WO2011043426A1 - 炭化ケイ素接合体及び炭化ケイ素部材の接合方法 - Google Patents

炭化ケイ素接合体及び炭化ケイ素部材の接合方法 Download PDF

Info

Publication number
WO2011043426A1
WO2011043426A1 PCT/JP2010/067663 JP2010067663W WO2011043426A1 WO 2011043426 A1 WO2011043426 A1 WO 2011043426A1 JP 2010067663 W JP2010067663 W JP 2010067663W WO 2011043426 A1 WO2011043426 A1 WO 2011043426A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
group
silicone composition
curable silicone
component
Prior art date
Application number
PCT/JP2010/067663
Other languages
English (en)
French (fr)
Inventor
良隆 青木
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to JP2011535455A priority Critical patent/JPWO2011043426A1/ja
Priority to CN201080045082.1A priority patent/CN102574745B/zh
Priority to EP20100822096 priority patent/EP2487145A1/en
Priority to US13/500,703 priority patent/US20120196135A1/en
Publication of WO2011043426A1 publication Critical patent/WO2011043426A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/005Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of glass or ceramic material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/04Ceramic interlayers
    • C04B2237/08Non-oxidic interlayers
    • C04B2237/083Carbide interlayers, e.g. silicon carbide interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/365Silicon carbide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the present invention relates to a silicon carbide bonded body in which silicon carbide members are bonded to each other with a silicon carbide bonding layer, and a method for manufacturing the bonded body.
  • Silicon carbide ceramics are chemically stable at room temperature and high temperature, and have excellent mechanical strength at high temperature, and therefore are used as high temperature materials.
  • boards and processes in the process of heat-treating semiconductor wafers and thermally diffusing trace elements into semiconductor wafers with high-purity silicon carbide ceramics sintered with excellent heat resistance and creep resistance It has come to be used for tubes.
  • silicon carbide material having a certain shape is produced as a sintered body by molding and firing silicon carbide powder.
  • silicon carbide is difficult to sinter, it can be formed into a simple shape. It is difficult to form a complicated shape. Then, after manufacturing the silicon carbide member of two or more comparatively simple shapes by sintering, obtaining the product which has the required shape formed by joining these members is performed.
  • Patent Document 1 a method of joining silicon carbide members
  • Patent Document 2 a method of joining by press-sintering with an inorganic adhesive by hot pressing
  • Patent Document 1 heat treatment is performed by interposing silicon on the joining surfaces of the silicon carbide members.
  • Patent Document 2 A method (Patent Document 2) is known.
  • the inorganic adhesive used in the method described in Patent Document 1 causes free carbon and iron-derived impurity elements that are harmful in the field of semiconductor devices. Since silicon used as an adhesive in the method described in Patent Document 2 melts at 1600 ° C. to 1700 ° C., there is a problem that the joined members cannot withstand the annealing treatment.
  • JP 2002-338334 A Japanese Patent Laid-Open No. 2001-163680
  • an object of the present invention is to solve the problems of the prior art described above, to produce a high-purity silicon carbide bonded body having heat resistance that does not generate harmful impurity elements for semiconductors and can withstand the high-temperature annealing treatment, and the bonding It is in providing the manufacturing method of a body.
  • the present inventors use silicon carbide as a bonding layer, and by forming the silicon carbide bonding layer by mineralization by thermal decomposition of the curable silicone composition, It has been found that the above problems can be solved.
  • the present invention firstly Provided is a silicon carbide bonded body comprising a first silicon carbide member, a second silicon carbide member, and a silicon carbide bonding layer interposed between the first and second silicon carbide members.
  • the present invention secondly, Interposing a curable silicone composition in layers between the first silicon carbide member and the second silicon carbide member; Curing the layered curable silicone composition; The obtained cured product is thermally decomposed and converted into silicon carbide under a non-oxidizing atmosphere to form a silicon carbide bonding layer for bonding the first and second silicon carbide members.
  • the manufacturing method of said silicon carbide joined body including this is provided.
  • the silicon carbide bonded body of the present invention is highly reliable because silicon carbide in the bonded portion has a high purity and is not likely to be adversely affected by impurity elements in the field of semiconductor devices and has high heat resistance.
  • the starting material is a silicone composition
  • the silicone composition having a carbon-silicon bond is cured, Since only the thermal decomposition causes the bonded portion to become high-purity silicon carbide, a high-purity silicon carbide bonded body having high heat resistance can be easily manufactured.
  • the present invention is particularly useful in the semiconductor field.
  • room temperature means ambient temperature and can usually vary within a range of 10 to 35 ° C.
  • the bonding layer responsible for bonding is made of silicon carbide of the same quality as the silicon carbide member that is the adherend, and has high purity, so it is mechanically high in strength even at high temperatures.
  • the silicon carbide member constituting the silicon carbide joined body is made of a silicon carbide sintered body, and the content of impurity elements contained in silicon carbide is preferably 1 ppm or less, more preferably 0.5 ppm or less, Preferably it is 0.1 ppm or less.
  • the bonding layer is also composed of a silicon carbide sintered body, and the total content of impurity elements contained in silicon carbide is preferably 1 ppm or less, more preferably 0.5 ppm or less, and still more preferably Is 0.1 ppm or less.
  • the impurity elements contained in the silicon carbide member and the bonding layer include, in particular, Fe, Cr, Ni, Al, Ti, Cu, Na, Zn, Ca, Zr, Mg, and B, one of these Or two or more types may be included. It is preferable that these total contents are below the said upper limit.
  • the production method of the present invention comprises: (1): A curable silicone composition is interposed between the first silicon carbide member and the second silicon carbide member in a layered manner. (2): The obtained layered curable silicone composition is cured, (3): The obtained cured product is thermally decomposed and converted into silicon carbide in a non-oxidizing atmosphere to form a silicon carbide bonding layer for bonding the first and second silicon carbide members. Process.
  • Step (1) The method for interposing the curable silicone composition in layers between the first silicon carbide member and the second silicon carbide member is not limited.
  • a liquid curable silicone composition is applied to the surface of one silicon carbide member, and the other silicon carbide member is brought into close contact with the obtained coating film.
  • a sheet or film-like curable silicone composition may be sandwiched between both silicon carbide members.
  • Step (2) The obtained layered curable silicone composition is cured, and the curing method and conditions are appropriately selected depending on the type of curable silicone composition to be used.
  • Step (3) The obtained cured product is thermally decomposed and bonded in a non-oxidizing atmosphere to be converted into silicon carbide.
  • the curable silicone composition used in the method of the present invention may contain silicon carbide powder.
  • the silicon carbide powder preferably has an average particle size of 0.1 ⁇ m to 100 ⁇ m, more preferably 1 ⁇ m to 50 ⁇ m, as measured by a laser diffraction / scattering particle size / particle size distribution measuring device.
  • the “average particle diameter” is the median diameter, and when the powder is divided into two with a certain particle diameter as a boundary, the particle diameter in which the amount of powder on the larger side and the amount of powder on the smaller side are equal in mass. That is.
  • As the silicon carbide powder a commercially available high purity silicon carbide powder may be used.
  • an inorganic ceramic consisting essentially of carbon, silicon and oxygen by heating a silicone powder, particularly a cured product of a radiation curable or peroxide curable silicone composition, in a non-oxidizing atmosphere at 400 ° C. to 1500 ° C. And may be obtained by thermal decomposition at a temperature exceeding 1500 ° C. and not exceeding 2200 ° C. in the same atmosphere.
  • the content of the silicon carbide powder in the composition may be in the range of 5 to 90% by volume, preferably in the range of 10 to 80% by volume, and more preferably in the range of 20 to 70% by volume.
  • the curable silicone composition used in the steps (1) and (2) known ones can be used. Specific examples thereof include organic peroxide curable, radiation curable, addition curable, and condensation curable organopolysiloxane compositions. Among these, an organic peroxide curable and radiation curable silicone composition is preferable in that a higher-purity bonding layer can be obtained, and the total content of the aforementioned impurity elements is 1 ppm or less, preferably 0.5 ppm or less. Furthermore, it can be suppressed to 0.1 ppm or less.
  • organic peroxide curable silicone composition examples include a linear chain having an alkenyl group such as a vinyl group at one or both of a molecular chain non-terminal part (one terminal or both terminals) and a molecular chain terminal part.
  • a silicone composition that cures by radical polymerization of an organopolysiloxane in the presence of an organic peroxide can be given.
  • Examples of the radiation curable silicone composition include an ultraviolet curable silicone composition and an electron beam curable silicone composition.
  • the ultraviolet curable silicone composition examples include a silicone composition that is cured by ultraviolet energy having a wavelength of 200 to 400 nm.
  • the curing mechanism is not particularly limited. Specific examples thereof include an acrylic silicone composition containing an organopolysiloxane having an acrylic group or a methacryl group and a photopolymerization initiator, a mercapto group-containing organopolysiloxane and an organopolysiloxane having an alkenyl group such as a vinyl group.
  • Mercapto-vinyl addition polymerization type silicone composition containing photopolymerization initiator, addition reaction type silicone composition using the same platinum group metal catalyst as thermosetting addition reaction type, organopolysiloxane containing epoxy group And a cationic polymerization type silicone composition containing an onium salt catalyst, and any of them can be used as an ultraviolet curable silicone composition.
  • any silicone composition that is cured by radical polymerization initiated by irradiating an electron beam to an organopolysiloxane having a radical polymerizable group can be used.
  • the addition-curable silicone composition is cured by a reaction (hydrosilylation addition reaction) in the presence of the above-described linear organopolysiloxane having an alkenyl group, an organohydrogenpolysiloxane, and a platinum group metal catalyst.
  • the silicone composition to be mentioned can be mentioned.
  • condensation curable silicone composition for example, a silanol-blocked organopolysiloxane at both ends and an organohydrogenpolysiloxane or a hydrolyzable silane such as tetraalkoxysilane or organotrialkoxysilane and / or a partially hydrolyzed condensate thereof are used.
  • Silicone compositions that are cured by reaction in the presence of a condensation reaction catalyst such as an organotin catalyst, or both ends are trialkoxy groups, dialkoxyorgano groups, trialkoxysiloxyethyl groups, dialkoxyorganosiloxyethyl groups, etc. Examples thereof include a silicone composition that is cured by reacting the blocked organopolysiloxane in the presence of a condensation reaction such as an organotin catalyst.
