connection part 11.
  • the recess 202 c faces the second pipe connection unit 12. Therefore, the high-pressure refrigerant discharged from the compressor 5 flows into the first pipe connection portion 11, then reaches the recess 202 c of the second valve body 202 through the communication hole 210 a from the recess 201 c, and reaches the second pipe connection portion. 12 flows out.
  • Embodiment A of Air Conditioner As described above, the branch path can be changed by the flow path switching valve 1 according to the case where the indoor heat exchanger 40 is used as a condenser and the case where it is used as an evaporator. In the air conditioner that performs the cooling operation and the heating operation, the efficiency of the indoor heat exchanger 40 can be made compatible in each operation, and a large air conditioning capability and energy saving performance can be provided.
  • the air conditioner is a variable capacity air conditioner using an inverter compressor
  • the refrigerant circulation amount is variable. Since the change in the refrigerant circulation amount changes the flow velocity, the balance between the heat transmissivity K and the temperature difference ⁇ T between the air and the refrigerant changes. For example, when the refrigerant circulation amount is extremely small, the pressure loss does not need to be emphasized even in the evaporator, and it is advantageous to increase the heat flow rate K by increasing the flow velocity. In such a case, the flow path switching valve 1 is switched to the first state, whereby the first refrigerant path 401 and the second refrigerant path 402 of the indoor heat exchanger 40 are connected in series, and one long refrigerant is obtained. A path is formed.
  • the number of branch paths is reduced, the flow rate of the refrigerant is increased correspondingly, and the heat exchange performance is improved.
  • the refrigerant circulation amount is extremely large, the pressure loss must be emphasized even in the condenser, and it is advantageous to reduce the flow rate to reduce the temperature difference ⁇ T between the air and the refrigerant.
  • the flow path switching valve 1 is switched to the second state, whereby the first refrigerant path 401 and the second refrigerant path 402 of the indoor heat exchanger 40 are connected in parallel, so that two refrigerant paths Is formed.
  • the number of branch paths increases, and accordingly, the flow rate of the refrigerant is reduced, and the heat exchange performance is improved.
  • FIG. 29A is a configuration diagram of the air conditioner illustrating a connection state between the outdoor heat exchanger and the flow path switching valve according to the first embodiment during a heating operation.
  • FIG. 29B is a configuration diagram of the air conditioner illustrating a connection state between the outdoor heat exchanger during the cooling operation and the flow path switching valve according to the first embodiment.
  • the air conditioner has an indoor unit 4, an outdoor unit 6, and a control unit 8.
  • the outdoor unit 6 and the indoor unit 4 are connected by a refrigerant communication pipe to form a vapor compression refrigerant circuit.
  • the difference in configuration from the air conditioner embodiment 1A is that the flow path switching valve 1 is connected to the outdoor heat exchanger 46, so the same components and members as in the air conditioner embodiment 1A are used. Are given the same reference numerals and description thereof is omitted, and only the flow of the refrigerant during operation will be described here.
  • the refrigerant is sucked into the compressor 5 and discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the indoor heat exchanger 40 through the four-way switching valve 2.
  • the high-pressure refrigerant sent to the indoor heat exchanger 40 radiates heat by exchanging heat with indoor air.
  • the high-pressure refrigerant that has radiated heat in the indoor heat exchanger 40 is sent to the expansion valve 7, is depressurized to a low pressure, and is sent to the second pipe connection portion 12 of the second switching portion 102 of the flow path switching valve 1.
  • the first refrigerant path 461 and the second refrigerant path 462 are connected in parallel, and the refrigerant flowing in from the second pipe connection portion 12 is divided into two directions by the convex portion 202b,
  • the pipe connection part 14, the first refrigerant path 461 and the fifth pipe connection part 15 pass through, and the other part passes through the sixth pipe connection part 16, the second refrigerant path 462 and the third pipe connection part 13. Merges at the part 101 and flows out from the first pipe connection part 11.
  • the low-pressure refrigerant passing through the first refrigerant path 461 evaporates by exchanging heat with outdoor air in the first heat exchange section 46a of the outdoor heat exchanger 46. Further, the low-pressure refrigerant passing through the second refrigerant path 462 evaporates by exchanging heat with outdoor air in the second heat exchange section 46b of the outdoor heat exchanger 46. The low-pressure refrigerant evaporated in the outdoor heat exchanger 46 is again sucked into the compressor 5 through the four-way switching valve 2. Since the outdoor heat exchanger 46 that functions as an evaporator has a low pressure, the ratio of the gas phase state is larger than that of the condenser, and the flow rate of the flowing gas phase refrigerant is large.
  • the heat transmissivity K is large, the pressure loss caused by the flow is also large, and the temperature difference ⁇ T between the air and the refrigerant is small. Further, the pressure loss increases as the temperature approaches the superheat range (the gas phase becomes larger). Then, in heating operation, in order to increase the heat transfer amount of the outdoor heat exchanger 46, it is advantageous to increase the temperature difference ⁇ T between the air and the refrigerant and reduce the pressure loss, and branch to reduce the refrigerant flow rate. It is better to increase the number of routes.
  • the flow path switching valve 1 is switched to the second state, whereby the first refrigerant path 461 and the second refrigerant path 462 of the outdoor heat exchanger 46 are connected in parallel, Two refrigerant paths are formed.
  • the number of branch paths increases, and accordingly, the flow rate of the refrigerant is reduced, and the heat exchange performance is improved.
  • (2) Flow of Refrigerant During Cooling Operation In FIG. 29B, the refrigerant is sucked into the compressor 5 and discharged after being compressed to a high pressure. The high-pressure refrigerant discharged from the compressor 5 is sent to the first pipe connection part 11 of the first switching part 101 of the flow path switching valve 1 through the four-way switching valve 2.
  • the first refrigerant path 461 and the second refrigerant path 462 are connected in series, and the refrigerant that has entered the flow path switching valve 1 from the first pipe connection section 11 is transferred to the third pipe connection section 13, the second refrigerant path 462.
  • the refrigerant passes through the refrigerant path 462, the sixth pipe connection part 16, the fifth pipe connection part 15, the first refrigerant path 461 and the fourth pipe connection part 14, and flows out from the second pipe connection part 12.
  • the high-pressure refrigerant passing through the second refrigerant path 462 and the first refrigerant path 461 dissipates heat by exchanging heat with outdoor air in the first heat exchange unit 46a and the second heat exchange unit 46b of the outdoor heat exchanger 46. .
  • the high-pressure refrigerant that has dissipated heat in the outdoor heat exchanger 46 is sent to the expansion valve 7 to be depressurized to a low pressure, and then sent to the indoor heat exchanger 40.
  • the low-pressure refrigerant sent to the indoor heat exchanger 40 evaporates by exchanging heat with the outside air.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 40 is again sucked into the compressor 5 through the four-way switching valve 2.
  • the outdoor heat exchanger 46 which functions as a condenser, exchanges heat up to the supercooling zone (liquid state) in order to obtain a large amount of latent heat in the subsequent evaporation step, so that the ratio of the flowing liquid phase refrigerant is higher than that of the evaporator.
  • the refrigerant flow rate is small.
  • the heat transmissivity K is small, but the pressure loss caused by the flow is small, so the temperature difference ⁇ T between the air and the refrigerant is large.
  • the flow path switching valve 1 is switched to the first state, whereby the first refrigerant path 461 and the second refrigerant path 462 of the outdoor heat exchanger 40 are connected in series, One long refrigerant path is formed.
  • the number of branch paths is reduced, the flow rate of the refrigerant is increased correspondingly, and the heat exchange performance is improved.
  • the branch path can be changed by the flow path switching valve 1 according to the case where the outdoor heat exchanger 46 is used as a condenser and the case where it is used as an evaporator.
  • the efficiency of the outdoor heat exchanger 46 can be made compatible in each operation, and a large air conditioning capability and energy saving can be provided.
  • the air conditioner is a variable capacity air conditioner using an inverter compressor, the refrigerant circulation amount is variable. Since the change in the refrigerant circulation amount changes the flow velocity, the balance between the heat transmissivity K and the temperature difference ⁇ T between the air and the refrigerant changes. For example, when the refrigerant circulation amount is extremely small, the pressure loss does not need to be emphasized even in the evaporator, and it is advantageous to increase the heat flow rate K by increasing the flow velocity.
  • the flow path switching valve 1 is switched to the first state, whereby the first refrigerant path 461 and the second refrigerant path 462 of the outdoor heat exchanger 46 are connected in series, and one long refrigerant A path is formed.
  • the number of branch paths is reduced, the flow rate of the refrigerant is increased correspondingly, and the heat exchange performance is improved.
  • the flow path switching valve 1 is switched to the second state, whereby the first refrigerant path 461 and the second refrigerant path 462 of the outdoor heat exchanger 46 are connected in parallel, so that two refrigerant paths. Is formed.
  • the number of branch paths increases, and accordingly, the flow rate of the refrigerant is reduced, and the heat exchange performance is improved.
  • FIG. 30A is a configuration diagram of the air conditioner illustrating a connection state between the outdoor heat exchanger and the flow path switching valve according to the first embodiment during the reheat dehumidification operation.
  • FIG. 30B is a configuration diagram of the air conditioner showing another connection state between the outdoor heat exchanger and the flow path switching valve according to the first embodiment during the reheat dehumidification operation.
  • the air conditioner has an indoor unit 4, an outdoor unit 6, and a control unit 8.
  • the outdoor unit 6 and the indoor unit 4 are connected by a refrigerant communication pipe to form a vapor compression refrigerant circuit.
  • the structural difference from Embodiment 1A of the air conditioner is that the second expansion valve 41 is connected between the first heat exchange unit 40a and the second heat exchange unit 40b of the indoor heat exchanger 40. Since the point and the flow path switching valve 1 are connected to the outdoor heat exchanger 46, the same reference numerals are given to the same parts and members as in the air conditioner embodiment 1A, and the description thereof is omitted here. Only the flow of the refrigerant during the reheat dehumidifying operation will be described.
  • the recess 201 c faces the first pipe connection part 11, and in the second switching part 102, the recess 202 c faces the second pipe connection part 12. Therefore, the high-pressure refrigerant that has flowed into the first pipe connection portion 11 reaches the recess 202c of the second valve body 202 through the communication hole 210a from the recess 201c, and flows out from the second pipe connection portion 12. That is, since it does not pass through the second refrigerant path 462 and the first refrigerant path 461, heat exchange is not performed in the first heat exchange part 46a and the second heat exchange part 46b of the outdoor heat exchanger 46.
  • the high-temperature and high-pressure refrigerant from the second pipe connection unit 12 is directly sent to the second heat exchanger unit 40b of the indoor heat exchanger 40. .
  • the high-pressure refrigerant radiates heat by exchanging heat with room air in the second heat exchanger section 40b.
  • the high-pressure refrigerant that has dissipated heat in the second heat exchange unit 40b is sent to the second expansion valve 41, depressurized to a low pressure, and then sent to the first heat exchange unit 40a.
  • the low-pressure refrigerant evaporates by exchanging heat with room air in the first heat exchanging unit 40a.
  • the low-pressure refrigerant evaporated in the first heat exchange unit 40a is again sucked into the compressor 5 through the four-way switching valve 2.
  • the low-pressure refrigerant evaporates by exchanging heat with room air in the second heat exchange unit 40b. Since the expansion valve 7 is fully opened during the reheat dehumidifying operation, the low-pressure refrigerant evaporated in the second heat exchange unit 40b directly enters the second pipe connection unit 12 of the second switching unit 102 of the flow path switching valve 1. Sent.
  • the recess 201 c faces the first pipe connection part 11
  • the recess 202 c faces the second pipe connection part 12.
  • the low-pressure refrigerant that has flowed into the second pipe connection portion 12 reaches the recess 201 c of the first valve body 201 through the communication hole 210 a from the recess 202 c and flows out from the first pipe connection portion 11.
  • the reheat dehumidifying operation is an operation of dehumidifying by condensing air with an evaporator and returning the air temperature again by warming air cooled by the evaporator with a condenser.
  • the heat exchange in the outdoor heat exchanger 46 can be eliminated by bypassing the outdoor heat exchanger 46, and the indoor heat exchanger 40 maximizes the condensation heat and the evaporation heat. Can be used.
  • FIG. 31A is a cross-sectional view of the flow path switching valve when the first switching unit is cut along a plane orthogonal to the central axis of the main body
  • FIG. 31B is a plane orthogonal to the central axis of the main body. It is sectional drawing of a flow-path switching valve when cut
  • the valve body includes a first valve body 251, a second valve body 252, a first throttle valve body 261, and a second throttle valve body 262.
  • the 1st valve body 251 is a rotary body, and has the seal part 251a, the convex part 251b, and the recessed part 251c.
  • the seal portion 251a rotates and moves along the inner periphery of the main body.
  • the convex portion 251b is formed in a streamline shape, and protrudes in a direction opposite to the seal portion 251a from the rotation center.
  • the recess 251c is formed in a U shape and is recessed from the arc surface of the seal portion 251a toward the center of rotation.
  • the first throttle valve body 261 is provided at a position that is 135 ° away from the first valve body 251 about the rotation axis thereof.
  • the first throttle valve body 261 has a seal portion 261a, a convex portion 261b, and a concave portion 261c.
  • the cross-sectional area of the passage surrounded by the recess 261c and the body portion 10a of the main body 10 is set small enough to reduce the pressure when the refrigerant passes through the passage.
  • the first throttle valve body 261 rotates together with the first valve body 251, but when the first throttle valve body 261 is functioning, the first valve body 251 does not function, and conversely, the first throttle valve body 261 is When not functioning, the first valve body 251 functions.
  • the 2nd valve body 252 is a rotary body of the same shape as the 1st valve body 251, and has the seal part 252a, the convex part 252b, and the recessed part 252c.
  • the seal portion 252a rotates and moves along the inner periphery of the main body.
  • the convex portion 252b is formed in a streamline shape, and protrudes in a direction opposite to the seal portion 252a from the center of rotation.
  • the recess 252c is formed in a U shape and is recessed from the arc surface of the seal portion 252a toward the center of rotation.
  • the second throttle valve body 262 is provided at a position 135 degrees away from the second valve body 252 with the rotation axis as the center.
  • the second throttle valve body 262 has a seal portion 262a, a convex portion 262b, and a concave portion 262c.
  • the cross-sectional area of the passage surrounded by the concave portion 262c and the body portion 10a of the main body 10 is set small enough to reduce the pressure when the refrigerant passes through the passage. Therefore, when the concave portion 261c faces the fifth pipe connecting portion 15 and the concave portion 262c faces the sixth pipe connecting portion 16, the refrigerant flowing from the sixth pipe connecting portion 16 passes through the communication hole 260a.
  • FIG. 32A is a configuration diagram of the air conditioner showing a connection state between the indoor heat exchanger during heating operation and the flow path switching valve according to the fourth embodiment.
  • FIG. 32B is a configuration diagram of the air conditioner illustrating a connection state between the indoor heat exchanger during the cooling operation and the flow path switching valve according to the first embodiment.
  • FIG. 32C is a configuration diagram of the air conditioner illustrating a connection state between the indoor heat exchanger and the flow path switching valve according to the fourth embodiment during the reheat dehumidification operation.
  • the air conditioner includes an indoor unit 4, an outdoor unit 6, and a control unit 8.
  • the outdoor unit 6 and the indoor unit 4 are connected by a refrigerant communication pipe to form a vapor compression refrigerant circuit.
  • a refrigerant coolant is demonstrated here.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the first pipe connection part 11 of the first switching part 151 of the flow path switching valve 1 through the four-way switching valve 2.
  • the first refrigerant path 401 and the second refrigerant path 402 are connected in series.
  • the refrigerant passes through the refrigerant path 402, the sixth pipe connection part 16, the fifth pipe connection part 15, the first refrigerant path 401 and the fourth pipe connection part 14, and flows out from the second pipe connection part 12.
  • the high-pressure refrigerant passing through the second refrigerant path 402 and the first refrigerant path 401 dissipates heat by exchanging heat with air in the first heat exchange section 40a and the second heat exchange section 40b of the indoor heat exchanger 40.
  • the high-pressure refrigerant that has dissipated heat in the indoor heat exchanger 40 is sent to the expansion valve 7 and depressurized to a low pressure, and then sent to the outdoor heat exchanger 46.
  • the low-pressure refrigerant sent to the outdoor heat exchanger 46 evaporates by exchanging heat with the outside air.
  • the low-pressure refrigerant evaporated in the outdoor heat exchanger 46 is again sucked into the compressor 5 through the four-way switching valve 2.
  • the refrigerant is sucked into the compressor 5 and discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 46 through the four-way switching valve 2.
  • the high-pressure refrigerant sent to the outdoor heat exchanger 46 radiates heat by exchanging heat with outdoor air.
  • the high-pressure refrigerant that has radiated heat in the outdoor heat exchanger 46 is sent to the expansion valve 7, is depressurized to a low pressure, and is sent to the second pipe connection portion 12 of the second switching portion 152 of the flow path switching valve 1.
  • the first refrigerant path 401 and the second refrigerant path 402 are connected in parallel, and the refrigerant flowing from the second pipe connection portion 12 is divided into two directions by the convex portion 252b,
  • the pipe connection part 14, the first refrigerant path 401 and the fifth pipe connection part 15 pass through, and the other passes through the sixth pipe connection part 16, the second refrigerant path 402 and the third pipe connection part 13. It merges at the part 151 and flows out from the first pipe connection part 11.
  • the low-pressure refrigerant that passes through the first refrigerant path 401 evaporates by exchanging heat with indoor air in the first heat exchange section 40a of the indoor heat exchanger 40.
  • the low-pressure refrigerant passing through the second refrigerant path 402 evaporates by exchanging heat with indoor air in the second heat exchange section 40b of the indoor heat exchanger 40.
  • the low-pressure refrigerant evaporated in the indoor heat exchanger 40 is again sucked into the compressor 5 through the four-way switching valve 2.
  • (3) Flow of Refrigerant During Reheat Dehumidification Operation In FIG. 32C, the refrigerant is sucked into the compressor 5 and discharged after being compressed to a high pressure.
  • the high-pressure refrigerant discharged from the compressor 5 is sent to the outdoor heat exchanger 46 through the four-way switching valve 2.
  • the expansion valve 7 is fully open, and the first refrigerant path 401 and the second refrigerant path 402 are connected in series. Therefore, the high-pressure refrigerant sent to the outdoor heat exchanger 46 is sent to the second pipe connecting part 12 of the second switching part 152 of the flow path switching valve 111, and the fourth pipe connecting part 14 and the first refrigerant path 401 are sent.
  • the fifth pipe connection part 15, the sixth pipe connection part 16, the second refrigerant path 402 and the third pipe connection part 13 flow to the first pipe connection part 11.
  • the recess 261 c of the first throttle valve body 261 faces the fifth pipe connection part 15, and in the second switching part 152, the second throttle valve body 262 Since the recessed portion 262c faces the sixth pipe connecting portion 16, the high-pressure refrigerant passes through the connecting hole 260a from the recessed portion 261c and the recessed portion 262d on the way from the fifth pipe connecting portion 15 to the sixth pipe connecting portion 16. As it passes, the refrigerant is squeezed and depressurized.
  • the high-pressure refrigerant is depressurized between the first refrigerant path 401 and the second refrigerant path 402, the first heat exchange unit 40a of the indoor heat exchanger 40 functions as a condenser, and the second heat exchange unit 40b Functions as an evaporator. That is, during the reheat dehumidification operation, both the outdoor heat exchanger 46 and the first heat exchange unit 40a of the indoor heat exchanger 40 serve as a condenser.
  • the high-pressure refrigerant radiated in the outdoor heat exchanger 46 and the first heat exchanger 40a is depressurized to a low pressure in the flow path switching valve 111 and sent to the second heat exchange unit 40b.
  • the low-pressure refrigerant sent to the second heat exchanger 40b exchanges heat with the outside air and evaporates.
  • the low-pressure refrigerant evaporated in the second heat exchange unit 40 b flows out from the first pipe connection unit 11 and is sucked into the compressor 5 again through the four-way switching valve 2.
  • Embodiment D of Air Conditioner Conventionally, in many air conditioners, a pressure reducing mechanism is required between the first heat exchange unit 40a and the second heat exchange unit 40b in order to perform reheat dehumidification operation. However, in this air conditioner, since the second flow path of the flow path switching valve 1 functions as a pressure reducing mechanism, a dedicated pressure reducing mechanism becomes unnecessary. Therefore, an increase in cost can be suppressed.
  • switching of the number of fluid paths and switching to a bypass circuit or the like are performed by one switching valve, which is useful for an air conditioner.
  • JP 60-132179 A Japanese Patent Laid-Open No. 11-132603

