WO2011045967A1 - 膜厚測定装置および膜厚測定方法 - Google Patents

膜厚測定装置および膜厚測定方法 Download PDF

Info

Publication number
WO2011045967A1
WO2011045967A1 PCT/JP2010/062607 JP2010062607W WO2011045967A1 WO 2011045967 A1 WO2011045967 A1 WO 2011045967A1 JP 2010062607 W JP2010062607 W JP 2010062607W WO 2011045967 A1 WO2011045967 A1 WO 2011045967A1
Authority
WO
WIPO (PCT)
Prior art keywords
film thickness
wavelength
light
measurement
time
Prior art date
Application number
PCT/JP2010/062607
Other languages
English (en)
French (fr)
Inventor
賢一 大塚
中野 哲寿
元之 渡邉
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to DE112010004023.0T priority Critical patent/DE112010004023B4/de
Priority to JP2011536067A priority patent/JP5519688B2/ja
Priority to US13/497,722 priority patent/US8885173B2/en
Priority to CN201080038809.3A priority patent/CN102483320B/zh
Publication of WO2011045967A1 publication Critical patent/WO2011045967A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0625Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection
    • G01B11/0633Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating with measurement of absorption or reflection using one or more discrete wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0616Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating
    • G01B11/0675Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of coating using interferometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B2210/00Aspects not specifically covered by any group under G01B, e.g. of wheel alignment, caliper-like sensors
    • G01B2210/56Measuring geometric parameters of semiconductor structures, e.g. profile, critical dimensions or trench depth