  • a radiation curable silicone composition and an organic peroxide curable silicone composition are desirable.
  • Organic peroxide curing reaction type silicone composition As an organic peroxide curing reaction type silicone composition, specifically, for example, (A) an organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom; and (b) an organic peroxide and, as an optional component, (c) at least two hydrogen atoms bonded to the silicon atom (ie, SiH groups). Organohydrogenpolysiloxane contained in an amount of 0.1 to 2 mol of hydrogen atoms bonded to silicon atoms in the component (c) per mol of alkenyl groups in the total curable silicone composition Organic peroxide curing reaction type silicone composition.
  • the organopolysiloxane of the (a) component is a base polymer of an organic peroxide curing reaction type silicone composition.
  • the degree of polymerization of the organopolysiloxane of component (a) is not particularly limited, and as component (a), liquid organopolysiloxanes at 25 ° C. to raw rubber-like organopolysiloxane can be used, but the average degree of polymerization is preferred.
  • An organopolysiloxane of about 50 to 20,000, more preferably about 100 to 10,000, and still more preferably about 100 to 2,000 is preferably used.
  • the organopolysiloxane of component (a) is basically composed of repeating diorganosiloxane units (R 1 2 SiO 2/2 units) from the viewpoint of easy availability of raw materials, both molecular chain terminals are blocked with triorganosiloxy groups (R 1 3 SiO 1/2) or hydroxy diorganosiloxy group ((HO) R 1 2 SiO 1/2 units), linear structure having no branch, Alternatively, although the molecular chain has a cyclic structure having no branch, consisting of repeating diorganosiloxane units, it may partially contain a branched structure such as a trifunctional siloxane unit or SiO 2 unit.
  • R 1 is as defined in formula (1) described below.
  • R 1 for example, the following average composition formula (1): R 1 a SiO (4-a) / 2 (1)
  • R 1 represents the same or different unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and 50 to 99 mol% of R 1 represents alkenyl.
  • A is a positive number in the range of 1.5 to 2.8, more preferably 1.8 to 2.5, and even more preferably 1.95 to 2.05.
  • Organopolysiloxanes having at least two alkenyl groups in the molecule are used.
  • R 1 examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl; aryl groups such as phenyl, tolyl, xylyl, and naphthyl; cyclopentyl A cycloalkyl group such as a cyclohexyl group; an alkenyl group such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, and a butenyl group; a part or all of the hydrogen atoms of these hydrocarbon groups are halogens such as fluorine, bromine, and chlorine A group substituted with an atom, a cyano group or the like, for example, a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and the like can be mentioned. From the viewpoint of
  • R 1 are alkenyl groups (particularly alkenyl groups having preferably 2 to 8, more preferably 2 to 6 carbon atoms).
  • the content of the alkenyl group is in the total organic group bonded to the silicon atom (that is, in the unsubstituted or substituted all monovalent hydrocarbon group represented by R 1 in the average composition formula (1)), preferably 50. It is ⁇ 99 mol%, particularly preferably 75 to 95 mol%.
  • the organopolysiloxane as the component (a) has a linear structure, this alkenyl group is bonded to a silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, and both of them are silicon. It may be bonded to an atom.
  • component (b) component is an organic peroxide used as a catalyst for accelerating the crosslinking reaction of component (a) in the organic peroxide curing reaction type organopolysiloxane composition.
  • component (b) conventionally known organic peroxides can be used as long as the crosslinking reaction of the component (a) can be promoted.
  • benzoyl peroxide 2,4-dichlorobenzoyl peroxide, p-methylbenzoyl peroxide, o-methylbenzoyl peroxide, 2,4-dicumyl peroxide, 2,5- Examples include dimethyl-bis (2,5-t-butylperoxy) hexane, di-t-butylperoxide, t-butylperbenzoate, 1,1-bis (t-butylperoxycarboxy) hexane, and the like. However, it is not particularly limited to these.
  • the amount of component (b) added is an effective amount as a catalyst for promoting the crosslinking reaction of component (a).
  • the amount of the component (a) is preferably 0.1 to 10 parts by mass, more preferably 0.2 to 2 parts by mass with respect to 100 parts by mass of the component.
  • the added amount is less than 0.1 parts by mass with respect to 100 parts by mass of component (a)
  • the amount added is more than 10 parts by mass relative to 100 parts by mass of component (a)
  • foaming derived from component (b) occurs, and the strength and heat resistance of the cured reaction product are adversely affected. Receive.
  • Component (c) which is an optional component, has at least two hydrogen atoms (SiH groups) bonded to silicon atoms (usually 2 to 200), preferably 3 or more (Usually 3 to 100).
  • the component alone can be cured by adding the component (b) and heating, but by adding the component (c), compared to the case of the component (a) alone, ) Since it easily reacts with the component, it can be cured at a lower temperature and in a shorter time.
  • the molecular structure of component (c) is not particularly limited. For example, any conventionally produced organohydrogenpolysiloxane such as linear, cyclic, branched, and three-dimensional network (resin-like) can be used as component (c).
  • the SiH group is bonded to the silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, but is bonded to the silicon atom in both of them. Also good.
  • the number of silicon atoms in one molecule (or the degree of polymerization) is usually 2 to 300, preferably about 4 to 150, and the organohydrogenpolysiloxane that is liquid at room temperature (25 ° C.) (C) It can use preferably as a component.
  • R 2 for example, the following average composition formula (2): R 2 b H c SiO (4-bc) / 2 (2) (Wherein, R 2 is identical or different unsubstituted or substituted, containing no aliphatic unsaturated bond, a monovalent hydrocarbon group having carbon atoms 1 to 10, more preferably 1 ⁇ 8, b And c are preferably 0.7 ⁇ b ⁇ 2.1, 0.001 ⁇ c ⁇ 1.0, and 0.8 ⁇ b + c ⁇ 3.0, more preferably 1.0 ⁇ b ⁇ 2.0, (It is a positive number satisfying 0.01 ⁇ c ⁇ 1.0 and 1.5 ⁇ b + c ⁇ 2.5.)
  • R 2 include the same groups as R 1 in the average composition formula (1) (excluding alkenyl groups).
  • organohydrogenpolysiloxane represented by the above average composition formula (2) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, both ends methylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends methylhydrogensiloxy group-blocked methylhydro Polysiloxane / dimethylsiloxane copolymer, tri
  • the amount of component (c) to be added is arbitrary, but it can be preferably in the range of 0 to 100 parts by mass, more preferably 0 to 50 parts by mass with respect to 100 parts by mass of component (a).
  • the added amount is more than 100 parts by mass with respect to 100 parts by mass of component (a)
  • foaming derived from component (c) occurs, and the strength and heat resistance of the cured reaction product are adversely affected. .
  • UV curable silicone composition Specific examples of the ultraviolet curable silicone composition include, for example, an ultraviolet curable silicone composition containing (d) an ultraviolet reactive organopolysiloxane and (e) a photopolymerization initiator.
  • the ultraviolet-reactive organopolysiloxane of (d) component normally acts as a base polymer in an ultraviolet curable silicone composition.
  • the component (d) is not particularly limited, and is preferably an organopolysiloxane having at least 2, more preferably 2 to 20, and particularly preferably 2 to 10 UV-reactive groups in one molecule.
  • a plurality of the ultraviolet curable groups present in the organopolysiloxane may be the same or different.
  • the organopolysiloxane of component (d) is basically composed of repeating diorganosiloxane units (R 1 2 SiO 2/2 units) in the molecular chain (main chain).
  • R 1 is as described in relation to the formula (1).
  • the organopolysiloxane of component (d) has a linear structure, it has an ultraviolet-reactive group only at one of the molecular chain terminal and the part that is not the molecular chain terminal. However, it is preferable to have UV reactive groups at least at both ends of the molecular chain.
  • Examples of the ultraviolet reactive group include alkenyl groups such as vinyl group, allyl group and propenyl group; alkenyloxy groups such as vinyloxy group, allyloxy group, propenyloxy group and isopropenyloxy group; acryloyl group and methacryloyl group.
  • the viscosity of the organopolysiloxane is not particularly limited, but is 100 mPa.s at 25 ° C. s to 1,000,000 mPa.s s, preferably 200 to 500,000 mPa.s. s, more preferably 200 to 100,000 mPa.s. Particularly preferred is s.
  • component (d) for example, the following general formula (3a);
  • R 3 is the same or different, unsubstituted or substituted monovalent hydrocarbon group having no UV-reactive group, and R 4 is the same or different group having an UV-reactive group, R 5 is the same or different group having an ultraviolet reactive group, m is an integer of 5 to 1,000, n is an integer of 0 to 100, f is an integer of 0 to 3, g is an integer of 0 to 3, provided that f + g + n ⁇ 2] Or the following general formula (3b);
  • R 3 , R 4 , R 5 , m, n, f, and g are as defined in the general formula (3a), h is an integer of 2 to 4, and i and j are each 1 Is an integer of ⁇ 3, where fi + gj + n ⁇ 2]
  • an organopolysiloxane having at least two ultraviolet-reactive groups represented by the formula:
  • R 3 is preferably the same or different, unsubstituted or substituted monovalent, monovalent carbon atoms having no UV-reactive group, preferably 1 to 20, more preferably 1 to 10 is still more preferably 1 to 8 monovalent hydrocarbon group.
  • the monovalent hydrocarbon group represented by R 3 include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, and hexyl groups; aryl such as phenyl, tolyl, xylyl, and naphthyl groups.
  • a cycloalkyl group such as a cyclopentyl group, a cyclohexyl group or a cyclopentyl group; an aralkyl group such as a benzyl group or a phenylethyl group; a part or all of the hydrogen atoms bonded to these hydrocarbon groups are halogen atoms or cyano groups
  • a group substituted with a carboxyl group such as a chloromethyl group, a chloropropyl group, a bromoethyl group, a trifluoropropyl group, a cyanoethyl group, and a 3-cyanopropyl group, preferably a methyl group and a phenyl group, More preferably, a methyl group is mentioned.
  • the monovalent hydrocarbon group represented by R 3 may have one or more sulfonyl groups, ether bonds (—O—), carbonyl groups and the like in its skeleton.
  • examples of the ultraviolet reactive group contained in R 4 and R 5 include alkenyl groups such as vinyl group, allyl group, propenyl group; vinyloxy group, allyloxy group, propenyloxy Group, alkenyloxy group such as isopropenyloxy group; aliphatic unsaturated group other than alkenyl group such as acryloyl group and methacryloyl group; mercapto group; epoxy group; hydrosilyl group and the like, preferably acryloyl group, methacryloyl group, An epoxy group and a hydrosilyl group are mentioned, More preferably, an acryloyl group and a methacryloyl group are mentioned.
  • the group having an ultraviolet reactive group represented by R 4 and R 5 is, for example, a monovalent group having the ultraviolet reactive group exemplified above.
  • Specific examples thereof include a vinyl group, an allyl group, 3 -Glycidoxypropyl group, 2- (3,4-epoxycyclohexyl) ethyl group, 3-methacryloxypropyl group, 3-acryloxypropyl group, 3-mercaptopropyl group, 2- ⁇ bis (2-methacryloxyethoxy) ) Methylsilyl ⁇ ethyl group, 2- ⁇ bis (2-acryloxyethoxy) methylsilyl ⁇ ethyl group, 2- ⁇ (2-acryloxyethoxy) dimethylsilyl ⁇ ethyl group, 2- ⁇ bis (1,3-dimethacryloxy-2) -Propoxy) methylsilyl ⁇ ethyl group, 2- ⁇ (1,3-dimethacryloxy-2-propoxy) dimethylsilyl ⁇ ethyl
  • m is usually an integer of 5 to 1,000, preferably 10 to 800, more preferably 50 to 500, and n is usually 0 to 100, preferably Is an integer from 0 to 50, more preferably from 0 to 20, f is an integer from 0 to 3, preferably from 0 to 2, more preferably from 1 to 2, and g is from 0 to 3, preferably from 0 to 2.
