JP2011079725A - 炭化ケイ素含浸炭素質材料 - Google Patents

炭化ケイ素含浸炭素質材料 Download PDF

Info

Publication number
JP2011079725A
JP2011079725A JP2009235745A JP2009235745A JP2011079725A JP 2011079725 A JP2011079725 A JP 2011079725A JP 2009235745 A JP2009235745 A JP 2009235745A JP 2009235745 A JP2009235745 A JP 2009235745A JP 2011079725 A JP2011079725 A JP 2011079725A
Authority
JP
Japan
Prior art keywords
group
silicone composition
curable silicone
component
groups
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009235745A
Other languages
English (en)
Inventor
Yoshitaka Aoki
良隆 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2009235745A priority Critical patent/JP2011079725A/ja
Publication of JP2011079725A publication Critical patent/JP2011079725A/ja
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

【課題】簡便な方法で製造できる高純度炭化ケイ素含浸炭素質材料を提供する。
【解決手段】炭素基材の少なくとも表面層に有機過酸化物硬化性シリコーン組成物等の硬化性シリコーン組成物を含浸させ、こうして含浸した前記硬化性シリコーン組成物を硬化させ、こうして得られた硬化性シリコーン含浸状態の炭素基材を、非酸化性雰囲気下において、1500℃を越え、2200℃の範囲内で熱分解させて炭化ケイ素に転化させて得られる炭化ケイ素含浸炭素質材料。
【選択図】なし

Description

本発明は、炭化ケイ素含浸炭素質材料及び該材料の製造方法に関する。
炭化ケイ素を表面に含浸した炭素質材料は常温及び高温で化学的に安定であり、高温における機械的強度も優れているため、高温材料として利用されている。近年では、半導体製造分野において、耐熱性、耐クリープ性に優れた高純度の炭化ケイ素含浸炭素質材料が、半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程でのボードやプロセスチューブなどに利用されるようになった。ここで用いられる炭化ケイ素含浸炭素質材料に不純物元素が含まれていると、半導体ウエハーの加熱中にこの不純物元素が侵入して汚染されるという問題が生じるため、これらの用途に用いられる炭化ケイ素含浸炭素質材料は、できるだけ高純度であることが好ましい。
従来、炭化ケイ素含浸炭素質材料の製造方法としては、基材である炭素質基材(通常、黒鉛)の表面にケイ素粉末を接触させ加熱させることにより、化学反応させて得る方法(特許文献1)、炭素質基材表面に化学気相蒸着法(CVD法)によって、炭化ケイ素含浸層を形成する方法(特許文献2)などが知られているが、得られる炭化ケイ素の純度が低く、また純度を高めることは困難である。炭化ケイ素含浸層の高純度化のために炭化ケイ素含浸材料に化学的処理を施す方法(特許文献3)が知られているが、工程が増えて煩雑である。
特開平10−236893号公報 特開2002-37684号公報 特開2003−277933号公報
本発明の課題は、上記従来技術の問題を解決し、簡便な方法で得られる高純度炭化ケイ素含浸炭素質材料を提供することにある。
本発明者らは、上記課題を解決するため検討を重ねた結果、シリコーン組成物の炭化ケイ素化により上記課題を解決できることを見出した。
即ち、本発明は、 多孔質炭素質基材と、該基材の少なくとも表面層に含浸した状態にある炭化ケイ素とを有する炭化ケイ素含浸炭素質材料であって、
炭素質基材の少なくとも表面層に、硬化性シリコーン組成物を含浸させ、
こうして含浸した前記硬化性シリコーン組成物を硬化させ、
こうして得られた含浸状態のシリコーン硬化物を非酸化性雰囲気下で熱分解して炭化ケイ素に転化させる、
ことにより得られる炭化ケイ素含浸炭素質材料
を提供するものである。
本発明によれば、出発原料が硬化性シリコーン組成物であるため、該シリコーン組成物の段階で高純度化が可能であり、該シリコーン組成物の硬化及び熱分解のみという簡便な方法で高純度炭化ケイ素含浸炭素質材料を容易に製造することができる。
本発明によれば、炭化ケイ素含浸炭素質材料は炭化ケイ素含浸層のために機械的強度が向上する。また、炭化ケイ素は基材細孔に含浸した状態ばかりでなく基材表面を被覆して存在することが好ましく、その場合、炭素質基材を外部から完全に遮断するので、炭素質基材が例えば半導体分野で有害な不純物金属に汚染されていても、その漏出を防止することができる。