Abstract

 本発明は、冷媒のパス数の切換、およびバイパス回路への切換が1つの切換弁によって行われることを目的とする。 流路切換弁(1)が、複数の流体流通口を構成する配管接続部群(11~16)を有する本体(10)と、前記本体(10)の内部空間に配置され前記流体流通口同士を連通させるための流路を形成する可動部材(20)とを備え、前記配管接続部群は、流体の流入口あるいは流出口となる第1配管接続部(11)、前記第1配管接続部(11)とは別に前記流体の流出口あるいは流入口となる第2配管接続部(12)、前記第1配管接続部(11)および前記第2配管接続部(12)とは別に流通口となる第3配管接続部(13)、第4配管接続部(14)、および第5配管接続部(15)を、少なくとも含み、前記可動部材(20)によって、前記本体(10)内を移動して、前記第1配管接続部(11)が前記配管接続部群のうちの1つの配管接続部とだけ結ばれる第1状態と、前記第1配管接続部(11)が前記配管接続部群のうちの2つ以上の配管接続部と結ばれる第2状態と、の切り換えを行う。

Description

流路切換弁、及びそれを備えた空気調和機
 本発明は、流体の流通路を切り換え、或は、流体を多方向に分配する流路切換弁に関する。
 空気調和機において、冷房運転、暖房運転など選択された運転モードによって蒸発器および凝縮器の能力が最大となる冷媒のパス数は異なり、運転切換時、パス数は多方弁を複数に組み合わせることによって切り換えられる。その多方弁として、例えば、特許文献1(特開昭60-132179号公報)に開示されているような冷媒分配装置が採用される。
 また、除霜運転モードでは、圧縮機を出た冷媒の流れは、バイパス弁によって切り換えられ、冷媒は凝縮器をバイパスして蒸発器に流れ、凝縮熱で蒸発器の着霜を融かす。なお、バイパス弁およびバイパス回路を用いた除霜運転については、特許文献2(特開平11-132603号公報)に開示されている。
 上記のように、空気調和機では、冷媒のパス数の切換、および除霜運転時のバイパス回路への切換それぞれに専用の切換弁が使用されており、材料費の増加および熱交換器周辺の大型化の要因となっている。
 本発明は、冷媒のパス数の切換、およびバイパス回路への切換が1つの切換弁によって行われることを目的とする。
 第1発明に係る流路切換弁は、本体と可動部材とを備えている。本体は、複数の流体流通口を構成する配管接続部群を有する。可動部材は、本体の内部空間に配置され流体流通口同士を連通させるための流路を形成する。配管接続部群は、少なくとも第1配管接続部、第2配管接続部、第3配管接続部、第4配管接続部、および第5配管接続部を含んでいる。第1配管接続部は、流体の流入口あるいは流出口となる。第2配管接続部は、第1配管接続部とは別に流体の流出口あるいは流入口となる。第3配管接続部、第4配管接続部、および第5配管接続部は、第1配管接続部および第2配管接続部とは別に流通口となる。可動部材は、本体内を移動して、第1状態と第2状態との切り換えを行う。第1状態は、第1配管接続部が配管接続部群のうちの1つ以上の配管接続部と結ばれる状態である。第2状態は、第1配管接続部が配管接続部群のうちの第1状態より多い複数の配管接続部と結ばれる状態である。
 この流路切換弁は、第1状態に切り換わることによって、第1配管接続部から流入した流体を第2状態よりも少ない第3配管接続部、第4配管接続部および第5配管接続部のいずれか1つ以上に向かわせて第2配管接続部から還らせることができるので、例えば、空気調和機において、冷媒が向かって流れて還るべき冷媒パスを第2状態より少なくしたい場合に適用可能である。
 また、この流路切換弁は、第1状態に切り換わることによって、第1配管接続部から流入した流体を第2配管接続部から還らせることができるので、第1配管接続部と第2配管接続部とを熱交換器の入口と出口に接続するようにすれば熱交換器をバイパスさせることが適用可能である。
 さらに、この流路切換弁は、第2状態に切り換わることによって、第2配管接続部から流入した冷媒を第3配管接続部、第4配管接続部および第5配管接続部のいずれか第1状態よりも多い複数の配管接続部に向かわせて第1配管接続部から還らせることができるので、例えば、空気調和機において、冷媒が向かって流れて還るべき冷媒パスを第1状態よりも多くしたい場合に適用可能である。
 その結果、1つの流路切換弁によって、冷媒のパス数の切換、およびバイパス回路への切換が行われる。
 第2発明に係る流路切換弁は、第1発明に係る流路切換弁であって、第1状態が、第1配管接続部が配管接続部群のうち第2配管接続部を除く他の1つ以上の配管接続部と結ばれる状態を含む。
 この流路切換弁は、第1状態に切り換わることによって、第1配管接続部から流入した流体を第3配管接続部、第4配管接続部および第5配管接続部のいずれか1つ以上に向かわせて第2配管接続部から還らせることができるので、例えば、空気調和機において、冷媒が向かって流れて還るべき冷媒パスを第2状態よりも少なくしたい場合に適用可能である。
 第3発明に係る流路切換弁は、第1発明に係る流路切換弁であって、第1状態が、第1配管接続部が配管接続部群のうち第2配管接続部とだけ結ばれる状態である。
 この流路切換弁は、第1状態に切り換わることによって、第1配管接続部から流入した流体を第2配管接続部から還らせることができるので、第1配管接続部と第2配管接続部とを熱交換器の入口と出口とに接続するようにすれば熱交換器をバイパスさせることが可能である。
 第4発明に係る流路切換弁は、第1発明に係る流路切換弁であって、配管接続部群が、第1配管接続部及び第2配管接続部を除いても、4以上の偶数個の配管接続部を含んでいる。
 この流路切換弁は、第2状態に切り換わることによって、第2配管接続部から流入した冷媒を第3配管接続部、第4配管接続部、第5配管接続部を含む4以上の偶数個の配管接続部うち、いずれか2つ以上の配管接続部に向かわせて第1配管接続部から還らせることができるので、例えば、空気調和機において、冷媒が向かって流れて還るべき冷媒パスを第1状態より多くしたい場合に適用可能である。
 第5発明に係る流路切換弁は、第4発明に係る流路切換弁であって、第1状態が、第1配管接続部および第2配管接続部を除く4以上の偶数個の配管接続部の少なくとも2つの配管接続部が結ばれる状態である。
 この流路切換弁では、第3配管接続部、第4配管接続部および第5配管接続部が結ばれることによって、第1配管接続部および第2配管接続部から隔絶された流路が形成される。例えば、空気調和機において、除霜運転時に凝縮器内の冷媒を第3配管接続部、第4配管接続部および第5配管接続部が結ばれて形成された流路内に留めるので、凝縮器の急激な温度低下が抑制され、その結果として、室内温度の低下も抑制される。
 第6発明に係る流路切換弁は、第1発明から第5発明のいずれか1つに係る流路切換弁であって、本体が、可動部材が移動する中空円筒部を有している。この流路切換弁では、中空円筒は加工が容易で、加工費の増大が抑制される。
 第7発明に係る流路切換弁は、第6発明に係る流路切換弁であって、可動部材が、中空円筒部の内周面に沿って回転することによって流路を形成する。この流路切換弁では、配管接続部が周方向に沿って配置されるので、弁の軸方向の長大化が抑制される。
 第8発明に係る流路切換弁は、第7発明に係る流路切換弁であって、可動部材が、回転角度を変えて流路を通過する流体の流量を調節する。
 この流路切換弁は、第2状態に切り換わることによって、第2配管接続部から流入した冷媒を第3配管接続部、第4配管接続部および第5配管接続部のいずれか2つに向かわせて第1配管接続部から還らせることができるので、例えば、空気調和機において、冷媒が向かって流れて還るべき2つの冷媒パスが有る場合に適用可能であり、さらに、一方に流れる冷媒量を他方よりも増減させることも可能である。
 第9発明に係る流路切換弁は、第5発明から第8発明のいずれか1つに係る流路切換弁であって、可動部材が形成する流路が、第1流路と、第2流路とを含んでいる。第2流路は、第1流路よりも流路断面積が小さい。また、第1状態において、第1配管接続部が、第1流路を介して第1配管接続部および第2配管接続部を除く4以上の偶数個の配管接続部のいずれか又は複数の配管接続部と結ばれるとき、第1配管接続部および第2配管接続部と結ばれていない配管接続部のうちの2つの配管接続部が第2流路を介して結ばれる。
 この流路切換弁では、用途が空気調和機の場合、流路切換弁の第2流路が減圧機構として利用することができるので、流路切換および減圧を合わせて必要とする冷媒回路に応用することができる。
 第10発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。制御部は、暖房運転時には流路切換弁を第1状態に切り換え、冷房運転時には流路切換弁を第2状態に切り換える。
 一般に、凝縮器および蒸発器は、熱貫流率K、空気と冷媒との温度差ΔTが大きいほどの熱交換する量が大きくなる。凝縮器は、高圧であるので、流れる気相冷媒の流速が小さく、流れで生じる圧力損失も小さく、温度差ΔTは大きい。したがって、凝縮器の熱交換量を大きくするためには、凝縮器の分岐経路を少なくして流速を大きくし、熱貫流率を大きくすることが好ましい。他方、蒸発器は、凝縮器よりも気相状態の比率が大きく、低圧であるので流れる気相冷媒の流速が大きく、熱貫流率Kは大きいが流れで生じる圧力損失が大きい。したがって、蒸発器の熱交換量を大きくするためには、蒸発器の分岐経路を多くして流速を小さくし、圧力損失を小さくすることが好ましい。
 そうすると、この空気調和機では、暖房運転時には流路切換弁を第1状態に切り換えて、室内熱交換器(凝縮器)の分岐経路を少なくして流速を大きくすることができ、冷房運転時には流路切換弁を第2状態に切り換えて、室内熱交換器(蒸発器)の分岐経路を多くして流速を小さくすることができるので、空調能力の向上と省エネルギー化を図ることができる。
 第11発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室外熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室外熱交換器は、暖房運転時には蒸発器となり、冷房運転時には凝縮器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。また、流路切換弁の第2配管接続部は、減圧器と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。制御部は、暖房運転時には流路切換弁を第2状態に切り換え、冷房運転時には流路切換弁を第1状態に切り換える。
 一般に、凝縮器および蒸発器は、熱貫流率K、空気と冷媒との温度差ΔTが大きいほどの熱交換する量が大きくなる。凝縮器は、高圧であるので、流れる気相冷媒の流速が小さく、流れで生じる圧力損失も小さく、温度差ΔTは大きい。したがって、凝縮器の熱交換量を大きくするためには、凝縮器の分岐経路を少なくして流速を大きくし、熱貫流率を大きくすることが好ましい。他方、蒸発器は、凝縮器よりも気相状態の比率が大きく、低圧であるので流れる気相冷媒の流速が大きく、熱貫流率Kは大きいが流れで生じる圧力損失が大きい。したがって、蒸発器の熱交換量を大きくするためには、蒸発器の分岐経路を多くして流速を小さくし、圧力損失を小さくすることが好ましい。
 そうすると、この空気調和機では、暖房運転時には流路切換弁を第2状態に切り換えて、室外熱交換器(蒸発器)の分岐経路を多くして流速を小さくすることができ、冷房運転時には流路切換弁を第1状態に切り換えて、室外熱交換器(凝縮器)の分岐経路を少なくして流速を大きくすることができるので、空調能力の向上と省エネルギー化を図ることができる。
 第12発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。制御部は、冷媒の循環量の大小に応じて流路切換弁を第1状態および第2状態のいずれかに切り換える。
 インバータ方式の能力可変型空気調和機では、冷媒の循環量によって流速が大小に変化するため、凝縮器および蒸発器における熱貫流率Kと、空気と冷媒との温度差ΔTとのバランスが変化する。例えば、冷媒の循環量が極端に小さいときは、蒸発器でも圧力損失を重視しなくてもよく、流速を大きくして熱貫流率Kを大きくする方が好ましい。他方、冷媒の循環量が極端に大きいときは、凝縮器でも圧力損失は重視しなければならず、流速を小さくして空気と冷媒との温度差ΔTを小さくするのが好ましい。
 そうすると、この空気調和機では、冷房運転時、冷媒循環量が極端に大きい場合は、流路切換弁を第1状態に切り換えて、室内熱交換器(蒸発器)の分岐経路を少なくして流速を大きくすることができ、暖房運転時、冷媒循環量が極端に小さい場合は、流路切換弁を第2状態に切り換えて、室内熱交換器(凝縮器)の分岐経路を多くして流速を小さくすることができるので、能力可変型の空気調和機において空調能力の向上と省エネルギー化を図ることができる。
 第13発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室外熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室外熱交換器は、暖房運転時には蒸発器となり、冷房運転時には凝縮器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。制御部は、冷媒の循環量の大小に応じて流路切換弁を第1状態および第2状態のいずれかに切り換える。
 インバータ方式の能力可変型空気調和機では、冷媒の循環量によって流速が大小に変化するため、凝縮器および蒸発器における熱貫流率Kと、空気と冷媒との温度差ΔTとのバランスが変化する。例えば、冷媒の循環量が極端に小さいときは、蒸発器でも圧力損失を重視しなくてもよく、流速を大きくして熱貫流率Kを大きくする方が好ましい。他方、冷媒の循環量が極端に大きいときは、凝縮器でも圧力損失は重視しなければならず、流速を小さくして空気と冷媒との温度差ΔTを小さくするのが好ましい。
 そうすると、この空気調和機では、冷房運転時、冷媒循環量が極端に小さい場合は、流路切換弁を第2状態に切り換えて、室外熱交換器(凝縮器)の分岐経路を多くして流速を小さくすることができ、暖房運転時、冷媒循環量が極端に大きい場合は、流路切換弁を第1状態に切り換えて、室外熱交換器(蒸発器)の分岐経路を少なくして流速を大きくすることができるので、能力可変型の空気調和機において空調能力の向上と省エネルギー化を図ることができる。
 第14発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。制御部は、除霜運転時には減圧器を全開にするとともに、流路切換弁の第1配管接続部および第2配管接続部を連通させる。
 通常、空気調和機の除霜運転は、四路切換弁によって暖房運転サイクルを冷房運転サイクルへ切り換えるため、瞬時に高低圧が切り換わることによる衝撃、騒音に対する対策が必要であるが、この空気調和機では、流路切換弁によって暖房運転サイクルのまま除霜運転を実行することができるので、衝撃、騒音に対する特別な対策が不要になる。
 第15発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、室外熱交換器と、第1発明から第8発明のいずれか1つに係る流路切換弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。室外熱交換器は、暖房運転時には蒸発器となり、冷房運転時には凝縮器となる。制御部は、流路切換弁を制御する。流路切換弁の第1配管接続部は、圧縮機と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室外熱交換器との間、若しくは室外熱交換器の途中に接続される。室内熱交換器は、第1熱交換部と、第2熱交換部と、減圧部とを含んでいる。減圧部は、第1熱交換部と第2熱交換部との間に接続され、制御部によって制御される。制御部は、減圧器を全開若しくは減圧を意図しない開度にし、冷媒を減圧部で減圧する再熱除湿運転を行うとともに、再熱除湿運転時には、流路切換弁の第1配管接続部および第2配管接続部を連通させる。
 再熱除湿運転は蒸発器で空気を結露させることによる除湿と、蒸発器によって冷えた空気を凝縮器で暖めることで空気の温度を再び戻す運転であり、このような運転を行うとき、室外熱交換器をバイパスすることで、室外熱交換器での熱の授受を無くすことができる。それゆえ、室内熱交換器で凝縮熱と蒸発熱を最大限に活用することができる。さらに、大きな除湿能力と再熱能力を両立する空気調和機を提供でき、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることが可能になり、年間を通した省エネ性を提供できる。
 第16発明に係る空気調和機は、第15発明に係る空気調和機であって、再熱除湿運転時に、圧縮機から吐出された冷媒を先ず室外熱交換器側に流してから室内熱交換器側に流す。
 従来、多くの空気調和機では、再熱除湿運転は、圧縮機から吐出された高温高圧の冷媒が室外熱交換器、減圧器を順に経由してから室内熱交換器へ流れ、再び圧縮機へ吸入される流れの形態をとる。室外熱交換器で可能な限り放熱させないために、空気の送風を抑える必要がある。しかし、室外ユニットに搭載されている多くの電気部品を実装した電装品箱は防水、防火の構造を得るために外気との接触は限られるため、放熱フィンとわずかに箱の内部を通気する空気が重要な冷却手段である。ところが送風量が小さいと、フィンによる放熱や通気ができなくなり、また高温になっている熱交換器の影響もあり、また高圧による圧縮機の高電流により発熱量も大きくなる。このため、室外熱交換器の送風をある程度行って、凝縮熱を外気に捨てていた。
 しかし、この空気調和機では、室外熱交換器をバイパスすることで、電気部品の冷却のために送風を十分行うことができるようになり、ひいては熱耐力の低い電気部品の採用など熱設計に融通性を持たすことができるので、これらコストを抑えた空気調和機を提供できる。
 また、従来、多くの空気調和機の再熱除湿運転において、圧縮機から吐出された高温高圧の冷媒が室外熱交換器、減圧器を順に経由してから室内熱交換器へ流れ、再び圧縮機へ吸入される流れの形態をとった理由は、再熱除湿運転のもっとも重要な機能である除湿を最大限に得るためである。
 しかし、この空気調和機では、室外熱交換器をバイパスすることで、このような流し方の制約がなくなるので、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることも可能になり、年間を通した省エネ性を提供できる。
 第17発明に係る空気調和機は、第15発明に係る空気調和機であって、再熱除湿運転時に、圧縮機から吐出された冷媒を先ず室内熱交換器側に流してから室外熱交換器側に流す。
 この空気調和機では、室外熱交換器をバイパスすることで、電気部品の冷却のために送風を十分行うことができるようになり、ひいては熱耐力の低い電気部品の採用など熱設計に融通性を持たすことができるので、これらコストを抑えた空気調和機を提供できる。
 また、従来、多くの空気調和機の再熱除湿運転において、圧縮機から吐出された高温高圧の冷媒が室外熱交換器、減圧器を順に経由してから室内熱交換器へ流れ、再び圧縮機へ吸入される流れの形態をとった理由は、再熱除湿運転のもっとも重要な機能である除湿を最大限に得るためである。
 しかし、この空気調和機では、室外熱交換器をバイパスすることで、このような流し方の制約がなくなるので、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることも可能になり、年間を通した省エネ性を提供できる。
 第18発明に係る空気調和機は、圧縮機、凝縮器、減圧器、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、室内熱交換器と、第9発明に係る流路切換弁と、制御部とを備えている。室内熱交換器は、暖房運転時には凝縮器となり、冷房運転時には蒸発器となる。制御部は、流路切換弁を制御する。室内熱交換器は、第1熱交換部と、第2熱交換部とを含んでいる。流路切換弁の第1配管接続部は、圧縮機と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。流路切換弁の第2配管接続部は、減圧器と室内熱交換器との間、若しくは室内熱交換器の途中に接続される。第1配管接続部および第2配管接続部を除く4以上の偶数個の配管接続部のうちの2つの配管接続部が第1熱交換部と第2熱交換部との間に接続される。制御部は、第1熱交換部と第2熱交換部との間に接続された2つの配管接続部を、流路切換弁の可動部材が形成する第2流路を介して連通させて、第1熱交換部と第2熱交換部との間で減圧させる、再熱除湿運転を行う。