  • h is usually an integer of 2 to 4, preferably 2 or 3.
  • i and j are each an integer of 1 to 3, preferably 1 or 2.
  • organopolysiloxane represented by the general formulas (3a) and (3b) has at least two ultraviolet-reactive groups as described above, f + g + n ⁇ 2 in the formula (3a), and in the formula (3b) fi + gj + n ⁇ 2.
  • organopolysiloxane represented by the above formulas (3a) and (3b) include the following.
  • R 6 is 90% methyl group and 10% phenyl group
  • the photoinitiator of (e) component has the effect
  • the component (e) is not particularly limited, and specific examples thereof include acetophenone, propiophenone, benzophenone, xanthol, fluorin, benzaldehyde, anthraquinone, triphenylamine, 4-methylacetophenone, 3-pentylacetophenone, 4- Methoxyacetophenone, 3-bromoacetophenone, 4-allylacetophenone, p-diacetylbenzene, 3-methoxybenzophenone, 4-methylbenzophenone, 4-chlorobenzophenone, 4,4'-dimethoxybenzophenone, 4-chloro-4'-benzylbenzophenone 3-chloroxanthone, 3,9-dichloroxanthone, 3-chloro-8-nonylxanthone, benzo
  • benzophenone, 4-methoxyacetophenone, 4-methylbenzophenone, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1-phenylpropan-1-one are preferable, and diethoxyacetophene is more preferable.
  • photopolymerization initiators may be used alone or in combination of two or more.
  • the amount of the component (e) added is not particularly limited, but is preferably 0.01 to 10 parts by mass, more preferably 0.1 to 3 parts by mass, and still more preferably with respect to 100 parts by mass of the component (d). Is 0.5 to 3 parts by mass. When this addition amount is within this range, it is easy to control the curing of the silicone composition.
  • Addition curable silicone composition specifically, for example, (f) an organopolysiloxane containing at least two alkenyl groups bonded to a silicon atom, (G) Organohydrogenpolysiloxane containing at least two hydrogen atoms bonded to silicon atoms (i.e., SiH groups) The silicon atoms in this component (g) per mole of alkenyl groups in the total curable silicone composition And an addition curable silicone composition containing an amount of 0.1 to 5 moles of hydrogen atoms bonded to and (h) an effective amount of a platinum group metal catalyst.
  • the organopolysiloxane of the (f) component is a base polymer of the addition-curable silicone composition and contains at least two alkenyl groups bonded to silicon atoms.
  • a known organopolysiloxane can be used as the component (f).
  • the weight average molecular weight of the organopolysiloxane of component (f) measured by gel permeation chromatography (hereinafter referred to as “GPC”) is preferably about 3,000 to 300,000 in terms of polystyrene.
  • the viscosity of the organopolysiloxane of component (f) at 25 ° C. is 100 to 1,000,000 mPa.s.
  • the organopolysiloxane of the component is basically from the viewpoint of easy availability of raw materials because the molecular chain (main chain) is a repeating diorganosiloxane unit (R 7 2 SiO 2/2 unit).
  • R 7 is as described in relation to equation (4) described below.
  • R 7 l SiO (4-1) / 2 (4) (Wherein R 7 is the same or different, unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, and l is preferably 1. 5 to 2.8, more preferably 1.8 to 2.5, and even more preferably a positive number ranging from 1.95 to 2.05). Organopolysiloxanes having groups are used. Examples of R 7 include the groups exemplified for the average composition formula (1).
  • R 7 are alkenyl groups (particularly alkenyl groups having preferably 2 to 8, more preferably 2 to 6 carbon atoms).
  • the content of the alkenyl group is in the total organic group bonded to the silicon atom (that is, in the unsubstituted or substituted all monovalent hydrocarbon group represented by R 7 in the average composition formula (4)), preferably 50. It is ⁇ 99 mol%, particularly preferably 75 to 95 mol%.
  • the organopolysiloxane of component (f) has a linear structure, this alkenyl group is bonded to a silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, and both of them are silicon.
  • At least one alkenyl group is bonded to a silicon atom at the end of the molecular chain in view of the curing speed of the composition, the physical properties of the cured product, and the like.
  • the organohydrogenpolysiloxane has at least two hydrogen atoms (SiH groups) bonded to silicon atoms (usually 2 to 200), preferably 3 or more (usually 3 to 100).
  • the component (g) reacts with the component (f) and acts as a crosslinking agent.
  • the molecular structure of the component (g) is not particularly limited.
  • any conventionally produced organohydrogenpolysiloxane such as linear, cyclic, branched, and three-dimensional network (resinous) can be used as the component (b).
  • the SiH group is bonded to the silicon atom only in one of the molecular chain terminal and the non-molecular chain terminal, but is bonded to the silicon atom in both of them. Also good.
  • the number of silicon atoms in one molecule (or the degree of polymerization) is usually 2 to 300, preferably about 4 to 150, and the organohydrogenpolysiloxane that is liquid at room temperature (25 ° C.) (G) It can use preferably as a component.
  • R 8 is a monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, having the same or different unsubstituted or substituted, aliphatic unsaturated bonds, and p And q are preferably 0.7 ⁇ p ⁇ 2.1, 0.001 ⁇ q ⁇ 1.0, and 0.8 ⁇ p + q ⁇ 3.0, more preferably 1.0 ⁇ p ⁇ 2.0, (It is a positive number satisfying 0.01 ⁇ q ⁇ 1.0 and 1.5 ⁇ p + q ⁇ 2.5.)
  • R 8 include the groups exemplified for R 1 in the average composition formula (1) (excluding alkenyl groups).
  • organohydrogenpolysiloxane represented by the above average composition formula (3) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, tris ( Hydrogendimethylsiloxy) methylsilane, tris (hydrogendimethylsiloxy) phenylsilane, methylhydrogencyclopolysiloxane, methylhydrogensiloxane-dimethylsiloxane cyclic copolymer, both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane, both ends Trimethylsiloxy group-blocked methylhydrogensiloxane / dimethylsiloxane copolymer, both ends methylhydrogensiloxy group-blocked dimethylpolysiloxane, both ends methylhydrogensiloxy group-blocked methylhydro Polysiloxane / dimethylsiloxane copolymer, tri
  • the amount of component (g) added is, in particular, per mole of alkenyl groups in the total curable silicone composition, in particular per mole of alkenyl groups bonded to silicon atoms in the total curable silicone composition.
  • the amount of SiH groups in this component (g) is 0.1 to 5.0 moles, preferably 0.5 to 3.0 moles, more preferably 0.8 moles per mole of alkenyl groups bonded to silicon atoms.
  • the amount is 8 to 2.0 mol.
  • the ratio of the alkenyl group bonded to the silicon atom in the component (f) to the alkenyl group present in the total curable silicone composition is preferably 80 to 100 mol%, and more preferably 90 to 100 mol%.
  • the amount of SiH in the component (g) is about 0.1 per mole of the alkenyl group in the component (f).
  • the amount is 1 to 5.0 mol, preferably 0.5 to 3.0 mol, more preferably 0.8 to 2.0 mol.
  • the added amount is such that the amount of SiH is less than 0.1 mol, it takes a long time to cure, which is economically disadvantageous.
  • the amount added is such that the amount of SiH is more than 5.0 mol, foaming due to dehydrogenation reaction occurs in the cured reaction product, and the strength and heat resistance of the cured reaction product are adversely affected. Receive.
  • the platinum group metal catalyst of the (h) component is used as a catalyst for promoting an addition curing reaction (hydrosilylation reaction) between the (f) component and the (g) component.
  • a known platinum group metal catalyst can be used, but it is preferable to use platinum or a platinum compound.
  • Specific examples of the component (h) include platinum black, platinous chloride, chloroplatinic acid, alcohol-modified products of chloroplatinic acid, and complexes of chloroplatinic acid with olefins, aldehydes, vinyl siloxanes, or acetylene alcohols. .
  • the amount of component (h) added is an effective amount as a catalyst, and may be increased or decreased in a timely manner according to the desired curing reaction rate. Is in the range of 0.1 to 1,000 ppm, more preferably 0.2 to 100 ppm.
  • condensation curing reaction type silicone composition specifically, for example, (I) an organopolysiloxane containing at least two silanol groups (that is, silicon atom-bonded hydroxyl groups) or silicon atom-bonded hydrolyzable groups, preferably at both ends of the molecular chain; (J) As an optional component, a hydrolyzable silane and / or a partially hydrolyzed condensate thereof, and (k) As an optional component, a condensation curing reaction type silicone composition containing a condensation reaction catalyst can be mentioned.
  • the component (i) is an organopolysiloxane containing at least two silanol groups or silicon atom-bonded hydrolyzable groups, and is a base polymer of a condensation curing reaction type silicone composition.
  • the organopolysiloxane of component (i) is basically composed of repeating diorganosiloxane units (R 9 2 SiO 2/2 units) in terms of molecular chain (main chain). A chain structure in which both ends of the molecular chain are blocked with a triorganosiloxy group (R 9 3 SiO 1/2 ), a linear structure having no branches, or a molecular chain consisting of repeating diorganosiloxane units.
  • R 9 represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms.
  • examples of hydrolyzable groups other than silanol groups include acyl groups such as acetoxy group, octanoyloxy group, benzoyloxy group; dimethyl ketoxime group, methyl ethyl ketoxime group, diethyl Ketoxime groups such as ketoxime groups (ie, iminoxy groups); alkoxy groups such as methoxy groups, ethoxy groups, and propoxy groups; alkoxyalkoxy groups such as methoxyethoxy groups, ethoxyethoxy groups, and methoxypropoxy groups; vinyloxy groups, isopropenyloxy Groups, alkenyloxy groups such as 1-ethyl-2-methylvinyloxy group; amino groups such as dimethylamino group, diethylamino group, butylamino group and cyclohexylamino group; aminoxy groups such as dimethylaminoxy group and diethylaminoxy group ;
  • hydrolyzable groups include, for example, trialkoxysiloxy groups, dialkoxyorganosiloxy groups, triacyloxysiloxy groups, diacyloxyorganosiloxy groups, triiminoxysiloxy groups (ie, triketoxime siloxy groups), diiminoxy groups
  • Siloxy groups containing 2 or 3 hydrolyzable groups such as organosiloxy groups, trialkenoxysiloxy groups, dialkenoxy otsuganosyloxy groups, trialkoxysiloxyethyl groups, dialkoxyorganosiloxyethyl groups, or two Alternatively, it is desirable to be located at both ends of the molecular chain of the linear diorganopolysiloxane in the form of a siloxyalkyl group containing three hydrolyzable groups.
  • Examples of the other monovalent hydrocarbon group bonded to the silicon atom include the same unsubstituted or substituted monovalent hydrocarbon groups as those exemplified for R 1 in the average composition formula (1).
  • X is a hydrolyzable group other than the silanol group, a is 1, 2 or 3, and n and m are each an integer of 1 to 1,000] Is mentioned.
  • component (i) examples include molecular chain both ends silanol-blocked dimethylpolysiloxane, molecular chain both ends silanol-blocked dimethylsiloxane / methylphenylsiloxane copolymer, molecular chain both ends silanol-blocked dimethylsiloxane / diphenylpolysiloxane.
  • Siloxane copolymer trimethoxysiloxy group-capped dimethylpolysiloxane with molecular chain at both ends, trimethoxysiloxy group-capped dimethylsiloxane / methylphenylsiloxane copolymer with molecular chain at both ends, trimethoxysiloxy group-capped dimethylsiloxane / diphenyl Examples thereof include polysiloxane copolymers, 2-trimethoxysiloxyethyl group-capped dimethylpolysiloxane having both molecular chain ends. These can be used singly or in combination of two or more.
  • component (j) The hydrolysable silane of the (j) component and / or its partial hydrolysis-condensation product are optional components, and act as a curing agent.
  • component (i) which is a base polymer is an organopolysiloxane containing at least two silicon atom-bonded hydrolyzable groups other than silanol groups in one molecule