以下、本発明を詳細に説明する。なお、本明細書において、「室温」とは周囲温度を意味し、通常、10〜35℃の範囲で変りうる。
−炭化ケイ素含浸炭素質材料−
本発明の炭化ケイ素含浸炭素質材料は、多孔質炭素質基材と、該基材の少なくとも表面層に含浸した状態にある炭化ケイ素とを有してなるものである。
本発明に用いられる多孔質炭素質基材は、石墨又は無定形炭素からなる一定の形状、寸法を有する多孔質固体材料である。該炭素質基材の製造方法は特に限定されないが、通常、例えば、焼結性炭素質粉末(無定形炭素粉末)を所要形状、例えば、角ブロック、円柱ブロック等に冷間等方圧加圧(CIP)成形し、焼成し、必要に応じてさらに黒鉛化することにより得られる。こうして得られたブロックに切断、切削等の機械加工をさらに施して所望の形状、寸法に仕上げることができる。また、焼結性炭素質粉体を押出成形し焼成し、さらに必要に応じて黒鉛化して得られる所要の形状、寸法を有する成形体として得ることもできる。こうして得られる炭素質基材は一般に細孔構造を有し多孔質である。
該基材に形成される炭化ケイ素含浸層は次の製造方法により形成されるものである。
−製造方法−
該製造方法は、
(1)炭素質基材の少なくとも表面層に硬化性シリコーン組成物を含浸させ、
(2)こうして含浸した前記硬化性シリコーン組成物を硬化させ、
(3)こうして得られた含浸状態のシリコーン硬化物を非酸化性雰囲気下で熱分解して炭化ケイ素に転化させる、
工程を有する。
工程(1):
上記の工程(1)で用いられる硬化性シリコーン組成物としては公知のものを使用することが出来る。その具体例としては有機過酸化物硬化性、放射線硬化性反応性、付加硬化反性型、縮合硬化性のシリコーン組成物等が挙げられる。得られる含浸を高純度にする点では、有機過酸化物硬化性及び放射線硬化性反応性のシリコーン組成物が有利であり、得られる炭化ケイ素成形体中の不純物元素の合計含有量を1ppm以下、好ましくは0.5ppm以下、さらに好ましくは0.1ppm以下に抑制することができる。不純物元素としては、特にFe, Cr, Ni, Al, Ti, Cu, Na, Zn, Ca, Zr, Mg, 及びBが挙げられ、これらの合計含有量を上記のように抑制することができる。
有機過酸化物硬化性シリコーン組成物としては、例えば、分子鎖末端部分(片末端又は両末端)及び分子鎖非末端部分のどちらか一方又はその両方にビニル基等のアルケニル基を有する直鎖状オルガノポリシロキサンを有機過酸化物存在下でラジカル重合させることによって硬化するシリコーン組成物を挙げることができる。
放射線硬化性シリコーン組成物としては、紫外線硬化性シリコーン組成物及び電子線硬化性シリコーン組成物を挙げられる。
紫外線硬化性シリコーン組成物としては、例えば、波長200〜400nmの紫外線のエネルギーにより硬化するシリコーン組成物が挙げられる。この場合、硬化機構には特に制限はない。その具体例としてはアクリル基あるいはメタクリル基を有するオルガノポリシロキサンと光重合開始剤とを含有するアクリルシリコーン系シリコーン組成物、メルカプト基含有オルガノポリシロキサンとビニル基等のアルケニル基を有するオルガノポリシロキサンと光重合開始剤とを含有するメルカプト−ビニル付加重合系シリコーン組成物、熱硬化性の付加反応型と同じ白金族金属系触媒を用いた付加反応系シリコーン組成物、エポキシ基を含有するオルガノポリシロキサンとオニウム塩触媒とを含有するカチオン重合系シリコーン組成物などが挙げられ、いずれも紫外線硬化性シリコーン組成物として使用することができる。
電子線硬化性シリコーン組成物としては、ラジカル重合性基を有するオルガノポリシロキサンに電子線を照射することで開始するラジカル重合により硬化するいずれのシリコーン組成物も使用することができる。
付加硬化性シリコーン組成物としては、例えば、上記のアルケニル基を有する直鎖状オルガノポリシロキサンとオルガノハイドロジェンポリシロキサンと白金族金属系触媒の存在下で反応(ヒドロシリル化付加反応)させることにより硬化するシリコーン組成物を挙げることができる。
縮合硬化性シリコーン組成物としては、例えば、両末端シラノール封鎖オルガノポリシロキサンとオルガノハイドロジェンポリシロキサン又はテトラアルコキシシラン、オルガノトリアルコキシシラン等の加水分解性シラン及び/もしくはその部分加水分解縮合物とを有機錫系触媒等の縮合反応触媒の存在下で反応させることにより硬化するシリコーン組成物、あるいは両末端がトリアルコキシ基、ジアルコキシオルガノ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等で封鎖されたオルガノポリシロキサンを有機錫触媒等の縮合反応存在下で反応させることにより硬化するシリコーン組成物などを挙げることができる。
ただし、不純物の混入を極力避ける観点から、放射線硬化性シリコーン組成物及び有機過酸化物硬化性シリコーン組成物が望ましい。