 従来、多くの空気調和機では、再熱除湿運転を行うために第1熱交換部と第2熱交換部との間に減圧機構が必要であったが、この空気調和機では、流路切換弁の第2流路が減圧機構として機能するので、専用の減圧機構が不要となる。それゆえ、コスト増を抑制することができる。
 第1発明から第4発明のいずれか1に係る流路切換弁は、例えば、空気調和機において、冷媒のパス数の切換、およびバイパス回路への切換を行なうことができる。
 第5発明に係る流路切換弁では、第3配管接続部、第4配管接続部および第5配管接続部が結ばれることによって、第1配管接続部および第2配管接続部から隔絶された流路が形成される。例えば、空気調和機において、除霜運転時に凝縮器内の冷媒を第3配管接続部、第4配管接続部および第5配管接続部が結ばれて形成された流路内に留めるので、凝縮器の急激な温度低下が抑制され、その結果として、室内温度の低下も抑制される。
 第6発明に係る流路切換弁では、中空円筒は加工が容易であり、加工費の増大が抑制される。
 第7発明に係る流路切換弁では、配管接続部が周方向に沿って配置されるので、弁の軸方向の長大化が抑制される。
 第8発明に係る流路切換弁は、例えば、空気調和機の蒸発器のように、冷媒が向かって流れて還るべき2つの冷媒パスが存在する場合に適用可能であり、さらに、一方に流れる冷媒量を他方よりも増減させることも可能である。
 第9発明に係る流路切換弁では、用途が空気調和機の場合、流路切換弁の第2流路を減圧機構として利用することができるので、流路切換および減圧を合わせて必要とする冷媒回路に応用することができる。
 第10発明に係る空気調和機では、暖房運転時には流路切換弁を第1状態に切り換えて、室内熱交換器(凝縮器)の分岐経路を少なくして流速を大きくすることができ、冷房運転時には流路切換弁を第2状態に切り換えて、室内熱交換器(蒸発器)の分岐経路を多くして流速を小さくすることができるので、空調能力の向上と省エネルギー化を図ることができる。
 第11発明に係る空気調和機では、暖房運転時には流路切換弁を第2状態に切り換えて、室外熱交換器(蒸発器)の分岐経路を多くして流速を小さくすることができ、冷房運転時には流路切換弁を第1状態に切り換えて、室外熱交換器(凝縮器)の分岐経路を少なくして流速を大きくすることができるので、空調能力の向上と省エネルギー化を図ることができる。
 第12発明に係る空気調和機では、冷房運転時、冷媒循環量が極端に大きい場合は、流路切換弁を第1状態に切り換えて、室内熱交換器(蒸発器)の分岐経路を少なくして流速を大きくすることができ、暖房運転時、冷媒循環量が極端に小さい場合は、流路切換弁を第2状態に切り換えて、室内熱交換器(凝縮器)の分岐経路を多くして流速を小さくすることができるので、能力可変型の空気調和機において空調能力の向上と省エネルギー化を図ることができる。
 第13発明に係る空気調和機では、冷房運転時、冷媒循環量が極端に小さい場合は、流路切換弁を第2状態に切り換えて、室外熱交換器(凝縮器)の分岐経路を多くして流速を小さくすることができ、暖房運転時、冷媒循環量が極端に大きい場合は、流路切換弁を第1状態に切り換えて、室外熱交換器(蒸発器)の分岐経路を少なくして流速を大きくすることができるので、能力可変型の空気調和機において空調能力の向上と省エネルギー化を図ることができる。
 第14発明に係る空気調和機では、流路切換弁によって暖房運転サイクルのまま除霜運転を実行することができるので、衝撃、騒音に対する特別な対策が不要になる。
 第15発明に係る空気調和機では、室内熱交換器で凝縮熱と蒸発熱を最大限に活用することができる。さらに、大きな除湿能力と再熱能力を両立する空気調和機を提供でき、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることが可能になり、年間を通した省エネ性を提供できる。
 第16発明または第17発明に係る空気調和機では、室外熱交換器をバイパスすることで、電気部品の冷却のために送風を十分行うことができるようになり、ひいては熱耐力の低い電気部品の採用など熱設計に融通性を持たすことができるので、これらコストを抑えた空気調和機を提供できる。
 また、室外熱交換器をバイパスすることで、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることも可能になり、年間を通した省エネ性を提供できる。
 第18発明に係る空気調和機では、流路切換弁の第2流路が減圧機構として機能するので、専用の減圧機構が不要となる。それゆえ、コスト増を抑制することができる。
本発明の第1実施形態に係る流路切換弁の斜視図。 (a)第1切換部を本体の中心軸と直交する面で切断したときの断面図。(b)第2切換部を本体の中心軸と直交する面で切断したときの断面図。 (a)弁体の分解斜視図。(b)(a)とは異なる角度から視た弁体の斜視図。 冷房運転時の空気調和機における蒸発器と流路切換弁との接続状態を示す配管図。 図4の流路切換弁の内部と冷媒パスとを同時に示す配管図。 図5の流路切換弁が流量を調節しているときの流路切換弁の内部と冷媒パスとを同時に示す配管図。 暖房運転時の空気調和機における凝縮器と流路切換弁との接続状態を示す配管図。 図7の流路切換弁の内部と冷媒パスとを同時に示す配管図。 除霜運転時の空気調和機における凝縮器と流路切換弁との接続状態を示す配管図。 図9の流路切換弁の内部と冷媒パスとを同時に示す配管図。 冷房運転時の空気調和機における蒸発器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図。 除霜運転時の空気調和機における凝縮器と本変形例に係る流路切換弁との接続状態を示す配管図。 (a)第2実施形態に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図。(b)第2切換部を本体の中心軸と直交する面で切断したときの断面図。 冷房運転時の空気調和機における蒸発器の冷媒パスと第2実施形態に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の冷媒パスと第2実施形態に係る流路切換弁との接続状態を示す配管図。 除霜運転時の空気調和機における凝縮器と第2実施形態に係る流路切換弁との接続状態を示す配管図。 (a)第3実施形態に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図。(b)第2切換部を本体の中心軸と直交する面で切断したときの断面図。 冷房運転時の空気調和機における蒸発器の冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の図20とは異なる冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図。 除霜運転時の空気調和機における凝縮器と第3実施形態に係る流路切換弁との接続状態を示す配管図。 (a)第3実施形態の変形例に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図。(b)第2切換部を本体の中心軸と直交する面で切断したときの断面図。 冷房運転時の空気調和機における蒸発器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図。 暖房運転時の空気調和機における凝縮器の図25とは異なる冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図。 除霜運転時の空気調和機における凝縮器と本変形例に係る流路切換弁との接続状態を示す配管図。 暖房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 冷房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 除霜運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 暖房運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 冷房運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 再熱除湿運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 再熱除湿運転時の室外熱交換器と第1実施形態に係る流路切換弁との他の接続状態を示す空気調和機の構成図。 第1切換部を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。 第2切換部を本体の中心軸と直交する面で切断したときの流路切換弁の断面図。 暖房運転時の室内熱交換器と第4実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 冷房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図。 再熱除湿運転時の室内熱交換器と第4実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。
 以下図面を参照しながら、本発明の実施形態について説明する。なお、以下の実施形態は、本発明の具体例であって、本発明の技術的範囲を限定するものではない。
 〔第1実施形態〕
 図1は、本発明の第1実施形態に係る流路切換弁の斜視図である。図1において、流路切換弁1は、本体10、弁体20およびモータ30で構成されている。本体10は、一端が閉じた円筒管である。本体10の胴部10aには、予め6つの孔があけられ、各孔に配管接続用の管が嵌め込まれてロウ付けされている。説明の便宜上、それら6つの管それぞれを第1配管接続部11、第2配管接続部12、第3配管接続部13、第4配管接続部14、第5配管接続部15及び第6配管接続部16とよぶ。
 第1配管接続部11、第3配管接続部13及び第5配管接続部15は、本体10の底面10b側から視て同じ高さ位置で胴部10aの周囲に配置されており、それらを第1切換部101(図2(a)参照)とよぶ。同様に、第2配管接続部12、第4配管接続部14及び第6配管接続部16は、本体10の底面10b側から視て同じ高さ位置で胴部10aの周囲に配置されており、それらを第2切換部102(図2(b)参照)とよぶ。第2切換部102は、第1切換部101よりも底面10bに近い。
 本体10の内部は円筒形の空洞であり、その円周面に沿って回転する弁体20が収納されている。弁体20はモータ30によって駆動され、モータ30の回転角度に応じて、第1配管接続部11を第3配管接続部13および/または第5配管接続部15に連絡し、第2配管接続部12を第4配管接続部14および/または第6配管接続部16に連絡する。
 図2(a)は第1切換部を本体の中心軸と直交する面で切断したときの断面図であり、(b)は第2切換部を本体の中心軸と直交する面で切断したときの断面図である。図2(a),(b)において、第3配管接続部13は、胴部10aの中心軸に対して第1配管接続部11から反時計方向に90°離れた位置に固定されている。また、第5配管接続部15は、胴部10aの中心軸に対して第1配管接続部11から時計方向に90°離れた位置に固定されている。第1切換部101と同様に、第2切換部102において、第4配管接続部14は、胴部10aの中心軸に対して第2配管接続部12から反時計方向に90°離れた位置に固定されている。また、第6配管接続部16は、胴部10aの中心軸に対して第2配管接続部12から時計方向に90°離れた位置に固定されている。
 図3(a)は弁体の分解斜視図であり、(b)は(a)とは異なる角度から視た弁体の斜視図である。図3(a),(b)において、弁体20は、第1弁体201、第2弁体202、仕切部材210、第1シール部材211及び第2シール部材212を含んでいる。
 第1弁体201は、扇形の回転体であり、シール部201aと凸部201bと凹部201cとを有している。シール部201aは、本体10の内周に沿って回転移動する。凸部201bは、流線形に成形されており、回転中心からシール部201aと反対の方向に突出している。凹部201cは、U字状に成形されており、シール部201aの円弧面から回転中心に向かって窪んでいる。
 第2弁体202は、第1弁体201と同じ扇形の回転体であり、シール部202aと凸部202bと凹部202cとを有している。シール部202aは、本体10の内周に沿って回転移動する。凸部202bは、流線形に成形されており、回転中心からシール部202aと反対の方向に突出している。凹部202cは、U字状に成形されており、シール部202aの円弧面から回転中心に向かって窪んでいる。
 仕切部材210は、第1弁体201と第2弁体202との間に配置される円柱形の回転体である。仕切部材210は、本体10の内周面とは僅かな隙間をあけて対峙している。また、仕切部材210は、第1弁体201の凹部201cと第2弁体202の凹部202cとを結ぶ連絡孔210aを有している。第1弁体201と第2弁体202と仕切部材210とは一本の回転軸に固定されており、その回転軸がモータ30の出力軸に連結されている。
 第1シール部材211は、円柱形状を成し、第1弁体201と本体10のモータ30側端部との間に配置されている。第1シール部材211は、第1弁体201を通る流体がモータ30側へ漏れないようにシールしている。第1シール部材211の中心には軸孔があけられており、そこに回転軸が貫通する。
 第2シール部材212は、円柱形状を成し、第2弁体202と本体10の底面10bとの間に配置されている。第2シール部材212は、第2弁体202を通る流体が底面10b側へ漏れないようにシールしている。第2シール部材212の中心には軸孔があけられており、そこに回転軸が貫通する。
 図4は、冷房運転時の空気調和機における蒸発器と流路切換弁との接続状態を示す配管図である。図4において、第4配管接続部14は、蒸発器である室内熱交換器40の第1熱交換部40aを通る第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第5配管接続部15に接続されている。
 また、第6配管接続部16は、室内熱交換器40の第2熱交換部40bを通る第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第3配管接続部13に接続されている。このときの弁体20の状態について図5を用いて説明する。
 図5は、図4の流路切換弁の内部と冷媒パスとを同時に示す配管図である。図5において、第2切換部102では、凸部202bが第2配管接続部12と対峙している。第2配管接続部12から流入した冷媒は、凸部202bによって2方向に分流され、一方は第4配管接続部14に向かい、他方は第6配管接続部16へ向かう。
 第1切換部101では、凸部201bが第1配管接続部11と対峙している。第3配管接続部13から流入した冷媒と、第5配管接続部15から流入した冷媒は、凸部201bの先端で合流する。その結果、第2配管接続部12から第2切換部102に入った冷媒は、2方向に分流され、一方は、第4配管接続部14、第1冷媒パス401及び第5配管接続部15を通り、他方は、第6配管接続部16、第2冷媒パス402及び第3配管接続部13を通り、両者は第1切換部101で合流して第1配管接続部11から流出する。つまり、冷房運転時には第1冷媒パス401と第2冷媒パス402とは並列に接続される。
 図6は、図5の流路切換弁が流量を調節しているときの流路切換弁の内部と冷媒パスとを同時に示す配管図である。図6において、第2切換部102では、凸部202bが反時計方向に僅かに振れているので、第4配管接続部14へ向かう冷媒の流路面積が絞られ、第6配管接続部16へ向かう冷媒の流路面積は拡大する。したがって、第1冷媒パス401を流れる冷媒量は、第2冷媒パス402を流れる冷媒量よりも少ない。
 第1切換部101では、凸部201bが反時計方向に僅かに振れているので、第5配管接続部15から第1配管接続部11に向かう冷媒の流路面積は拡大し、逆に、第3配管接続部13から第1配管接続部11に向かう流路面積は絞られる。
 つまり、第2切換部102で流路面積の狭い側を通った冷媒は、第1切換部101では流路面積の広い側を通り、第2切換部102で流路面積の広い側を通った冷媒は、第1切換部101では流路面積の狭い側を通る。
 第2切換部102で流路面積の広い側を通った冷媒が第1切換部101では流路面積の狭い側を通るので、一見、流量が減るように思えるが、第1切換部101では、冷媒はほとんどガス状態になっているので、流量が考慮を要するほどに減ることはない。
 図7は、暖房運転時の空気調和機における凝縮器と流路切換弁との接続状態を示す配管図である。図7において、暖房運転時では、冷房運転時の第1冷媒パス401及び第2冷媒パス402のように冷媒が複数の冷媒パスに分流されず、第1冷媒パス401と第2冷媒パス402とが流路切換弁1によって直列に結ばれ、1つの冷媒パスを構成している。但し、ここでは、便宜上、第1冷媒パス401と第2冷媒パス402の名称をそのまま使用して冷媒の流れを説明する。
 第3配管接続部13は、第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第6配管接続部16に接続されている。第6配管接続部16と第5配管接続部15とは本体10内で繋がっている。第5配管接続部15は、第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第4配管接続部14に接続されている。このときの弁体20の状態について図8を用いて説明する。
 図8は、図7の流路切換弁の内部と冷媒パスとを同時に示す配管図である。図8において、第1切換部101では、凸部201bが第3配管接続部13と対峙している。第1配管接続部11から流入した冷媒は、凸部201bによって第3配管接続部13に向かう。第3配管接続部13を出た冷媒は第2冷媒パス402を通って第6配管接続部16に入る。第6配管接続部16と第5配管接続部15とは連絡孔210aとで繋がっているので、冷媒は凹部202cから連絡孔210aを経て凹部201cに至る。その後、冷媒は、第5配管接続部15から第1冷媒パス401に入り、第4配管接続部14を経て第2配管接続部12から流出する。
 つまり、第1配管接続部11から流路切換弁1に入った冷媒は、第3配管接続部13、第2冷媒パス402、第6配管接続部16、第5配管接続部15、第1冷媒パス401及び第4配管接続部14を通り、第2配管接続部12から流出する。
 以上のように、流路切換弁1は、暖房運転時には、第1冷媒パス401と第2冷媒パス402とを直列に接続して、1つの長い冷媒パスを形成することができる。
 図9は、除霜運転時の空気調和機における凝縮器と流路切換弁との接続状態を示す配管図である。図9において、流路切換弁1は、第1配管接続部11から流入した冷媒を、直接、第2配管接続部12に向かわせ、第3配管接続部13、第4配管接続部14、第5配管接続部15および第6配管接続部16のいずれにも流さない。このときの弁体20の状態について図10を用いて説明する。
 図10は、図9の流路切換弁の内部と冷媒パスとを同時に示す配管図である。図10において、第1切換部101では、凹部201cが第1配管接続部11と対峙している。また、第2切換部102では、凹部202cが第2配管接続部12と対峙している。第1配管接続部11から流入した冷媒は、凹部201cから連絡孔210aを経て第2弁体202の凹部202cに至り、第2配管接続部12から流出する。
 〔第1実施形態の変形例〕
 図11は、冷房運転時の空気調和機における蒸発器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図である。また、図12は、暖房運転時の空気調和機における凝縮器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図である。さらに、図13は、除霜運転時の空気調和機における凝縮器と本変形例に係る流路切換弁との接続状態を示す配管図である。
 図11、図12及び図13において、第1配管接続部11、第3配管接続部13及び第5配管接続部15それぞれは、胴部10aの中心に対して角度120°間隔で離れている。同様に、第2配管接続部12、第4配管接続部14及び第6配管接続部16それぞれは、胴部10aの中心に対して角度120°間隔で離れている。
 この流路切換弁の機能は、上記第1実施形態の流路切換弁1と同様であるが、各配管接続部が胴部10aの中心に対して120°間隔で配置されているので、弁体20も120°間隔で移動すれば、流路が切り換わるのでモータ30の制御が簡単である。
 <第1実施形態および変形例の特徴>
 (1)