Definitions

  • the thin film is irradiated with broadband light such as white light, and the wavelength (peak wavelength) that is maximized or minimized in the spectrum of the obtained interference light is observed.
  • broadband light such as white light
  • the wavelength (peak wavelength) that is maximized or minimized in the spectrum of the obtained interference light is observed.
  • a method for obtaining the film thickness d from the change of the above is conceivable.
  • the reflected light obtained by irradiating the thin film with the broadband light includes the bright line spectrum and the like included in the broadband light together with the interference light, and only the peak wavelength of the interference light is accurately obtained from the reflected light. There is a problem that it is difficult.
  • a film thickness measuring apparatus is a film thickness measuring apparatus that measures a time change in film thickness of a film-like measurement object having a first surface and a second surface, A measurement light source that supplies measurement light including wavelength components over a predetermined band to a measurement object, reflected light of measurement light from the first surface of the measurement object, and reflected light of measurement light from the second surface are superimposed. Detection means for detecting the intensity of each output light at each time point for each wavelength, and a film thickness analysis means for obtaining a temporal change in the film thickness of the object to be measured.
  • the spectrum of the reflected light includes an unnecessary peak such as an emission line spectrum as described above.
  • the center wavelength of such an unnecessary peak caused by the light source is unchanged regardless of the change in the film thickness of the measurement object. Therefore, the present inventor uses the spectrum waveforms of the output light detected at two or more different times to eliminate the influence of the bright line spectrum and the like, and corresponds to the peak wavelength of the interference light and its wavelength interval. It was found that the numerical value can be obtained accurately.
  • the change amount of the film thickness can be accurately measured. it can.
  • FIG. 1 is a diagram schematically showing a method for measuring a film thickness of a measurement object.
  • FIG. 2 is a graph showing an example of such a temporal change in the intensity I of the interference light.
  • FIG. 3 is a graph showing an example of an output light spectrum when the semiconductor film 15 is irradiated with the measurement light L0 including at least a wavelength component over a predetermined band.
  • FIG. 5 is a graph obtained by normalizing the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) shown in FIG.
  • FIG. 1 is a diagram schematically showing a method for measuring a film thickness of a measurement object.
  • FIG. 2 is a graph showing an example of such a temporal change in the intensity I of the interference light.
  • FIG. 6 is a graph showing normalized difference spectrum waveforms S1 and S2 at measurement wavelengths of 300 to 900 [nm].
  • FIG. 7 is a graph showing the relationship between the film thickness d of the semiconductor film 15 and the film formation time in the film formation process.
  • FIG. 8 is a graph showing the measurement result of the film thickness that increases at a constant speed when the measurement wavelength is 400 [nm].
  • FIG. 9 is a graph showing the measurement results of the film thickness that increases at a constant speed when the measurement wavelength is 600 [nm].
  • FIG. 10 is a graph showing the measurement results of the film thickness increasing at a constant speed when the measurement wavelength is 800 [nm].
  • FIG. 11 is a block diagram showing a configuration of an embodiment of a film thickness measuring apparatus.
  • FIG. 11 is a block diagram showing a configuration of an embodiment of a film thickness measuring apparatus.
  • FIG. 1 is a diagram schematically showing a method for measuring a film thickness of a measurement object.
  • This film thickness measurement method measures a temporal change amount of the film thickness of a film-like measurement object having a first surface and a second surface.
  • the first surface of the measurement object will be described as the upper surface on which the measurement light is incident, and the second surface will be described as the lower surface on the opposite side.
  • a semiconductor film 15 formed on the substrate 12 is shown as an example of a film-like measurement object.
  • a film forming process or an etching process is considered for such a semiconductor film 15.
  • the film thickness d of the semiconductor film 15 increases with time as the process proceeds.
  • the film thickness d of the semiconductor film 15 decreases with time as the process proceeds.
  • the film thickness measurement d is measured from the upper surface (first surface) 16 side of the semiconductor film 15 opposite to the substrate 12 with respect to the sample 10 including the substrate 12 and the semiconductor film 15. Measuring light L0 is supplied. Then, the reflected light L 1 from the upper surface 16 and the reflected light L 2 to LM from the lower surface (second surface, boundary surface between the substrate 12 and the semiconductor film 15) 17 interfere with each other and are detected. Thus, the film thickness d of the semiconductor film 15 is measured.
  • the sample 10 including the semiconductor film 15 is irradiated with the measurement light L0 including at least a wavelength component over a predetermined band (measurement light supply step).
  • the intensity of the output light formed by superimposing the reflected lights L1 to LM from the upper surface 16 and the lower surface 17 of the measurement light L0 is made detectable for each wavelength, and at each time point of each wavelength component included in the output light. Is detected, and a change with time of the spectrum of the output light is obtained (detection step).
  • the time change of the film thickness d of the semiconductor film 15 is obtained with reference to the time change of the output light spectrum (film thickness analysis step).
  • the intensity I is expressed by the following formula (2).
  • the reflected lights L3 to LM are attenuated in the semiconductor film 15 to be measured, the reflected lights L3 to LM have very weak intensity. Therefore, the intensity I may be approximated as a spectrum generated by interference between the reflected light L1 and the reflected light L2.
  • the intensity I of the obtained interference light changes in a cosine wave with the time change of the film thickness d due to the etching process or the like.
  • a and B are constants determined by the reflectance at the upper and lower interfaces of the thin film.
  • FIG. 2 is a graph showing an example of such a temporal change in the intensity I of the interference light.
  • the amount of time change of the film thickness d can be obtained. If the time at that time is measured, the rate of change of the film thickness d (for example, the etching rate) can be obtained.
  • FIG. 3 is a graph showing an example of an output light spectrum when the semiconductor film 15 is irradiated with the measurement light L0 including at least a wavelength component over a predetermined band.
  • the output light spectrum includes not only the spectrum due to the interference light but also the bright line spectrum included in the measurement light L0. Therefore, even if the wavelength derivative of the output light spectrum is simply calculated, the bright line spectrum of the light source influences and the peak of the interference light cannot be accurately detected.
  • the conditional expression represents the peak (valley) wavelength of the interference light intensity I
  • the conditional expression represents the peak (peak) wavelength of the interference light intensity I. That is, the wavelength ⁇ at which the time differentiation (dI / dt) of the interference light intensity I is zero indicates that it is the peak wavelength of the interference light spectrum.
  • a wavelength ⁇ hereinafter referred to as a zero-crossing wavelength
  • I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) with respect to the second spectrum waveform I (t + ⁇ t, ⁇ ) of the detected output light zero. It is considered that the peak wavelength of the interference light spectrum can be obtained.
  • peaks in the output light spectrum at the second time T 2 is manifested as a positive peak, peaks were present in the output light spectrum at a first time T 1 appears as a negative peak ing. Since spectral components other than the interference light, such as the bright line spectrum, included in the measurement light L0 are constant regardless of the time change of the film thickness d, the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) is canceled. Has been. In FIG.
  • the wavelength at which the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) becomes zero (zero cross wavelength ⁇ A in the figure) It can be regarded as a peak wavelength. If ⁇ t is 10 [seconds] or less, the wavelength at which the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) becomes zero (the zero-crossing wavelength ⁇ A in the figure) is thus determined in the interference light spectrum. It can be regarded as a peak wavelength.
  • the magnitude of the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) varies greatly depending on the wavelength.
  • the difference is calculated using a waveform I (t, ⁇ ) + I (t + ⁇ t, ⁇ ) obtained by superimposing the first spectral waveform I (t, ⁇ ) and the second spectral waveform I (t + ⁇ t, ⁇ ).
  • the peak wavelength may be obtained after normalization. That is, the following formula (6) Is obtained as the peak wavelength of the interference light intensity I.
  • FIG. 5 is a graph obtained by normalizing the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ) shown in FIG. 4 by the above equation (6).
  • the wavelength at which the normalized difference becomes zero can be regarded as the peak wavelength of the interference light spectrum.
  • the peak wavelength of the interference light spectrum changes.
  • the peak wavelength of the interference light spectrum moves in the short wavelength direction.
  • the peak wavelength of the interference light spectrum moves in the long wavelength direction. Therefore, the amount of change in the film thickness d can be known by measuring the amount of movement of the peak wavelength (zero cross wavelength).
  • the time change of the set the film thickness variation [Delta] d f is the process termination condition beforehand zero crossing wavelength of the semiconductor film 15 at the wavelength lambda above, film of interest can terminate the process with a thickness variation [Delta] d f (film forming process or an etching process).
  • the peak wavelengths ⁇ 1 and ⁇ 2 in Equation (11) are detected as the zero-crossing wavelength closest to the set measurement wavelength ⁇ .
  • FIG. 6 shows normalized difference spectrum waveforms S1 and S2 at the measurement wavelengths of 300 to 900 [nm].
  • a zero cross wavelength ⁇ A11 in the figure is one of a plurality of zero cross wavelengths in the differential spectrum waveform S1.
  • the zero cross wavelength ⁇ A11 525.02 [nm].
  • the zero cross wavelength ⁇ A12 in the figure is a zero cross wavelength adjacent to the zero cross wavelength ⁇ A11 among the plurality of zero cross wavelengths in the differential spectrum waveform S1.
  • the zero cross wavelength ⁇ A12 452.96 [nm].
  • adjacent zero-crossing wavelengths refers to zero-crossing wavelengths such that the slopes of the difference spectrum waveforms S1 at those wavelengths have the same sign. This is because the wavelength at which the differential spectrum waveform S1 crosses the zero axis with the same inclination is a wavelength at which interference light strengthens (or weakens) together.
  • FIG. 8, FIG. 9 and FIG. 10 are graphs showing the measurement results of the film thickness increasing at a constant speed when the measurement wavelengths are 400 [nm], 600 [nm] and 800 [nm], respectively. is there.
  • the measurement wavelength is 400 [nm]
  • the variation rate of the film thickness varies.
  • the change rate of the film thickness is almost constant, and the film thickness can be measured with high accuracy.
  • the measurement accuracy tends to increase as the measurement wavelength increases. This is presumably because the amount of change in the interference peak (zero cross wavelength) with respect to the change in film thickness increases as the measurement wavelength increases.
  • FIG. 11 is a block diagram showing a configuration of an embodiment of a film thickness measuring apparatus.
  • the semiconductor film 15 (see FIG. 1) of the sample 10 installed in the processing chamber of the semiconductor processing apparatus (for example, etching apparatus) 20 is the measurement object.
  • the film thickness measuring apparatus 1 ⁇ / b> A includes a measurement optical system 21, a measurement light source 28, a spectroscopic optical system 30, a photodetector 31, and a film thickness analysis unit 40.
  • a measurement light source 28 that supplies measurement light L0 to the semiconductor film 15 of the sample 10 in the processing apparatus 20 via the measurement optical system 21 is provided.
  • the measurement light source 28 supplies measurement light L0 including at least a wavelength component over a predetermined band to the semiconductor film 15 as a measurement object.
  • a white light source that supplies white light in the predetermined band as the measurement light L0 can be preferably used.
  • a tunable laser capable of changing the output wavelength over the predetermined band or a combination of a plurality of monochromatic light sources included in the predetermined band may be used.
  • the peak wavelength (zero cross wavelength) of the interference light intensity changes as the change amount of the film thickness increases. Therefore, the width of the predetermined band depends on the change amount of the film thickness to be measured. For example, it is preferably 20 [nm] or more.
  • FIG.12 and FIG.13 is a figure which shows an example of a structure of the measurement optical system 21 in 1 A of film thickness measuring apparatuses.
  • the measurement light input fiber 281 that guides the measurement light from the measurement light source 28 to the measurement optical system 21 including the objective lens 211 disposed to face the sample 10, the time of acquiring the image of the sample 10, etc.
  • the illumination light input fiber 282 that guides the illumination light used in the above and the reflected light output fiber 308 that guides the reflected light (output light) from the sample 10 to the spectroscopic optical system 30 are connected.
  • the measurement light L 0 from the measurement light source 28 is input to the measurement optical system 21 by the input fiber 281, passes through the half mirror 212, and is reflected by the reflection mirror 213. And supplied to the semiconductor film 15 of the sample 10 through the objective lens 211.
  • the output light formed by superimposing the reflected lights L1 to LM from the upper and lower surfaces of the semiconductor film 15 is reflected by the reflecting mirror 213, the half mirror 212, and the reflecting mirror 214 to be output.
  • the light is output to the spectroscopic optical system 30 via the fiber 308.
  • the spectroscopic optical system 30 is a spectroscopic unit that splits reflected light input from the sample 10 via the measurement optical system 21, and constitutes a part of the detection unit in the present embodiment. Specifically, the spectroscopic optical system 30 decomposes the output light of the measurement light L0 from the semiconductor film 15 so that it can be detected for each wavelength.
  • FIG. 14 is a diagram illustrating an example of the configuration of the spectroscopic optical system 30.
  • the spectroscopic optical system 30 includes an incident slit 301, a collimating optical system 302, a diffraction grating 303 that is a dispersion element, and a focusing optical system 304.
  • the output light decomposed into each wavelength component by the diffraction grating 303 is imaged for each wavelength component on the wavelength spectrum output surface 305 via the focusing optical system 304 and arranged on the output surface 305.
  • Each wavelength component is detected by a photodetector.
  • a spectral optical system that decomposes the output light from the semiconductor film 15 so that it can be detected for each wavelength can be suitably configured by using, for example, a bandpass filter.
  • a photodetector 31 shown in FIG. 11 is provided as detection means for detecting the intensity of each wavelength component at each time point t with respect to the output light decomposed for each wavelength component by the spectroscopic optical system 30.
  • the photodetector 31 is arranged on the output surface 305 of the spectroscopic optical system 30 shown in FIG. 14 and includes a plurality of photodetecting elements that detect the intensity of each wavelength component decomposed by the spectroscopic optical system 30. It is constituted by an arrayed multi-channel photodetector.
  • the detection signal output from the photodetector 31 is provided to the film thickness analysis unit 40.
  • the film thickness analyzing unit 40 is a film thickness analyzing means for obtaining a time change of the film thickness d of the semiconductor film 15 as a measurement object, and reflected lights L1 to LM (particularly L1 to L2) from the semiconductor film 15 are mutually transmitted.
  • a peak wavelength at which the intensity of the interference light generated by the interference is maximized or minimized is obtained based on each spectrum waveform of the output light detected at two or more different times, and from the time change of the peak wavelength, the semiconductor film 15 The time change of the film thickness d is obtained.
  • the peak wavelength of the interference light spectrum is obtained by obtaining the zero cross wavelength.
  • the time change of the film thickness d is calculated
  • the film thickness analysis unit 40 stores in advance end point information regarding the film thickness d, and when the calculated film thickness d reaches a predetermined thickness, a signal indicating that the process has reached the end point (end point detection signal) Is output.
  • a film thickness analysis part 40 can be comprised by the computer with which the predetermined
  • a measurement control unit 50 refers to the film thickness information and the end point information output from the film thickness analysis unit 40 and controls each unit of the measurement apparatus 1A and the processing apparatus 20 to thereby perform a film thickness measurement operation in the measurement apparatus 1A. Further, necessary control is performed for the operation such as the etching process in the processing apparatus 20.
  • an input device 51 and a display device 52 are connected to the measurement control unit 50.
  • the input device 51 is used to input information, conditions, instructions, and the like necessary for the measurement operation in the measurement device 1 ⁇ / b> A and the processing operation in the processing device 20.
  • the input device 51 can be used to input, for example, a measurement wavelength used in the film thickness analysis unit 40, a refractive index of the semiconductor film 15, a target film thickness of the process, and the like. Further, the film thickness value at the start of the process may be further input. However, these conditions and numerical values may be prepared in advance in the film thickness analysis unit 40.
  • the display device 52 is used to display necessary information about the above-described measurement operation and processing operation to the operator.
  • an XY ⁇ stage 22 is provided for the measurement optical system 21.
  • the XY ⁇ stage 22 adjusts the position, angle, and the like of the measurement optical system 21 in the X direction, Y direction, and ⁇ direction, so that the measurement position and measurement conditions of the film thickness d in the semiconductor film 15 by the film thickness measuring device 1A. Used to adjust.
  • the XY ⁇ stage 22 is driven and controlled by the stage control unit 23.
  • an imaging device 24 and a measurement position setting unit 25 are further provided for the sample 10 and the measurement optical system 21 in the processing device 20.
  • the imaging device 24 is a position confirmation imaging device for confirming the measurement position of the film thickness d in the semiconductor film 15 by the film thickness measurement device 1A.
  • the measurement position setting unit 25 refers to the image of the sample 10 including the semiconductor film 15 acquired by the imaging device 24 via the measurement optical system 21 and sets the film thickness measurement position for the sample 10.
  • FIG. 15 is a block diagram illustrating an example of the configuration of the measurement position setting unit 25.
  • the measurement position setting unit 25 includes a measurement image recognition unit 251, a reference image storage unit 252, an image comparison unit 253, and a control condition calculation unit 254.
  • the measurement image recognition unit 251 receives the image data of the sample 10 acquired by the imaging device 24, and performs pattern recognition of the measurement pattern in the image.
  • the reference image storage unit 252 stores in advance a reference image for specifying a position to be set as a measurement position of the film thickness d in the semiconductor film 15.