  • component (j) is a condensation-curing reaction type silicone composition. Adding to the product can be omitted.
  • a silane containing at least 3 silicon atom-bonded hydrolyzable groups in one molecule and / or a partial hydrolysis condensate thereof that is, at least one, preferably two or more hydrolysis products
  • An organopolysiloxane in which a functional group remains is preferably used.
  • Examples of the silane include a formula: R 10 r SiX 4-r (6) (Wherein R 10 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, more preferably 1 to 8 carbon atoms, X is a hydrolyzable group, and r is 0 or 1.) What is represented by these is used preferably.
  • R 10 is particularly preferably an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group or a hexyl group; an aryl group such as a phenyl group or a tolyl group; an alkenyl group such as a vinyl group or an allyl group. can give.
  • component (j) examples include, for example, methyltriethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, ethyl orthosilicate and the like, and partial hydrolysis condensates thereof. These can be used singly or in combination of two or more.
  • the amount added is preferably 0.01 to 20 parts by mass, particularly preferably 0 with respect to 100 parts by mass of the component (i). 1 to 10 parts by mass.
  • the storage stability and curing reaction rate of the composition of the present invention are particularly good when the amount added is within the above range.
  • the condensation reaction catalyst of component (k) is an optional component, and the hydrolyzable silane and / or its partial hydrolysis-condensation product of component (j) is, for example, an aminoxy group, amino group, ketoxime group It is not necessary to use it when it has.
  • the condensation reaction catalyst for component (k) include organic titanates such as tetrabutyl titanate and tetraisobropyrutitanate; diisopropoxybis (acetylacetonato) titanium, diisopropoxybis (ethylacetoacetate) titanium and the like.
  • Organic titanium chelate compounds Organoaluminum compounds such as aluminum tris (acetylacetonate) and aluminum tris (ethylacetoacetate); organozirconium compounds such as zirconium tetra (acetylacetonate) and zirconium tetrabutyrate; dibutyltin dioctoate, Organotin compounds such as dibutyltin dilaurate and dibutyltin di (2-ethylhexanoate); tin naphthenate, tin oleate, tin butyrate, cobalt naphthenate, stearic acid Metal salts of organic carboxylic acids such as: amine compounds such as hexylamine and dodecylamine phosphate, and salts thereof; quaternary ammonium salts such as benzyltriethylammonium acetate; lower fatty acid salts of alkali metals such as potassium acetate and lithium
  • the amount added is not particularly limited and may be an effective amount as a catalyst, but is preferably 0.01 to 20 parts by mass with respect to 100 parts by mass of component (i). Particularly preferred is 0.1 to 10 parts by mass.
  • the component (k) it is economically advantageous from the viewpoint of curing time and curing temperature when the amount added is within the above range.
  • the liquid curable silicone composition is applied to one silicon carbide member, and the other silicon carbide member is applied to the obtained coating film.
  • the composition can be used in the form of a solvent-free liquid, an aqueous emulsion, or a solution diluted with an organic solvent such as toluene or tetrahydrofuran.
  • the composition is a solvent-free liquid, it is heated to 1 to 50,000 mPa.s. s, preferably 10 to 10,000 mPa.s. s is used for coating.
  • aqueous emulsion state or a state diluted with an organic solvent such as toluene or tetrahydrofuran 1 to 50,000 mPa.s at 25 ° C. s, preferably 10 to 10,000 mPa.s. It can adjust to s and can apply
  • a coating method in this case methods such as coating, impregnation, spraying and the like can be adopted, but the viscosity of the composition is 50,000 mPa. If it is higher than s, it is difficult to form a uniform silicone composition film.
  • the amount of the silicone composition applied is not particularly limited as long as it is applied according to the volume of the substrate and the desired performance. The required thickness described later is obtained.
  • the other silicon carbide member is brought into close contact with the coating film.
  • the composition As a method of interposing a curable silicone composition layer between two silicon carbide members, there is a method in which a curable silicone composition previously formed on a film or a sheet is sandwiched between both members and pressed to be in close contact.
  • the composition preferably has moderate flexibility and shape self-holding property, and more preferably has surface tackiness in terms of handleability.
  • the curable silicone composition is thus provided in layers between the two silicon carbide members.
  • the thickness of the curable silicone composition layer formed here is a main factor that defines the thickness of the finally obtained silicon carbide bonding layer.
  • the thickness is 1 nm to 1 mm in a dry state.
  • the thickness is 0.5 ⁇ m to 500 ⁇ m.
  • step (2) the layered curable silicone composition obtained in the step (1) is cured, and the two silicon carbide members are bonded by the cured product.
  • the curing conditions at this time are appropriately set according to the type of curable silicone composition to be used. Hereinafter, this point will be described.
  • organic peroxide curing reaction type silicone composition When the organic peroxide curing reaction type silicone composition is applied to a silicon carbide member and adhered to the other silicon carbide member, the radical reaction proceeds by heating, and the curing reaction proceeds. The silicone composition cures and adheres.
  • the temperature condition for curing the organic peroxide silicone composition is not particularly limited because the curing reaction depends on the coating thickness, that is, the coating amount, but preferably 80 ° C. It is preferably from 300 ° C to 250 ° C. Further, secondary curing may be performed as necessary, and the temperature condition at that time is preferably 120 ° C. or higher, more preferably 150 ° C. to 250 ° C. The curing time at this time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • UV curable silicone composition By irradiating UV light on a silicon carbide member coated with a UV curable silicone composition and closely attached to the other silicon carbide member, the photopolymerization initiator reacts and the curing reaction proceeds, resulting in UV curable properties.
  • the silicone composition cures.
  • the ultraviolet irradiation conditions are not particularly limited because the curing reaction depends on the coating thickness, that is, the coating amount, but an ultraviolet light emitting diode having an emission wavelength of 365 nm is used, and an illuminance of 5 to 500 mW / cm 2 , Preferably 10 to 200 mW / cm 2 , light quantity 0.5 to 100 J / cm 2 , preferably.
  • the temperature condition at that time is preferably 120 ° C. or higher, more preferably 150 ° C. to 250 ° C.
  • the curing time at this time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • the addition curable silicone composition When the addition curable silicone composition is applied to the silicon carbide member and the one adhered to the other silicon carbide member is heated, the hydrosilylation reaction proceeds and the addition curable silicone composition is cured.
  • the heating temperature at this time is not particularly limited because the curing reaction depends on the coating, that is, depends on the coating amount, but is preferably 80 to 300 ° C., more preferably 100 to 200 ° C. Further, secondary curing may be performed as necessary, and the temperature condition at that time is preferably 120 ° C. or higher, more preferably 150 ° C. to 250 ° C.
  • the curing time at this time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • condensation curing reaction type silicone composition When the condensation curing reaction type silicone composition is applied to the silicon carbide member and the one adhered to the other silicon carbide member is heated, the condensation reaction proceeds and the condensation curable silicone composition is cured.
  • the temperature condition for curing the condensation-curing reaction type silicone composition is not particularly limited as the heating temperature in this case, since the curing reaction depends on the coating thickness, that is, depends on the coating amount, preferably 80 ° C. It is preferably from 300 ° C to 200 ° C. Further, secondary curing may be performed as necessary, and the temperature condition at that time is preferably 120 ° C. or higher, more preferably 150 ° C. to 250 ° C. The curing time at this time is preferably 10 minutes to 48 hours, more preferably 30 minutes to 24 hours.
  • step (3) thermal decomposition of the layered silicone cured product obtained in step (2) is performed. That is, the cured product is subjected to heat treatment in a non-oxidizing atmosphere, and the cured silicone is converted into silicon carbide to form a silicon carbide bonding layer.
  • This heat treatment is performed in a non-oxidizing atmosphere, preferably in an inert gas atmosphere.
  • the inert gas include nitrogen gas, argon gas, helium gas and the like, and argon gas is particularly preferable for obtaining high-purity silicon carbide.
  • the heat treatment is performed at a temperature exceeding 1500 and 2200 ° C. or less.
  • the heating temperature is preferably 1600 ° C. or higher.
  • the heating temperature is preferably 2100 ° C. or less, and more preferably 2000 ° C. or less.
  • the heat treatment is performed in the same non-oxidizing atmosphere in the range of 400 to 1500 ° C.
  • the treatment at this temperature causes cleavage of the carbon-hydrogen bond contained in the cured silicone and hydrogen is desorbed from the material, but a reaction that does not desorb carbon and silicon occurs, and mineralization proceeds. A product of carbon, silicon and oxygen is produced.
  • the completion point of the heat treatment is, for example, when the weight reduction is less than 1% by weight in terms of silicone composition even when the heated product is heated at 1800 ° C. for 1 hour.
  • Example 1 material: (A) 100 parts by mass of a diorganopolysiloxane containing an alkenyl group in one molecule represented by the following formula:
  • the above components (A) to (C) were put into a planetary mixer (registered trademark, a mixer manufactured by Inoue Seisakusho Co., Ltd.) and stirred at room temperature for 1 hour, and 1000 mPa.
  • a curable silicone composition having a viscosity of s was obtained.
  • Two silicon carbide members (20 mm square x 2 mm thickness) were prepared. The above composition was applied to one surface of one silicon carbide member in a thickness of 0.2 mm, and one surface of the other silicon carbide member was adhered to the obtained coating film. In this way, the two silicon carbide members sandwiching the silicone composition layer were heated at a temperature of about 200 ° C. for 30 minutes to cure the silicone composition layer and to bond both members.
  • the obtained bonded body is put into a container made of carbon, and the temperature is increased to 2000 ° C. over 20 hours at a rate of 100 ° C./hour in an argon gas atmosphere in an atmosphere furnace. Held for hours. Then, the silicon carbide joined body was obtained by cooling to room temperature at a rate of 200 ° C./hour.
  • a silicon plate having a thickness of 0.2 mm is sandwiched between two silicon carbide members (20 mm square ⁇ 2 mm thick) similar to those in the example, and in close contact with each other at a temperature rising rate of 100 ° C./hour.
  • the temperature was raised to 1550 ° C. over 15 hours and held at 1550 ° C. for 2 hours. Thereafter, it was cooled to room temperature at a rate of 200 ° C./hour to obtain a silicon carbide joined body.
  • the silicon carbide bonded body of the present invention is useful for a board, a process tube, etc. in a process of heat-treating a semiconductor wafer or thermally diffusing a trace element in the semiconductor wafer in the field of semiconductor device manufacturing, for example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Ceramic Products (AREA)