 空気調和機の室内熱交換器40に接続された流路切換弁1は、第2配管接続部12から流入した冷媒を第4配管接続部14から第1冷媒パス401を経て第5配管接続部15に流れる冷媒と、第6配管接続部16から第2冷媒パス402を経て第3配管接続部13に流れる冷媒とに分流させることができる。第3配管接続部13及び第5配管接続部15から本体10内に戻った冷媒は合流して第1配管接続部11から流出する。したがって、冷房運転時の室内熱交換器40のように、冷媒が向かって流れて還るべき2つの冷媒パスが存在する場合に適用可能である。
 (2)
 また、空気調和機の室内熱交換器40に接続された流路切換弁1は、第1配管接続部11から流入した冷媒を第3配管接続部13、第2冷媒パス402、第6配管接続部16、第5配管接続部15、第1冷媒パス401および第4配管接続部14の順で流すことができる。第4配管接続部14から本体10内に戻った冷媒は第2配管接続部12から流出する。したがって、暖房運転時の室内熱交換器40のように、冷媒が向かって流れて還るべき1つの冷媒パスが存在する場合に適用可能である。
 (3)
 また、空気調和機の室内熱交換器40に接続された流路切換弁1は、第1配管接続部11から流入した冷媒を第2配管接続部12から直に流出させることができる。したがって、除霜運転時、冷媒が室内熱交換器40をバイパスして蒸発器へ流される場合に適用可能である。
 (4)
 流路切換弁1の本体10は、内部を弁体20が移動する中空円筒状の胴部10aを有している。中空円筒は加工が容易であるので、加工費の増大が抑制される。
 (5)
 流路切換弁1の弁体20は、胴部10aの内周面に沿って回転することによって流路を形成する。第1配管接続部11、第3配管接続部13及び第5配管接続部15は周方向に沿って配置され、且つ、第2配管接続部12、第4配管接続部14及び第6配管接続部16も周方向に沿って配置されるので、本体10の軸方向の長大化が抑制される。
 (6)
 室内熱交換器40に接続された流路切換弁1は、冷房運転時、2つの冷媒パスの一方に流れる冷媒量を他方よりも増減させることが可能である。
 (7)
 空気調和機の室内熱交換器40に接続された流路切換弁1は、例えば、除霜運転時に室内熱交換器40内の冷媒を、第3配管接続部13、第4配管接続部14、第5配管接続部15及び第6配管接続部16が結ばれて形成された流路内に留めることができる。その結果、室内熱交換器40の急激な温度低下が抑制され、室内温度の低下も抑制される。
 〔第2実施形態〕
 図14は第2実施形態に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図であり、(b)は第2切換部を本体の中心軸と直交する面で切断したときの断面図である。図14(a),(b)において、第1配管接続部51、第3配管接続部53、第5配管接続部55及び第7配管接続部57は、胴部50aの中心軸に対して90°間隔で配置されている。同様に、第2配管接続部52、第4配管接続部54、第6配管接続部56、第8配管接続部58は、胴部50aの中心軸に対して90°間隔で配置されている。
 第1弁体601は、第1シールA部611a、第1シールB部611b、第1凸A部621a、第1凸B部621b、第1凹A部631a、第1凹B部631b及び中央流路641を有している。第1シールA部611a及び第1シールB部611bは共に、胴部50aの内周面に沿って同時に回転移動する。第1凸A部621a及び第1凸B部621bは共に、尖塔状に成形されている。第1凹A部631a及び第1凹B部631bは共にU字状に成形されており、第1凹A部631aは第1シールA部611aの円弧面から回転中心に向かって窪んでおり、第1凹B部631bは第1シールB部611bの円弧面から回転中心に向かって窪んでいる。中央流路641は、第1凸A部621aと第1凸B部621bとの間、及び第1シールA部611aと第1シールB部611bとの間を貫通する流体の通路である。
 第2弁体602は、第2シールA部612a、第2シールB部612b、第2凸A部622a、第2凸B部622b、第2凹A部632a、第2凹B部632b及び中央流路642を有している。第2シールA部612a及び第2シールB部612bは共に、胴部50aの内周面に沿って同時に回転移動する。第2凸A部622a及び第2凸B部622bは共に、尖塔状に成形されている。第2凹A部632a及び第2凹B部632bは共にU字状に成形されており、第2凹A部632aは第2シールA部612aの円弧面から回転中心に向かって窪んでおり、第2凹B部632bは第2シールB部612bの円弧面から回転中心に向かって窪んでいる。中央流路642は、第2凸A部622aと第2凸B部622bとの間、及び第2シールA部612aと第2シールB部612bとの間を貫通する流体の通路である。
 仕切部材650は、第1弁体601と第2弁体602との間に配置される円柱形の回転体である。仕切部材650は、胴部50aの内周面とは僅かな隙間をあけて対峙している。また、仕切部材650は、第1弁体601の第1凹A部631aと第2弁体602の第2凹A部632aとを結ぶ連絡A孔650aと、第1弁体601の第1凹B部631bと第2弁体602の第2凹B部632bとを結ぶ連絡B孔650bとを有している。第1弁体601と第2弁体602と仕切部材650とは一本の回転軸に固定されており、その回転軸がモータ30の出力軸に連結されている。その他の構成は、第1実施形態と同様である。
 図15は、冷房運転時の空気調和機における蒸発器の冷媒パスと第2実施形態に係る流路切換弁との接続状態を示す配管図である。図15において、第2切換部502では、第2凸A部622aと第2凸B部622bとが第2配管接続部52と対峙している。第2配管接続部52から流入した冷媒は、第2凸A部622a及び第2凸B部622bによって、第4配管接続部54、第6配管接続部56、及び第8配管接続部58に向かう流れに分かれる。
 第1切換部501では、第1凸A部621aと第1凸B部621bとが第1配管接続部51と対峙している。第3配管接続部53、第5配管接続部55、及び第7配管接続部57から流入した冷媒は第1凸A部621a及び第1凸B部621bの先端で合流する。
 第4配管接続部54は、第1熱交換部40aを通る第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第5配管接続部55に接続されている。
 また、第6配管接続部56は、第2熱交換部40bを通る第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第7配管接続部57に接続されている。
 また、第8配管接続部58は、第3熱交換部40cを通る第3冷媒パス403の一端に接続されている。第3冷媒パス403の他端は第3配管接続部53に接続されている。
 その結果、第2配管接続部52から流路切換弁1に入った冷媒は、3方向に分流され、1つは、第4配管接続部54、第1冷媒パス401及び第5配管接続部55を通り、もう1つは、第6配管接続部56、第2冷媒パス402及び第7配管接続部57を通り、残りの1つは、第8配管接続部58、第3冷媒パス403及び第3配管接続部53を通り、三者は第1配管接続部51で合流する。つまり、冷房運転時には第1冷媒パス401と第2冷媒パス402と第3冷媒パス403とが並列に接続される。
 図16は、暖房運転時の空気調和機における凝縮器の冷媒パスと第2実施形態に係る流路切換弁との接続状態を示す配管図である。図16において、第1切換部501では、第1凸A部621a及び第1凸B部621bが第1配管接続部51と第3配管接続部53との間の壁面と対峙している。また、第1凹A部631aは第5配管接続部55と対峙し、第1凹B部631bは第7配管接続部57と対峙している。さらに、中央流路641は、第5配管接続部55と第7配管接続部57との間の壁面に塞がれている。このため、第1配管接続部51から流入した冷媒は、第3配管接続部53から流出する。第3配管接続部53を出た冷媒は第3冷媒パス403を通って第8配管接続部58に入る。第8配管接続部58と第7配管接続部57とは、連絡B孔650bとで繋がっているので、冷媒は、第2凹B部632bから連絡B孔650bを経て第1凹B部631bに至る。その後、冷媒は、第7配管接続部57から第2冷媒パス402を通って第6配管接続部56に入る。第6配管接続部56と第5配管接続部55とは、連絡A孔650aとで繋がっているので、冷媒は、第2凹A部632aから連絡A孔650aを経て第1凹A部631aに至る。その後、冷媒は、第5配管接続部55から第1冷媒パス401を通って第4配管接続部54に入って、第2配管接続部52から流出する。
 以上のように、流路切換弁1は、暖房運転時、第1冷媒パス401と第2冷媒パス402と第3冷媒パス403とを直列に接続して1つの長い冷媒パスを形成することができる。
 図17は、除霜運転時の空気調和機における凝縮器と第2実施形態に係る流路切換弁との接続状態を示す配管図である。図17において、第1切換部501では、第1凹B部631bが第1配管接続部51と対峙している。また。第2切換部502では、第2凹B部632bが第2配管接続部52と対峙している。第1配管接続部51から流入した冷媒は、第1凹B部631bから連絡B孔650bを経て第2弁体602の第2凹B部632bに至り、第2配管接続部52から流出する。
 <第2実施形態の特徴>
 空気調和機の室内熱交換器40に接続された流路切換弁1は、冷房運転時には、第1冷媒パス401と第2冷媒パス402と第3冷媒パス403とを並列に接続する。また、暖房運転時、流路切換弁1は、第1冷媒パス401と第2冷媒パス402と第3冷媒パス403とを直列に接続して1つの長い冷媒パスを形成する。また、除霜運転時、流路切換弁1は室内熱交換器40に冷媒を流さない。
 〔第3実施形態〕
 図18(a)は第3実施形態に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図あり、(b)は第2切換部を本体の中心軸と直交する面で切断したときの断面図である。図18(a),(b)において、第3配管接続部73、第5配管接続部75、第7配管接続部77及び第9配管接続部79は、胴部70aの中心軸に対して90°間隔で配置され、第1配管接続部71は第3配管接続部73と第9配管接続部79との間に配置されている。同様に、第4配管接続部74、第6配管接続部76、第8配管接続部78及び第10配管接続部80は、胴部70aの中心軸に対して90°間隔で配置され、第2配管接続部72は第4配管接続部74と第10配管接続部80との間に配置されている。
 第1弁体801は、第1シールA部811a、第1シールB部811b、第1凸A部821a、第1凸B部821b、第1凹A部831a、第1凹B部831b、中央流路841及び中央突起851を有している。第1シールA部811a及び第1シールB部811bは共に、胴部70aの内周面に沿って同時に回転移動する。第1凸A部821a及び第1凸B部821bは共に、尖塔状に成形されている。第1凹A部831a及び第1凹B部831bは共にU字状に成形されており、第1凹A部831aは第1シールA部811aの円弧面から回転中心に向かって窪んでおり、第1凹B部831bは第1シールB部811bの円弧面から回転中心に向かって窪んでいる。中央流路841は、第1凸A部821aと第1凸B部821bとの間、及び第1シールA部811aと第1シールB部811bとの間を貫通する流体の通路である。中央突起851は、中央流路841を通過する流体を2方向に分ける流線型の突起である。
 第2弁体802は、第2シールA部812a、第2シールB部812b、第2凸A部822a、第2凸B部822b、第2凹A部832a、第2凹B部832b、中央流路842及び中央突起852を有している。第2シールA部812a及び第2シールB部812bは共に、胴部70aの内周面に沿って同時に回転移動する。第2凸A部822a及び第2凸B部822bは共に、尖塔状に成形されている。第2凹A部832a及び第2凹B部832bは共にU字状に成形されており、第2凹A部832aは第2シールA部812aの円弧面から回転中心に向かって窪んでおり、第2凹B部832bは第2シールB部812bの円弧面から回転中心に向かって窪んでいる。中央流路842は、第2凸A部822aと第2凸B部822bとの間、及び第2シールA部812aと第2シールB部812bとの間を貫通する流体の通路である。中央突起852は、中央流路842を通過する流体を2方向に分ける流線型の突起である。
 仕切部材860は、第1弁体801と第2弁体802との間に配置される円柱形の回転体である。仕切部材860は、胴部70aの内周面とは僅かな隙間をあけて対峙している。また、仕切部材860は、第1弁体801の第1凹A部831aと第2弁体802の第2凹A部832aとを結ぶ連絡A孔860aと、第1弁体801の第1凹B部831bと第2弁体802の第2凹B部832bとを結ぶ連絡B孔860bとを有している。第1弁体801と第2弁体802と仕切部材860とは一本の回転軸に固定されており、その回転軸がモータ30の出力軸に連結されている。その他の構成は、第1実施形態と同様である。
 図19は、冷房運転時の空気調和機における蒸発器の冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図である。図19において、第2切換部702では、第2凸A部822a、第2凸B部822b及び中央突起852の先端が第2配管接続部72と対峙している。第2配管接続部72から流入した冷媒は、第2凸A部822a、第2凸B部822b及び中央突起852によって、第4配管接続部74、第6配管接続部76、第8配管接続部78、及び第10配管接続部80に向かう流れに分かれる。
 第1切換部701では、第1凸A部821a、第1凸B部821b及び中央突起851が第1配管接続部71と対峙している。第3配管接続部73、第5配管接続部75、第7配管接続部77及び第9配管接続部79から流入した冷媒は第1凸A部821a、第1凸B部821b及び中央突起851の先端で合流して第1配管接続部71から流出する。
 第4配管接続部74は、第1熱交換部40aを通る第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第5配管接続部75に接続されている。
 また、第6配管接続部76は、第2熱交換部40bを通る第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第7配管接続部77に接続されている。
 また、第8配管接続部78は、第3熱交換部40cを通る第3冷媒パス403の一端に接続されている。第3冷媒パス403の他端は第9配管接続部79に接続されている。
 また、第10配管接続部80は、第4熱交換部40dを通る第4冷媒パス404の一端に接続されている。第4冷媒パス404の他端は第3配管接続部73に接続されている。
 その結果、第2配管接続部72から流路切換弁1に入った冷媒は、4方向に分かれ、1つは、第4配管接続部74、第1冷媒パス401及び第5配管接続部75を通り、もう1つは、第6配管接続部76、第2冷媒パス402及び第7配管接続部77を通り、さらのもう1つは、第8配管接続部78、第3冷媒パス403及び第9配管接続部79を通り、残りの1つは、第10配管接続部80、第4冷媒パス404及び第3配管接続部73を通り、四者は第1配管接続部71で合流する。つまり、冷房運転時には第1冷媒パス401、第2冷媒パス402、第3冷媒パス403及び第4冷媒パス404が並列に接続される。
 図20は、暖房運転時の空気調和機における凝縮器の冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図である。図20において、第1切換部701では、第1凸A部821a、第1凸B部821b及び中央突起851が第3配管接続部73と対峙している。また、第1凹A部831aは第5配管接続部75と対峙し、第1凹B部831bは第9配管接続部79と対峙している。中央流路841は、第7配管接続部77に向いている。このため、第1配管接続部71から流入した冷媒は、第3配管接続部73に向かう冷媒と第7配管接続部77に向かう冷媒とに分かれる。第3配管接続部73を出た冷媒は第4冷媒パス404を通って第10配管接続部80に入る。第10配管接続部80と第9配管接続部79とは、連絡B孔860bとで繋がっているので、冷媒は、第2凹B部832bから連絡B孔860bを経て第1凹B部831bに至る。その後、冷媒は、第9配管接続部79から第3冷媒パス403を通って第8配管接続部78に入り、第2配管接続部72から流出する。
 一方、第7配管接続部77を出た冷媒は第2冷媒パス402を通って第6配管接続部76に入る。第6配管接続部76と第5配管接続部75とは、連絡A孔860aとで繋がっているので、冷媒は、第2凹A部832aから連絡A孔860aを経て第1凹A部831aに至る。その後、冷媒は、第5配管接続部75から第1冷媒パス401を通って第4配管接続部74に入り、第2配管接続部72から流出する。
 以上のように、流路切換弁1は、暖房運転時、第1冷媒パス401と第2冷媒パス404とを直列に接続して1つの長い冷媒パスを形成するとともに、第3冷媒パス403と第4冷媒パス404とを直列に接続してもう1つの長い冷媒パスを形成することができる。
 図21は、暖房運転時の空気調和機における凝縮器の図20とは異なる冷媒パスと第3実施形態に係る流路切換弁との接続状態を示す配管図である。図21において、第1切換部701では、第1凸A部821a、第1凸B部821b及び中央突起851が第9配管接続部79と対峙している。また、第1凹A部831aは第3配管接続部73と対峙し、第1凹B部831bは第7配管接続部77と対峙している。中央流路841は、第5配管接続部75に向いている。このため、第1配管接続部71から流入した冷媒は、第5配管接続部75に向かう冷媒と第9配管接続部79に向かう冷媒とに分かれる。第5配管接続部75を出た冷媒は第1冷媒パス401を通って第4配管接続部74に入る。第4配管接続部74と第3配管接続部73とは、連絡A孔860aとで繋がっているので、冷媒は、第2凹A部832aから連絡A孔860aを経て第1凹A部831aに至る。その後、冷媒は、第3配管接続部73から第4冷媒パス404を通って第10配管接続部80に入り、第2配管接続部72から流出する。
 一方、第9配管接続部79を出た冷媒は第3冷媒パス403を通って第8配管接続部78に入る。第8配管接続部78と第7配管接続部77とは、連絡B孔860bとで繋がっているので、冷媒は、第2凹B部832bから連絡B孔860bを経て第1凹B部831bに至る。その後、冷媒は、第7配管接続部77から第2冷媒パス402を通って第6配管接続部76に入り、第2配管接続部72から流出する。
 以上のように、流路切換弁1は、暖房運転時、第1冷媒パス401と第4冷媒パス404とを直列に接続して1つの長い冷媒パスを形成するとともに、第2冷媒パス402と第3冷媒パス403とを直列に接続してもう1つの長い冷媒パスを形成することもできる。
 図22は、除霜運転時の空気調和機における凝縮器と第3実施形態に係る流路切換弁との接続状態を示す配管図である。図22において、第1切換部701では、第1凹B部831bが第1配管接続部71と対峙している。また、第2切換部702では、第2凹B部832bが第2配管接続部72と対峙している。第1配管接続部71から流入した冷媒は、第1凹B部831bから連絡B孔860bを経て第2凹B部832bに至り、第2配管接続部72から流出する。
 <第3実施形態の特徴>
 空気調和機の室内熱交換器40に接続された流路切換弁1は、冷房運転時には、第1冷媒パス401、第2冷媒パス402、第3冷媒パス403及び第4冷媒パス404を並列に接続する。また、暖房運転時には、流路切換弁1は、第1冷媒パス401と第2冷媒パス404とを直列に接続して1つの長い冷媒パスを形成するとともに、第3冷媒パス403と第4冷媒パス404とを直列に接続してもう1つの長い冷媒パスを形成する。さらに、暖房運転時、流路切換弁1は、第1冷媒パス401と第4冷媒パス404とを直列に接続して1つの長い冷媒パスを形成するとともに、第2冷媒パス402と第3冷媒パス403とを直列に接続してもう1つの長い冷媒パスを形成することもできる。また、除霜運転時、流路切換弁1は室内熱交換器40に冷媒を流さない。
 〔第3実施形態の変形例〕
 図23(a)は第3実施形態の変形例に係る流路切換弁の第1切換部を本体の中心軸と直交する面で切断したときの断面図であり、(b)は第2切換部を本体の中心軸と直交する面で切断したときの断面図である。図23(a),(b)において、第1切換部701では、第3配管接続部73は第1配管接続部71から胴部70aの中心軸に対して反時計方向に90°離れた位置に配置され、第5配管接続部75は第3配管接続部73から胴部70aの中心軸に対して反時計方向に45°離れた位置に配置されている。第9配管接続部79は、第1配管接続部71から胴部70aの中心軸に対して時計方向に90°離れた位置に配置され、第7配管接続部77は第9配管接続部79から胴部70aの中心軸に対して時計方向に45°離れた位置に配置されている。