以下、各硬化性シリコーン組成物について詳述する。
・有機過酸化物硬化性シリコーン組成物:
有機過酸化物硬化性シリコーン組成物として、具体的には、例えば、
(a)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン及び
(b)有機過酸化物及び任意成分として
(c)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(c)成分中のケイ素原子に結合した水素原子の量が0.1〜2モルとなる量
を含有する有機過酸化物硬化性シリコーン組成物があげられる。
・・(a)成分
(a)成分のオルガノポリシロキサンは、有機過酸化物硬化性シリコーン組成物のベースポリマーである。(a)成分のオルガノポリシロキサンの重合度は特に限定されず、(a)成分としては、25℃で液状のオルガノポリシロキサンから生ゴム状のオルガノポリシロキサンまで使用できるが、平均重合度が好ましくは50〜20,000、より好ましくは100〜10,000、更により好ましくは100〜2,000程度のオルガノポリシロキサンが好適に使用される。また、(a)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖がジオルガノシロキサン単位(R1 SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R1 SiO1/2)もしくはヒドロキシジオルガノシロキシ基((HO)R1 SiO1/2単位)で封鎖された、分岐を有しない直鎖構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。
(a)成分としては、例えば下記平均組成式(1);
1 SiO(4−a)/2 (1)
(式中、R1は同一又は異種の非置換もしくは置換の、炭素原子数が1〜10、より好ましくは1〜8の一価炭化水素基を表し、R1の50〜99モル%はアルケニル基であり、aは1.5〜2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95〜2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。
上記R1の具体的例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基等のシクロアルキル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基等のアルケニル基これらの炭化水素基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子、シアノ基等で置換した基例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基等が挙げられるが、高純度の観点から炭化水素基のみで構成されるほうが好ましい。
この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2〜8、より好ましくは2〜6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(5)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50〜99モル%、特に好ましくは75〜95モル%である。(a)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。
・・(b)成分
(b)成分は、有機過酸化物硬化性オルガノポリシロキサン組成物において(a)成分の架橋反応を促進するための触媒として使用される有機過酸化物である。(b)成分としては、(a)成分の架橋反応を促進することができる限り、従来公知の有機過酸化物を使用することができる。その具体例としては、ベンソイルパーオキサイド、2,4−ジクロロベンソイルパーオキサイド、p−メチルベンソイルパーオキサイド、o−メチルベンソイルパーオキサイド、2,4−ジクミルパーオキサイド、2,5−ジメチル−ビス(2,5−t−ブチルパーオキシ)へキサン、ジ−t−ブチルパーオキサイド、t−ブチルパーベンゾエート、1,1−ビス(t−ブチルパーオキシカルボキシ)へキサン等が挙げられるが特にこれらに限定されるものではない。
(b)成分の添加量は、(a)成分の架橋反応を促進するための触媒としての有効量である。(a)成分100質量部に対して好ましくは0.1〜10質量部、より好ましくは0.2〜2質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して0.1質量部より少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。また、該添加量が(a)成分100質量部に対して10質量部より多くなる量であると(b)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
・・(c)成分