  • the image comparison unit 253 compares the measurement pattern in the measurement image recognized by the recognition unit 251 with the reference pattern in the reference image stored in the storage unit 252 by a method such as calculation of a difference image. Further, the control condition calculation unit 254 calculates the necessity of adjustment of the measurement position and the control condition when adjustment is necessary based on the comparison result between the measurement image and the reference image in the image comparison unit 253. . Then, the XY ⁇ stage 22 and the measurement optical system 21 are driven and controlled via the stage control unit 23 based on the control condition obtained by the calculation unit 254, so that the film thickness d of the sample 10 with respect to the semiconductor film 15 is increased. Measurement position and measurement conditions are set and controlled.
  • the measurement position of the film thickness d of the sample 10 with respect to the semiconductor film 15 is the position of the teg on the semiconductor wafer. This is because if the position on the semiconductor chip is set as the measurement position, the film thickness d may not be accurately measured due to a step difference such as a mask.
  • the measurement light L0 including a wavelength component over a predetermined band is supplied to the semiconductor film 15 on the substrate 12, which is a film-shaped measurement object, and the upper surface 16 and the lower surface
  • the output light including the reflected lights L1 to LM from the light 17 is spectrally detected by the spectroscopic optical system 30 and the photodetector 31.
  • the time change of the film thickness d of the semiconductor film 15 is obtained from the time change of the peak wavelength, based on the spectrum waveforms I (t, ⁇ ) and I (t + ⁇ t, ⁇ ) of the output light.
  • the spectrum of the reflected light (output light) has an unnecessary peak such as an emission line spectrum included in the measurement light. Included with interference light.
  • each spectrum waveform I (t, ⁇ ) of the output light at different times. , I (t + ⁇ t, ⁇ ), the center wavelength of the unnecessary peak is unchanged.
  • the change amount of the film thickness d is so small that it does not reach the peak repetition period ⁇ t 1 (see FIG. 2) of the interference light intensity I. Even if it exists, the variation
  • the film thickness measuring apparatus 1A and the film thickness measuring method include the first spectrum waveform I (t, ⁇ ) and the second spectrum in the film thickness analyzing unit 40 (film thickness analyzing step).
  • spectral waveform I (t + ⁇ t, ⁇ ) and the difference I (t + ⁇ t, ⁇ ) -I (t, ⁇ ) is calculated, and it is preferable that the peak wavelength of the wavelength lambda a that said difference becomes zero.
  • the first and second spectrum waveforms I (t, ⁇ ), I The center wavelength of the bright line spectrum or the like included in (t + ⁇ t, ⁇ ) is the same in both waveforms, and its influence can be effectively eliminated by calculating the difference I (t + ⁇ t, ⁇ ) ⁇ I (t, ⁇ ).
  • the zero-crossing wavelength ⁇ A at which the difference becomes zero is located between the peak wavelengths corresponding to each other in the waveforms I (t, ⁇ ) and I (t + ⁇ t, ⁇ ), and when ⁇ t is not long.
  • This zero-crossing wavelength ⁇ A can be regarded as the peak wavelength of the interference light. Therefore, the time change of the film thickness d of the semiconductor film 15 can be accurately obtained from the change amount of the zero cross wavelength ⁇ A (for example, ⁇ A21 - ⁇ A11 shown in FIG. 6).
  • the film thickness is as in this embodiment.
  • the measurement target is the semiconductor film 15 on the substrate 12, and the time change of the film thickness d of the semiconductor film 15 during execution of a predetermined process. Is preferably measured.
  • process control such as processing end point detection can be accurately performed during execution of a semiconductor process such as an etching process or a thin film forming process in which the film thickness d of the semiconductor film 15 decreases or increases.
  • the film thickness measurement method according to the present embodiment is generally applicable to the measurement of the amount of change in the film thickness d of the film-like measurement object other than the semiconductor film 15.
  • the film thickness analysis means detects output light at two or more different times, and the interference light intensity I is maximized based on each spectrum waveform of the output light. Or the point which calculates
  • the apparatus configuration and steps other than the film thickness analysis means (film thickness analysis step) are the same as those in the first embodiment.
  • the peak of the interference light spectrum is obtained by obtaining the wavelength ⁇ at which the ratio I (t + ⁇ t, ⁇ ) / I (t, ⁇ ) to the second spectrum waveform I (t + ⁇ t, ⁇ ) of the output light detected at 1 is 1 Get the wavelength.
  • the case where the ratio of the first and second spectral waveforms is 1 is the case where the first and second spectral waveforms are equal.
  • the difference I (t + ⁇ t, ⁇ ) ⁇ I (t , ⁇ ) is equivalent to zero, and thus the peak wavelength of the interference light spectrum can be suitably obtained by such calculation.
  • the spectral components other than the interference light, such as the bright line spectrum, included in the measurement light L0 are canceled because they are constant regardless of the temporal change in the film thickness d.
  • the wavelength at which the ratio I (t + ⁇ t, ⁇ ) / I (t, ⁇ ) is 1 (wavelength ⁇ C in the figure) is the peak of the interference light spectrum. It can be regarded as a wavelength. If ⁇ t is 10 [seconds] or less, the wavelength ⁇ C at which the ratio I (t + ⁇ t, ⁇ ) / I (t, ⁇ ) is 1 can be regarded as the peak wavelength of the interference light spectrum in this way. .
  • Equation (2) when the film thickness d of the semiconductor film 15 changes, the peak wavelength of the interference light spectrum changes. Therefore, by measuring the amount of movement of the peak wavelength, the amount of change in the film thickness d can be known from equation (11).
  • the film thickness measuring apparatus 1A and the film thickness measuring method are configured such that the film thickness analyzing means (film thickness analyzing step) uses the first spectrum waveform I (t, ⁇ ) and the second spectrum.
  • the ratio I (t + ⁇ t, ⁇ ) / I (t, ⁇ ) with the waveform I (t + ⁇ t, ⁇ ) may be calculated, and the wavelength ⁇ c at which the ratio is 1 may be set as the peak wavelength. Since the center wavelength of an unnecessary peak such as an emission line spectrum caused by the measurement light source does not change regardless of the change in the film thickness d of the semiconductor film 15, the ratio I (t + ⁇ t, ⁇ ) / I (t, ⁇ ) is calculated. This can effectively eliminate the influence.
  • the wavelength ⁇ c at which the ratio is 1 is located between the peak wavelengths corresponding to each other in the waveforms I (t, ⁇ ) and I (t + ⁇ t, ⁇ ), and this wavelength is used when ⁇ t is not long.
  • ⁇ c can be regarded as the peak wavelength of the interference light. Therefore, the time change of the film thickness d of the semiconductor film 15 can be accurately obtained from the change amount of the wavelength ⁇ c.
  • the film thickness measuring apparatus and film thickness measuring method according to the present invention will be described.
  • the difference between the first embodiment and the present embodiment is the processing content in the film thickness analyzing means (film thickness analyzing step).
  • the apparatus configuration and steps other than the film thickness analysis means (film thickness analysis step) are the same as those in the first embodiment.
  • the spectrum waveform of the interference light from the semiconductor film 15 has a period corresponding to the film thickness d of the semiconductor film 15.
  • the cycle (interval between adjacent peak wavelengths) increases as the film thickness d of the semiconductor film 15 decreases.
  • the cycle decreases as the film thickness d of the semiconductor film 15 increases.
  • the thinner the film thickness d of the semiconductor film 15 is, the smaller the number of repetitions of the spectrum waveform of the interference light per unit wavelength is.
  • the interference light per unit wavelength is reduced. This means that the number of repetitions of the spectrum waveform is increased.
  • the number of repetitions per unit wavelength is obtained by subjecting the output light spectrum to Fourier transform with respect to the wavelength (preferably, Fast Fourier Transform (FFT)).
  • FFT Fast Fourier Transform
  • the film thickness analysis means detects output light at two or more different times. Then, based on each spectrum waveform of the output light, as a numerical value corresponding to the wavelength interval of the peak wavelength where the interference light intensity I is maximized or minimized, obtain the number of repetitions of the spectrum waveform of the interference light per unit wavelength, The time change of the film thickness d of the semiconductor film 15 is obtained from the time change of the number of repetitions.
  • Fourier transform (preferably fast Fourier transform) with the wavelength as an independent variable is performed on the first spectral waveform I (t, ⁇ ) related to the output light detected at the first time T 1 .
  • a first Fourier transform waveform F ⁇ I (t, ⁇ ) ⁇ is obtained.
  • the second spectral waveform I (t + ⁇ t, ⁇ ) related to the output light detected at the second time T 2 different from the first time T 1 is also subjected to Fourier transform using the wavelength as a variable.
  • Fourier transform waveform F ⁇ I (t + ⁇ t, ⁇ ) ⁇ is obtained.
  • FIG. 17 is a graph showing an example of each Fourier transform waveform, where the graph G1 shows the first Fourier transform waveform F ⁇ I (t, ⁇ ) ⁇ , and the graph G2 shows the second Fourier transform waveform F ⁇ I (t + ⁇ t, ⁇ ) ⁇ .
  • the center F0 of the peak P1 shown in FIG. 17 corresponds to the number of repetitions per unit wavelength of the interference light included in the first spectrum waveform I (t, ⁇ ), and the center F of the peak P2 is This corresponds to the number of repetitions per unit wavelength of the interference light included in the second spectrum waveform I (t + ⁇ t, ⁇ ).
  • peaks other than the peaks P1 and P2 in FIG. 17 are peaks due to bright lines and the like, and are components not related to interference light.
  • the difference between the center F0 of the peak P1 and the center F of the peak P2 is an amount of change in the number of repetitions of the spectrum waveform of the interference light per unit wavelength, it is based on this difference (F0 ⁇ F).
  • the amount of change in the film thickness d of the semiconductor film 15 can be obtained as follows.
  • FFT is a discrete Fourier transform
  • one period of the interference light spectrum before the Fourier transform becomes a fundamental wave. Therefore, the wavelength range of the fundamental wave is ⁇ 1 to ⁇ 2 , and the film thickness corresponding to the fundamental wave of the FFT is D If it is 0 , there is a relationship of the following formula (14).
  • equation (14) for D 0 It becomes.
  • the film thickness change amount ⁇ d is It can be obtained by equation (16).
  • FIG. 18 is a graph in which the horizontal axis of each Fourier transform waveform is converted into a phase.
  • Graph G3 shows the first Fourier transform waveform ⁇ ⁇ F (t, ⁇ ) ⁇
  • graph G4 shows the second Fourier transform waveform.
  • the converted waveform ⁇ ⁇ F (t + ⁇ t, ⁇ ) ⁇ is shown. Further, the center ⁇ 0 of the peak P3 shown in FIG.
  • the center ⁇ is a phase corresponding to the number of repetitions per unit wavelength of the interference light included in the second spectral waveform I (t + ⁇ t, ⁇ ).
  • peaks other than the peaks P3 and P4 are peaks due to bright lines and the like, and are components unrelated to the interference light.
  • the phase phi 0 and phi can be obtained by the following equation (17) and (18). Therefore, the film thickness change amount ⁇ d can be obtained by the following equation (19).
  • the phase is obtained from the number of repetitions, and the time change of the film thickness d of the semiconductor film 15 is obtained from the time change ( ⁇ 0 ⁇ ) of the phase.
  • the influence of the bright line spectrum and the like existing in the region D of FIGS. 17 and 18 can be canceled and a numerical value corresponding to the interval between the peak wavelengths of the interference light spectrum can be accurately obtained. Even if the change in the film thickness is so small that it does not reach the peak repetition period ⁇ t 1 (see FIG. 2), the amount of change in the film thickness d can be accurately measured without using a reference sample.
  • the waveforms such as the bright line spectrum included in the first spectrum waveform I (t, ⁇ ) and the second spectrum waveform I (t + ⁇ t, ⁇ ) are both waveforms I (t, ⁇ ) and I (t + ⁇ t, ⁇ ). Are the same. Therefore, also in the waveforms F ⁇ I (t, ⁇ ) ⁇ , F ⁇ I (t + ⁇ t, ⁇ ) ⁇ and the phases ⁇ ⁇ F (t, ⁇ ) ⁇ , ⁇ ⁇ F (t + ⁇ t, ⁇ ) ⁇ after Fourier transform. Waveforms such as bright line spectra are the same, and according to the film thickness measuring apparatus and film thickness measuring method of this embodiment, the influence can be suitably eliminated.
  • the film thickness measurement apparatus and the film thickness measurement method only the number of repetitions corresponding to the film thickness d of the semiconductor film 15 is calculated even when the spectrum of the measurement light output from the measurement light source 28 is not flat. The influence of the spectrum of the measuring light can be almost ignored.
  • the film thickness measuring apparatus and the film thickness measuring method according to the present invention are not limited to the above-described embodiments, and various other modifications are possible.
  • the peak wavelength of the interference light spectrum or the number of repetitions of the interference light spectrum waveform per unit wavelength is obtained in order to obtain the film thickness d of the measurement object (semiconductor film 15).
  • the numerical values useful for obtaining d are not limited to these, and if the numerical value corresponds to the peak wavelength, the interval between adjacent peak wavelengths, or the numerical value corresponding to the interval, the film thickness d is preferably obtained. Can do.
  • the film thickness measurement apparatus is a film thickness measurement apparatus that measures a change over time of the film thickness of a film-like measurement object having a first surface and a second surface, and includes a wavelength component over a predetermined band.
  • Measurement light source for supplying measurement light to the measurement object, and each point of time of the output light formed by superimposing the reflection light of the measurement light from the first surface of the measurement object and the reflection light of the measurement light from the second surface
  • Detecting means for detecting the intensity at each wavelength, and a film thickness analyzing means for obtaining a change in the film thickness of the measurement object over time.
  • the film thickness analyzing means includes the reflected light from the first surface and the second surface.
  • the film thickness measurement method is a film thickness measurement method for measuring a time change of the film thickness of a film-like measurement object having a first surface and a second surface, and a wavelength component over a predetermined band.
  • the measurement light supply step for supplying the measurement light including the measurement light from the measurement light source to the measurement object, the reflected light of the measurement light from the first surface of the measurement object, and the reflected light of the measurement light from the second surface are superimposed.
  • a detection step for detecting the intensity of each output light at each time point for each wavelength, and a film thickness analysis step for obtaining a temporal change in the film thickness of the object to be measured.
  • the numerical values corresponding to the peak wavelength at which the intensity of the interference light generated by the interference between the reflected light from the second surface and the reflected light from the second surface is maximized or minimized, or the interval between adjacent peak wavelengths are different from each other.
  • Output detected at two or more times Calculated based on the spectrum waveform of light, it is used a structure for determining the temporal change in the film thickness of the measuring object from the time variation of the value corresponding to the interval of peak wavelengths or adjacent peak wavelengths.
  • the thickness measuring device thickness analyzing means, a first spectrum waveform I for the output light detected in the first time T 1 (T 1), second different from the first time T 1
  • a difference I (T 2 ) ⁇ I (T 1 ) with respect to the second spectrum waveform I (T 2 ) related to the output light detected at time T 2 is calculated, and a wavelength at which the difference becomes zero is defined as a peak wavelength. It is good to do.
  • the film thickness measuring method when the film thickness analysis step, the first of the first about the detected output light at time T 1 of the spectral waveform I (T 1), the first time T 1 A difference I (T 2 ) ⁇ I (T 1 ) from the second spectrum waveform I (T 2 ) related to the output light detected at a different second time T 2 is calculated, and a wavelength at which the difference becomes zero is calculated.
  • the peak wavelength may be set.
  • the center wavelength of an unnecessary peak such as the bright line spectrum caused by the light source is unchanged regardless of the change in the film thickness of the measurement object. Therefore, the center wavelengths of the bright line spectrum and the like included in the first spectrum waveform I (T 1 ) and the second spectrum waveform I (T 2 ) are the same in both waveforms I (T 1 ) and I (T 2 ). Therefore, the influence is eliminated by calculating the difference I (T 2 ) ⁇ I (T 1 ).
  • the wavelength at which the difference becomes zero (hereinafter referred to as zero cross wavelength) is between the peak wavelength of the interference light included in the waveform I (T 1 ) and the peak wavelength of the interference light included in the waveform I (T 2 ).
  • the zero cross wavelength can be regarded as the peak wavelength of the interference light. Therefore, it is possible to accurately obtain the time change of the film thickness of the measurement object from the change amount of the zero cross wavelength.
  • the film thickness analyzing means uses the first spectral waveform I (T It is preferable to obtain a peak wavelength after normalizing the difference using a waveform I (T 1 ) + I (T 2 ) obtained by superimposing 1 ) and the second spectral waveform I (T 2 ).
  • the thickness measuring device thickness analyzing means, a first spectrum waveform I for the output light detected in the first time T 1 (T 1), second different from the first time T 1
  • the ratio I (T 2 ) / I (T 1 ) of the output light detected at time T 2 with respect to the second spectral waveform I (T 2 ) is calculated, and the wavelength at which the ratio is 1 is defined as the peak wavelength. It is good to do.
  • the film thickness measuring method when the film thickness analysis step, the first of the first about the detected output light at time T 1 of the spectral waveform I (T 1), the first time T 1 A ratio I (T 2 ) / I (T 1 ) with the second spectral waveform I (T 2 ) related to the output light detected at a different second time T 2 is calculated, and a wavelength at which the ratio becomes 1 is calculated.
  • the peak wavelength may be set.
  • the film thickness of the measurement object can be obtained from a numerical value corresponding to the interval between adjacent peak wavelengths in the cosine waveform, for example, the number of repetitions of the spectrum waveform of the interference light intensity I per unit wavelength. That is, in the film thickness measuring apparatus and the film thickness measuring method described above, the waveforms F ⁇ I (T 1 ) ⁇ , F ⁇ obtained by Fourier transforming the spectral waveforms I (T 1 ), I (T 2 ) with respect to the wavelength. I (T 2 ) ⁇ , a numerical value corresponding to the interval between adjacent peak wavelengths is obtained. And the time change of the film thickness of a measurement object is calculated
  • the measurement target is a semiconductor film on the substrate, and the change in the film thickness over time during execution of a predetermined process can be measured.
  • the measurement target is a semiconductor film on the substrate, and the change in the film thickness over time during execution of a predetermined process can be measured.
  • the amount of change in the film thickness over time is measured, and process control such as detection of the end point of the process is performed. It can be performed with high accuracy.
  • a white light source that supplies white light over a predetermined band as measurement light can be used as the measurement light source.
  • Various other measurement light sources can be used.
  • the present invention provides a film thickness measuring apparatus and a film thickness measuring method capable of accurately measuring the amount of change in film thickness even if the relative amount of change in film thickness is less than one cycle of the peak of interference light intensity. Is available as
  • SYMBOLS 1A Film thickness measuring apparatus, 10 ... Sample, 12 ... Substrate, 15 ... Semiconductor film, 16 ... Upper surface, 17 ... Lower surface, 20 ... Processing device, 21 ... Measurement optical system, 22 ... Stage, 23 ... Stage control part, 24 DESCRIPTION OF SYMBOLS ... Imaging device, 25 ... Measurement position setting part, 28 ... Measurement light source, 30 ... Spectroscopic optical system, 31 ... Photodetector, 40 ... Film thickness analysis part, 50 ... Measurement control part, 51 ... Input device, 52 ... Display apparatus .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