 同様に、第2切換部702では、第4配管接続部74は第2配管接続部72から胴部70aの中心軸に対して反時計方向に90°離れた位置に配置され、第6配管接続部76は第4配管接続部74から胴部70aの中心軸に対して反時計方向に45°離れた位置に配置されている。第10配管接続部80は、第2配管接続部72から胴部70aの中心軸に対して時計方向に90°離れた位置に配置され、第8配管接続部78は第10配管接続部80から胴部70aの中心軸に対して時計方向に45°離れた位置に配置されている。
 第1弁体801は、第1シールA部811a、第1シールB部811b、第1凹A部831a、第1凹B部831b、中央流路841及び中央突起851を有している。第1シールA部811a及び第1シールB部811bは共に、胴部70aの内周面に沿って同時に回転移動する。第1凹A部831a及び第1凹B部831bは共にU字状に成形されており、第1凹A部831aは第1シールA部811aの円弧面から回転中心に向かって窪んでおり、第1凹B部831bは第1シールB部811bの円弧面から回転中心に向かって窪んでいる。中央流路841は、第1シールA部811aと第1シールB部811bとの間を貫通する流体の通路である。中央突起851は、中央流路841を通過する流体を2つに分ける略菱形の突起である。
 第2弁体802は、第2シールA部812a、第2シールB部812b、第2凹A部832a、第2凹B部832b、中央流路842及び中央突起852を有している。第2シールA部812a及び第2シールB部812bは共に、胴部70aの内周面に沿って同時に回転移動する。第2凹A部832a及び第2凹B部832bは共にU字状に成形されており、第2凹A部832aは第2シールA部812aの円弧面から回転中心に向かって窪んでおり、第2凹B部832bは第2シールB部812bの円弧面から回転中心に向かって窪んでいる。中央流路842は、第2シールA部812aと第2シールB部812bとの間を貫通する流体の通路である。中央突起852は、中央流路842を通過する流体を2つに分ける略菱形の突起である。
 仕切部材860は、第1弁体801と第2弁体802との間に配置される円柱形の回転体である。仕切部材860は、胴部70aの内周面とは僅かな隙間をあけて対峙している。また、仕切部材860は、第1弁体801の第1凹A部831aと第2弁体802の第2凹A部832aとを結ぶ連絡A孔860aと、第1弁体801の第1凹B部831bと第2弁体802の第2凹B部832bとを結ぶ連絡B孔860bとを有している。第1弁体801と第2弁体802と仕切部材860とは一本の回転軸に固定されており、その回転軸がモータ30の出力軸に連結されている。その他の構成は、第3実施形態と同様である。
 図24は、冷房運転時の空気調和機における蒸発器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図である。図24において、第2切換部702では、中央流路842が第2配管接続部72と対峙している。第2配管接続部72から流入した冷媒は、中央流路842によって、第4配管接続部74、第6配管接続部76、第8配管接続部78、及び第10配管接続部80に向かう流れに分かれる。
 第1切換部701では、中央流路841が第1配管接続部71と対峙している。第3配管接続部73、第5配管接続部75、第7配管接続部77及び第9配管接続部79から流入した冷媒は中央流路841で合流して第1配管接続部71から流出する。
 第4配管接続部74は、第1熱交換部40aを通る第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第5配管接続部75に接続されている。
 また、第6配管接続部76は、第2熱交換部40bを通る第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第9配管接続部79に接続されている。
 また、第8配管接続部78は、第4熱交換部40dを通る第4冷媒パス404の一端に接続されている。第4冷媒パス404の他端は第3配管接続部73に接続されている。
 また、第10配管接続部80は、第3熱交換部40cを通る第3冷媒パス403の一端に接続されている。第3冷媒パス403の他端は第7配管接続部77に接続されている。
 その結果、第2配管接続部72から本体70内に入った冷媒は、4方向に分かれ、1つは、第4配管接続部74、第1冷媒パス401及び第5配管接続部75を通り、もう1つは、第6配管接続部76、第2冷媒パス402及び第9配管接続部79を通り、さらにもう1つは、第8配管接続部78、第4冷媒パス404及び第3配管接続部73を通り、残りの1つは、第10配管接続部80、第3冷媒パス403及び第7配管接続部77を通り、四者は第1配管接続部71で合流する。つまり、冷房運転時、第1冷媒パス401、第2冷媒パス402、第3冷媒パス403及び第4冷媒パス404は並列に接続される。
 図25は、暖房運転時の空気調和機における凝縮器の冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図である。図25において、第1切換部701では、第1凹A部831aは第5配管接続部75と対峙し、第1凹B部831bは第7配管接続部77と対峙している。このため、第1配管接続部71から流入した冷媒は、第3配管接続部73に向かう冷媒と第9配管接続部79に向かう冷媒とに分かれる。第3配管接続部73を出た冷媒は、第4冷媒パス404を通って第8配管接続部78に入る。第8配管接続部78と第7配管接続部77とは、連絡B孔860bとで繋がっているので、冷媒は、第2凹B部832bから連絡B孔860bを経て第1弁体801の第1凹B部831bに至る。その後、冷媒は、第7配管接続部77から第3冷媒パス403を通って第10配管接続部80に入り、第2配管接続部72から流出する。
 一方、第1切換部701では、第9配管接続部79を出た冷媒は第2冷媒パス402を通って第6配管接続部76に入る。第6配管接続部76と第5配管接続部75とは、連絡A孔860aとで繋がっているので、冷媒は、第2凹A部832aから連絡A孔860aを経て第1凹A部831aに至る。その後、冷媒は、第5配管接続部75から第1冷媒パス401を通って第4配管接続部74に入り、第2配管接続部72から流出する。
 以上のように、流路切換弁1は、暖房運転時、第1冷媒パス401と第2冷媒パス402とを直列に接続して1つの長い冷媒パスを形成するとともに、第3冷媒パス403と第4冷媒パス404とを直列に接続してもう1つの長い冷媒パスを形成することもできる。
 図26は、暖房運転時の空気調和機における凝縮器の図25とは異なる冷媒パスと本変形例に係る流路切換弁との接続状態を示す配管図である。図26において、第1切換部701では、第1凹A部831aが、第7配管接続部77と対峙している。このため、第1配管接続部71から流入した冷媒は、第3配管接続部73、第5配管接続部75、及び第9配管接続部79に向かう冷媒に分かれる。
 第3配管接続部73を出た冷媒は、第4冷媒パス404を通って第8配管接続部78に入る。第8配管接続部78と第7配管接続部77とは、仕切部材860の連絡A孔860aとで繋がっているので、冷媒は、第2凹A部832aから連絡A孔860aを経て第1凹A部831aに至る。その後、冷媒は、第7配管接続部77から第3冷媒パス403を通って第10配管接続部80に入り、第2配管接続部72から流出する。第5配管接続部75を出た冷媒は第1冷媒パス401を通って第4配管接続部74に入り、第2配管接続部72から流出する。第9配管接続部79をでた冷媒は第2冷媒パス402を通って第6配管接続部76に入り、第2配管接続部72から流出する。
 以上のように、流路切換弁1は、暖房運転時、第3冷媒パス403と第4冷媒パス404とを直列に接続して1つの長い冷媒パスを形成することができる。
 図27は、除霜運転時の空気調和機における凝縮器と本変形例に係る流路切換弁との接続状態を示す配管図である。図27において、第1切換部701では、第1凹B部831bが第1配管接続部71と対峙している。また、第2切換部702では、第2凹B部832bが第2配管接続部72と対峙している。第1配管接続部71から流入した冷媒は、第1凹B部831bから連絡B孔860bを経て凹部802bに至り、第2配管接続部72から流出する。
 <第3実施形態の変形例の特徴>
 空気調和機の室内熱交換器40に接続された流路切換弁1は、冷房運転時、第1冷媒パス401、第2冷媒パス402、第3冷媒パス403及び第4冷媒パス404を並列に接続する。また、暖房運転時、流路切換弁1は、第1冷媒パス401と第2冷媒パス402とを直列に接続して1つの長い冷媒パスを形成するとともに、第3冷媒パス403と第4冷媒パス404とを直列に接続してもう1つの長い冷媒パスを形成することができる。また、除霜運転時には、流路切換弁1は室内熱交換器40に冷媒を流さない。
 <第1実施形態に係る流路切換弁を使用した空気調和機の実施形態A>
 ここでは、暖房運転、冷房運転および除霜運転それぞれにおいて、流路切換弁1がどのような状態に切り換えられているのかを、冷媒の流れとともに説明する。
 図28Aは、暖房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図28Bは、冷房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図28Cは、除霜運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。
 図28A、図28B、及び図28Cにおいて、空気調和機は、室内ユニット4、室外ユニット6、及び制御部8を有している。室外ユニット6及び室内ユニット4は、冷媒連絡管によって接続され蒸気圧縮式の冷媒回路が構成されている。
 (1)室内ユニット4
 室内ユニット4は、室内熱交換器40及び流路切換弁1を有している。室内熱交換器40は、フィン&チューブ型熱交換器であって、冷房運転時には、冷媒の蒸発器として機能することによって空気を冷却し、暖房運転時には、冷媒の凝縮器として機能することによって空気を加熱する。
 図28Aにおいて、暖房運転時では、第1冷媒パス401と第2冷媒パス402とが流路切換弁1によって直列に結ばれ、1つの冷媒パスを構成している。但し、ここでは、便宜上、第1冷媒パス401と第2冷媒パス402の名称をそのまま使用して冷媒の流れを説明する。
 第3配管接続部13は、第2冷媒パス402の一端に接続されている。第2冷媒パス402の他端は第6配管接続部16に接続されている。第6配管接続部16と第5配管接続部15とは本体10内で繋がっている。第5配管接続部15は、第1冷媒パス401の一端に接続されている。第1冷媒パス401の他端は第4配管接続部14に接続されている。第1切換部101では、凸部201bが第3配管接続部13と対峙している。第1配管接続部11から流入した冷媒は、凸部201bによって第3配管接続部13に向かう。第3配管接続部13を出た冷媒は第2冷媒パス402を通って第6配管接続部16に入る。第6配管接続部16と第5配管接続部15とは連絡孔210aとで繋がっているので、冷媒は凹部202cから連絡孔210aを経て凹部201cに至る。その後、冷媒は、第5配管接続部15から第1冷媒パス401に入り、第4配管接続部14を経て第2配管接続部12から流出する。
 つまり、第1配管接続部11から流路切換弁1に入った冷媒は、第3配管接続部13、第2冷媒パス402、第6配管接続部16、第5配管接続部15、第1冷媒パス401及び第4配管接続部14を通り、第2配管接続部12から流出する。
 以上のように、流路切換弁1は、暖房運転時には、第1冷媒パス401と第2冷媒パス402とを直列に接続して、1つの長い冷媒パスを形成することができる。
 (2)室外ユニット6
 室外ユニット6は、主に室外に設置され、圧縮機5、四路切換弁2、室外熱交換器46、及び膨張弁7を有している。圧縮機5は、インバータ方式を採用した容量可変型圧縮機であって、低圧のガス冷媒を吸入し、圧縮して高圧のガス冷媒とした後に吐出する。
 四路切換弁2は、冷房運転と暖房運転との切換時に、冷媒の流れの方向を切り換える弁である。四路切換弁2は、暖房運転時、圧縮機5の吐出側と流路切換弁1の第1切換部101の第1配管接続部11とを接続するとともに室外熱交換器46のガス側と圧縮機5の吸入側とを接続する。
 室外熱交換器46は、冷房運転時には冷媒の凝縮器として機能し、暖房運転時には冷媒の蒸発器として機能する熱交換器である。膨張弁7は、暖房運転時には室内熱交換器40において放熱した高圧の液冷媒を室外熱交換器46に送る前に減圧する。
 (3)暖房運転時の冷媒の流れ
 図28Aにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて流路切換弁1の第1切換部101の第1配管接続部11に送られる。暖房運転時には第1冷媒パス401と第2冷媒パス402とは直列に接続されており、第1配管接続部11から流路切換弁1に入った冷媒は、第3配管接続部13、第2冷媒パス402、第6配管接続部16、第5配管接続部15、第1冷媒パス401及び第4配管接続部14を通り、第2配管接続部12から流出する。つまり、流路切換弁1は、第1状態である。
 第2冷媒パス402及び第1冷媒パス401を通過する高圧の冷媒は、室内熱交換器40の第1熱交換部40aおよび第2熱交換部40bにおいて、空気と熱交換を行って放熱する。室内熱交換器40において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、その後、室外熱交換器46に送られる。室外熱交換器46に送られた低圧の冷媒は、外気と熱交換を行って蒸発する。室外熱交換器46において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 一般に、凝縮器および蒸発器における空気と冷媒の伝熱は、熱量Q=熱貫流率K×伝熱面積A×空気と冷媒の温度差ΔTであらわされるので、熱貫流率Kや空気と冷媒の温度差ΔTが大きいほど熱交換する量は大きくなる。この両者は冷媒の流速によって変化し、反比例の関係にあり、流速が大きいと熱貫流率Kは大きくなるが、管壁との抵抗によって生じる圧力損失が大きくなるため空気と冷媒の温度差ΔTが小さくなる。
 凝縮器として機能する室内熱交換器40は、高圧で、後の蒸発工程で多くの潜熱を得るために過冷却域(液状態)まで熱交換させるため、流れる液相冷媒の比率が蒸発器よりも大きく、冷媒の流速が小さい。冷媒の流速が小さいとき、熱貫流率Kは小さいが、流れで生じる圧力損失が小さいので空気と冷媒の温度差ΔTは大きい。そうすると、凝縮器の伝熱量をさらに大きくするためには、熱貫流率Kを大きくすることが有利であり、流速を大きくするために分岐経路を少なくすると良い。
 この空気調和機では、暖房運転時、流路切換弁1は第1状態に切り換えられることによって、室内熱交換器40の第1冷媒パス401と第2冷媒パス402とが直列に接続されて、1つの長い冷媒パスが形成される。その結果、分岐経路が減り、その分、冷媒の流速が増し、熱交換性能が向上する。
 (4)冷房運転時の冷媒の流れ
 図28Bにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて、室外熱交換器46に送られる。室外熱交換器46に送られた高圧の冷媒は、室外空気と熱交換を行って放熱する。室外熱交換器46において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、流路切換弁1の第2切換部102の第2配管接続部12に送られる。
 冷房運転時には第1冷媒パス401と第2冷媒パス402とは並列に接続されており、第2配管接続部12から流入した冷媒は、凸部202bによって2方向に分流され、一方は、第4配管接続部14、第1冷媒パス401及び第5配管接続部15を通り、他方は、第6配管接続部16、第2冷媒パス402及び第3配管接続部13を通り、両者は第1切換部101で合流して第1配管接続部11から流出する。つまり、流路切換弁1は第2状態である。
 第1冷媒パス401を通過する低圧の冷媒は、室内熱交換器40の第1熱交換部40aにおいて、室内空気と熱交換を行って蒸発する。また、第2冷媒パス402を通過する低圧の冷媒は、室内熱交換器40の第2熱交換部40bにおいて、室内空気と熱交換を行って蒸発する。室内熱交換器40において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 蒸発器として機能する室内熱交換器40は、低圧であるため、凝縮器よりも気相状態の比率が大きく、流れる気相冷媒の流速が大きい。それゆえ、熱貫流率Kは大きいが、流れで生じる圧力損失も大きく、空気と冷媒の温度差ΔTは小さい。また、過熱域に近づく(気相が大きくなる)ほど圧力損失が増大する。そうすると、冷房運転時、室内熱交換器40の伝熱量を大きくするには、空気と冷媒の温度差ΔTを大きく、圧力損失を小さくすることが有利であり、冷媒の流速を小さくするために分岐経路を多くすると良い。
 この空気調和機では、冷房運転時、流路切換弁1が第2状態に切り換えられることによって、室内熱交換器40の第1冷媒パス401と第2冷媒パス402とが並列に接続されて、2つの冷媒パスが形成される。その結果、分岐経路が増え、その分、冷媒の流速が小さくなり、熱交換性能が向上する。
 (5)除霜運転時の冷媒の流れ
 図28Cにおいて、暖房運転中、室外熱交換器46が着霜し除霜運転が開始されるときは、第1切換部101では、凹部201cが第1配管接続部11と対峙する。また、第2切換部102では、凹部202cが第2配管接続部12と対峙する。それゆえ、圧縮機5から吐出された高圧の冷媒は、第1配管接続部11に流入した後、凹部201cから連絡孔210aを経て第2弁体202の凹部202cに至り、第2配管接続部12から流出する。
 つまり、第2冷媒パス402及び第1冷媒パス401を通過しないので、室内熱交換器40の第1熱交換部40a及び第2熱交換部40bで熱交換しない。また、除霜運転中、膨張弁7は全開となるので、高温高圧の冷媒が室外熱交換器46に送られる。室外熱交換器46は、高温高圧の冷媒によって加熱されるので、表面を覆った霜は融解する。
 従来、多くの空気調和機では、除霜運転時、四路切換弁によって暖房運転サイクルを冷房運転サイクルへ切り換えるため、瞬時に高低圧が切り換わることによる衝撃、騒音に対する対策が必要であるが、この空気調和機では、流路切換弁によって暖房運転サイクルのまま除霜運転を実行することができるので、衝撃、騒音に対する特別な対策が不要になる。
(6)空気調和機の実施形態Aの特徴
 以上のように、室内熱交換器40を凝縮器として用いる場合と蒸発器として用いる場合に応じて流路切換弁1によって分岐経路を変更できるので、冷房運転と暖房運転と行う空気調和機では、それぞれの運転で室内熱交換器40の効率を両立させることができ、大きな空調能力と省エネ性を提供できる。
 また、空気調和機は、インバータ圧縮機を使用した能力可変型空気調和機であるので、冷媒循環量は可変である。冷媒循環量の変化は、流速を変化させるので熱貫流率Kと空気と冷媒の温度差ΔTのバランスが変化する。例えば、冷媒循環量が極端に小さいとき蒸発器でも圧力損失は重視しなくとも良く、流速を大きくして熱貫流率Kを大きくする方が有利になる。このようなときは、流路切換弁1が第1状態に切り換えられることによって、室内熱交換器40の第1冷媒パス401と第2冷媒パス402とが直列に接続されて、1つの長い冷媒パスが形成される。その結果、分岐経路が減り、その分、冷媒の流速が増し、熱交換性能が向上する。
 また、冷媒循環量が極端に大きいとき凝縮器でも圧力損失は重視しなければならず、流速を小さくして空気と冷媒の温度差ΔTを小さくする方が有利になる。このようなときは、流路切換弁1が第2状態に切り換えられることによって、室内熱交換器40の第1冷媒パス401と第2冷媒パス402とが並列に接続されて、2つの冷媒パスが形成される。その結果、分岐経路が増え、その分、冷媒の流速が小さくなり、熱交換性能が向上する。
 つまり、冷媒循環量の大小に応じて分岐経路を変更できるので、能力可変型の空気調和機において熱交換の効率を両立させることができ、大きな空調能力と省エネ性を提供できる。
 <第1実施形態に係る流路切換弁を使用した空気調和機の実施形態B>
 図29Aは、暖房運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図29Bは、冷房運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。