任意成分である(c)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2〜200個)、好ましくは3個以上(通常3〜100個)含有する。(a)成分単独でも(b)成分を添加し、加熱することで硬化させることが可能であるが、(c)成分を添加することで、(a)成分単独の場合と比べて、(a)成分と反応しやすいため、より低温かつ短時間で、硬化させることができる。(c)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(c)成分として使用することができる。(c)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2〜300個、好ましくは4〜150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(c)成分として好ましく使用できる。
(c)成分としては、例えば、下記平均組成式(2);
SiO(4−b−c)/2 (2)
(式中、Rは同一又は異種の非置換もしくは置換の、炭素原子数が1〜10、より好ましくは1〜8の一価炭化水素基であり、b及びcは、好ましくは0.7≦b≦2.1、0.001≦c≦1.0、かつ0.8≦b+c≦3.0、より好ましくは1.0≦b≦2.0、0.01≦c≦1.0、かつ1.5≦b+c≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRと同様の基(ただし、アルケニル基を除く。)が挙げられる。
上記平均組成式(2)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
(c)成分の添加量は、任意の量ではあるが、(a)成分100質量部に対して好ましくは0〜100質量部、より好ましくは0〜50質量部の範囲とすることができる。該添加量が(a)成分100質量部に対して100質量部より多くなる量であると(c)成分由来の発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
・紫外線硬化性シリコーン組成物:
紫外線硬化性シリコーン組成物として、具体的には、例えば
(d)紫外線反応性オルガノポリシロキサン、及び
(e)光重合開始剤
を含有する紫外線硬化性シリコーン組成物が挙げられる。
・・(d)成分
(d)成分の紫外線反応性オルガノポリシロキサンは、通常、紫外線硬化性シリコーン組成物においてベースポリマーとして作用する。(d)成分は、特に限定されず、好ましくは1分子中に少なくとも2個、より好ましくは2〜20個、特に好ましくは2〜10個の紫外線反応性基を有するオルガノポリシロキサンである。このオルガノポリシロキサン中に複数存在する前記紫外線硬化性基は、すべて同一でも異なっていてもよい。
(d)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、三官能性シロキサン単位やSiO単位等の分岐状構造を部分的に含有してもよい。(d)成分のオルガノポリシロキサンは、直鎖状構造を有する場合、紫外線反応性基を、分子鎖末端及び分子鎖末端でない部分のどちらか一方にのみ有していても、その両方に有していてもよいが、少なくとも分子鎖両末端に紫外線反応性基を有することが好ましい。
該紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクリロイル基、メルカプト基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。
前記オルガノポリシロキサンの粘度は、特に限定されないが、25℃において100mPa.s〜1,000,000mPa.sであることが好ましく、200〜500,000mPa.sであることがより好ましく、200〜100,000mPa.sであることが特に好ましい。
(d)成分の好ましい一形態として例えば、下記一般式(3a);
Figure 2011079725
[式中、Rは同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価炭化水素基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、Rは同一又は異種の、紫外線反応性基を有する基であり、mは5〜1,000の整数であり、nは0〜100の整数であり、dは0〜3の整数であり、eは0〜3の整数であり、ただし、d+e+n≧2である]
又は下記一般式(3b);
Figure 2011079725
[式中、R、R、R、m、n、f、gは上記一般式(4a)で定義した通りであり、hは2〜4の整数であり、i及びjは各々1〜3の整数であり、ただしfi+gj+n≧2である]
で表される少なくとも2個の紫外線反応性基を有するオルガノポリシロキサンが挙げられる。