 膜厚測定装置1Aは、所定帯域に亘る波長成分を含む測定光を半導体膜15へと供給する測定光源28と、半導体膜15の上面及び下面からの反射光が重畳して成る出力光の各時点での強度を波長毎に検出する分光光学系30及び光検出器31と、半導体膜15の膜厚dの時間変化を求める膜厚解析部40とを備える。膜厚解析部40は、上面からの反射光と下面からの反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合うピーク波長の間隔に相当する数値を、互いに異なる時刻T,Tにおいて検出された出力光の各スペクトル波形に基づいて求め、当該数値の時間変化から半導体膜15の膜厚dの時間変化を求める。これにより、干渉光強度のピークの一周期に満たないような微小な膜厚の相対変化量であっても、その膜厚変化量を精度良く測定できる膜厚測定装置および膜厚測定方法が実現される。

Description

膜厚測定装置および膜厚測定方法
 本発明は、基板上に形成された半導体膜などの膜状の測定対象物の膜厚の時間変化を測定する膜厚測定装置、及び膜厚測定方法に関するものである。
 半導体製造プロセスにおいて、例えば、エッチング処理の実行中では、基板上の半導体膜の膜厚が減少するように時間変化する。また、薄膜形成処理の実行中では、半導体膜の膜厚が増加するように時間変化する。このような半導体プロセスでは、処理の終点検出などのプロセス制御のために、半導体膜の膜厚の時間変化のイン・サイチュ(In-Situ)での測定が必要となる。
 そのような半導体膜の膜厚の測定方法として、半導体膜に所定波長の測定光を照射し、半導体膜の上面からの反射光、及び下面からの反射光が干渉した干渉光を検出する方法が用いられている。この方法では、半導体膜の膜厚が変化すると、上面からの反射光と下面からの反射光との間の光路長差が変化する。したがって、この光路長差の変化に伴う干渉光の検出強度(干渉光強度)の時間変化を利用して、各時点での半導体膜の膜厚を測定することができる。
 例えば、特許文献1に記載された膜厚測定装置は、被測定対象からの透過光または反射光を分光手段で分光して干渉縞を検出し、各波長についての検出出力のうち最大値と最小値との差が所定の値のときの極値についての出力から被測定対象の膜厚を演算している。また、特許文献2には、波長可変レーザからの光ビームを測定部分に照射し、該測定部分から得られる反射光もしくは透過光による信号光を検出する半導体厚非接触測定装置において、信号光の強度を検出しながら波長可変レーザの波長を変化させ、得られた光強度変化の波形から位相変化量を求め、この位相変化量をもとに、半導体厚の絶対値と信号光強度の位相変化量との関係式から半導体厚を求める技術が記載されている。
特開昭63-50703号公報 特許第3491337号公報
 波長λの光を膜厚d、屈折率nの薄膜に照射した場合、干渉光強度Iは次の式(1)によって表される。なお、式中のA,Bは薄膜の上下界面における反射率によって定まる定数である。
Figure JPOXMLDOC01-appb-M000001
式(1)から明らかなように、膜厚dが変化すると干渉光強度Iは余弦波状に強弱を繰り返す。半導体プロセスにおける膜厚測定では、時間の経過に従って膜厚dが単調に増加(または減少)するため、干渉光強度Iは時間を変数とする余弦波関数となる。したがって、従来の膜厚測定においては、時間の経過と共に変化する干渉光強度Iのピークを繰り返し検出することによって、膜厚dの相対変化量を求める。
 しかしながら、このような方式は、干渉光強度Iのピークが幾度も生じる程度に十分大きな膜厚dの相対変化量を求める場合には有効であるが、干渉光強度Iのピークの一周期に満たないような微小な膜厚dの相対変化量を測定する場合には、十分な測定精度を確保することが困難となる。
 ここで、膜厚dを測定する別の方式として、例えば白色光といった広帯域光を薄膜に照射し、得られる干渉光のスペクトルにおいて極大もしくは極小となる波長(ピーク波長)を観察し、該ピーク波長の変化から膜厚dを求める方式が考えられる。しかし、広帯域光を薄膜に照射して得られる反射光には、広帯域光に含まれていた輝線スペクトル等が干渉光と共に含まれており、この反射光から干渉光のピーク波長のみを正確に求めることが難しいという問題がある。
 このような問題点を解決するための方式として、薄膜と並べてリファレンスサンプルを置き、このリファレンスサンプルからの反射光のスペクトルを、薄膜からの反射光のスペクトルからキャンセルする方式が考えられる。しかし、半導体プロセスにおける薄膜測定では、温度や圧力が大きく変動する成膜チャンバ内にリファレンスサンプルを置く必要があり、その取り扱いが困難となる。
 なお、特許文献1に記載された装置では、輝線スペクトルといった光源のスペクトル特性が考慮されておらず、膜厚を正確に求めることができないおそれがある。また、特許文献2に記載された装置では、参照光学系(参照用サンプル)を用いて測定を行うため、上述したように半導体プロセスではその取り扱いが困難となるという問題がある。
 本発明は、上記した問題点に鑑みてなされたものであり、干渉光強度のピークの一周期に満たないような微小な膜厚の相対変化量であっても、その膜厚の変化量を精度良く測定できる膜厚測定装置および膜厚測定方法を提供することを目的とする。
 上記した課題を解決するために、本発明による膜厚測定装置は、第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定装置であって、所定帯域に亘る波長成分を含む測定光を測定対象物へと供給する測定光源と、測定対象物の第1面からの測定光の反射光、及び第2面からの測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出手段と、測定対象物の膜厚の時間変化を求める膜厚解析手段とを備え、膜厚解析手段は、第1面からの反射光と第2面からの反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合うピーク波長の間隔に相当する数値を、検出手段において互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、ピーク波長又は隣り合うピーク波長の間隔に相当する数値の時間変化から測定対象物の膜厚の時間変化を求めることを特徴とする。
 同様に、本発明による膜厚測定方法は、第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定方法であって、所定帯域に亘る波長成分を含む測定光を測定光源から測定対象物へと供給する測定光供給ステップと、測定対象物の第1面からの測定光の反射光、及び第2面からの測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出ステップと、測定対象物の膜厚の時間変化を求める膜厚解析ステップとを備え、膜厚解析ステップの際に、第1面からの反射光と第2面からの反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合うピーク波長の間隔に相当する数値を、検出ステップにおいて互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、ピーク波長又は隣り合うピーク波長の間隔に相当する数値の時間変化から測定対象物の膜厚の時間変化を求めることを特徴とする。
 所定帯域に亘る波長成分を含む測定光を膜状の測定対象物に照射した場合、その反射光(出力光)のスペクトルには、前述したように輝線スペクトルといった不要なピークが含まれる。しかし、光源に起因するこのような不要なピークの中心波長は、測定対象物の膜厚の変化にかかわらず不変である。そこで、本発明者は、互いに異なる二以上の時刻において検出された出力光の各スペクトル波形を利用することにより、輝線スペクトル等の影響を排除して干渉光のピーク波長やその波長間隔に相当する数値を正確に求め得ることを見出した。
 すなわち、上記した膜厚測定装置および膜厚測定方法においては、膜厚解析手段(膜厚解析ステップ)が、第1面及び第2面からの干渉光の強度が極大もしくは極小となるピーク波長又はその波長間隔に相当する数値を、互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、ピーク波長又はその波長間隔に相当する数値の時間変化から測定対象物の膜厚の時間変化を求める。したがって、上記した膜厚測定装置および膜厚測定方法によれば、輝線スペクトル等が含まれる反射光(出力光)から干渉光のピーク波長(或いはその波長間隔に相当する数値)のみを正確に求めることが可能となり、干渉光強度のピークの一周期に満たないような微小な膜厚の相対変化量であっても、その膜厚の変化量を精度良く測定することができる。
 本発明による膜厚測定装置および膜厚測定方法によれば、干渉光強度のピークの周期に満たないような微小な膜厚の相対変化量であっても、その膜厚変化量を精度良く測定できる。
図1は、測定対象物の膜厚の測定方法について模式的に示す図である。 図2は、このような干渉光の強度Iの時間変化の一例を示すグラフである。 図3は、所定帯域に亘る波長成分を少なくとも含む測定光L0を半導体膜15に照射したときの、出力光スペクトルの一例を示すグラフである。 図4は、t=171[秒]、Δt=5[秒]とした場合の差分I(t+Δt,λ)-I(t,λ)の一例を示すグラフである。 図5は、図4に示した差分I(t+Δt,λ)-I(t,λ)を正規化したグラフである。 図6は、測定波長300~900[nm]における、正規化された差分スペクトル波形S1及びS2を示すグラフである。 図7は、成膜プロセスにおける半導体膜15の膜厚dと成膜時間との関係を示したグラフである。 図8は、測定波長を400[nm]とした場合における、一定速度で増加する膜厚の測定結果について示すグラフである。 図9は、測定波長を600[nm]とした場合における、一定速度で増加する膜厚の測定結果について示すグラフである。 図10は、測定波長を800[nm]とした場合における、一定速度で増加する膜厚の測定結果について示すグラフである。 図11は、膜厚測定装置の一実施形態の構成を示すブロック図である。 図12は、膜厚測定装置1Aにおける測定光学系21の構成の一例を示す図である。 図13は、膜厚測定装置1Aにおける測定光学系21の構成の一例を示す図である。 図14は、分光光学系30の構成の一例を示す図である。 図15は、測定位置設定部25の構成の一例を示すブロック図である。 図16は、t=171[秒]、Δt=5[秒]とした場合の比I(t+Δt,λ)/I(t,λ)の一例を示すグラフである。 図17は、フーリエ変換波形の一例を示すグラフであり、グラフG1は第1のフーリエ変換波形F{I(t,λ)}を示しており、グラフG2は第2のフーリエ変換波形F{I(t+Δt,λ)}を示している。 図18は、各フーリエ変換波形の横軸を位相に換算したグラフであり、グラフG3は第1のフーリエ変換波形φ{F(t,λ)}を示しており、グラフG4は第2のフーリエ変換波形φ{F(t+Δt,λ)}を示している。
 以下、添付図面を参照しながら本発明による膜厚測定装置および膜厚測定方法の実施の形態を詳細に説明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。
 (第1の実施の形態)
 最初に、本発明による膜厚測定方法、及びその測定原理について説明する。図1は、測定対象物の膜厚の測定方法について模式的に示す図である。本膜厚測定方法は、第1面及び第2面を有する膜状の測定対象物に対し、その膜厚の時間的な変化量を測定するものである。以下、測定対象物の第1面を測定光が入射される上面とし、第2面をその反対側の下面として説明する。
 図1に示す例では、膜状の測定対象物の一例として、基板12上に形成された半導体膜15を示している。このような半導体膜15に対し、膜厚が時間とともに変化する半導体製造プロセスの一例として、成膜処理もしくはエッチング処理を実行することを考える。成膜処理では、処理の進行にしたがって半導体膜15の膜厚dは時間とともに増加する。また、エッチング処理では、処理の進行にしたがって半導体膜15の膜厚dは時間とともに減少する。
 このような膜厚dの時間変化について、基板12及び半導体膜15からなる試料10に対し、基板12とは反対側となる半導体膜15の上面(第1面)16側から膜厚測定用の測定光L0を供給する。そして、その上面16からの反射光L1と、下面(第2面、基板12と半導体膜15との境界面)17からの反射光L2~LMとが干渉して生成される干渉光を検出することで、半導体膜15の膜厚dを測定する。
 本測定方法では、具体的には、半導体膜15を含む試料10に対し、所定帯域に亘る波長成分を少なくとも含む測定光L0を照射する(測定光供給ステップ)。次に、測定光L0の上面16、下面17からの反射光L1~LMが重畳して成る出力光の強度を波長毎に検出可能な状態とし、出力光に含まれる各波長成分の各時点での強度を検出して、出力光のスペクトルの時間による変化を取得する(検出ステップ)。そして、この出力光スペクトルの時間変化を参照して、半導体膜15の膜厚dの時間変化を求める(膜厚解析ステップ)。
 ここで、測定対象の半導体膜15の屈折率をn、時間変化する膜厚をd、測定光L0が含む、或る波長をλとすると、反射光L1~LMが干渉して生じる干渉光の強度Iは、下記の式(2)によって表される。ただし、反射光L3~LMは、測定対象の半導体膜15中で減衰するため、非常に弱い強度となる。そのため、強度Iは、反射光L1と反射光L2とが干渉して生じるスペクトルとして近似してもよい。
Figure JPOXMLDOC01-appb-M000002
すなわち、波長λの測定光L0を用いた場合、得られる干渉光の強度Iは、エッチング処理等による膜厚dの時間変化に伴って余弦波的に変化する。ここで、A,Bは薄膜の上下界面における反射率によって定まる定数である。
 図2は、このような干渉光の強度Iの時間変化の一例を示すグラフである。図2において、干渉光強度Iのピーク(山または谷)をカウントすることにより、膜厚dの時間変化量を求めることができる。また、その際の時間を計測すれば膜厚dの変化率(例えばエッチングレート)を求めることができる。なお、図2に示す干渉光強度Iの変化において、その1周期Δtは、膜厚dがΔd=λ/2nだけ変化する時間に相当する。
 しかし、干渉光強度Iのピーク(山または谷)を複数回カウントできる程度に半導体膜15の膜厚dの変化量が十分に大きい場合にはこのような方法は有効であるが、干渉光強度Iのピークの繰り返し周期(図中の周期Δt)に満たない程度に半導体膜15の膜厚dの変化量が小さい場合、干渉光強度Iの時間変化から膜厚dの変化量を求めることは難しく、十分な測定精度を確保することが困難となる。
 そこで、本測定方法の膜厚解析ステップでは、まず、互いに異なる二以上の時刻において出力光を検出し、それらの出力光の各スペクトル波形に基づいて、干渉光強度Iが極大もしくは極小となるピーク波長を求める。そして、求めたピーク波長の時間変化から、半導体膜15の膜厚dの時間変化を求める。以下、このような測定方法について具体的に説明する。
 図3は、所定帯域に亘る波長成分を少なくとも含む測定光L0を半導体膜15に照射したときの、出力光スペクトルの一例を示すグラフである。通常、出力光スペクトルには、干渉光によるスペクトルだけでなく、測定光L0に含まれていた輝線スペクトル等が含まれている。したがって、出力光スペクトルの波長微分を単に演算しても、光源の輝線スペクトル等が影響し、干渉光のピークを正確に検出することはできない。
 ここで、成膜速度(またはエッチング速度)rと時間tとを用いて、半導体プロセスにおいて処理された膜厚d=rtとすれば、干渉光強度Iは上式(2)から次のように表される。
Figure JPOXMLDOC01-appb-M000003
そして、式(3)を時間微分すると以下となる。
Figure JPOXMLDOC01-appb-M000004
これより(dI/dt)=0となる波長λは次のように表される。
Figure JPOXMLDOC01-appb-M000005
 上式(5)において、mが奇数のときには、反射光L1~LM(特にL1~L2)は互いに弱め合い、mが偶数のときには、反射光L1~LM(特にL1~L2)は互いに強め合う。すなわち、mが奇数のときには干渉光強度Iのピーク(谷)波長を表す条件式となり、mが偶数のときには干渉光強度Iのピーク(山)波長を表す条件式となる。つまり、干渉光強度Iの時間微分(dI/dt)がゼロとなる波長λは、干渉光スペクトルのピーク波長であることを示している。
 このことから、第1の時刻T=tにおいて検出された出力光の第1のスペクトル波形I(t,λ)と、第1の時刻Tとは異なる第2の時刻T=t+Δtにおいて検出された出力光の第2のスペクトル波形I(t+Δt,λ)との差分I(t+Δt,λ)-I(t,λ)がゼロとなる波長λ(以下、ゼロクロス波長という)を求めることにより、干渉光スペクトルのピーク波長を得ることができると考えられる。
 図4は、t=171[秒]、Δt=5[秒]とした場合の差分I(t+Δt,λ)-I(t,λ)の一例を示すグラフである。図4に示すように、第2の時刻Tにおける出力光スペクトルに存在したピークは正のピークとして現れており、第1の時刻Tにおける出力光スペクトルに存在したピークは負のピークとして現れている。そして、測定光L0に含まれていた輝線スペクトルといった干渉光以外のスペクトル成分は、膜厚dの時間変化によらず一定であるため差分I(t+Δt,λ)-I(t,λ)ではキャンセルされている。この図4においては、Δtが5[秒]と小さいため、差分I(t+Δt,λ)-I(t,λ)がゼロとなる波長(図中のゼロクロス波長λ)を、干渉光スペクトルのピーク波長とみなすことができる。なお、Δtが10[秒]以下であれば、差分I(t+Δt,λ)-I(t,λ)がゼロとなる波長(図中のゼロクロス波長λ)を、このように干渉光スペクトルのピーク波長とみなすことができる。
 また、図4に示した例では、波長によって光強度が大きく異なるため、差分I(t+Δt,λ)-I(t,λ)の大きさが波長によって大きく異なる。このような場合、第1のスペクトル波形I(t,λ)と第2のスペクトル波形I(t+Δt,λ)とを重畳した波形I(t,λ)+I(t+Δt,λ)を用いて差分を正規化した後に、ピーク波長を求めるとよい。すなわち、以下の式(6)
Figure JPOXMLDOC01-appb-M000006
によって正規化された差分がゼロとなる波長を、干渉光強度Iのピーク波長として求める。なお、図5は、図4に示した差分I(t+Δt,λ)-I(t,λ)を上式(6)により正規化したグラフである。この図5においては、正規化された差分がゼロとなる波長(図中のゼロクロス波長λ)を、干渉光スペクトルのピーク波長とみなすことができる。
 ここで、式(2)より、半導体膜15の膜厚dが変化すると、干渉光スペクトルのピーク波長が変化する。例えば、膜厚dがエッチング処理によって薄くなると、干渉光スペクトルのピーク波長は短波長方向へ移動する。逆に、膜厚dが成膜処理によって厚くなると、干渉光スペクトルのピーク波長は長波長方向へ移動する。したがって、ピーク波長(ゼロクロス波長)の移動量を測定することによって、膜厚dの変化量を知ることができる。