 図29A、及び図29Bにおいて、空気調和機は、室内ユニット4、室外ユニット6、及び制御部8を有している。室外ユニット6及び室内ユニット4は、冷媒連絡管によって接続され蒸気圧縮式の冷媒回路が構成されている。なお、空気調和機の実施形態1Aとの構成上の違いは、流路切換弁1が室外熱交換器46に接続されているところであるので、空気調和機の実施形態1Aと同じ部品・部材には同じ符号を付与して説明を省略し、ここでは、運転時の冷媒の流れについてのみ説明する。
 (1)暖房運転時の冷媒の流れ
 図29Aにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて、室内熱交換器40に送られる。室内熱交換器40に送られた高圧の冷媒は、室内空気と熱交換を行って放熱する。室内熱交換器40において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、流路切換弁1の第2切換部102の第2配管接続部12に送られる。
 暖房運転時には第1冷媒パス461と第2冷媒パス462とは並列に接続されており、第2配管接続部12から流入した冷媒は、凸部202bによって2方向に分流され、一方は、第4配管接続部14、第1冷媒パス461及び第5配管接続部15を通り、他方は、第6配管接続部16、第2冷媒パス462及び第3配管接続部13を通り、両者は第1切換部101で合流して第1配管接続部11から流出する。
 第1冷媒パス461を通過する低圧の冷媒は、室外熱交換器46の第1熱交換部46aにおいて、室外空気と熱交換を行って蒸発する。また、第2冷媒パス462を通過する低圧の冷媒は、室外熱交換器46の第2熱交換部46bにおいて、室外空気と熱交換を行って蒸発する。室外熱交換器46において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 蒸発器として機能する室外熱交換器46は、低圧であるため、凝縮器よりも気相状態の比率が大きく、流れる気相冷媒の流速が大きい。それゆえ、熱貫流率Kは大きいが、流れで生じる圧力損失も大きく、空気と冷媒の温度差ΔTは小さい。また、過熱域に近づく(気相が大きくなる)ほど圧力損失が増大する。そうすると、暖房運転時、室外熱交換器46の伝熱量を大きくするには、空気と冷媒の温度差ΔTを大きく、圧力損失を小さくすることが有利であり、冷媒の流速を小さくするために分岐経路を多くすると良い。
 この空気調和機では、暖房運転時、流路切換弁1が第2状態に切り換えられることによって、室外熱交換器46の第1冷媒パス461と第2冷媒パス462とが並列に接続されて、2つの冷媒パスが形成される。その結果、分岐経路が増え、その分、冷媒の流速が小さくなり、熱交換性能が向上する。
 (2)冷房運転時の冷媒の流れ
 図29Bにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて流路切換弁1の第1切換部101の第1配管接続部11に送られる。暖房運転時には第1冷媒パス461と第2冷媒パス462とは直列に接続されており、第1配管接続部11から流路切換弁1に入った冷媒は、第3配管接続部13、第2冷媒パス462、第6配管接続部16、第5配管接続部15、第1冷媒パス461及び第4配管接続部14を通り、第2配管接続部12から流出する。
 第2冷媒パス462及び第1冷媒パス461を通過する高圧の冷媒は、室外熱交換器46の第1熱交換部46aおよび第2熱交換部46bにおいて、室外空気と熱交換を行って放熱する。室外熱交換器46において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、その後、室内熱交換器40に送られる。室内熱交換器40に送られた低圧の冷媒は、外気と熱交換を行って蒸発する。室内熱交換器40において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 凝縮器として機能する室外熱交換器46は、高圧で、後の蒸発工程で多くの潜熱を得るために過冷却域(液状態)まで熱交換させるため、流れる液相冷媒の比率が蒸発器よりも大きく、冷媒の流速が小さい。冷媒の流速が小さいとき、熱貫流率Kは小さいが、流れで生じる圧力損失が小さいので空気と冷媒の温度差ΔTは大きい。そうすると、凝縮器の伝熱量をさらに大きくするためには、熱貫流率Kを大きくすることが有利であり、流速を大きくするために分岐経路を少なくすると良い。
 この空気調和機では、冷房運転時、流路切換弁1は第1状態に切り換えられることによって、室外熱交換器40の第1冷媒パス461と第2冷媒パス462とが直列に接続されて、1つの長い冷媒パスが形成される。その結果、分岐経路が減り、その分、冷媒の流速が増し、熱交換性能が向上する。
(3)空気調和機の実施形態Bの特徴
 以上のように、室外熱交換器46を凝縮器として用いる場合と蒸発器として用いる場合に応じて、流路切換弁1によって分岐経路を変更できるので、冷房運転と暖房運転と行う空気調和機ではそれぞれの運転で室外熱交換器46の効率を両立させることができ、大きな空調能力と省エネ性を提供できる。
 また、空気調和機は、インバータ圧縮機を使用した能力可変型空気調和機であるので、冷媒循環量は可変である。冷媒循環量の変化は、流速を変化させるので熱貫流率Kと空気と冷媒の温度差ΔTのバランスが変化する。例えば、冷媒循環量が極端に小さいとき蒸発器でも圧力損失は重視しなくとも良く、流速を大きくして熱貫流率Kを大きくする方が有利になる。このようなときは、流路切換弁1が第1状態に切り換えられることによって、室外熱交換器46の第1冷媒パス461と第2冷媒パス462とが直列に接続されて、1つの長い冷媒パスが形成される。その結果、分岐経路が減り、その分、冷媒の流速が増し、熱交換性能が向上する。
 また、冷媒循環量が極端に大きいとき凝縮器でも圧力損失は重視しなければならず、流速を小さくして空気と冷媒の温度差ΔTを小さくする方が有利になる。このようなときは、流路切換弁1が第2状態に切り換えられることによって、室外熱交換器46の第1冷媒パス461と第2冷媒パス462とが並列に接続されて、2つの冷媒パスが形成される。その結果、分岐経路が増え、その分、冷媒の流速が小さくなり、熱交換性能が向上する。
 つまり、冷媒循環量の大小に応じて分岐経路を変更できるので、能力可変型の空気調和機において熱交換の効率を両立させることができ、大きな空調能力と省エネ性を提供できる。
 <第1実施形態に係る流路切換弁を使用した空気調和機の実施形態C>
 図30Aは、再熱除湿運転時の室外熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図30Bは、再熱除湿運転時の室外熱交換器と第1実施形態に係る流路切換弁との他の接続状態を示す空気調和機の構成図である。
 図30A、及び図30Bにおいて、空気調和機は、室内ユニット4、室外ユニット6、及び制御部8を有している。室外ユニット6及び室内ユニット4は、冷媒連絡管によって接続され蒸気圧縮式の冷媒回路が構成されている。なお、空気調和機の実施形態1Aとの構成上の違いは、室内熱交換器40の第1熱交換部40aと第2熱交換部40bとの間に第2膨張弁41が接続されている点と、流路切換弁1が室外熱交換器46に接続されている点あるので、空気調和機の実施形態1Aと同じ部品・部材には同じ符号を付与して説明を省略し、ここでは、再熱除湿運転時の冷媒の流れについてのみ説明する。
 (1)第2熱交換部40bのみが凝縮器となる場合
 図30Aにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて流路切換弁1の第1切換部101の第1配管接続部11に送られる。
 再熱除湿運転時、第1切換部101では凹部201cが第1配管接続部11と対峙し、第2切換部102では凹部202cが第2配管接続部12と対峙する。それゆえ、第1配管接続部11に流入した高圧の冷媒は、凹部201cから連絡孔210aを経て第2弁体202の凹部202cに至り、第2配管接続部12から流出する。
 つまり、第2冷媒パス462及び第1冷媒パス461を通過しないので、室外熱交換器46の第1熱交換部46a及び第2熱交換部46bで熱交換しない。また、再熱除湿運転中、膨張弁7は全開となるので、第2配管接続部12から出た高温高圧の冷媒が、直接、室内熱交換器40の第2熱交換器部40bに送られる。高圧の冷媒は、第2熱交換器部40bで室内空気と熱交換を行って放熱する。第2熱交換部40bで放熱した高圧の冷媒は、第2膨張弁41に送られて低圧まで減圧され、その後、第1熱交換部40aに送られる。低圧の冷媒は、第1熱交換部40aで室内空気と熱交換を行って蒸発する。第1熱交換部40aにおいて蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 (2)第1熱交換部40aのみが凝縮器となる場合
 図30Bにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて室内熱交換器40の第1熱交換部40aに送られる。高圧の冷媒は、第1熱交換器部40aで室内空気と熱交換を行って放熱する。第1熱交換部40aで放熱した高圧の冷媒は、第2膨張弁41に送られて低圧まで減圧され、その後、第2熱交換部40bに送られる。低圧の冷媒は、第2熱交換部40bで室内空気と熱交換を行って蒸発する。再熱除湿運転中、膨張弁7は全開となるので、第2熱交換部40bにおいて蒸発した低圧の冷媒は、直接、流路切換弁1の第2切換部102の第2配管接続部12に送られる。
 再熱除湿運転時、第1切換部101では凹部201cが第1配管接続部11と対峙し、第2切換部102では凹部202cが第2配管接続部12と対峙する。それゆえ、第2配管接続部12に流入した低圧の冷媒は、凹部202cから連絡孔210aを経て第1弁体201の凹部201cに至り、第1配管接続部11から流出する。
 つまり、第2冷媒パス462及び第1冷媒パス461を通過しないので、室外熱交換器46の第1熱交換部46a及び第2熱交換部46bで熱交換しない。低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 (3)空気調和機の実施形態Cの特徴
 (3-1)
 再熱除湿運転は、蒸発器で空気を結露させることによる除湿と、蒸発器によって冷えた空気を凝縮器で暖めることで空気の温度を再び戻す運転である。このような運転を行うとき、室外熱交換器46をバイパスすることで、室外熱交換器46での熱の授受を無くすことができ、室内熱交換器40で凝縮熱と蒸発熱を最大限に活用することができる。
 その結果、大きな除湿能力と再熱能力を両立する空気調和機を提供でき、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることも可能になり、年間を通した省エネ性を提供できる。
 (3-2)
 また、従来多くの空気調和機の再熱除湿運転は、圧縮機から吐出された高温高圧の冷媒は室外熱交換器、膨張弁を順に経由してから室内熱交換器へ流れ、再び圧縮機5へ吸入される流れの形態をとる。室外熱交換器で可能な限り放熱させないために、空気の送風を抑える必要がある。
 しかし、室外ユニットに搭載されている多くの電気部品を実装した電装品箱は防水、防火の構造を得るために外気との接触は限られるため、放熱フィンとわずかに箱の内部を通気する空気が重要な冷却手段である。ところが送風量が小さいと、フィンによる放熱や通気ができなくなり、また高温になっている室外熱交換器の影響もあり、また高圧による圧縮機の高電流により発熱量も大きくなる。
 このため、従来多くの空気調和機では室外熱交換器の送風をある程度行って、凝縮熱を外気に捨てていた。
 しかし、この実施形態Cでは、室外熱交換器46をバイパスすることで、電気部品の冷却のために送風を十分行うことができるようになり、ひいては熱耐力の低い電気部品の採用など熱設計に融通性を持たすことができ、これらコストを抑えた空気調和機を提供できる。
 (3-3)
 また、従来多くの空気調和機の再熱除湿運転は、圧縮機から吐出された高温高圧の冷媒は室外熱交換器、膨張弁を順に経由してから室内熱交換器へ流れ、再び圧縮機へ吸入される流れの形態をとるが、これは再熱除湿運転のもっとも重要な機能である除湿を最大限に得るためである。しかし室外熱交換器46をバイパスすることで、このような流し方の制約がなくなるので、再熱除湿運転の高効率化の効果分を冷房や暖房性能にもっと特化した熱交換器設計に振り向けることも可能になり、年間を通した省エネ性を提供できる。
 〔第4実施形態〕
 図31Aは、第1切換部を本体の中心軸と直交する面で切断したときの流路切換弁の断面図であり、図31Bは、第2切換部を本体の中心軸と直交する面で切断したときの流路切換弁の断面図である。図31A及び図31Bにおいて、弁体は、第1弁体251、第2弁体252、第1絞り弁体261、及び第2絞り弁体262を含んでいる。
 第1弁体251は、回転体であり、シール部251aと凸部251bと凹部251cとを有している。シール部251aは、本体内周に沿って回転移動する。凸部251bは、流線形に成形されており、回転中心からシール部251aと反対の方向に突出している。凹部251cは、U字状に成形されており、シール部251aの円弧面から回転中心に向かって窪んでいる。
 第1絞り弁体261は、第1弁体251からその回転軸を中心に135°離れた位置に設けられている。第1絞り弁体261は、シール部261aと凸部261bと凹部261cとを有している。凹部261c及び本体10の胴部10aに囲まれた通路の断面積は、冷媒がそこを通過する際に絞られて減圧される程度にまで小さく設定されている。
 第1絞り弁体261は、第1弁体251と共に回転するが、第1絞り弁体261が機能しているとき第1弁体251は機能せず、逆に、第1絞り弁体261が機能していないとき、第1弁体251は機能する。
 第2弁体252は、第1弁体251と同じ形状の回転体であり、シール部252aと凸部252bと凹部252cとを有している。シール部252aは、本体内周に沿って回転移動する。凸部252bは、流線形に成形されており、回転中心からシール部252aと反対の方向に突出している。凹部252cは、U字状に成形されており、シール部252aの円弧面から回転中心に向かって窪んでいる。
 第2絞り弁体262は、第2弁体252からその回転軸を中心に135°離れた位置に設けられている。第2絞り弁体262は、シール部262aと凸部262bと凹部262cとを有している。凹部262c及び本体10の胴部10aに囲まれた通路の断面積は、冷媒がそこを通過する際に絞られて減圧される程度にまで小さく設定されている。
 したがって、凹部261cが第5配管接続部15と対峙し、凹部262cが第6配管接続部16と対峙する状態になったとき、第6配管接続部16から流入した冷媒は、連絡孔260aを通過して第5配管接続部15から流出するので、冷媒は流路切換弁1内で絞られ減圧される。つまり、流路切換弁1が膨張弁の機能を果たす。
 <第4実施形態に係る流路切換弁を使用した空気調和機の実施形態D>
 図32Aは、暖房運転時の室内熱交換器と第4実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図32Bは、冷房運転時の室内熱交換器と第1実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。また、図32Cは、再熱除湿運転時の室内熱交換器と第4実施形態に係る流路切換弁との接続状態を示す空気調和機の構成図である。
 図32A、図32B、及び図32Cにおいて、空気調和機は、室内ユニット4、室外ユニット6、及び制御部8を有している。室外ユニット6及び室内ユニット4は、冷媒連絡管によって接続され蒸気圧縮式の冷媒回路が構成されている。なお、流路切換弁1内部以外は、空気調和機の実施形態Aと同じであるので、ここでは、冷媒の流れについてのみ説明する。
 (1)暖房運転時の冷媒の流れ
 図32Aにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて流路切換弁1の第1切換部151の第1配管接続部11に送られる。暖房運転時には第1冷媒パス401と第2冷媒パス402とは直列に接続されており、第1配管接続部11から流路切換弁1に入った冷媒は、第3配管接続部13、第2冷媒パス402、第6配管接続部16、第5配管接続部15、第1冷媒パス401及び第4配管接続部14を通り、第2配管接続部12から流出する。
 第2冷媒パス402及び第1冷媒パス401を通過する高圧の冷媒は、室内熱交換器40の第1熱交換部40aおよび第2熱交換部40bにおいて、空気と熱交換を行って放熱する。室内熱交換器40において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、その後、室外熱交換器46に送られる。室外熱交換器46に送られた低圧の冷媒は、外気と熱交換を行って蒸発する。室外熱交換器46において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
 (2)冷房運転時の冷媒の流れ
 図32Bにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて、室外熱交換器46に送られる。室外熱交換器46に送られた高圧の冷媒は、室外空気と熱交換を行って放熱する。室外熱交換器46において放熱した高圧の冷媒は、膨張弁7に送られて低圧まで減圧され、流路切換弁1の第2切換部152の第2配管接続部12に送られる。
 冷房運転時には第1冷媒パス401と第2冷媒パス402とは並列に接続されており、第2配管接続部12から流入した冷媒は、凸部252bによって2方向に分流され、一方は、第4配管接続部14、第1冷媒パス401及び第5配管接続部15を通り、他方は、第6配管接続部16、第2冷媒パス402及び第3配管接続部13を通り、両者は第1切換部151で合流して第1配管接続部11から流出する。
 第1冷媒パス401を通過する低圧の冷媒は、室内熱交換器40の第1熱交換部40aにおいて、室内空気と熱交換を行って蒸発する。また、第2冷媒パス402を通過する低圧の冷媒は、室内熱交換器40の第2熱交換部40bにおいて、室内空気と熱交換を行って蒸発する。室内熱交換器40において蒸発した低圧の冷媒は、四路切換弁2を通じて、再び、圧縮機5に吸入される。
(3)再熱除湿運転時の冷媒の流れ
 図32Cにおいて、冷媒は、圧縮機5に吸入され、高圧まで圧縮された後に吐出される。圧縮機5から吐出された高圧の冷媒は、四路切換弁2を通じて、室外熱交換器46に送られる。再熱除湿運転時、膨張弁7は全開で、且つ、第1冷媒パス401と第2冷媒パス402とは直列に接続されている。そのため、室外熱交換器46に送られた高圧の冷媒は、流路切換弁111の第2切換部152の第2配管接続部12に送られ、第4配管接続部14、第1冷媒パス401、第5配管接続部15、第6配管接続部16、第2冷媒パス402及び第3配管接続部13を通り、第1配管接続部11へ流れる。
 そのとき、流路切換弁1内部の第1切換部151では、第1絞り弁体261の凹部261cが第5配管接続部15と対峙し、第2切換部152では第2絞り弁体262の凹部262cが第6配管接続部16と対峙しているので、高圧の冷媒は、第5配管接続部15から第6配管接続部16に至る途中において、凹部261cから連絡孔260aを経て凹部262dを通るので、冷媒は絞られ減圧される。
 そうすると、第1冷媒パス401と第2冷媒パス402との間で高圧の冷媒は減圧され、室内熱交換器40の第1熱交換部40aが凝縮器として機能し、第2熱交換部40bが蒸発器として機能する。つまり、再熱除湿運転時、室外熱交換器46及び室内熱交換器40の第1熱交換部40aが共に凝縮器となる。室外熱交換器46及び第1熱交換器40aにおいて放熱した高圧の冷媒は、流路切換弁111内で低圧まで減圧され、第2熱交換部40bに送られる。第2熱交換器40bに送られた低圧の冷媒は、外気と熱交換を行って蒸発する。第2熱交換部40bにおいて蒸発した低圧の冷媒は、第1配管接続部11から流出し四路切換弁2を通じて、再び、圧縮機5に吸入される。
 (4)空気調和機の実施形態Dの特徴
 従来、多くの空気調和機では、再熱除湿運転を行うために第1熱交換部40aと第2熱交換部40bとの間に減圧機構が必要であったが、この空気調和機では、流路切換弁1の第2流路が減圧機構として機能するので、専用の減圧機構が不要となる。それゆえ、コスト増を抑制することができる。
 以上のように、本願発明によれば、流体のパス数の切換、およびバイパス回路等への切り換えが1つの切換弁によって行われるので空気調和機に有用である。
1 流路切換弁
5 圧縮機
7 膨張弁(減圧器)
8 制御部
10 本体
11 第1配管接続部
12 第2配管接続部
13 第3配管接続部
14 第4配管接続部
15 第5配管接続部
20 弁体(可動部材)
40 室内熱交換器
40a 第1熱交換部
40b 第2熱交換部
46 室外熱交換器
特開昭60-132179号公報 特開平11-132603号公報