Abstract

耐熱性に優れる高純度の炭化ケイ素接合体及びその製造方法を提供する。 炭化ケイ素部材と別の炭化ケイ素部材の間に設けられた高純度炭化ケイ素接合層とからなる炭化ケイ素接合体。該接合体は、二つの炭化ケイ素部材の間に硬化性シリコーン組成物を介在させ、硬化させて得られた硬化物層を、非酸化性雰囲気下で加熱分解させて炭化ケイ素に添加して接合させることにより得られる。該接合体は耐熱性に優れ、高純度である。

Description

炭化ケイ素接合体及び炭化ケイ素部材の接合方法
 本発明は、炭化ケイ素部材同士を炭化ケイ素接合層により接着させた炭化ケイ素接合体及び該接合体の製造方法に関する。
 炭化ケイ素セラミックスは常温及び高温において化学的に安定で、高温における機械的強度も優れているため、高温材料として利用されている。近年、半導体装置製造分野において、耐熱性、耐クリープ性に優れた高純度の炭化ケイ素セラミックス焼結体が半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程におけるボード、プロセスチューブなどに利用されるようになった。
 また、近年、炭化ケイ素単結晶デバイスの高温アニール処理が1600℃~1700℃の温度で行われるためかなりの耐熱性が求められている
 ところで、一定の形状を有する炭化ケイ素材は炭化ケイ素粉末を成形、焼成して焼結体として製造されるが、炭化ケイ素は難焼結性であるので、簡単な形状に成形することはできるが、複雑な形状に成形することは困難である。そこで、二以上の比較的単純な形状の炭化ケイ素部材を焼結により製造した後、それらの部材を接合してなる所要の形状を有する製品を得ることが行われている。
 従来、炭化ケイ素部材を接合する方法としては、無機接着剤を用いてホットプレスで加圧焼結して接合する方法(特許文献1)、炭化ケイ素部材同士の接合面にケイ素を介在させて熱処理する方法(特許文献2)が知られている。しかし、特許文献1に記載の方法で使用される無機接着剤は半導体装置の分野では有害である遊離炭素や鉄分由来の不純物元素を生じる原因となる。特許文献2に記載の方法で接着剤として使用されたケイ素は1600℃~1700℃では溶解するため接合した部材が上記のアニール処理に耐えられないという問題がある。
特開2002-338334号公報 特開2001-163680号公報
 そこで、本発明の課題は、上記従来技術の問題を解決し、半導体にとり有害な不純物元素を生じることがなく、上記の高温アニール処理にも耐える耐熱性を有する高純度炭化ケイ素接合体及び該接合体の製造方法を提供することにある。
 本発明者らは、上記課題を解決するため検討を重ねた結果、炭化ケイ素を接合層として用いること、該炭化ケイ素接合層を硬化性シリコーン組成物の熱分解による無機化により形成することにより、上記課題を解決できることを見出した。
 即ち、本発明は、第一に、
 第1の炭化ケイ素部材と、第2の炭化ケイ素部材と、第1及び第2の炭化ケイ素部材の間に介在する炭化ケイ素接合層とを有してなる炭化ケイ素接合体を提供する。
 本発明は、第二に、
 第1の炭化ケイ素部材と第2の炭化ケイ素部材との間に硬化性シリコーン組成物を層状に介在させ、
 該層状の硬化性シリコーン組成物を硬化させ、
 得られた硬化物を非酸化性雰囲気下で加熱分解して炭化ケイ素に転化させ、第1及び第2の炭化ケイ素部材を接合する炭化ケイ素接合層を形成する、
ことを含む、上記の炭化ケイ素接合体の製造方法を提供する。
 本発明の炭化ケイ素接合体は接合部の炭化ケイ素が高純度であるので半導体装置の分野においても不純物元素に悪影響を受ける恐れがなく、かつ高耐熱性であるので信頼性が高い。
 本発明の炭化ケイ素接合体の製造方法によれば、出発原料がシリコーン組成物であるため、シリコーン組成物の段階で高純度化が可能で、炭素-ケイ素結合を有するシリコーン組成物を硬化させ、熱分解するのみで接合部位も高純度炭化ケイ素となるので、高耐熱性を有する高純度炭化ケイ素接合体を容易に製造することができる。
 したがって、本発明は特に半導体分野において有用である。
 以下、本発明を詳細に説明する。なお、本明細書において、「室温」とは周囲温度を意味し、通常、10~35℃の範囲で変りうる。
-炭化ケイ素接合体-
 本発明の炭化ケイ素接合体は、接合を担う接合層が被接着体である炭化ケイ素部材と同質の炭化ケイ素からなり、しかも高純度であるので高温においても機械的に高強度でもある。
 該炭化ケイ素接合体を構成する炭化ケイ素部材は炭化ケイ素焼結体からなり、炭化ケイ素に含まれる不純物元素の含有量は1ppm以下であることが好ましく、より好ましくは0.5ppm以下であり、さらに好ましくは0.1ppm以下である。
 該炭化ケイ素接合体は、接合層も炭化ケイ素焼結体からなり、炭化ケイ素に含まれる不純物元素の合計含有量が1ppm以下であることが好ましく、より好ましくは0.5ppm以下であり、さらに好ましくは0.1ppm以下である。
 ここで、炭化ケイ素部材及び接合層に含まれる不純物元素としては、特に、Fe、Cr、Ni、Al、Ti、Cu、Na、Zn、Ca、Zr、Mg及びBが挙げられ、これらの1種又は2種以上が含まれうる。これらの合計含有量が上記上限値以下であることが好ましい。
-炭化ケイ素接合体の製造方法-
 本発明の製造方法は、
 (1):第1の炭化ケイ素部材と第2の炭化ケイ素部材との間に硬化性シリコーン組成物を層状に介在させる、
 (2):得られた層状の硬化性シリコーン組成物を硬化させ、
 (3):得られた硬化物を非酸化性雰囲気下で加熱分解して炭化ケイ素に転化させ、第1及び第2の炭化ケイ素部材を接合する炭化ケイ素接合層を形成する、
工程を有する。
 工程(1):
 第1の炭化ケイ素部材と第2の炭化ケイ素部材との間に硬化性シリコーン組成物を層状に介在させる方法は限定されない。例えば、液状の硬化性シリコーン組成物を一方の炭化ケイ素部材の表面に塗布し、得られた塗膜に他方の炭化ケイ素部材を密着させる。あるいは、シート又はフィルム状の硬化性シリコーン組成物を両炭化ケイ素部材で挟んでもよい。
 工程(2):
 得られた層状の硬化性シリコーン組成物を硬化させるが、硬化の方法及び条件は使用する硬化性シリコーン組成物の種類により適宜選択する。
 工程(3):
 得られた硬化物を非酸化性雰囲気下で加熱分解させて接合させて炭化ケイ素に転化させる。
 <硬化性シリコーン組成物>
 本発明の方法に用いる硬化性シリコーン組成物は、炭化ケイ素粉末を含有してもよい。炭化ケイ素粉末としては、レーザー回折・散乱式粒子径・粒度分布測定装置により測定して、平均粒径0.1μm~100μmのものが好ましく、1μm~50μmのものがより好ましい。
 ここで「平均粒径」とはメジアン径であり、粉体をある粒径を境に2つに分けたとき、大きい側の粉末量と小さい側の粉末量が質量において等量となる粒径のことである。炭化ケイ素粉末は、市販の高純度炭化ケイ素粉末を使用してもよい。また、シリコーン粉末、特に放射線硬化性又は過酸化物硬化性のシリコーン組成物の硬化物を非酸化性雰囲気下で400℃~1500℃において加熱して実質的に炭素、ケイ素及び酸素からなる無機セラミックに転換し、さらに同雰囲気下で1500℃を超え、2200℃以下の温度で加熱分解することにより得られるものでもよい。
 炭化ケイ素粉末の組成物中の含有量は、5~90体積%の範囲でよく、10~80体積%の範囲が好ましく、20~70体積%の範囲が更に好ましい。
 工程(1)、(2)で使用される硬化性シリコーン組成物としては公知のものを使用することが出来る。その具体例としては有機過酸化物硬化性、放射線硬化性、付加硬化性、縮合硬化性のオルガノポリシロキサン組成物等が挙げられる。これらの中でも、より高純度の接合層が得られる点で有機過酸化物硬化性と放射線硬化性のシリコーン組成物が好ましく、前述の不純物元素の合計含有量を1ppm以下、好ましくは0.5ppm以下、さらには0.1ppm以下に抑制することができる。
 有機過酸化物硬化性シリコーン組成物としては、例えば、分子鎖非末端部分(片末端又は両末端)及び分子鎖末端部分のどちらか一方又はその両方にビニル基等のアルケニル基を有する直鎖状オルガノポリシロキサンを有機過酸化物存在下でラジカル重合させることによって硬化するシリコーン組成物を挙げることができる。
 放射線硬化性シリコーン組成物としては、紫外線硬化性シリコーン組成物及び電子線硬化性シリコーン組成物を挙げられる。
 紫外線硬化性シリコーン組成物としては、例えば、波長200~400nmの紫外線のエネルギーにより硬化するシリコーン組成物が挙げられる。この場合、硬化機構には特に制限はない。その具体例としてはアクリル基あるいはメタクリル基を有するオルガノポリシロキサンと光重合開始剤とを含有するアクリルシリコーン系シリコーン組成物、メルカプト基含有オルガノポリシロキサンとビニル基等のアルケニル基を有するオルガノポリシロキサンと光重合開始剤とを含有するメルカプト-ビニル付加重合系シリコーン組成物、熱硬化性の付加反応型と同じ白金族金属系触媒を用いた付加反応系シリコーン組成物、エポキシ基を含有するオルガノポリシロキサンとオニウム塩触媒とを含有するカチオン重合系シリコーン組成物などが挙げられ、いずれも紫外線硬化性シリコーン組成物として使用することができる。
 電子線硬化性シリコーン組成物としては、ラジカル重合性基を有するオルガノポリシロキサンに電子線を照射することで開始するラジカル重合により硬化するいずれのシリコーン組成物も使用することができる。
 付加硬化性シリコーン組成物としては、例えば、上記のアルケニル基を有する直鎖状オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンと白金族金属系触媒の存在下で反応(ヒドロシリル化付加反応)させることにより硬化するシリコーン組成物を挙げることができる。
 縮合硬化性シリコーン組成物としては、例えば、両末端シラノール封鎖オルガノポリシロキサンとオルガノハイドロジェンポリシロキサン又はテトラアルコキシシラン、オルガノトリアルコキシシラン等の加水分解性シラン及び/もしくはその部分加水分解縮合物とを有機錫系触媒等の縮合反応触媒の存在下で反応させることにより硬化するシリコーン組成物、あるいは両末端がトリアルコキシ基、ジアルコキシオルガノ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等で封鎖されたオルガノポリシロキサンを有機錫触媒等の縮合反応存在下で反応させることにより硬化するシリコーン組成物などを挙げることができる。
 ただし、不純物の混入を極力避ける観点から、放射線硬化性シリコーン組成物及び有機過酸化物硬化性シリコーン組成物が望ましい。
 以下、各反応性シリコーン組成物について詳述する。
 ・有機過酸化物硬化反応型シリコーン組成物:
 有機過酸化物硬化反応型シリコーン組成物として、具体的には、例えば、
 (a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
 (b)有機過酸化物及び任意成分として
 (c)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1~2モルとなる量
を含有する有機過酸化物硬化反応型シリコーン組成物があげられる。
 ・・(a)成分
 (a)成分のオルガノポリシロキサンは、有機過酸化物硬化反応型シリコーン組成物のベースポリマーである。(a)成分のオルガノポリシロキサンの重合度は特に限定されず、(a)成分としては、25℃で液状のオルガノポリシロキサンから生ゴム状のオルガノポリシロキサンまで使用できるが、平均重合度が好ましくは50~20,000、より好ましくは100~10,000、更により好ましくは100~2,000程度のオルガノポリシロキサンが好適に使用される。また、(a)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖がジオルガノシロキサン単位(R1 SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1 SiO1/2)もしくはヒドロキシジオルガノシロキシ基((HO)R1 SiO1/2単位)で封鎖された、分岐を有しない直鎖構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。ここで、Rは下に説明する式(1)において定義の通りである。
(a)成分としては、例えば下記平均組成式(1);
1 SiO(4-a)/2   (1)
(式中、R1は同一又は異種の非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基を表し、R1の50~99モル%はアルケニル基であり、aは1.5~2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95~2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。
 上記R1の具体的例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基これらの炭化水素基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換した基例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基等が挙げられるが、高純度の観点から炭化水素基のみで構成されるほうが好ましい。
 この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2~8、より好ましくは2~6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(1)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50~99モル%、特に好ましくは75~95モル%である。(a)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。
 ・・(b)成分
 (b)成分は、有機過酸化物硬化反応型オルガノポリシロキサン組成物において(a)成分の架橋反応を促進するための触媒として使用される有機過酸化物である。(b)成分としては、(a)成分の架橋反応を促進することができる限り、従来公知の有機過酸化物を使用することができる。その具体例としては、ベンソイルパーオキサイド、2,4-ジクロロベンソイルパーオキサイド、p-メチルベンソイルパーオキサイド、o-メチルベンソイルパーオキサイド、2,4-ジクミルパーオキサイド、2,5-ジメチル-ビス(2,5-t-ブチルパーオキシ)へキサン、ジ-t-ブチルパーオキサイド、t-ブチルパーベンゾエート、1,1-ビス(t-ブチルパーオキシカルボキシ)へキサン等が挙げられるが特にこれらに限定されるものではない。
 (b)成分の添加量は、(a)成分の架橋反応を促進するための触媒としての有効量である。(a)成分100質量部に対して好ましくは0.1~10質量部、より好ましくは0.2~2質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して0.1質量部より少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。また、該添加量が(a)成分100質量部に対して10質量部より多くなる量であると(b)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・・(c)成分
任意成分である(c)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2~200個)、好ましくは3個以上(通常3~100個)含有する。(a)成分単独でも(b)成分を添加し、加熱することで硬化させることが可能であるが、(c)成分を添加することで、(a)成分単独の場合と比べて、(a)成分と反応しやすいため、より低温かつ短時間で、硬化させることができる。(c)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(c)成分として使用することができる。(c)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2~300個、好ましくは4~150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(c)成分として好ましく使用できる。
 (c)成分としては、例えば、下記平均組成式(2);
SiO(4-b-c)/2   (2)