 図1に示した反射光L1~LM(特にL1~L2)が互いに強め合う条件は、次の式(7)によって表される。
Figure JPOXMLDOC01-appb-M000007
上式(7)において、ピーク波長λが1[nm]変化するときを考えると、次の式(8)のようになる。
Figure JPOXMLDOC01-appb-M000008
したがって、ピーク波長λが1[nm]変化するとき、膜厚dは(m/2n)だけ変化することがわかる。
 なお、具体的なmの値については以下のようにして求めることができる。式(7)において、隣り合うピーク波長λ,λ(λ>λ)を考えると、
Figure JPOXMLDOC01-appb-M000009
と表すことができる。ピーク波長λ,λにおいて屈折率の波長分散の影響が小さいと考えn=nとみなすと、上式(9)よりmは以下の式(10)によって求めることができる。
Figure JPOXMLDOC01-appb-M000010
干渉光強度Iのピーク波長(ゼロクロス波長)の移動量をXとすると、膜厚dの変化量Δdは以下の式(11)によって求めることができる。
Figure JPOXMLDOC01-appb-M000011
以上より、測定波長λ、波長λでの半導体膜15の屈折率n、プロセス終了条件である膜厚変化量Δdを予め設定してゼロクロス波長の時間変化を監視することにより、目的とする膜厚変化量Δdでプロセス(成膜処理またはエッチング処理)を終了させることができる。なお、式(11)におけるピーク波長λ,λは、設定した測定波長λに最も近いゼロクロス波長として検出される。
 ここで、正規化された差分スペクトルから膜厚dを求める方法の一例を示す。図6には、測定波長300~900[nm]における、正規化された差分スペクトル波形S1及びS2が示されている。差分スペクトル波形S1は、時刻T=171[秒]における差分スペクトル波形である。差分スペクトル波形S2は、時刻T=201[秒]における差分スペクトル波形である。なお、差分スペクトル波形S1及びS2を求めた際のΔt(=T-T)は共に5[秒]である。
 図中のゼロクロス波長λA11は、差分スペクトル波形S1における複数のゼロクロス波長のうちの一つである。本例では、ゼロクロス波長λA11=525.02[nm]である。また、図中のゼロクロス波長λA12は、差分スペクトル波形S1における複数のゼロクロス波長のうち、ゼロクロス波長λA11と隣り合うゼロクロス波長である。本例では、ゼロクロス波長λA12=452.96[nm]である。なお、「隣り合うゼロクロス波長」とは、厳密には、それらの波長における差分スペクトル波形S1の傾きが互いに同符号となるようなゼロクロス波長をいう。差分スペクトル波形S1が同じ傾きでもってゼロ軸と交差する波長は、共に干渉光が強め合う(又は弱め合う)波長だからである。
 波長500[nm]付近における半導体膜15の屈折率をn=2.5とすると、上式(10)よりmが求まる。
Figure JPOXMLDOC01-appb-M000012
また、30秒後の差分スペクトル波形S2では、差分スペクトル波形S1のゼロクロス波長λA11に対応するゼロクロス波長λA21が、475.52[nm]まで短波長側へ変化している。このことから、膜厚dの変化量Δdを求めることができる。
Figure JPOXMLDOC01-appb-M000013
 プロセス(成膜処理またはエッチング処理)開始前の半導体膜15の初期膜厚があらかじめ明らかである場合には、こうして求められる膜厚dの変化量Δdをリアルタイムで測定することにより、半導体膜15が所定の膜厚となった時点で当該プロセスを好適に停止することができる。なお、図7は、成膜プロセスにおける半導体膜15の膜厚dと成膜時間との関係を示したグラフである。同図に示すように、所定の膜厚d=100[nm]に達した時点で、成膜プロセスを終了させることができる。
 なお、上述の例では測定波長を500[nm]付近とした場合の測定方法について説明したが、必要に応じて様々な波長の測定光を用いることができる。ここで、図8、図9および図10は、測定波長をそれぞれ400[nm]、600[nm]および800[nm]とした場合における、一定速度で増加する膜厚の測定結果について示すグラフである。図8を参照すると、測定波長が400[nm]の場合には膜厚の変化率にばらつきが生じている。これに対し、800[nm]の場合には、膜厚の変化率がほぼ一定となっており、高い精度で膜厚を測定できていることがわかる。このように、上記成膜方法では、測定波長が長いほど、膜厚測定精度が高くなる傾向がある。これは、測定波長が長くなるほど、膜厚変化に対する干渉ピーク(ゼロクロス波長)の変化量が大きくなるためと考えられる。
 次に、上記測定方法を好適に実現できる膜厚測定装置の構成について説明する。図11は、膜厚測定装置の一実施形態の構成を示すブロック図である。本実施形態では、半導体処理装置(例えばエッチング装置)20の処理チャンバ内に設置された試料10の半導体膜15(図1参照)を測定対象物とした例を示している。膜厚測定装置1Aは、測定光学系21と、測定光源28と、分光光学系30と、光検出器31と、膜厚解析部40とを備えて構成されている。
 処理装置20内の試料10の半導体膜15に対し、測定光学系21を介して測定光L0を供給する測定光源28が設けられている。この測定光源28は、所定帯域に亘る波長成分を少なくとも含む測定光L0を測定対象物の半導体膜15へと供給する。このような測定光源28としては、例えば、上記所定帯域の白色光を測定光L0として供給する白色光源を好適に用いることができる。或いは、上記所定帯域に亘って出力波長を変化させることが可能な波長可変レーザや、上記所定帯域に含まれる複数の単色光源を組み合わせたものでもよい。なお、前述した方法による膜厚測定では膜厚の変化量が大きいほど干渉光強度のピーク波長(ゼロクロス波長)が変化するので、上記所定帯域の幅は、測定しようとする膜厚変化量に応じて設定されることが好ましく、例えば20[nm]以上であることが好ましい。
 また、測定光L0が試料10で反射された反射光L1~LMが重畳されて成る出力光に対し、測定光学系21を介して、分光光学系30及び光検出器31が設けられている。ここで、図12及び図13は、膜厚測定装置1Aにおける測定光学系21の構成の一例を示す図である。本構成例では、試料10に対向して配置される対物レンズ211を含む測定光学系21に対し、測定光源28からの測定光を導光する測定光入力ファイバ281、試料10の画像取得時等に用いられる照明光を導光する照明光入力ファイバ282、及び試料10からの反射光(出力光)を分光光学系30へと導光する反射光出力ファイバ308が接続されている。
 このような構成において、図12に示すように、測定光源28からの測定光L0は、入力ファイバ281によって測定光学系21へと入力され、ハーフミラー212を通過し、反射ミラー213で反射されて、対物レンズ211を介して試料10の半導体膜15へと供給される。また、図13に示すように、半導体膜15の上面、下面からの反射光L1~LMが重畳されて成る出力光は、反射ミラー213、ハーフミラー212、及び反射ミラー214で反射されて、出力ファイバ308を介して分光光学系30へと出力される。
 分光光学系30は、試料10から測定光学系21を介して入力される反射光を分光する分光手段であり、本実施形態における検出手段の一部を構成する。具体的には、分光光学系30は、測定光L0の半導体膜15からの出力光を、波長毎に検出可能なように分解する。
 図14は、分光光学系30の構成の一例を示す図である。この分光光学系30は、入射スリット301、コリメーティング光学系302、分散素子である回折格子303、及びフォーカシング光学系304を有して構成されている。このような構成において、回折格子303で各波長成分へと分解された出力光は、フォーカシング光学系304を介して波長スペクトル出力面305において波長成分毎に結像され、出力面305に配置された光検出器によって波長成分毎に検出される。なお、本例以外にも、例えば帯域フィルタを用いることによって、半導体膜15からの出力光を波長毎に検出可能なように分解する分光光学系を好適に構成できる。
 分光光学系30によって波長成分毎に分解された出力光に対し、各波長成分の各時点tでの強度を検出する検出手段として、図11に示す光検出器31が設けられている。光検出器31は、例えば図14に示した分光光学系30に対し、その出力面305に配置されて、分光光学系30によって分解された各波長成分の強度を検出する複数の光検出素子が配列されたマルチチャンネル光検出器によって構成される。
 光検出器31から出力された検出信号は、膜厚解析部40へ提供される。膜厚解析部40は、測定対象物である半導体膜15の膜厚dの時間変化を求める膜厚解析手段であり、半導体膜15からの反射光L1~LM(特にL1~L2)が相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長を、互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、該ピーク波長の時間変化から半導体膜15の膜厚dの時間変化を求める。
 具体的には、前述したように、第1の時刻T=tにおいて検出された出力光の第1のスペクトル波形I(t,λ)と、第1の時刻Tとは異なる第2の時刻T=t+Δtにおいて検出された出力光の第2のスペクトル波形I(t+Δt,λ)との差分I(t+Δt,λ)-I(t,λ)を求め、より好ましくは該差分を正規化し、そのゼロクロス波長を求めることにより、干渉光スペクトルのピーク波長を求める。そして、前述した式(11)により、膜厚dの時間変化を求める。膜厚解析部40は、膜厚dに関する終点情報を予め記憶しており、算出された膜厚dが所定の厚さに達すると、処理が終点に到達したことを示す信号(終点検出信号)を出力する。なお、このような膜厚解析部40は、例えば所定の解析プログラムが実行されているコンピュータによって構成することができる。
 また、図11に示す膜厚測定装置1Aでは、上記の膜厚解析部40に加えて、測定制御部50が設けられている。測定制御部50は、膜厚解析部40から出力される膜厚情報や終点情報を参照し、測定装置1A及び処理装置20の装置各部を制御することで、測定装置1Aにおける膜厚測定動作、及び処理装置20におけるエッチング処理等の動作について必要な制御を行う。
 また、この測定制御部50には、入力装置51と、表示装置52とが接続されている。入力装置51は、測定装置1Aにおける測定動作、及び処理装置20における処理動作に必要な情報、条件、指示等の操作者による入力に用いられる。この入力装置51は、例えば膜厚解析部40において用いられる測定波長、半導体膜15の屈折率、プロセスの目標膜厚等の入力に用いることができる。また、プロセス開始時の膜厚値をさらに入力できるようにしても良い。ただし、これらの条件、数値については、膜厚解析部40にあらかじめ用意する構成としても良い。また、表示装置52は、上記した測定動作及び処理動作についての必要な情報の操作者への表示に用いられる。
 また、本実施形態の膜厚測定装置1Aでは、測定光学系21に対し、XYθステージ22が設けられている。このXYθステージ22は、測定光学系21の位置、角度等をX方向、Y方向、θ方向に調整することで、膜厚測定装置1Aによる半導体膜15での膜厚dの測定位置、測定条件を調整するために用いられる。また、XYθステージ22は、ステージ制御部23によって駆動制御される。
 また、処理装置20内の試料10、及び測定光学系21に対し、さらに撮像装置24、及び測定位置設定部25が設けられている。撮像装置24は、膜厚測定装置1Aによる半導体膜15での膜厚dの測定位置を確認するための位置確認用撮像装置である。また、測定位置設定部25は、撮像装置24によって測定光学系21を介して取得された半導体膜15を含む試料10の画像を参照して、試料10に対する膜厚測定位置を設定する。
 図15は、測定位置設定部25の構成の一例を示すブロック図である。本構成例による測定位置設定部25は、測定画像認識部251と、基準画像記憶部252と、画像比較部253と、制御条件算出部254とを有して構成されている。測定画像認識部251は、撮像装置24で取得された試料10の画像データを入力し、その画像での測定パターンのパターン認識を行う。また、基準画像記憶部252には、半導体膜15での膜厚dの測定位置として設定すべき位置を特定するための基準画像があらかじめ記憶されている。
 画像比較部253は、認識部251で認識された測定画像での測定パターンと、記憶部252で記憶された基準画像での基準パターンとを、差分画像の算出などの方法によって比較する。また、制御条件算出部254は、画像比較部253での測定画像と基準画像との比較結果に基づいて、測定位置の調整の要否、及び調整が必要な場合にはその制御条件を算出する。そして、この算出部254で求められた制御条件に基づいて、ステージ制御部23を介してXYθステージ22、測定光学系21が駆動制御されることにより、試料10の半導体膜15に対する膜厚dの測定位置、測定条件が設定、制御される。
 なお、このような試料10の半導体膜15に対する膜厚dの測定位置については、半導体ウエハ上のテグの位置とすることが好ましい。これは、半導体チップ上の位置を測定位置とすると、マスクなどの段差等が影響して、膜厚dを正確に測定できない可能性があるためである。
 本実施形態による膜厚測定装置及び膜厚測定方法の効果について説明する。
 膜厚測定装置1A及び膜厚測定方法においては、膜状の測定対象物である基板12上の半導体膜15に対し、所定帯域に亘る波長成分を含む測定光L0を供給し、上面16及び下面17からの反射光L1~LMを含む出力光を分光光学系30及び光検出器31によって分光して検出する。そして、反射光L1~LM(特にL1~L2)が相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長を、互いに異なる時刻T=t,T=t+Δtにおいて検出された出力光の各スペクトル波形I(t,λ),I(t+Δt,λ)に基づいて求め、ピーク波長の時間変化から半導体膜15の膜厚dの時間変化を求めている。
 先に述べたように、広帯域に亘る波長成分を含む測定光を半導体膜15に照射すると、その反射光(出力光)のスペクトルには、測定光に含まれていた輝線スペクトルといった不要なピークが干渉光と共に含まれる。しかし、測定光源に起因するこのような不要なピークの中心波長は、半導体膜15の膜厚dの変化にかかわらず不変であるから、異なる時刻における出力光の各スペクトル波形I(t,λ),I(t+Δt,λ)において該不要ピークの中心波長も不変である。
 したがって、これらのスペクトル波形I(t,λ),I(t+Δt,λ)を用いることによって、輝線スペクトル等の影響をキャンセルして干渉光のピーク波長を正確に求めることが可能となる。すなわち、本実施形態による膜厚測定装置1A及び膜厚測定方法によれば、干渉光強度Iのピークの繰り返し周期Δt(図2参照)に満たないような微小な膜厚dの変化量であっても、リファレンスサンプルを用いることなく、その膜厚dの変化量を精度良く測定できる。
 また、本実施形態のように、膜厚測定装置1A及び膜厚測定方法は、膜厚解析部40(膜厚解析ステップ)において、第1のスペクトル波形I(t,λ)と、第2のスペクトル波形I(t+Δt,λ)との差分I(t+Δt,λ)-I(t,λ)を演算し、該差分がゼロとなる波長λをピーク波長とすることが好ましい。
 測定光源28に起因する輝線スペクトルといった不要なピークの中心波長は、半導体膜15の膜厚dの変化にかかわらず不変であるから、第1及び第2のスペクトル波形I(t,λ),I(t+Δt,λ)に含まれる輝線スペクトル等の中心波長は両波形で同一であり、差分I(t+Δt,λ)-I(t,λ)を演算することによってその影響を効果的に排除できる。また、上記差分がゼロとなるゼロクロス波長λは、波形I(t,λ),I(t+Δt,λ)において相互に対応するピーク波長の間に位置しており、Δtが長くない場合にはこのゼロクロス波長λを干渉光のピーク波長と見なすことができる。したがって、このゼロクロス波長λの変化量(例えば図6に示したλA21-λA11)から、半導体膜15の膜厚dの時間変化を精度良く求めることができる。
 また、差分I(t+Δt,λ)-I(t,λ)がゼロとなる波長をピーク波長と見なして半導体膜15の膜厚dの時間変化を求める場合、本実施形態のように、膜厚解析部40(膜厚解析ステップ)において、第1のスペクトル波形I(t,λ)と第2のスペクトル波形I(t+Δt,λ)とを重畳した波形I(t,λ)+I(t+Δt,λ)を用いて差分を正規化(上式(6)参照)した後に、ピーク波長を求めることが好ましい。これにより、図4に示したように測定光L0の強度が波長により異なるため差分I(t+Δt,λ)-I(t,λ)の大きさが波長により大きく異なる場合であっても、図5に示したように、差分I(t+Δt,λ)-I(t,λ)に関する良好なスペクトル波形を得ることができる。
 また、膜厚測定の具体的な測定対象については、上述したように、測定対象物は基板12上の半導体膜15であり、所定の処理の実行中における半導体膜15の膜厚dの時間変化を測定することが好ましい。このような構成では、半導体膜15の膜厚dが減少または増加するエッチング処理、薄膜形成処理などの半導体プロセスの実行中において、処理の終点検出などのプロセス制御を精度良く行うことができる。なお、本実施形態による膜厚測定方法は、半導体膜15以外にも、膜状の測定対象物の膜厚dの変化量の測定に対して一般に適用可能である。
 (第2の実施の形態)
 続いて、本発明に係る膜厚測定装置および膜厚測定方法の第2実施形態について説明する。上述した第1実施形態と本実施形態とで異なる点は、膜厚解析手段(膜厚解析ステップ)における処理内容である。すなわち、本実施形態では、膜厚解析手段(膜厚解析ステップ)において、互いに異なる二以上の時刻において出力光を検出し、それらの出力光の各スペクトル波形に基づいて、干渉光強度Iが極大もしくは極小となるピーク波長を求める点は第1実施形態と同様であるが、その具体的な手法が異なっている。なお、膜厚解析手段(膜厚解析ステップ)以外の装置構成およびステップについては、第1実施形態と同様である。
 本実施形態では、第1の時刻T=tにおいて検出された出力光の第1のスペクトル波形I(t,λ)と、第1の時刻Tとは異なる第2の時刻T=t+Δtにおいて検出された出力光の第2のスペクトル波形I(t+Δt,λ)との比I(t+Δt,λ)/I(t,λ)が1となる波長λを求めることにより、干渉光スペクトルのピーク波長を得る。第1及び第2のスペクトル波形の比が1になる場合とは、すなわち第1及び第2のスペクトル波形が等しくなる場合であり、第1実施形態において差分I(t+Δt,λ)-I(t,λ)がゼロとなる場合と等価であるから、このような演算によっても干渉光スペクトルのピーク波長を好適に得ることができる。
 図16は、t=171[秒]、Δt=5[秒]とした場合の比I(t+Δt,λ)/I(t,λ)の一例を示すグラフである。図16において、測定光L0に含まれていた輝線スペクトルといった干渉光以外のスペクトル成分は、膜厚dの時間変化によらず一定であるためキャンセルされている。この図16においても、Δtが5[秒]と小さいため、比I(t+Δt,λ)/I(t,λ)が1となる波長(図中の波長λ)を、干渉光スペクトルのピーク波長とみなすことができる。なお、Δtが10[秒]以下であれば、比I(t+Δt,λ)/I(t,λ)が1となる波長λを、このように干渉光スペクトルのピーク波長とみなすことができる。