Claims (18)

  1.  複数の流体流通口を構成する配管接続部群(11,12,13,14,15,16)を有する本体(10)と、
     前記本体(10)の内部空間に配置され前記流体流通口同士を連通させるための流路を形成する可動部材(20)と
    を備え、
     前記配管接続部群は、
     流体の流入口あるいは流出口となる第1配管接続部(11)、
     前記第1配管接続部(11)とは別に前記流体の流出口あるいは流入口となる第2配管接続部(12)、
     前記第1配管接続部(11)および前記第2配管接続部(12)とは別に流通口となる第3配管接続部(13)、第4配管接続部(14)、および第5配管接続部(15)を、
    少なくとも含み、
     前記可動部材(20)は、前記本体(10)内を移動して、
     前記第1配管接続部(11)が前記配管接続部群のうちの1つ以上の配管接続部と結ばれる第1状態と、
     前記第1配管接続部(11)が前記配管接続部群のうちの前記第1状態より多い複数の配管接続部と結ばれる第2状態と、
    の切り換えを行う、
    流路切換弁(1)。
  2.  前記第1状態は、前記第1配管接続部(11)が前記配管接続部群のうち前記第2配管接続部(12)を除く他の1つ以上の配管接続部と結ばれる状態を含む、
    請求項1に記載の流路切換弁(1)。
  3.  前記第1状態は、前記第1配管接続部(11)が前記配管接続部群のうち前記第2配管接続部(12)とだけ結ばれる状態である、
    請求項1に記載の流路切換弁(1)。
  4.  前記配管接続部群は、前記第1配管接続部(11)及び前記第2配管接続部(12)を除いても、4以上の偶数個の配管接続部を含んでいる、
    請求項1に記載の流路切換弁(1)。
  5.  前記第1状態は、前記第1配管接続部(11)及び前記第2配管接続部(12)を除く4以上の偶数個の配管接続部の少なくとも2つの配管接続部が結ばれる状態である、
    請求項4に記載の流路切換弁(1)。
  6.  前記本体(10)は、前記可動部材(20)が移動する中空円筒部を有している、
    請求項1から請求項5のいずれか1項に記載の流路切換弁(1)
  7.  前記可動部材(20)は、前記中空円筒部の内周面に沿って回転することによって、前記流路を形成する、
    請求項6に記載の流路切換弁(1)。
  8.  前記可動部材(20)は、回転角度を変えて前記流路を通過する流体の流量を調節する、
    請求項7に記載の流路切換弁(1)。
  9.  前記可動部材(20)が形成する前記流路は、
     第1流路と、
     前記第1流路よりも流路断面積が小さい第2流路と、
    を含み
     前記第1状態において、
     前記第1配管接続部(11)が、前記第1流路を介して前記第1配管接続部(11)及び前記第2配管接続部(12)を除く4以上の偶数個の前記配管接続部のいずれか又は複数の配管接続部と結ばれるとき、前記第1配管接続部(11)及び第2配管接続部(12)と結ばれていない前記配管接続部のうちの2つの前記配管接続部が前記第2流路を介して結ばれる、
    請求項5から請求項8のいずれか1項に記載の流路切換弁(1)。
  10.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記制御部(8)は、
     暖房運転時には前記流路切換弁(1)を前記第1状態に切り換え、
     冷房運転時には前記流路切換弁(1)を前記第2状態に切り換える、
    空気調和機。
  11.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記蒸発器となり、冷房運転時には前記凝縮器となる室外熱交換器(46)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記制御部(8)は、
     暖房運転時には前記流路切換弁(1)を前記第2状態に切り換え、
     冷房運転時には前記流路切換弁(1)を前記第1状態に切り換える、
    空気調和機。
  12.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記制御部(8)は、前記冷媒の循環量の大小に応じて前記流路切換弁(1)を前記第1状態および前記第2状態のいずれかに切り換える、
    空気調和機。
  13.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記蒸発器となり、冷房運転時には前記凝縮器となる室外熱交換器(46)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記制御部(8)は、前記冷媒の循環量の大小に応じて前記流路切換弁を前記第1状態および前記第2状態のいずれかに切り換える、
    空気調和機。
  14.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記制御部(8)は、除霜運転時には前記減圧器(7)を全開にするとともに、前記流路切換弁(1)の前記第1配管接続部(11)及び前記第2配管接続部(12)を連通させる、
    空気調和機。
  15.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
     暖房運転時には前記蒸発器となり、冷房運転時には前記凝縮器となる室外熱交換器(46)と、
     請求項1から請求項8のいずれか1項に記載の流路切換弁(1)と、
     前記流路切換弁(1)を制御する制御部(8)と、
    を備え、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室外熱交換器(46)との間、若しくは前記室外熱交換器(46)の途中に接続され、
     前記室内熱交換器(40)は、
     第1熱交換部(40a)と、
     第2熱交換部(40b)と、
     前記第1熱交換部(40a)と前記第2熱交換部(40b)との間に接続され、前記制御部(8)によって制御される減圧部(41)と、
    を含み、
     前記制御部(8)は、前記減圧器(7)を全開若しくは減圧を意図しない開度にし、前記冷媒を前記減圧部(41)で減圧する再熱除湿運転を行うとともに、前記再熱除湿運転時には、前記流路切換弁(1)の前記第1配管接続部(11)及び前記第2配管接続部(12)を連通させる、
    空気調和機。
  16.  再熱除湿運転時に、前記圧縮機(5)から吐出された冷媒を先ず前記室外熱交換器(46)側に流してから前記室内熱交換器(40)側に流す、
    請求項15に記載の空気調和機。
  17.  再熱除湿運転時に、前記圧縮機(5)から吐出された冷媒を先ず前記室内熱交換器側(40)に流してから前記室外熱交換器(46)側に流す、
    請求項15に記載の空気調和機。
  18.  圧縮機(5)、凝縮器、減圧器(7)、蒸発器の順で冷媒が循環する蒸気圧縮式冷凍サイクルを利用する空気調和機であって、
     暖房運転時には前記凝縮器となり、冷房運転時には前記蒸発器となる室内熱交換器(40)と、
     請求項9に記載の流路切換弁(1)と、
     前記流路切換弁を制御する制御部(8)と、
    を備え、
     前記室内熱交換器(40)は、
     第1熱交換部(40a)と、
     第2熱交換部(40b)と、
    を含み、
     前記流路切換弁(1)の前記第1配管接続部(11)が前記圧縮機(5)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記流路切換弁(1)の前記第2配管接続部(12)が前記減圧器(7)と前記室内熱交換器(40)との間、若しくは前記室内熱交換器(40)の途中に接続され、
     前記第1配管接続部(11)及び前記第2配管接続部(12)を除く4以上の偶数個の前記配管接続部のうちの2つの配管接続部が前記第1熱交換部(40a)と前記第2熱交換部(40b)との間に接続され、
     前記制御部(8)は、前記第1熱交換部(40a)と前記第2熱交換部(40b)との間に接続された2つの前記配管接続部を、前記流路切換弁(1)の前記可動部材(20)が形成する前記第2流路を介して連通させて、前記第1熱交換部(40a)と前記第2熱交換部(40b)との間で減圧させる、再熱除湿運転を行う、
    空気調和機。
PCT/JP2010/004039 2009-10-22 2010-06-17 流路切換弁、及びそれを備えた空気調和機 WO2011048724A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201080048141.0A CN102667276B (zh) 2009-10-22 2010-06-17 空调机
JP2011537101A JP5578178B2 (ja) 2009-10-22 2010-06-17 空気調和機