上記一般式(3a)及び(3b)中、Rは、同一又は異種の、紫外線反応性基を有しない非置換もしくは置換の一価の、炭素原子数が好ましくは1〜20、より好ましくは1〜10更により好ましくは、1〜8の一価炭化水素基である。Rで表される一価炭化水素基としては例えばメチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;シクロペンチル基、シクロヘキシル基、シクロペンチル基等のシクロアルキル基;ベンジル基、フェニルエチル基等のアラルキル基;これらの炭化水素基に結合している水素原子の一部又は全部をハロゲン原子、シアノ基、カルボキシル基等で置換した基、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフロロプロピル基、シアノエチル基、3−シアノプロピル基等が挙げられ、好ましくはメチル基及びフェニル基が挙げられ、より好ましくはメチル基が挙げられる。また上記Rで表される一価炭化水素基は、その骨格中にスルホニル基、エーテル結合(−O−)、カルボニル基等を1種又は2種以上有してもよい。
上記一般式(3a)及び(3b)中、R及びRに含まれる紫外線反応性基としては、例えば、ビニル基、アリル基、プロペニル基等のアルケニル基;ビニルオキシ基、アリルオキシ基、プロペニルオキシ基、イソプロペニルオキシ基等のアルケニルオキシ基;アクリロイル基、メタクリロイル基等のアルケニル基以外の脂肪族不飽和基;メルカプト基;エポキシ基;ヒドロシリル基等が挙げられ、好ましくはアクリロイル基、メタクロイル基、エポキシ基、及びヒドロシリル基が挙げられ、より好ましくはアクリロイル基及びメタクリロイル基が挙げられる。従って、R及びRで表される紫外線反応性基を有する基は、例えば上で例示した紫外線反応基を有する一価の基であり、その具体例としては、ビニル基、アリル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基、3−メタクリロキシプロピル基、3−アクリロキシプロピル基、3−メルカプトプロピル基、2−{ビス(2−メタクリロキシエトキシ)メチルシリル}エチル基、2−{ビス(2−アクリロキシエトキシ)メチルシリル}エチル基、2−{(2−アクリロキシエトキシ)ジメチルシリル}エチル基、2−{ビス(1,3−ジメタクリロキ−2−プロポキシ)メチルシリル}エチル基、2−{(1,3−ジメタクリロキ−2−プロポキシ)ジメチルシリル}エチル基、2−{ビス(1−アクリロキシ−3−メタクリロキ−2−プロポキシ)メチルシリル}エチル基、及び2−{ビス(1−アクリロキシ−3−メタクリロキ−2−プロポキシ)ジメチルシリル}エチル基等が挙げられ、好ましくは3−メタクリロキシプロピル基、3−アクリロキシプロピル基、2−{ビス(2−メタクリロキシエトキシ)メチルシリル}エチル基、2−{ビス(2−アクリロキシエトキシ)メチルシリル}エチル基、2−{(2−アクリロキシエトキシ)ジメチルシリル}エチル基、2−{(1,3−ジメタクリロキ−2−プロポキシ)ジメチルシリル}エチル基、2−{ビス(1−アクリロキシ−3−メタクリロキ−2−プロポキシ)メチルシリル}エチル基、及び2−{ビス(1−アクリロキシ−3−メタクリロキ−2−プロポキシ)ジメチルシリル}エチル基が挙げられる。R及びRは各々同一であっても異なっていてもよく、R及びRどうしが同一であっても異なっていてもよい。
上記一般式(3a)及び(3b)中、mは、通常、5〜1,000、好ましくは10〜800、より好ましくは50〜500の整数であり、nは、通常、0〜100、好ましくは0〜50、より好ましくは0〜20の整数であり、fは0〜3、好ましくは0〜2、より好ましくは1〜2の整数であり、gは0〜3、好ましくは0〜2の整数、より好ましくは1又は2である。上記式(4b)中、hは通常2〜4の整数、好ましくは2又は3である。i及びjは各々1〜3の整数、好ましくは1又は2整数である。更に、上記一般式(4a)及び(4b)で表されるオルガノポリシロキサンは前述の通り、前記紫外線反応性基を少なくとも2個有するので、式(4a)ではf+g+n≧2となり式(4b)ではfi+gj+n≧2となる。
上記式(3a)及び(3b)で表されるオルガノポリシロキサンの具体例としては、下記に示すものなどが挙げられる。
Figure 2011079725
Figure 2011079725
Figure 2011079725
Figure 2011079725
[上記式中、Rは90%がメチル基であり、10%がフェニル基である]
・・(e)成分
(e)成分の光重合開始剤は、前記(d)成分中の紫外線反応性基の光重合を促進させる作用を有する。