(式中、Rは同一又は異種の非置換もしくは置換の、脂肪族不飽和結合を含有しない、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、b及びcは、好ましくは0.7≦b≦2.1、0.001≦c≦1.0、かつ0.8≦b+c≦3.0、より好ましくは1.0≦b≦2.0、0.01≦c≦1.0、かつ1.5≦b+c≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRと同様の基(ただし、アルケニル基を除く。)が挙げられる。
 上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
(c)成分の添加量は、任意の量ではあるが、(a)成分100質量部に対して好ましくは0~100質量部、より好ましくは0~50質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して100質量部より多くなる量であると(c)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・紫外線硬化性シリコーン組成物:
 紫外線硬化性シリコーン組成物として、具体的には、例えば
 (d)紫外線反応性オルガノポリシロキサン、及び
 (e)光重合開始剤
を含有する紫外線硬化性シリコーン組成物が挙げられる。
 ・・(d)成分
 (d)成分の紫外線反応性オルガノポリシロキサンは、通常、紫外線硬化性シリコーン組成物においてベースポリマーとして作用する。(d)成分は、特に限定されず、好ましくは1分子中に少なくとも2個、より好ましくは2~20個、特に好ましくは2~10個の紫外線反応性基を有するオルガノポリシロキサンである。このオルガノポリシロキサン中に複数存在する前記紫外線硬化性基は、すべて同一でも異なっていてもよい。
 (d)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。ここで、Rは式(1)に関して述べた通りである。(d)成分のオルガノポリシロキサンは、直鎖状構造を有する場合、紫外線反応性基を、分子鎖末端及び分子鎖末端でない部分のどちらか一方にのみ有していても、その両方に有していてもよいが、少なくとも分子鎖両末端に紫外線反応性基を有することが好ましい。
 該紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクリロイル基、メルカプト基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。
 前記オルガノポリシロキサンの粘度は、特に限定されないが、25℃において100mPa.s~1,000,000mPa.sであることが好ましく、200~500,000mPa.sであることがより好ましく、200~100,000mPa.sであることが特に好ましい。
 (d)成分の好ましい一形態として例えば、下記一般式(3a);
Figure JPOXMLDOC01-appb-C000003
[式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、ただし、f+g+n≧2である]
又は下記一般式(3b);
Figure JPOXMLDOC01-appb-C000004
[式中、R、R、R、m、n、f、gは上記一般式(3a)で定義した通りであり、hは2~4の整数であり、i及びjは各々1~3の整数であり、ただしfi+gj+n≧2である]
で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンが挙げられる。
 上記一般式(3a)及び(3b)中、Rは、同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価の、炭素原子数が好ましくは1~20、より好ましくは1~10更により好ましくは、1~8の一価炭化水素基である。Rで表される一価炭化水素基としては例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基、シクロペンチル基等のシクロアルキル基;ベンジル基、フェニルエチル基等のアラルキル基;これらの炭化水素基に結合している水素原子の一部又は全部をハロゲン原子、シアノ基、カルボキシル基等で置換した基、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基、3-シアノプロピル基等が挙げられ、好ましくはメチル基及びフェニル基が挙げられ、より好ましくはメチル基が挙げられる。また上記Rで表される一価炭化水素基は、その骨格中にスルホニル基、エーテル結合(-O-)、カルボニル基等を1種又は2種以上有してもよい。
 上記一般式(3a)及び(3b)中、R及びRに含まれる紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;メルカプト基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクロイル基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。従って、R及びRで表される紫外線反応性基を有する基は、例えば上で例示した紫外線反応基を有する一価の基であり、その具体例としては、ビニル基、アリル基、3-グリシドキシプロピル基、2-(3,4-エポキシシクロヘキシル)エチル基、3-メタクリロキシプロピル基、3-アクリロキシプロピル基、3-メルカプトプロピル基、2-{ビス(2-メタクリロキシエトキシ)メチルシリル}エチル基、2-{ビス(2-アクリロキシエトキシ)メチルシリル}エチル基、2-{(2-アクリロキシエトキシ)ジメチルシリル}エチル基、2-{ビス(1,3-ジメタクリロキ-2-プロポキシ)メチルシリル}エチル基、2-{(1,3-ジメタクリロキ-2-プロポキシ)ジメチルシリル}エチル基、2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)メチルシリル}エチル基、及び2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)ジメチルシリル}エチル基等が挙げられ、好ましくは3-メタクリロキシプロピル基、3-アクリロキシプロピル基、2-{ビス(2-メタクリロキシエトキシ)メチルシリル}エチル基、2-{ビス(2-アクリロキシエトキシ)メチルシリル}エチル基、2-{(2-アクリロキシエトキシ)ジメチルシリル}エチル基、2-{(1,3-ジメタクリロキ-2-プロポキシ)ジメチルシリル}エチル基、2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)メチルシリル}エチル基、及び2-{ビス(1-アクリロキシ-3-メタクリロキ-2-プロポキシ)ジメチルシリル}エチル基が挙げられる。R及びRは各々同一であっても異なっていてもよく、R及びRどうしが同一であっても異なっていてもよい。
 上記一般式(3a)及び(3b)中、mは、通常、5~1,000、好ましくは10~800、より好ましくは50~500の整数であり、nは、通常、0~100、好ましくは0~50、より好ましくは0~20の整数であり、fは0~3、好ましくは0~2、より好ましくは1~2の整数であり、gは0~3、好ましくは0~2の整数、より好ましくは1又は2である。上記式(3b)中、hは通常2~4の整数、好ましくは2又は3である。i及びjは各々1~3の整数、好ましくは1又は2整数である。更に、上記一般式(3a)及び(3b)で表されるオルガノポリシロキサンは前述の通り、前記紫外線反応性基を少なくとも2個有するので、式(3a)ではf+g+n≧2となり式(3b)ではfi+gj+n≧2となる。
  上記式(3a)及び(3b)で表されるオルガノポリシロキサンの具体例としては、下記に示すものなどが挙げられる。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
[上記式中、Rは90%がメチル基であり、10%がフェニル基である]
 ・・(e)成分
 (e)成分の光重合開始剤は、前記(d)成分中の紫外線反応性基の光重合を促進させる作用を有する。(e)成分は特に限定されず、その具体例としては、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、4-メチルアセトフェノン、3-ペンチルアセトフェノン、4-メトキシアセトフェノン、3-ブロモアセトフェノン、4-アリルアセトフェノン、p-ジアセチルベンゼン、3-メトキシベンゾフェノン、4-メチルベンゾフェノン、4-クロロベンゾフェノン、4,4’-ジメトキシベンゾフェノン、4-クロロ-4’-ベンジルベンゾフェノン、3-クロロキサントン、3,9-ジクロロキサントン、3-クロロ-8-ノニルキサントン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4-ジメチルアミノフェニル)ケトン、ベンジルメトキシアセタール、2-クロロチオキサントン、ジエチルアセトフェノン、1-ヒドロキシクロロフェニルケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-(4-(メチルチオ)フェニル)-2-モルホリノ-1-プロパン、2,2-ジメトキシ-2-フェニルアセトフェノン、ジエトキシアセトフェノン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン等が挙げられ、好ましくは高純度の観点からベンゾフェノン、4-メトキシアセトフェノン、4-メチルベンゾフェノン、ジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンが挙げられ、より好ましくはジエトキシアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン及び2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オンが挙げられる。これらの光重合開始剤は1種単独で用いても2種以上を併用してもよい。
 (e)成分の添加量は、特に限定されないが、(d)成分100質量部に対して、好ましくは、0.01~10質量部、より好ましくは0.1~3質量部、更により好ましくは0.5~3質量部である。この添加量がこの範囲内であると、シリコーン組成物の硬化制御が行い易い。
 ・付加硬化性シリコーン組成物:
 付加硬化性シリコーン組成物として、具体的には、例えば
(f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
(g)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1~5モルとなる量、及び
(h)白金族金属系触媒 有効量
を含有する付加硬化性シリコーン組成物が挙げられる。
 ・・(f)成分
 (f)成分のオルガノポリシロキサンは、付加硬化性シリコーン組成物のベースポリマーであり、ケイ素原子に結合したアルケニル基を少なくとも2個含有する。(f)成分としては公知のオルガノポリシロキサンを使用することが出来る。ゲルパーミッションクロマトグラフィー(以下、「GPC」とする。)により測定された(f)成分のオルガノポリシロキサンの重量平均分子量はポリスチレン換算で好ましくは3,000~300,000程度である。さらに(f)成分のオルガノポリシロキサンの25℃に置ける粘度は、100~1,000,000mPa.sであることが好ましく、1,000~100,000mPa.s程度であることが特に好ましい。100mPa.s以下であると曳糸性が低く、繊維の細径化が困難となり、1,000,000mPa.s以上では取扱が困難となる。(f)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、RSiO3/2単位やSiO4/2単位を含んだ分岐状構造を部分的に有してもよい。ここで、Rは下に説明する式(4)に関して述べる通りである。
 (f)成分としては、例えば下記平均組成式(4);
SiO(4-l)/2   (4)
(式中、Rは前記同様、同一又は異種の、非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、lは好ましくは1.5~2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95~2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)について例示した基が挙げられる。
 この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2~8、より好ましくは2~6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(4)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50~99モル%、特に好ましくは75~95モル%である。(f)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよいが、組成物の硬化速度、硬化物の物性等の点から、少なくとも一個のアルケニル基が分子鎖末端のケイ素原子に結合していることが望ましい。
 ・・(g)成分
(g)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2~200個)、好ましくは3個以上(通常3~100個)含有する。(g)成分は、(f)成分と反応し架橋剤として作用する。(g)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(b)成分として使用することができる。(g)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2~300個、好ましくは4~150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(g)成分として好ましく使用できる。
 (g)成分としては、例えば、下記平均組成式(5);
SiO(4-p-q)/2   (5)
(式中、Rは同一又は異種の非置換もしくは置換の、脂肪族不飽和結合を有しない、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基であり、p及びqは、好ましくは0.7≦p≦2.1、0.001≦q≦1.0、かつ0.8≦p+q≦3.0、より好ましくは1.0≦p≦2.0、0.01≦q≦1.0、かつ1.5≦p+q≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRについて例示した基(ただし、アルケニル基を除く。)が挙げられる。
 上記平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
 (g)成分の添加量は、全硬化性シリコーン組成物中のアルケニル基1モル当たり、特に、全硬化性シリコーン組成物中のケイ素原子に結合したアルケニル基1モル当たり、とりわけ、(f)成分中のケイ素原子に結合したアルケニル基1モル当たり、本(g)成分中のSiH基の量が0.1~5.0モル、好ましくは0.5~3.0モル、より好ましくは0.8~2.0モルとなる量である。このとき、全硬化性シリコーン組成物中に存在するアルケニル基に対する(f)成分中のケイ素原子と結合したアルケニル基の割合は80~100モル%が好ましく、90~100モル%がより好ましい。全硬化性シリコーン組成物中にアルケニル基を有する成分として(f)成分しか存在しない場合には、(f)成分中のアルケニル基1モル当たり、本(g)成分中のSiHの量が0.1~5.0モル、好ましくは0.5~3.0モル、より好ましくは0.8~2.0モルとなる量である。該添加量が上記SiHの量が0.1モルより少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。
また、該添加量が上記SiHの量が5.0モルより多くなる量であると該硬化反応物中に脱水素反応による発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
 ・・(h)成分
 (h)成分の白金族金属系触媒は、(f)成分と(g)成分との付加硬化反応(ヒドロシリル化反応)を促進させるための触媒として使用される。(h)成分としては、公知の白金族金属系触媒を用いることができるが、白金もしくは白金化合物を用いることがこのましい。(h)成分の具体例としては、白金黒、塩化第二白金、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類との錯体が挙げられる。