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009243577 2009-10-22
JP2009-243577 2009-10-22

Publications (1)

Publication Number Publication Date
WO2011048724A1 true WO2011048724A1 (ja) 2011-04-28

Family

ID=43899969

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004039 WO2011048724A1 (ja) 2009-10-22 2010-06-17 流路切換弁、及びそれを備えた空気調和機

Country Status (3)

Country Link
JP (2) JP5578178B2 (ja)
CN (1) CN102667276B (ja)
WO (1) WO2011048724A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012086746A1 (ja) * 2010-12-24 2012-06-28 ダイキン工業株式会社 流路切換弁、及びそれを備えた空気調和機
JP2012242047A (ja) * 2011-05-23 2012-12-10 Daikin Industries Ltd 空気調和機
JP2012242046A (ja) * 2011-05-23 2012-12-10 Daikin Industries Ltd 流路切換弁、及びそれを備えた空気調和機
JP2013015227A (ja) * 2011-06-30 2013-01-24 Daikin Industries Ltd 切換弁
CN103245137A (zh) * 2013-05-31 2013-08-14 上海交通大学 汽车空调用两位四通换向阀
WO2015063853A1 (ja) * 2013-10-29 2015-05-07 株式会社日立製作所 冷凍サイクルおよび空気調和機
US20170254425A1 (en) * 2014-08-22 2017-09-07 Mitsubishi Electric Corporation Compound valve
WO2018193518A1 (ja) * 2017-04-18 2018-10-25 三菱電機株式会社 空気調和機
US10215452B2 (en) 2014-07-18 2019-02-26 Mitsubishi Electric Corporation Air conditioner
US10337626B2 (en) 2014-07-18 2019-07-02 Mitsubishi Electric Corporation Heating medium channel switching device, and air conditioning device including the heating medium channel switching device
JP2021123132A (ja) * 2020-01-31 2021-08-30 三菱重工業株式会社 車両用空調装置
WO2021122363A3 (de) * 2019-12-16 2021-09-10 ECO Holding 1 GmbH Vorrichtung zur handhabung von fluid innerhalb eines zumindest teilweise elektrisch angetriebenen fahrzeugs
WO2024080082A1 (ja) * 2022-10-13 2024-04-18 株式会社デンソー ロータリ型多方弁

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104676048B (zh) * 2013-04-28 2018-10-09 浙江盾安机械有限公司 一种四通阀
JP5783235B2 (ja) * 2013-12-11 2015-09-24 ダイキン工業株式会社 冷媒流路切換ユニット及び流路切換集合ユニット
CN105066531B (zh) * 2015-08-31 2017-09-05 Tcl空调器(中山)有限公司 流路变换器、室外机的冷凝组件及空调器
JP6403896B2 (ja) * 2015-09-09 2018-10-10 三菱電機株式会社 空気調和装置
CN108027181B (zh) * 2015-09-10 2020-09-04 日立江森自控空调有限公司 热交换器
CN108068576B (zh) * 2016-11-09 2020-09-25 杭州三花研究院有限公司 流体换热组件
CN106594950A (zh) * 2016-11-30 2017-04-26 重庆筑巢建筑材料有限公司 双循环通风器
WO2019112307A1 (en) * 2017-12-05 2019-06-13 Samsung Electronics Co., Ltd. Air conditioner
WO2020017036A1 (ja) * 2018-07-20 2020-01-23 三菱電機株式会社 冷凍サイクル装置
JP7412887B2 (ja) * 2019-01-02 2024-01-15 ダイキン工業株式会社 空気調和機及び流路切換弁
JP7014196B2 (ja) * 2019-02-28 2022-02-01 株式会社デンソー 流路切替装置
JP7374062B2 (ja) 2020-10-22 2023-11-06 本田技研工業株式会社 流路切換バルブ
EP4246056A4 (en) * 2020-11-10 2023-12-20 Mitsubishi Electric Corporation REFRIGERATING CYCLE DEVICE
JP7362685B2 (ja) 2021-02-25 2023-10-17 Ckd株式会社 四方弁、弁ユニット、温度制御システム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196572A (ja) * 1986-02-24 1987-08-29 株式会社日立製作所 空冷ヒ−トポンプ式空気調和機
JPH06194007A (ja) * 1992-10-30 1994-07-15 Nippondenso Co Ltd 流路切替バルブとそれを使用する空調装置
US5617815A (en) * 1994-05-06 1997-04-08 Firma Carl Freudenberg Regulating valve
JP2002144899A (ja) * 2000-11-14 2002-05-22 Asahi Shoji:Kk 油圧駆動自動車
JP2004534191A (ja) * 2001-07-11 2004-11-11 ヴァレオ テルミーク モツール 流体循環回路用制御バルブ
JP2007309333A (ja) * 2004-12-03 2007-11-29 Koichi Kawakami 五方弁
EP2075421A1 (en) * 2007-12-28 2009-07-01 Delphi Technologies, Inc. Fluid control valve for a cam phaser

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2129231A (en) * 1936-08-27 1938-09-06 Arthur L Parker Selector valve
US4355659A (en) * 1981-01-08 1982-10-26 The Hilliard Corp. Rotary plug valve
JPS62125273A (ja) * 1985-11-26 1987-06-06 株式会社デンソー ヒ−トポンプ装置
JPH0532122A (ja) * 1991-07-26 1993-02-09 Hino Motors Ltd 自動車用冷房装置
JPH06239131A (ja) * 1993-02-16 1994-08-30 Nippondenso Co Ltd 空調装置
JP3060807B2 (ja) * 1993-12-16 2000-07-10 ダイキン工業株式会社 多室型空気調和装置
JPH07253227A (ja) * 1994-03-15 1995-10-03 Shimizu Corp 空調装置
JP2000146258A (ja) * 1998-11-16 2000-05-26 Mitsubishi Heavy Ind Ltd 空気調和機およびその制御方法
JP3985377B2 (ja) * 1999-01-20 2007-10-03 株式会社富士通ゼネラル 空気調和機
FR2844571B1 (fr) * 2002-09-18 2008-02-29 Valeo Thermique Moteur Sa Vanne de commande pour un circuit de fluide et circuit comportant cette vanne
JP2004251537A (ja) * 2003-02-20 2004-09-09 Fujitsu General Ltd 空気調和機の制御方法
JP2004271062A (ja) * 2003-03-10 2004-09-30 Fujitsu General Ltd 空気調和機
MXPA06003632A (es) * 2004-04-16 2006-06-20 Asahi Tsusho Kk Automovil operado hidraulicamente.
JP4780467B2 (ja) * 2005-12-01 2011-09-28 康一 川上 五方弁
JP4730738B2 (ja) * 2005-12-26 2011-07-20 日立アプライアンス株式会社 空気調和機
JP2008039279A (ja) * 2006-08-04 2008-02-21 Sharp Corp 空気調和機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62196572A (ja) * 1986-02-24 1987-08-29 株式会社日立製作所 空冷ヒ−トポンプ式空気調和機
JPH06194007A (ja) * 1992-10-30 1994-07-15 Nippondenso Co Ltd 流路切替バルブとそれを使用する空調装置
US5617815A (en) * 1994-05-06 1997-04-08 Firma Carl Freudenberg Regulating valve
JP2002144899A (ja) * 2000-11-14 2002-05-22 Asahi Shoji:Kk 油圧駆動自動車
JP2004534191A (ja) * 2001-07-11 2004-11-11 ヴァレオ テルミーク モツール 流体循環回路用制御バルブ
JP2007309333A (ja) * 2004-12-03 2007-11-29 Koichi Kawakami 五方弁
EP2075421A1 (en) * 2007-12-28 2009-07-01 Delphi Technologies, Inc. Fluid control valve for a cam phaser

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012145318A (ja) * 2010-12-24 2012-08-02 Daikin Industries Ltd 流路切換弁、及びそれを備えた空気調和機
WO2012086746A1 (ja) * 2010-12-24 2012-06-28 ダイキン工業株式会社 流路切換弁、及びそれを備えた空気調和機
JP2012242047A (ja) * 2011-05-23 2012-12-10 Daikin Industries Ltd 空気調和機
JP2012242046A (ja) * 2011-05-23 2012-12-10 Daikin Industries Ltd 流路切換弁、及びそれを備えた空気調和機
JP2013015227A (ja) * 2011-06-30 2013-01-24 Daikin Industries Ltd 切換弁
CN103245137A (zh) * 2013-05-31 2013-08-14 上海交通大学 汽车空调用两位四通换向阀
WO2015063853A1 (ja) * 2013-10-29 2015-05-07 株式会社日立製作所 冷凍サイクルおよび空気調和機
US10337626B2 (en) 2014-07-18 2019-07-02 Mitsubishi Electric Corporation Heating medium channel switching device, and air conditioning device including the heating medium channel switching device
US10215452B2 (en) 2014-07-18 2019-02-26 Mitsubishi Electric Corporation Air conditioner
US20170254425A1 (en) * 2014-08-22 2017-09-07 Mitsubishi Electric Corporation Compound valve
US10330208B2 (en) * 2014-08-22 2019-06-25 Mitsubishi Electric Corporation Compound valve
WO2018193518A1 (ja) * 2017-04-18 2018-10-25 三菱電機株式会社 空気調和機
JPWO2018193518A1 (ja) * 2017-04-18 2019-11-21 三菱電機株式会社 空気調和機
WO2021122363A3 (de) * 2019-12-16 2021-09-10 ECO Holding 1 GmbH Vorrichtung zur handhabung von fluid innerhalb eines zumindest teilweise elektrisch angetriebenen fahrzeugs
JP2021123132A (ja) * 2020-01-31 2021-08-30 三菱重工業株式会社 車両用空調装置
JP7377116B2 (ja) 2020-01-31 2023-11-09 三菱重工サーマルシステムズ株式会社 車両用空調装置
WO2024080082A1 (ja) * 2022-10-13 2024-04-18 株式会社デンソー ロータリ型多方弁

Also Published As

Publication number Publication date
CN102667276A (zh) 2012-09-12
JP5786980B2 (ja) 2015-09-30
JP2014112031A (ja) 2014-06-19
CN102667276B (zh) 2014-03-12
JP5578178B2 (ja) 2014-08-27
JPWO2011048724A1 (ja) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5578178B2 (ja) 空気調和機
US10712061B2 (en) Air conditioning apparatus
JP5488185B2 (ja) 車両用空調装置
KR100879694B1 (ko) 냉동장치
JP6758500B2 (ja) 空気調和装置
JP5581987B2 (ja) 空気調和機
US20140305154A1 (en) Channel switching valve and vehicle air conditioning device provided with channel switching valve
WO2006025397A1 (ja) 冷凍装置
KR20090034766A (ko) 이젝터를 구비하는 냉동사이클 장치
WO2012008148A1 (ja) 冷媒流路切換ユニット
WO2016075897A1 (ja) 冷凍サイクル装置
CN107869601B (zh) 多通换向装置及空调系统
WO2012086746A1 (ja) 流路切換弁、及びそれを備えた空気調和機
CN105627615A (zh) 空调系统和空调系统的控制方法
WO2013046647A1 (ja) ヒートポンプ
CN107726475B (zh) 空调器
JP2008051474A (ja) 超臨界冷凍サイクル装置
WO2006019074A1 (ja) 冷凍装置
CN108253669B (zh) 多通换向装置及空调系统
JP5627536B2 (ja) 空気調和機
CN111121193B (zh) 空调器
CN107477904A (zh) 制冷系统
WO2023139962A1 (ja) 冷凍サイクル装置
CN107461955A (zh) 制冷系统
US20230235931A1 (en) Air conditioning system with multi-temperature zone, control method therefor and transport refrigeration vehicle

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080048141.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10824580

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011537101

Country of ref document: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10824580

Country of ref document: EP

Kind code of ref document: A1