 式(2)より、半導体膜15の膜厚dが変化すると、干渉光スペクトルのピーク波長が変化する。したがって、ピーク波長の移動量を測定することによって、式(11)により膜厚dの変化量を知ることができる。
 本実施形態においても、反射光L1~LM(特にL1~L2)が相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長を、互いに異なる時刻T=t,T=t+Δtにおいて検出された出力光の各スペクトル波形I(t,λ),I(t+Δt,λ)に基づいて求め、ピーク波長の時間変化から半導体膜15の膜厚dの時間変化を求めている。したがって、輝線スペクトル等の影響をキャンセルして干渉光のピーク波長を正確に求めることができるので、干渉光強度Iのピークの繰り返し周期Δt(図2参照)に満たないような微小な膜厚dの変化量であっても、リファレンスサンプルを用いることなく、その膜厚dの変化量を精度良く測定できる。
 また、本実施形態のように、膜厚測定装置1A及び膜厚測定方法は、膜厚解析手段(膜厚解析ステップ)において、第1のスペクトル波形I(t,λ)と、第2のスペクトル波形I(t+Δt,λ)との比I(t+Δt,λ)/I(t,λ)を演算し、該比が1となる波長λcをピーク波長としてもよい。測定光源に起因する輝線スペクトルといった不要なピークの中心波長は、半導体膜15の膜厚dの変化にかかわらず不変であるから、比I(t+Δt,λ)/I(t,λ)を演算することによってその影響を効果的に排除できる。また、上記比が1となる波長λcは、波形I(t,λ),I(t+Δt,λ)において相互に対応するピーク波長の間に位置しており、Δtが長くない場合にはこの波長λcを干渉光のピーク波長と見なすことができる。したがって、この波長λcの変化量から、半導体膜15の膜厚dの時間変化を精度良く求めることができる。
 (第3の実施の形態)
 続いて、本発明に係る膜厚測定装置および膜厚測定方法の第3実施形態について説明する。上述した第1実施形態と本実施形態とで異なる点は、膜厚解析手段(膜厚解析ステップ)における処理内容である。なお、本実施形態においても、膜厚解析手段(膜厚解析ステップ)以外の装置構成およびステップについては、第1実施形態と同様である。
 先に述べた式(2)において、屈折率nが波長λに対して一定であると仮定した場合、半導体膜15からの干渉光のスペクトル波形は、半導体膜15の膜厚dに応じた周期的な波形となる。そして、半導体膜15の膜厚dが薄くなるほどその周期(隣り合うピーク波長の間隔)は大きくなり、逆に半導体膜15の膜厚dが厚くなるほどその周期は小さくなる。言い換えると、半導体膜15の膜厚dが薄くなるほど、単位波長当たりの干渉光のスペクトル波形の繰り返し数が小さくなり、逆に半導体膜15の膜厚dが厚くなるほど、単位波長当たりの干渉光のスペクトル波形の繰り返し数が大きくなるということである。
 このような単位波長当たりの繰り返し数は、出力光スペクトルを波長に関してフーリエ変換(好ましくは、高速フーリエ変換(FFT:Fast Fourier Transform))することによって求められる。そして、上述したように、FFTによって得られる干渉光のスペクトル波形の繰り返し数が膜厚dに応じて変化することから、当該繰り返し数の変化に基づいて、膜厚dの変化量を求めることができる。
 本実施形態では、膜厚解析手段(膜厚解析ステップ)において、互いに異なる二以上の時刻において出力光を検出する。そして、それらの出力光の各スペクトル波形に基づいて、干渉光強度Iが極大もしくは極小となるピーク波長の波長間隔に相当する数値として、単位波長当たりの干渉光のスペクトル波形の繰り返し数を求め、該繰り返し数の時間変化から半導体膜15の膜厚dの時間変化を求める。
 具体的には、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(t,λ)に対し、波長を独立変数とするフーリエ変換(好ましくは高速フーリエ変換)を行い、第1のフーリエ変換波形F{I(t,λ)}を得る。同様に、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(t+Δt,λ)についても波長を変数とするフーリエ変換を行い、第2のフーリエ変換波形F{I(t+Δt,λ)}を得る。
 図17は、各フーリエ変換波形の一例を示すグラフであり、グラフG1は第1のフーリエ変換波形F{I(t,λ)}を示しており、グラフG2は第2のフーリエ変換波形F{I(t+Δt,λ)}を示している。また、図17に示されているピークP1の中心F0は、第1のスペクトル波形I(t,λ)に含まれる干渉光の単位波長当たりの繰り返し数に相当し、ピークP2の中心Fは、第2のスペクトル波形I(t+Δt,λ)に含まれる干渉光の単位波長当たりの繰り返し数に相当する。なお、図17におけるピークP1,P2以外のピーク(例えば、図中のD領域にあるピーク)は、輝線等によるピークであり、干渉光とは関係のない成分である。
 図17に示す例では、ピークP1の中心F0とピークP2の中心Fとの差が、すなわち単位波長当たりの干渉光のスペクトル波形の繰り返し数の変化量なので、この差(F0-F)に基づいて、半導体膜15の膜厚dの変化量を以下のようにして求めることができる。
 すなわち、FFTは離散フーリエ変換であり、フーリエ変換前の干渉光スペクトルの一周期が基本波となるので、基本波の波長範囲をλ~λ、FFTの基本波に相当する膜厚をDとすると、次の式(14)の関係がある。
Figure JPOXMLDOC01-appb-M000014
上式(14)をDについて解くと
Figure JPOXMLDOC01-appb-M000015
となる。ここで、図17のピークP1に対応する干渉光の単位波長当たりの繰り返し数をF0、ピークP2に対応する干渉光の単位波長当たりの繰り返し数をFとすると、膜厚変化量Δdは次の式(16)によって求めることができる。
Figure JPOXMLDOC01-appb-M000016
 なお、膜厚変化量Δdが微小である場合、繰り返し数Fの時間変化よりも位相の時間変化の方が膜厚変化量Δdをより高精度に表すため、位相の時間変化に基づいて膜厚変化量Δdを算出することにより、更に高い精度で膜厚変化量Δdを算出できる。図18は、各フーリエ変換波形の横軸を位相に換算したグラフであり、グラフG3は第1のフーリエ変換波形φ{F(t,λ)}を示しており、グラフG4は第2のフーリエ変換波形φ{F(t+Δt,λ)}を示している。また、図18に示されているピークP3の中心φは、第1のスペクトル波形I(t,λ)に含まれる干渉光の単位波長当たりの繰り返し数に対応する位相であり、ピークP4の中心φは、第2のスペクトル波形I(t+Δt,λ)に含まれる干渉光の単位波長当たりの繰り返し数に対応する位相である。
 なお、図18においても、ピークP3,P4以外のピーク(図中のD領域にあるピーク)は、輝線等によるピークであり、干渉光とは関係のない成分である。位相φおよびφは、次の式(17)および式(18)によって求めることができる。
Figure JPOXMLDOC01-appb-M000017
Figure JPOXMLDOC01-appb-M000018
ゆえに、膜厚変化量Δdは次の式(19)によって求めることができる。
Figure JPOXMLDOC01-appb-M000019
 本実施形態においては、反射光L1~LM(特にL1~L2)が相互に干渉して生じる干渉光のスペクトル波形の単位波長当たりの繰り返し数を、互いに異なる時刻T=t,T=t+Δtにおいて検出された出力光の各スペクトル波形I(t,λ),I(t+Δt,λ)に基づいて求め、上記繰り返し数の時間変化(F0-F)から半導体膜15の膜厚dの時間変化を求めている。また、繰り返し数からその位相を求め、上記位相の時間変化(φ-φ)から半導体膜15の膜厚dの時間変化を求めている。したがって、例えば図17、図18の領域Dに存在する輝線スペクトル等の影響をキャンセルして、干渉光スペクトルのピーク波長の間隔に相当する数値を正確に求めることができるので、干渉光強度Iのピークの繰り返し周期Δt(図2参照)に満たないような微小な膜厚の変化であっても、リファレンスサンプルを用いることなく、その膜厚dの変化量を精度良く測定できる。
 また、第1のスペクトル波形I(t,λ)及び第2のスペクトル波形I(t+Δt,λ)に含まれる輝線スペクトル等の波形は、両波形I(t,λ),I(t+Δt,λ)で同一である。したがって、フーリエ変換後の波形F{I(t,λ)},F{I(t+Δt,λ)}やその位相φ{F(t,λ)},φ{F(t+Δt,λ)}においても輝線スペクトル等の波形は同一であり、本実施形態の膜厚測定装置および膜厚測定方法によれば、その影響を好適に排除することができる。
 また、膜厚測定装置および膜厚測定方法によれば、測定光源28から出力される測定光のスペクトルが平坦でない場合であっても、半導体膜15の膜厚dに対応する繰り返し数のみ算出すればよく、測定光のスペクトルの影響を殆ど無視することができる。
 本発明による膜厚測定装置および膜厚測定方法は、上記した実施形態に限られるものではなく、他に様々な変形が可能である。例えば、上記各実施形態では測定対象物(半導体膜15)の膜厚dを求める為に干渉光スペクトルのピーク波長、又は単位波長当たりの干渉光スペクトル波形の繰り返し数を求めているが、膜厚dを得るために有用な数値はこれらに限られるものではなく、ピーク波長に相当する数値や、隣り合うピーク波長の間隔又は該間隔に相当する数値であれば、膜厚dを好適に求めることができる。
 上記実施形態による膜厚測定装置では、第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定装置であって、所定帯域に亘る波長成分を含む測定光を測定対象物へと供給する測定光源と、測定対象物の第1面からの測定光の反射光、及び第2面からの測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出手段と、測定対象物の膜厚の時間変化を求める膜厚解析手段とを備え、膜厚解析手段は、第1面からの反射光と第2面からの反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合うピーク波長の間隔に相当する数値を、検出手段において互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、ピーク波長又は隣り合うピーク波長の間隔に相当する数値の時間変化から測定対象物の膜厚の時間変化を求める構成を用いている。
 また、上記実施形態による膜厚測定方法では、第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定方法であって、所定帯域に亘る波長成分を含む測定光を測定光源から測定対象物へと供給する測定光供給ステップと、測定対象物の第1面からの測定光の反射光、及び第2面からの測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出ステップと、測定対象物の膜厚の時間変化を求める膜厚解析ステップとを備え、膜厚解析ステップの際に、第1面からの反射光と第2面からの反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合うピーク波長の間隔に相当する数値を、検出ステップにおいて互いに異なる二以上の時刻において検出された出力光の各スペクトル波形に基づいて求め、ピーク波長又は隣り合うピーク波長の間隔に相当する数値の時間変化から測定対象物の膜厚の時間変化を求める構成を用いている。
 また、膜厚測定装置は、膜厚解析手段が、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)との差分I(T)-I(T)を演算し、該差分がゼロとなる波長をピーク波長とすることとしてもよい。
 同様に、膜厚測定方法は、膜厚解析ステップの際に、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)との差分I(T)-I(T)を演算し、該差分がゼロとなる波長をピーク波長とすることとしてもよい。
 上述したように、光源に起因する輝線スペクトルといった不要なピークの中心波長は、測定対象物の膜厚の変化にかかわらず不変である。したがって、第1のスペクトル波形I(T)及び第2のスペクトル波形I(T)に含まれる輝線スペクトル等の中心波長は両波形I(T),I(T)で同一であるため、差分I(T)-I(T)を演算することによりその影響が排除される。また、上記差分がゼロとなる波長(以下、ゼロクロス波長という)は、波形I(T)に含まれる干渉光のピーク波長と波形I(T)に含まれる干渉光のピーク波長との間に位置しており、第1及び第2の時刻T,Tの間隔が長くない場合には、ゼロクロス波長を干渉光のピーク波長と見なすことができる。したがって、このゼロクロス波長の変化量から、測定対象物の膜厚の時間変化を精度良く求めることができる。
 また、差分I(T)-I(T)がゼロとなる波長をピーク波長として測定対象物の膜厚の時間変化を求める場合、膜厚解析手段は、第1のスペクトル波形I(T)と第2のスペクトル波形I(T)とを重畳した波形I(T)+I(T)を用いて差分を正規化した後に、ピーク波長を求めることが好ましい。
 同様に、膜厚測定方法においては、膜厚解析ステップの際に、第1のスペクトル波形I(T)と第2のスペクトル波形I(T)とを重畳した波形I(T)+I(T)を用いて差分を正規化した後に、ピーク波長を求めることが好ましい。
 これにより、測定光の強度が波長により異なるため差分I(T)-I(T)の大きさが波長により大きく異なる場合であっても、差分I(T)-I(T)についての良好なスペクトル波形を得ることができる。
 また、膜厚測定装置は、膜厚解析手段が、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)との比I(T)/I(T)を演算し、該比が1となる波長をピーク波長とすることとしてもよい。
 同様に、膜厚測定方法は、膜厚解析ステップの際に、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)との比I(T)/I(T)を演算し、該比が1となる波長をピーク波長とすることとしてもよい。
 前述したように、第1のスペクトル波形I(T)及び第2のスペクトル波形I(T)に含まれる輝線スペクトル等の中心波長は両波形I(T),I(T)で同一である。したがって、比I(T)/I(T)を演算することによりその影響が排除される。また、この比が1となる波長は、波形I(T)に含まれる干渉光のピーク波長と波形I(T)に含まれる干渉光のピーク波長との間に位置しており、第1及び第2の時刻T,Tの間隔が長くない場合には、この波長を干渉光のピーク波長と見なすことができる。したがって、この波長の変化量から、測定対象物の膜厚の時間変化を精度良く求めることができる。
 また、膜厚測定装置は、膜厚解析手段が、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)とをそれぞれフーリエ変換して得られる第1のフーリエ変換波形F{I(T)}及び第2のフーリエ変換波形F{I(T)}に基づいて、隣り合うピーク波長の間隔に相当する数値を求め、該数値の時間変化から測定対象物の膜厚の時間変化を求めることとしてもよい。
 同様に、膜厚測定方法は、膜厚解析ステップの際に、第1の時刻Tにおいて検出された出力光に関する第1のスペクトル波形I(T)と、第1の時刻Tとは異なる第2の時刻Tにおいて検出された出力光に関する第2のスペクトル波形I(T)とをそれぞれフーリエ変換して得られる第1のフーリエ変換波形F{I(T)}及び第2のフーリエ変換波形F{I(T)}に基づいて、隣り合うピーク波長の間隔に相当する数値を求め、該数値の時間変化から測定対象物の膜厚の時間変化を求めることとしてもよい。
 先に示した式(1)において、屈折率nが波長λに対して一定であると仮定した場合、干渉光強度Iは波数(1/λ)に対して一定周期の余弦波形となる。したがって、該余弦波形において隣り合うピーク波長の間隔に相当する数値、例えば単位波長当たりの干渉光強度Iのスペクトル波形の繰り返し数から、測定対象物の膜厚を求めることができる。すなわち、上記した膜厚測定装置および膜厚測定方法においては、スペクトル波形I(T),I(T)を波長についてフーリエ変換して得られる波形F{I(T)},F{I(T)}から、隣り合うピーク波長の間隔に相当する数値を求めている。そして、その数値の時間変化から測定対象物の膜厚の時間変化を求めている。
 これにより、測定対象物の膜厚の時間変化を精度良く求めることができる。なお、前述したように、第1のスペクトル波形I(T)及び第2のスペクトル波形I(T)に含まれる輝線スペクトル等の波形は両波形I(T),I(T)で同一なので、フーリエ変換後の波形F{I(T)},F{I(T)}においても輝線スペクトル等の波形は同一であり、上記した膜厚測定装置および膜厚測定方法によれば、その影響を好適に排除することができる。
 また、膜厚測定装置は、隣り合う前記ピーク波長の間隔に相当する前記数値が、単位波長当たりの干渉光のスペクトル波形の繰り返し数であることが好ましい。或いは、膜厚測定装置は、隣り合う前記ピーク波長の間隔に相当する前記数値が、単位波長当たりの干渉光のスペクトル波形の繰り返し数から換算された位相であることが好ましい。
 同様に、膜厚測定方法は、隣り合う前記ピーク波長の間隔に相当する前記数値が、単位波長当たりの干渉光のスペクトル波形の繰り返し数であることが好ましい。或いは、膜厚測定方法は、隣り合う前記ピーク波長の間隔に相当する前記数値が、単位波長当たりの干渉光のスペクトル波形の繰り返し数から換算された位相であることが好ましい。
 上記した膜厚の時間変化の測定における具体的な測定対象については、測定対象物は基板上の半導体膜であり、所定の処理の実行中における半導体膜の膜厚の時間変化を測定することが好ましい。このような構成では、上述したように、例えばエッチング処理や薄膜形成処理などの半導体プロセスの実行中において、その膜厚の時間的な変化量を測定して、処理の終点検出などのプロセス制御を精度良く行うことができる。
 上記した膜厚測定装置及び膜厚測定方法において、測定光源としては、所定帯域に亘る白色光を測定光として供給する白色光源を用いることができる。なお、測定光源については、これ以外にも様々なものを用いることが可能である。
 本発明は、干渉光強度のピークの一周期に満たないような微小な膜厚の相対変化量であっても、その膜厚の変化量を精度良く測定できる膜厚測定装置および膜厚測定方法として利用可能である。
 1A…膜厚測定装置、10…試料、12…基板、15…半導体膜、16…上面、17…下面、20…処理装置、21…測定光学系、22…ステージ、23…ステージ制御部、24…撮像装置、25…測定位置設定部、28…測定光源、30…分光光学系、31…光検出器、40…膜厚解析部、50…測定制御部、51…入力装置、52…表示装置。