 (h)成分の添加量は、触媒として有効量であり、希望する硬化反応速度に応じて適時増減すればよいが、(f)成分に対して白金族金属に換算して質量基準で、好ましくは0.1~1,000ppm、より好ましくは0.2~100ppmの範囲である。
 ・縮合硬化反応型シリコーン組成物:
 縮合硬化反応型シリコーン組成物として、具体的には、例えば、
 (i)シラノール基(即ちケイ素原子結合水酸基)又はケイ素原子結合加水分解性基を少なくとも2個、好ましくは分子鎖両末端に含有するオルガノポリシロキサン、
 (j)任意成分として、加水分解性シラン及び/又はその部分加水分解縮合物、ならびに
 (k)任意成分として、縮合反応触媒
を含有する縮合硬化反応型シリコーン組成物が挙げられる。
 ・・(i)成分
 (i)成分はシラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサンであり、縮合硬化反応型シリコーン組成物のベースポリマーである。(i)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、分岐状構造を部分的に含有してもよい。ここで、Rは非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基を表す。
 (i)成分のオルガノポリシロキサンにおいて、シラノール基以外の加水分解性基としては、例えば、アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等のアシロキし基;ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等のケトオキシム基(即ち、イミノキシ基);メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基;ビニロキシ基、イソプロペニルオキシ基,1-エチル-2-メチルビニルオキシ基等のアルケニルオキシ基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N-メチルアセトアミド、N-エチルアセトアミド基、N-メチルベンズアミド基等のアミド基等が挙げられる。
 これらの加水分解性基は、例えば、トリアルコキシシロキシ基、ジアルコキシオルガノシロキシ基、トリアシロキシシロキシ基、ジアシロキシオルガノシロキシ基、トリイミノキシシロキシ基(即ち、トリケトオキシムシロキシ基)、ジイミノキシオルガノシロキシ基、トリアルケノキシシロキシ基、ジアルケノキシオツガノシロキシ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等の、2個もしくは3個の加水分解性基を含有するシロキシ基又は2個もしくは3個の加水分解性基を含有するシロキシアルキル基等の形で直鎖状ジオルガノポリシロキサンの分子鎖両末端に位置していることが望ましい。
 ケイ素原子に結合した他の一価炭化水素基としては、例えば、上記平均組成式(1)における
について例示したものと同じ非置換又は置換の一価炭化水素基が挙げられる。
 (i)成分としては、例えば、
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
[上記の式中、Xは前記シラノール基以外の加水分解性基、aは1、2又は3、n及びmはそれぞれ1~1,000の整数である]
が挙げられる。
 (i)成分の具体例としては、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端2-トリメトキシシロキシエチル基封鎖ジメチルポリシロキサン等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
・(j)成分
 (j)成分の加水分解性シラン及び/又はその部分加水分解縮合物は任意成分であり、硬化剤として作用する。ベースポリマーである(i)成分がシラノール基以外のケイ素原子結合加水分解性基を1分子中に少なくとも2個含有するオルガノポリシロキサンである場合には、(j)成分を縮合硬化反応型シリコーン組成物に添加するのを省略することができる。(j)成分としては、1分子中に少なくとも3個のケイ素原子結合加水分解性基を含有するシラン及び/又はその部分加水分解縮合物(即ち、少なくとも1個、好ましくは2個以上の加水分解性基が残存するオルガノポリシロキサン)が好適に使用される。
 前記シランとしては、例えば、式:
10 SiX4-r   (6)
(式中、R10は非置換もしくは置換の、炭素原子数が1~10、より好ましくは1~8の一価炭化水素基、Xは加水分解性基、rは0又は1である。)で表されるものが好ましく用いられる。前記R10としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基が特に好ましくあげられる。
 (j)成分の具体的例としては、例えば、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、エチルオルソシリケート等及びこれらの部分加水分解縮合物が挙げられる。これらは1種単独でも2種以上組み合わせても使用することができる。
 (j)成分の加水分解性シラン及び/又はその部分加水分解縮合物を用いる場合、その添加量は(i)成分100質量部に対して好ましくは0.01~20質量部、特に好ましくは0.1~10質量部である。(j)成分を用いる場合、その添加量が上記範囲内にあると本発明組成物の貯蔵安定性及び硬化反応速度は特に良好である。
・(k)成分
 (k)成分の縮合反応触媒は任意成分であり、上記(j)成分の加水分解性シラン及び/又はその部分加水分解縮合物が、例えば、アミノキシ基、アミノ基、ケトオキシム基を有する場合には使用しなくてもよい。(k)成分の縮合反応触媒としては、例えばテトラブチルチタネート、テトライソブロピルチタネート、等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセトナート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトナート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ジブチルスズジ(2-エチルヘキサノエート)等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;へキシルアミン、リン酸ドデシルアミン等のアミン化合物、及びその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム、硝酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン:グアニジル基含有有機珪素化合物等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
 (k)成分の縮合反応触媒を用いる場合、その添加量は、特に限定されず、触媒としての有効量でよいが、(i)成分100質量部に対して好ましくは0.01~20質量部、特に好ましくは0.1~10質量部である。(k)成分を用いる場合、その添加量が上記範囲内にあると、硬化時間と硬化温度の観点から経済的に有利である。
 <硬化性シリコーン組成物を層状に介在させる>
 工程(1)において、炭化ケイ素部材間に硬化性シリコーン組成物を介在させるのに、液状硬化性シリコーン組成物を一方の炭化ケイ素部材に塗布し、得られた塗膜に他方の炭化ケイ素部材を密着させる場合は、組成物を無溶剤液状、水系エマルジョン状、又はトルエンやテトラヒドロフランなどの有機溶剤で希釈した溶液状で使用することができる。その際に、組成物が無溶剤の液状の場合は加熱して1~50,000mPa.s、好ましくは10~10,000mPa.sとなるようして塗布に使用する。水系エマルジョン状態、又はトルエンやテトラヒドロフランなどの有機溶剤で希釈した状態においては、25℃において1~50,000mPa.s、好ましくは10~10,000mPa.sに調整して、炭化ケイ素部材に塗布することができる。この場合の塗布方法としては塗布、含浸、スプレーなどの方法を採用することができるが、組成物の粘度が使用時に50,000mPa.sより高いと均一なシリコーン組成物の皮膜を形成することが難しい。
 また、シリコーン組成物の塗布量としては、基材の体積、所望の性能に応じて塗布すればよく、特に限定されない。後述する所要の厚さが得られるようにする。
 こうして一方に炭化ケイ素部材の表面に塗膜を形成した後に他方の炭化ケイ素部材をその塗膜に密着させる。
 二つの炭化ケイ素部材間に硬化性シリコーン組成物層を介在させる方法としては、フィルム上又はシート状に予め成形した硬化性シリコーン組成物を両部材間に挟み、加圧して密着させる方法がある。この方法の場合には組成物は取り扱い性の点で、適度の可撓性と形状自己保持性を有することが好ましく、さらには表面粘着性を有することが好ましい。
 工程(1)では、こうして二つの炭化ケイ素部材間に硬化性シリコーン組成物が層状に設けられる。ここで形成される硬化性シリコーン組成物層の厚さは最終的に得られる炭化ケイ素接合層の厚さを規定する主なファクターであるが、通常、乾燥状態で、1nm~ 1mmの厚さであることが好ましく、0.5μm~500μmであることがより好ましい。
 <硬化性シリコーン組成物の硬化による接着>
 工程(2)において、工程(1)で得られた層状の硬化性シリコーン組成物の硬化が行われ、二つの炭化ケイ素部材はその硬化物により接着させられる。このときの硬化条件は使用する硬化性シリコーン組成物の種類により適切に設定する。以下、この点を説明する。
 ・有機過酸化物硬化反応型シリコーン組成物の場合:
 有機過酸化物硬化反応型シリコーン組成物を炭化ケイ素部材に塗布し、他方の炭化ケイ素部材に密着させたものを、加熱することでラジカル反応が進行し、硬化反応が進行し、有機過酸化物シリコーン組成物は硬化し、接着する。有機過酸化物シリコーン組成物を硬化させる温度条件は、この際の加熱温度としては、硬化反応が被覆厚に依存する、すなわち、塗工量に依存するため、特に限定されないが、好ましくは80℃~300℃より好ましくは150℃~250℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃~250℃である。この際のキュア時間は好ましくは10分~48時間さらに好ましくは30分~24時間である。
 ・紫外線硬化性シリコーン組成物の場合:
 紫外線硬化性シリコーン組成物を炭化ケイ素部材に塗布し、他方の炭化ケイ素部材に密着させたものを、紫外線を照射することで、光重合開始剤が反応し、硬化反応が進行し、紫外線硬化性シリコーン組成物は硬化する。紫外線照射条件は、硬化反応が被覆厚に依存する、すなわち、塗工量に依存するため、特に限定されないが、365nmに発光波長を持った紫外線発光ダイオードを用い、照度5~500mW/cm、好ましくは10~200mW/cm、光量0.5~100J/cm、好ましくは.10~50J/cmの条件で紫外線照射を行うことで硬化させることができる。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃~250℃である。この際のキュア時間は好ましくは10分~48時間さらに好ましくは30分~24時間である。
 ・付加硬化性シリコーン組成物の場合:
 付加硬化性シリコーン組成物を炭化ケイ素部材に塗布し、他方の炭化ケイ素部材に密着させたものを、加熱することで、ヒドロシリル化反応が進行し、付加硬化性シリコーン組成物は硬化する。この際の加熱温度としては、硬化反応が被覆に依存する、すなわち、塗工量に依存するため、特に限定されないが、好ましくは80~300℃、より好ましくは100~200℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃~250℃である。この際のキュア時間は好ましくは10分~48時間さらに好ましくは30分~24時間である。
 ・縮合硬化反応型シリコーン組成物の場合:
 縮合硬化反応型シリコーン組成物を炭化ケイ素部材に塗布し、他方の炭化ケイ素部材に密着させたものを、加熱することで縮合反応が進行し、縮合硬化性シリコーン組成物は硬化する。縮合硬化反応型シリコーン組成物を硬化させる温度条件は、この際の加熱温度としては、硬化反応が被覆厚に依存する、すなわち、塗工量に依存するため、特に限定されないが、好ましくは80℃~300℃より好ましくは100℃~200℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃~250℃である。この際のキュア時間は好ましくは10分~48時間さらに好ましくは30分~24時間である。
 <シリコーン硬化物の無機化による接合>
 工程(3)において、工程(2)で得られた層状のシリコーン硬化物の加熱分解が行われる。即ち、硬化物は非酸化性雰囲気下で加熱処理に供され、硬化シリコーンは炭化ケイ素に転化され炭化ケイ素接合層となる。
 この加熱処理は非酸化性雰囲気下、好ましくは不活性ガス雰囲気下で行う。不活性ガスとしては、例えば窒素ガス、アルゴンガス、ヘリウムガス等が挙げられ、特に高純度のもの炭化ケイ素を得るにはアルゴンガスが好ましい。
 また、該加熱処理は1500を超え、2200℃以下の範囲の温度で行われる。この加熱の温度は1600℃以上が好ましい。また、該加熱の温度は2100℃以下が好ましく、2000℃以下がより好ましい。
 上記の温度における加熱処理の前に、通常、昇温の過程で、まず、400~1500℃の範囲で同様の非酸化性雰囲気中で加熱処理が行われる。この温度での処理でシリコーン硬化物に含まれる炭素-水素結合の開裂が起こり水素は材料から脱離するが、炭素及びケイ素は脱離しない反応が起こり、無機化が進行し、その結果、実質的に炭素、ケイ素及び酸素からなる生成物が生じる。
 その後、1500を超え、2200℃以下の温度での加熱に付される。温度が1500℃を超えると上記生成物から一酸化炭素の脱離が始まり、やがて炭化ケイ素となる。なお、2200℃を超えると炭化ケイ素の昇華が激しく、好ましくない。
 また、加熱処理の完了点は、例えば加熱生成物を1800℃で1時間加熱しても重量減少がシリコーン組成物換算で1重量%未満となった時である。
 以下に、実施例、比較例を示し、本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
 材料:
(A)下式で表される一分子中にアルケニル基を含有するジオルガノポリシロキサン 100質量部、
Figure JPOXMLDOC01-appb-C000015
(式中n、mはn/m=4/1で該シロキサンの25℃における粘度が600mPa.sとなるような数である。)、
及び、
(B)ベンゾイルパーオキサイド 0.5質量部、
(C)下式で表されるケイ素原子に結合する水素原子を有するジオルガノポリシロキサン 33質量部、
Figure JPOXMLDOC01-appb-C000016
 上記の(A)~(C)成分をプラネタリーミキサー(登録商標、井上製作所(株)製混合機)に投入し室温にて一時間攪拌し、室温で1000mPa.sの粘度を有する硬化性シリコーン組成物を得た。炭化ケイ素部材(20mm角×厚さ2mm)を二つ用意した。一方の炭化ケイ素部材の一表面に上記組成物を0.2mmの厚さで塗布し、得られた塗膜に、他方の炭化ケイ素部材の一表面を密着させた。こうしてシリコーン組成物層を挟んだ二つの炭化ケイ素部材を約200℃の温度で30分加熱しシリコーン組成物層を硬化させ、両部材を接着させた。得られた接着体を、炭素で出来た容器に入れ、雰囲気炉内で、アルゴンガス雰囲気中、100℃/時間の昇温速度で20時間かけて温度を2000℃まで高め、その2000℃で2時間保持した。その後、200℃/時間の速度で室温まで冷却することで炭化ケイ素接合体を得た。
・耐熱性試験:
 得られた炭化ケイ素接合体を、接合面が鉛直方向に沿うように配置し、アルゴンガス雰囲気下100℃/時間の昇温速度で24時間かけて温度を室温から2400℃まで高め、その2400℃で2時間保持した後、室温まで冷却したところ加熱前の外観及び部材が接合された一体性が完全に保持していた。
・不純物元素の分析:
 上記の硬化性シリコーン組成物を、炭素製の容器に5g入れた状態で処理した以外は、上記と同様にして硬化させ、熱処理を行ったところ緑色の固体を得た。これをICP発光分析に供したところ、種々の元素の含有量について表1に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure JPOXMLDOC01-appb-T000017
 上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムはいずれも検出限界未満であった。