Claims (18)

  1.  第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定装置であって、
     所定帯域に亘る波長成分を含む測定光を前記測定対象物へと供給する測定光源と、
     前記測定対象物の前記第1面からの前記測定光の反射光、及び前記第2面からの前記測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出手段と、
     前記測定対象物の膜厚の時間変化を求める膜厚解析手段と
    を備え、
     前記膜厚解析手段は、前記第1面からの前記反射光と前記第2面からの前記反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合う前記ピーク波長の間隔に相当する数値を、前記検出手段において互いに異なる二以上の時刻において検出された前記出力光の各スペクトル波形に基づいて求め、前記ピーク波長又は隣り合う前記ピーク波長の間隔に相当する数値の時間変化から前記測定対象物の膜厚の時間変化を求めることを特徴とする、膜厚測定装置。
  2.  前記膜厚解析手段は、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)との差分I(T)-I(T)を演算し、該差分がゼロとなる波長を前記ピーク波長とすることを特徴とする、請求項1に記載の膜厚測定装置。
  3.  前記膜厚解析手段は、前記第1のスペクトル波形I(T)と前記第2のスペクトル波形I(T)とを重畳した波形I(T)+I(T)を用いて前記差分を正規化した後に、前記ピーク波長を求めることを特徴とする、請求項2に記載の膜厚測定装置。
  4.  前記膜厚解析手段は、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)との比I(T)/I(T)を演算し、該比が1となる波長を前記ピーク波長とすることを特徴とする、請求項1に記載の膜厚測定装置。
  5.  前記膜厚解析手段は、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)とをそれぞれフーリエ変換して得られる第1のフーリエ変換波形F{I(T)}及び第2のフーリエ変換波形F{I(T)}に基づいて、隣り合う前記ピーク波長の間隔に相当する数値を求め、該数値の時間変化から前記測定対象物の膜厚の時間変化を求めることを特徴とする、請求項1に記載の膜厚測定装置。
  6.  隣り合う前記ピーク波長の間隔に相当する前記数値は、単位波長当たりの干渉光のスペクトル波形の繰り返し数であることを特徴とする、請求項5に記載の膜厚測定装置。
  7.  隣り合う前記ピーク波長の間隔に相当する前記数値は、単位波長当たりの干渉光のスペクトル波形の繰り返し数から換算された位相であることを特徴とする、請求項5に記載の膜厚測定装置。
  8.  前記測定対象物は基板上の半導体膜であり、所定の処理の実行中における前記半導体膜の膜厚の時間変化を測定することを特徴とする、請求項1~7のいずれか一項に記載の膜厚測定装置。
  9.  前記測定光源は、前記所定帯域に亘る白色光を前記測定光として供給する白色光源であることを特徴とする、請求項1~8のいずれか一項に記載の膜厚測定装置。
  10.  第1面及び第2面を有する膜状の測定対象物の膜厚の時間変化を測定する膜厚測定方法であって、
     所定帯域に亘る波長成分を含む測定光を測定光源から前記測定対象物へと供給する測定光供給ステップと、
     前記測定対象物の前記第1面からの前記測定光の反射光、及び前記第2面からの前記測定光の反射光が重畳して成る出力光の各時点での強度を波長毎に検出する検出ステップと、
     前記測定対象物の膜厚の時間変化を求める膜厚解析ステップと
    を備え、
     前記膜厚解析ステップの際に、前記第1面からの前記反射光と前記第2面からの前記反射光とが相互に干渉して生じる干渉光の強度が極大もしくは極小となるピーク波長又は隣り合う前記ピーク波長の間隔に相当する数値を、前記検出ステップにおいて互いに異なる二以上の時刻において検出された前記出力光の各スペクトル波形に基づいて求め、前記ピーク波長又は隣り合う前記ピーク波長の間隔に相当する数値の時間変化から前記測定対象物の膜厚の時間変化を求めることを特徴とする、膜厚測定方法。
  11.  前記膜厚解析ステップの際に、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)との差分I(T)-I(T)を演算し、該差分がゼロとなる波長を前記ピーク波長とすることを特徴とする、請求項10に記載の膜厚測定方法。
  12.  前記膜厚解析ステップの際に、前記第1のスペクトル波形I(T)と前記第2のスペクトル波形I(T)とを重畳した波形I(T)+I(T)を用いて前記差分を正規化した後に、前記ピーク波長を求めることを特徴とする、請求項11に記載の膜厚測定方法。
  13.  前記膜厚解析ステップの際に、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)との比I(T)/I(T)を演算し、該比が1となる波長を前記ピーク波長とすることを特徴とする、請求項10に記載の膜厚測定方法。
  14.  前記膜厚解析ステップの際に、第1の時刻Tにおいて検出された前記出力光に関する第1のスペクトル波形I(T)と、前記第1の時刻Tとは異なる第2の時刻Tにおいて検出された前記出力光に関する第2のスペクトル波形I(T)とをそれぞれフーリエ変換して得られる第1のフーリエ変換波形F{I(T)}及び第2のフーリエ変換波形F{I(T)}に基づいて、隣り合う前記ピーク波長の間隔に相当する数値を求め、該数値の時間変化から前記測定対象物の膜厚の時間変化を求めることを特徴とする、請求項10に記載の膜厚測定方法。
  15.  隣り合う前記ピーク波長の間隔に相当する前記数値は、単位波長当たりの干渉光のスペクトル波形の繰り返し数であることを特徴とする、請求項14に記載の膜厚測定方法。
  16.  隣り合う前記ピーク波長の間隔に相当する前記数値は、単位波長当たりの干渉光のスペクトル波形の繰り返し数から換算された位相であることを特徴とする、請求項14に記載の膜厚測定方法。
  17.  前記測定対象物は基板上の半導体膜であり、所定の処理の実行中における前記半導体膜の膜厚の時間変化を測定することを特徴とする、請求項10~16のいずれか一項に記載の膜厚測定方法。
  18.  前記測定光源は、前記所定帯域に亘る白色光を前記測定光として供給する白色光源であることを特徴とする、請求項10~17のいずれか一項に記載の膜厚測定方法。
PCT/JP2010/062607 2009-10-13 2010-07-27 膜厚測定装置および膜厚測定方法 WO2011045967A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112010004023.0T DE112010004023B4 (de) 2009-10-13 2010-07-27 Filmdickenmessvorrichtung und Filmdickenmessverfahren
JP2011536067A JP5519688B2 (ja) 2009-10-13 2010-07-27 膜厚測定装置および膜厚測定方法
US13/497,722 US8885173B2 (en) 2009-10-13 2010-07-27 Film thickness measurement device and film thickness measurement method
CN201080038809.3A CN102483320B (zh) 2009-10-13 2010-07-27 膜厚测定装置及膜厚测定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-236449 2009-10-13
JP2009236449 2009-10-13

Publications (1)

Publication Number Publication Date
WO2011045967A1 true WO2011045967A1 (ja) 2011-04-21

Family

ID=43876022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062607 WO2011045967A1 (ja) 2009-10-13 2010-07-27 膜厚測定装置および膜厚測定方法

Country Status (7)

Country Link
US (1) US8885173B2 (ja)
JP (1) JP5519688B2 (ja)
KR (1) KR101653854B1 (ja)
CN (1) CN102483320B (ja)
DE (1) DE112010004023B4 (ja)
TW (1) TWI486548B (ja)
WO (1) WO2011045967A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353335A (zh) * 2011-06-14 2012-02-15 青岛理工大学 油膜厚度光干涉测量的阶梯速度方法
JP2013120063A (ja) * 2011-12-06 2013-06-17 Shimadzu Corp 表面処理状況モニタリング装置
CN103162832A (zh) * 2011-12-19 2013-06-19 中国科学院微电子研究所 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
CN103162830A (zh) * 2011-12-19 2013-06-19 北京智朗芯光科技有限公司 包含参考光束的垂直入射光谱仪及光学测量系统
JP2013217776A (ja) * 2012-04-09 2013-10-24 Shimadzu Corp 表面処理状況モニタリング装置
US10295409B2 (en) 2016-02-11 2019-05-21 Toshiba Memory Corporation Substrate measurement system, method of measuring substrate, and computer program product
CN113137930A (zh) * 2021-04-25 2021-07-20 西南石油大学 一种泡沫液膜薄化的可视化与定量测定方法
WO2022180830A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 多層膜の非接触測定法
KR20230138464A (ko) 2021-02-09 2023-10-05 하마마츠 포토닉스 가부시키가이샤 막 두께 측정 장치 및 막 두께 측정 방법
JP7492183B2 (ja) 2021-02-26 2024-05-29 日本電信電話株式会社 多層膜の非接触測定法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012063321A (ja) 2010-09-17 2012-03-29 Hamamatsu Photonics Kk 反射率測定装置、反射率測定方法、膜厚測定装置及び膜厚測定方法
US9395173B2 (en) 2014-10-22 2016-07-19 National Applied Research Laboratories Multi-functioned optical measurement device and method for optically measuring a plurality of parameters
KR101487519B1 (ko) * 2013-01-30 2015-01-29 우범제 플라즈마 공정챔버
WO2016181743A1 (ja) * 2015-05-12 2016-11-17 コニカミノルタ株式会社 植物生育指標測定装置および該方法ならびに植物生育指標測定システム
CN105136046B (zh) * 2015-05-15 2018-11-16 华南师范大学 激光干涉法薄膜厚度变化量在线监测方法和装置
JP6491054B2 (ja) * 2015-06-29 2019-03-27 日立Geニュークリア・エナジー株式会社 構造材の変形量評価装置および方法
TWI600876B (zh) 2015-11-23 2017-10-01 財團法人工業技術研究院 量測系統
JP6575824B2 (ja) * 2017-03-22 2019-09-18 トヨタ自動車株式会社 膜厚測定方法および膜厚測定装置
JP7199093B2 (ja) * 2019-01-29 2023-01-05 大塚電子株式会社 光学測定システムおよび光学測定方法
JP7141044B2 (ja) * 2019-05-15 2022-09-22 株式会社デンソー 膜厚測定方法
JP7363127B2 (ja) * 2019-06-26 2023-10-18 株式会社Sumco 半導体ウェーハの厚み測定方法
JPWO2021106299A1 (ja) * 2019-11-26 2021-06-03
CN114322762B (zh) * 2021-12-16 2024-03-29 上海精测半导体技术有限公司 光学参数测量方法及装置
CN117249773B (zh) * 2023-11-08 2024-02-06 南通元激发科技有限公司 一种近退相干厚膜的膜层厚度及其折射率的测量方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575605A (en) * 1978-12-04 1980-06-07 Ibm Optical apparatus
JPS6350703A (ja) * 1986-08-21 1988-03-03 Chino Corp 膜厚測定装置
JPH1114312A (ja) * 1997-06-24 1999-01-22 Toshiba Corp 成膜装置及びエッチング装置
JP2010230515A (ja) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk 膜厚測定装置及び測定方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63122906A (ja) 1986-11-13 1988-05-26 Toshiba Corp 膜厚測定装置
JPS6428509A (en) 1987-07-23 1989-01-31 Nippon Kokan Kk Apparatus for measuring thickness of film
JP2612089B2 (ja) 1990-08-10 1997-05-21 富士通株式会社 被エッチング膜の膜厚検出方法、膜厚検出装置及びエッチング装置
JP2656869B2 (ja) 1991-12-24 1997-09-24 沖電気工業株式会社 ドライエッチングにおける終点検出方法
JPH06252113A (ja) 1993-02-26 1994-09-09 Matsushita Electric Ind Co Ltd 半導体基板の平坦化方法
JP3491337B2 (ja) 1994-05-13 2004-01-26 株式会社デンソー 半導体厚非接触測定装置
JPH11132726A (ja) 1997-10-24 1999-05-21 Canon Inc 膜厚測定方法
JP2000097648A (ja) * 1998-09-25 2000-04-07 Toshiba Corp 段差測定装置および段差測定方法
EP1124255A3 (en) 1999-04-05 2001-10-17 Applied Materials, Inc. Etching process in the fabrication of electronic devices
TW492106B (en) * 2000-06-20 2002-06-21 Hitachi Ltd Inspection method for thickness of film to be processed using luminous beam-splitter and method of film processing
JP3402321B2 (ja) 2000-12-08 2003-05-06 株式会社ニコン 測定装置、研磨状況モニタ装置、研磨装置、半導体デバイス製造方法、並びに半導体デバイス
US6888639B2 (en) 2001-09-24 2005-05-03 Applied Materials, Inc. In-situ film thickness measurement using spectral interference at grazing incidence
US6547854B1 (en) 2001-09-25 2003-04-15 The United States Of America As Represented By The United States Department Of Energy Amine enriched solid sorbents for carbon dioxide capture
US20030133126A1 (en) 2002-01-17 2003-07-17 Applied Materials, Inc. Spectral reflectance for in-situ film characteristic measurements
US6806948B2 (en) * 2002-03-29 2004-10-19 Lam Research Corporation System and method of broad band optical end point detection for film change indication
JP3852386B2 (ja) 2002-08-23 2006-11-29 株式会社島津製作所 膜厚測定方法及び膜厚測定装置
US7306696B2 (en) * 2002-11-01 2007-12-11 Applied Materials, Inc. Interferometric endpoint determination in a substrate etching process
EP1467177A1 (en) 2003-04-09 2004-10-13 Mitsubishi Chemical Engineering Corporation Method and apparatus for measuring thicknesses of layers of multilayer thin film
KR100947228B1 (ko) 2003-06-20 2010-03-11 엘지전자 주식회사 광디스크의 두께 측정 방법
JP2005084019A (ja) 2003-09-11 2005-03-31 Akifumi Ito 基板の温度測定方法
US20050194095A1 (en) * 2004-03-02 2005-09-08 Tatehito Usui Semiconductor production apparatus
JP4216209B2 (ja) 2004-03-04 2009-01-28 大日本スクリーン製造株式会社 膜厚測定方法および装置
JP2007040930A (ja) 2005-08-05 2007-02-15 Ebara Corp 膜厚測定方法及び基板処理装置
US7998358B2 (en) 2006-10-31 2011-08-16 Applied Materials, Inc. Peak-based endpointing for chemical mechanical polishing
CN101294795B (zh) 2007-04-25 2011-02-16 横河电机株式会社 测量薄膜厚度的装置和方法
CN100573036C (zh) 2008-04-20 2009-12-23 华中科技大学 一种薄膜厚度和折射率的光学测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5575605A (en) * 1978-12-04 1980-06-07 Ibm Optical apparatus
JPS6350703A (ja) * 1986-08-21 1988-03-03 Chino Corp 膜厚測定装置
JPH1114312A (ja) * 1997-06-24 1999-01-22 Toshiba Corp 成膜装置及びエッチング装置
JP2010230515A (ja) * 2009-03-27 2010-10-14 Hamamatsu Photonics Kk 膜厚測定装置及び測定方法

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353335B (zh) * 2011-06-14 2013-08-21 青岛理工大学 油膜厚度光干涉测量的阶梯速度方法
CN102353335A (zh) * 2011-06-14 2012-02-15 青岛理工大学 油膜厚度光干涉测量的阶梯速度方法
JP2013120063A (ja) * 2011-12-06 2013-06-17 Shimadzu Corp 表面処理状況モニタリング装置
CN103162830B (zh) * 2011-12-19 2015-02-04 北京智朗芯光科技有限公司 包含参考光束的垂直入射光谱仪及光学测量系统
WO2013091404A1 (zh) * 2011-12-19 2013-06-27 北京智朗芯光科技有限公司 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
CN103162830A (zh) * 2011-12-19 2013-06-19 北京智朗芯光科技有限公司 包含参考光束的垂直入射光谱仪及光学测量系统
CN103162832B (zh) * 2011-12-19 2014-12-10 中国科学院微电子研究所 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
CN103162832A (zh) * 2011-12-19 2013-06-19 中国科学院微电子研究所 包含参考光束的垂直入射宽带偏振光谱仪及光学测量系统
US9170156B2 (en) 2011-12-19 2015-10-27 Bei Optics Technology Co., Ltd. Normal-incidence broadband spectroscopic polarimeter containing reference beam and optical measurement system
JP2013217776A (ja) * 2012-04-09 2013-10-24 Shimadzu Corp 表面処理状況モニタリング装置
US10295409B2 (en) 2016-02-11 2019-05-21 Toshiba Memory Corporation Substrate measurement system, method of measuring substrate, and computer program product
KR20230138464A (ko) 2021-02-09 2023-10-05 하마마츠 포토닉스 가부시키가이샤 막 두께 측정 장치 및 막 두께 측정 방법
WO2022180830A1 (ja) * 2021-02-26 2022-09-01 日本電信電話株式会社 多層膜の非接触測定法
JP7492183B2 (ja) 2021-02-26 2024-05-29 日本電信電話株式会社 多層膜の非接触測定法
CN113137930A (zh) * 2021-04-25 2021-07-20 西南石油大学 一种泡沫液膜薄化的可视化与定量测定方法
CN113137930B (zh) * 2021-04-25 2022-02-01 西南石油大学 一种泡沫液膜薄化的可视化与定量测定方法

Also Published As

Publication number Publication date
DE112010004023T5 (de) 2012-12-27
TW201118334A (en) 2011-06-01
TWI486548B (zh) 2015-06-01
CN102483320B (zh) 2014-04-02
JPWO2011045967A1 (ja) 2013-03-04
US20120218561A1 (en) 2012-08-30
KR20120081024A (ko) 2012-07-18
US8885173B2 (en) 2014-11-11
CN102483320A (zh) 2012-05-30
DE112010004023B4 (de) 2021-10-28
JP5519688B2 (ja) 2014-06-11
KR101653854B1 (ko) 2016-09-02

Similar Documents

Publication Publication Date Title
JP5519688B2 (ja) 膜厚測定装置および膜厚測定方法
TWI465682B (zh) Film thickness measuring device and measuring method
US7515253B2 (en) System for measuring a sample with a layer containing a periodic diffracting structure
US20130077100A1 (en) Surface shape measurement method and surface shape measurement apparatus
US7327475B1 (en) Measuring a process parameter of a semiconductor fabrication process using optical metrology
JP2013195290A (ja) 光学的距離測定装置
JP2011027461A (ja) パターン形状計測方法、半導体装置の製造方法、およびプロセス制御システム
TWI766116B (zh) 膜厚計測裝置、膜厚計測方法、膜厚計測程式及記錄膜厚計測程式之記錄媒體
KR100595348B1 (ko) 박막 또는 박층의 두께를 측정하기 위한 방법 및 장치
US9228828B2 (en) Thickness monitoring device, etching depth monitoring device and thickness monitoring method
JP2007248255A (ja) 光強度計測方法及び光強度計測装置並びに偏光解析装置およびこれを用いた製造管理装置
US20040227955A1 (en) Method and apparatus for measuring thicknesses of layers of multilayer thin film
KR102195132B1 (ko) 편광자 연속 회전 광량 측정 방법
JP2013048183A (ja) エッチングモニタリング装置
US7826072B1 (en) Method for optimizing the configuration of a scatterometry measurement system
JP3632078B2 (ja) 透明平行平板の表面形状測定および厚さ不均一測定のための干渉縞解析法
JP2014016194A (ja) 光学特性測定システムおよび光学特性測定方法
US20240027184A1 (en) Method and Apparatus for Measuring the Thickness of a Transparent Layer on Nanometer Scale
JP2023170825A (ja) 膜厚測定装置及び膜厚測定方法
CN115077398A (zh) 光学测量方法
KR100588988B1 (ko) 박막의 두께를 측정하는 방법
JPS63309807A (ja) 凹凸部深さ測定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038809.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10823235

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011536067

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20117028520

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13497722

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1120100040230

Country of ref document: DE

Ref document number: 112010004023

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10823235

Country of ref document: EP

Kind code of ref document: A1