[比較例1]
 実施例と同様の炭化ケイ素部材(20mm角×厚さ2mm)2枚の間に厚さ0.2mmのケイ素板を挟み、密着させた状態で、真空雰囲気下、100℃/時間の昇温速度で15時間かけて温度を1550℃まで高め、その1550℃で2時間保持した。その後、200℃/時間の速度で室温まで冷却し、炭化ケイ素接合体を得た。
・耐熱性試験:
 得られた炭化ケイ素接合体を、19時間かけて温度を室温から1900℃まで高め、その1900℃で2時間保持した以外は、実施例1における耐熱性試験と同様にして試験を行った。該接合体を冷却したところ、二つの炭化ケイ素部材が接合層の部分で剥離し一体性を保持できなかった。
 本発明の炭化ケイ素接合体は、例えば、半導体装置製造分野において、半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程においてボード、プロセスチューブなどに有用である。

Claims (20)

  1.  第1の炭化ケイ素部材と、第2の炭化ケイ素部材と、第1及び第2の炭化ケイ素部材の間に介在する炭化ケイ素接合層とを有してなる炭化ケイ素接合体。
  2.  前記炭化ケイ素接合層を構成する炭化ケイ素の不純物元素の合計含有量が1ppm以下である請求項1に係る炭化ケイ素接合体。
  3.  前記の不純物元素がFe、Cr、Ni、Al、Ti、Cu、Na、Zn、Ca、Zr、Mg、B、又はこれらの2種以上の組み合わせである請求項2に係る炭化ケイ素接合体。
  4.  第1の炭化ケイ素部材と第2の炭化ケイ素部材との間に硬化性シリコーン組成物を層状に介在させ、
     該層状の硬化性シリコーン組成物を硬化させ、
     得られた硬化物を非酸化性雰囲気下で加熱分解して炭化ケイ素に転化させ、第1及び第2の炭化ケイ素部材を接合する炭化ケイ素接合層を形成する、
    ことにより得られた請求項1に記載の炭化ケイ素接合体。
  5.  前記硬化性シリコーン組成物が有機過酸化物硬化性シリコーン組成物、放射線硬化性シリコーン組成物、付加硬化性シリコーン組成物、又は縮合硬化性シリコーン組成物である請求項4に係る炭化ケイ素接合体。
  6.  前記硬化性シリコーン組成物が有機過酸化物硬化性シリコーン組成物又は放射線硬化性シリコーン組成物であり、前記炭化ケイ素接合層を構成する炭化ケイ素の不純物元素が1ppm以下である請求項4に係る炭化ケイ素接合体。
  7.  前記の加熱分解の温度が1500℃を超え、2200℃以下の範囲内である請求項4に係る炭化ケイ素接合体。
  8.  第1の炭化ケイ素部材と第2の炭化ケイ素部材との間に硬化性シリコーン組成物を層状に介在させ、
     該層状の硬化性シリコーン組成物を硬化させ、
     得られた硬化物を非酸化性雰囲気下で加熱分解して炭化ケイ素に転化させ、第1及び第2の炭化ケイ素部材を接合する炭化ケイ素接合層を形成する、
    ことを含む、請求項1に記載の炭化ケイ素接合体の製造方法。
  9.  前記硬化性シリコーン組成物が、有機過酸化物硬化性シリコーン組成物、放射線硬化性シリコーン組成物、付加硬化性シリコーン組成物、又は縮合硬化性シリコーン組成物であるである請求項8に係る炭化ケイ素接合体の製造方法。
  10.  前記硬化性シリコーン組成物が有機過酸化物硬化性シリコーン組成物又は放射線硬化性シリコーン組成物である請求項8に係る炭化ケイ素接合体の製造方法。
  11.  前記の加熱分解の温度が1500℃を超え、2200℃以下の範囲内である請求項8に係る炭化ケイ素接合体の製造方法。
  12. 前記硬化性シリコーン組成物が、
     (a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
     (b)有機過酸化物、及び、
     (c)任意成分として、ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1~2モルとなる量
    を含有する有機過酸化物硬化性シリコーン組成物
    である請求項8に係る方法。
  13. 前記硬化性シリコーン組成物が、
     (d)紫外線反応性オルガノポリシロキサン、及び
     (e)光重合開始剤
    を含有する紫外線硬化性シリコーン組成物である請求項8に係る方法。
  14. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3a):
    Figure JPOXMLDOC01-appb-C000001
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、ただし、f+g+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するポリオルガノシロキサンである請求項13に係る方法。
  15. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項14に係る方法。
  16. 前記(d)成分の紫外線反応性オルガノポリシロキサンが、
    下記一般式(3b):
    Figure JPOXMLDOC01-appb-C000002
     [式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5~1,000の整数であり、nは0~100の整数であり、fは0~3の整数であり、gは0~3の整数であり、hは2~4の整数であり、i及びjは各々1~3の整数であり、ただしfi+gj+n≧2である]
    で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンである請求項13に係る方法。
  17. 前記の紫外線反応性基が、アルケニル基、アルケニルオキシ基、アクリロイル基、メタクリロイル基、メルカプト基、エポキシ基又はヒドロシリル基である請求項16に係る方法。
  18. (e)成分が、(d)成分100質量部に対して0.01~10質量部含有される請求項13に係る方法。
  19. 前記硬化性シリコーン組成物が、
    (f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
    (g)ケイ素原子に結合した水素原子を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1~5モルとなる量、及び
    (h)白金族金属系触媒 有効量
    を含有する付加硬化性シリコーン組成物である請求項8に係る方法。
  20. 前記硬化性シリコーン組成物が、
     (i)シラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサン、
     (j)任意成分として、加水分解性シラン、その部分加水分解縮合物又はそれらの組み合わせ、ならびに
     (k)任意成分として、縮合反応触媒
    を含有する縮合硬化性シリコーン組成物である請求項8に係る方法。
PCT/JP2010/067663 2009-10-09 2010-10-07 炭化ケイ素接合体及び炭化ケイ素部材の接合方法 WO2011043426A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011535455A JPWO2011043426A1 (ja) 2009-10-09 2010-10-07 炭化ケイ素接合体及び炭化ケイ素部材の接合方法
CN201080045082.1A CN102574745B (zh) 2009-10-09 2010-10-07 碳化硅接合体以及碳化硅构件的接合方法
EP20100822096 EP2487145A1 (en) 2009-10-09 2010-10-07 Silicon carbide joined body and method for joining silicon carbide members
US13/500,703 US20120196135A1 (en) 2009-10-09 2010-10-07 Silicon carbide conjugate and method of joining silicon carbide members

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-235684 2009-10-09
JP2009235684 2009-10-09

Publications (1)

Publication Number Publication Date
WO2011043426A1 true WO2011043426A1 (ja) 2011-04-14

Family

ID=43856876

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067663 WO2011043426A1 (ja) 2009-10-09 2010-10-07 炭化ケイ素接合体及び炭化ケイ素部材の接合方法

Country Status (7)

Country Link
US (1) US20120196135A1 (ja)
EP (1) EP2487145A1 (ja)
JP (1) JPWO2011043426A1 (ja)
KR (1) KR20120093274A (ja)
CN (1) CN102574745B (ja)
TW (1) TW201129522A (ja)
WO (1) WO2011043426A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785666B1 (en) * 2011-11-29 2019-09-18 Corning Incorporated Method of treating joint in ceramic assembly

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110330357B (zh) * 2019-07-19 2022-06-17 中国科学院宁波材料技术与工程研究所 一种用于连接碳化硅材料的连接材料及其应用
CN110304924B (zh) * 2019-06-18 2021-12-14 平顶山学院 一种层状结构碳化硅复合材料及其制备方法
CN116349406A (zh) * 2020-10-09 2023-06-27 Agc株式会社 SiSiC部件和加热器具

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264063A (ja) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd 接合型炭化けい素成形体の製造方法
JPH03275579A (ja) * 1990-03-23 1991-12-06 Shin Etsu Chem Co Ltd 炭化けい素被覆膜の製造方法
JP2001163680A (ja) 1999-12-10 2001-06-19 Toshiba Ceramics Co Ltd SiC焼結体の接合体、それを利用した半導体製造用部材、及びその製造方法
JP2002338334A (ja) 2001-03-14 2002-11-27 Ngk Insulators Ltd セラミック焼結体およびその製造方法
JP2009155185A (ja) * 2007-12-27 2009-07-16 National Institute For Materials Science 炭化ケイ素の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3629297A (en) * 1970-02-12 1971-12-21 Dow Corning Solvent-free liquid organosilicon resins
DE4030529A1 (de) * 1990-09-27 1992-04-02 Dornier Gmbh Verfahren zur herstellung von sandwichstrukturen aus faserverstaerkter keramik
KR100662534B1 (ko) * 1999-07-15 2006-12-28 가부시키가이샤 도모에가와 세이시쇼 분체 단층 피막 형성방법
JP2002064063A (ja) * 2000-08-21 2002-02-28 Fuji Photo Film Co Ltd 半導体素子用基板およびその製造方法ならびに半導体素子
JP2003276679A (ja) * 2002-03-27 2003-10-02 Nec Corp 海底観測システム
JP5322382B2 (ja) * 2006-11-30 2013-10-23 株式会社東芝 セラミックス複合部材とその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0264063A (ja) * 1988-08-30 1990-03-05 Shin Etsu Chem Co Ltd 接合型炭化けい素成形体の製造方法
JPH03275579A (ja) * 1990-03-23 1991-12-06 Shin Etsu Chem Co Ltd 炭化けい素被覆膜の製造方法
JP2001163680A (ja) 1999-12-10 2001-06-19 Toshiba Ceramics Co Ltd SiC焼結体の接合体、それを利用した半導体製造用部材、及びその製造方法
JP2002338334A (ja) 2001-03-14 2002-11-27 Ngk Insulators Ltd セラミック焼結体およびその製造方法
JP2009155185A (ja) * 2007-12-27 2009-07-16 National Institute For Materials Science 炭化ケイ素の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2785666B1 (en) * 2011-11-29 2019-09-18 Corning Incorporated Method of treating joint in ceramic assembly

Also Published As

Publication number Publication date
TW201129522A (en) 2011-09-01
CN102574745B (zh) 2014-05-21
CN102574745A (zh) 2012-07-11
EP2487145A1 (en) 2012-08-15
US20120196135A1 (en) 2012-08-02
JPWO2011043426A1 (ja) 2013-03-04
KR20120093274A (ko) 2012-08-22

Similar Documents

Publication Publication Date Title
JP5630333B2 (ja) 易焼結性炭化ケイ素粉末及び炭化ケイ素セラミックス焼結体
JP5488607B2 (ja) 炭化ケイ素被覆炭素材料の製造方法
JP5177793B2 (ja) 炭化ケイ素の製造方法
JP5589856B2 (ja) 透明性に優れる熱伝導性シリコーン組成物及び硬化物
WO2011052695A1 (ja) 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法
JPWO2011043425A1 (ja) 炭化ケイ素成形体の製造方法
WO2011043426A1 (ja) 炭化ケイ素接合体及び炭化ケイ素部材の接合方法
WO2011059041A1 (ja) 炭化ケイ素粉末組成物及びそれを用いる炭化ケイ素成形体の製造方法
JP2011079725A (ja) 炭化ケイ素含浸炭素質材料
WO2011043427A1 (ja) 多孔質炭化ケイ素基材の緻密化方法
JP5477445B2 (ja) 炭化ケイ素の製造方法
JP2008081397A (ja) 無機成形体の製造方法、及び該方法により得られる無機成形体

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045082.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10822096

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011535455

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13500703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127011882

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010822096

Country of ref document: EP