(e)成分は特に限定されず、その具体例としては、アセトフェノン、プロピオフェノン、ベンゾフェノン、キサントール、フルオレイン、ベンズアルデヒド、アンスラキノン、トリフェニルアミン、4−メチルアセトフェノン、3−ペンチルアセトフェノン、4−メトキシアセトフェノン、3−ブロモアセトフェノン、4−アリルアセトフェノン、p−ジアセチルベンゼン、3−メトキシベンゾフェノン、4−メチルベンゾフェノン、4−クロロベンゾフェノン、4,4’−ジメトキシベンゾフェノン、4−クロロ−4’−ベンジルベンゾフェノン、3−クロロキサントン、3,9−ジクロロキサントン、3−クロロ−8−ノニルキサントン、ベンゾイン、ベンゾインメチルエーテル、ベンゾインブチルエーテル、ビス(4−ジメチルアミノフェニル)ケトン、ベンジルメトキシアセタール、2−クロロチオキサントン、ジエチルアセトフェノン、1−ヒドロキシクロロフェニルケトン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−(4−(メチルチオ)フェニル)−2−モルホリノ−1−プロパン、2,2−ジメトキシ−2−フェニルアセトフェノン、ジエトキシアセトフェノン及び2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン等が挙げられ、好ましくは高純度の観点からベンゾフェノン、4−メトキシアセトフェノン、4−メチルベンゾフェノン、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン及び2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンが挙げられ、より好ましくはジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン及び2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オンが挙げられる。これらの光重合開始剤は1種単独で用いても2種以上を併用してもよい。
(e)成分の添加量は、特に限定されないが、(d)成分100質量部に対して、好ましくは、0.01〜10質量部、より好ましくは0.1〜3質量部、更により好ましくは0.5〜3質量部である。この添加量がこの範囲内であると、シリコーン組成物の硬化制御が行い易い。
・付加硬化性シリコーン組成物:
付加硬化性シリコーン組成物として、具体的には、例えば
(f)ケイ素原子に結合したアルケニル基を少なくとも2個含有するオルガノポリシロキサン、
(g)ケイ素原子に結合した水素原子(即ち、SiH基)を少なくとも2個含有するオルガノハイドロジェンポリシロキサン 全硬化性シリコーン組成物中のアルケニル基1モル当たり、本(g)成分中のケイ素原子に結合した水素原子の量が0.1〜5モルとなる量、及び
(h)白金族金属系触媒 有効量
を含有する付加硬化性シリコーン組成物が挙げられる。
・・(f)成分
(f)成分のオルガノポリシロキサンは、付加硬化性シリコーン組成物のベースポリマーであり、ケイ素原子に結合したアルケニル基を少なくとも2個含有する。(f)成分としては公知のオルガノポリシロキサンを使用することが出来る。ゲルパーミッションクロマトグラフィー(以下、「GPC」とする。)により測定された(f)成分のオルガノポリシロキサンの重量平均分子量はポリスチレン換算で好ましくは3,000〜300,000程度である。さらに(f)成分のオルガノポリシロキサンの25℃に置ける粘度は、100〜1,000,000mPa.sであることが好ましく、1,000〜100,000mPa.s程度であることが特に好ましい。100mPa.s以下であると曳糸性が低く、繊維の細径化が困難となり、1,000,000mPa.s以上では取扱が困難となる。(f)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、RSiO3/2単位やSiO4/2単位を含んだ分岐状構造を部分的に有してもよい。
(f)成分としては、例えば下記平均組成式(4);
SiO(4−l)/2 (4)
(式中、Rは前記同様、同一又は異種の非置換もしくは置換の、炭素原子数が1〜10、より好ましくは1〜8の一価炭化水素基であり、lは好ましくは1.5〜2.8、より好ましくは1.8から2.5、さらにより好ましくは1.95〜2.05の範囲の正数である。)で示され、一分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRと同様の基(ただし、アルケニル基を除く。)が挙げられる。
この場合、Rのうち少なくとも2個はアルケニル基(特に、炭素原子が好ましくは2〜8、より好ましくは2〜6のアルケニル基)である。なお、アルケニル基の含有量はケイ素原子に結合する全有機基中(即ち、前記平均組成式(4)においてRで示される非置換又は置換の全一価炭化水素基中)、好ましくは50〜99モル%、特に好ましくは75〜95モル%である。(f)成分のオルガノポリシロキサンが直鎖状構造を有する場合、このアルケニル基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよいが、組成物の硬化速度、硬化物の物性等の点から、少なくとも一個のアルケニル基が分子鎖末端のケイ素原子に結合していることが望ましい。
・・(g)成分
(g)成分のオルガノハイドロジェンポリシロキサンは、ケイ素原子に結合した水素原子(SiH基)を少なくとも2個(通常2〜200個)、好ましくは3個以上(通常3〜100個)含有する。(g)成分は、(f)成分と反応し架橋剤として作用する。(g)成分の分子構造は特に限定されず、例えば、線状、環状、分岐状、三次元網状(樹脂状)等の、従来製造されているいずれのオルガノハイドロジェンポリシロキサンも(b)成分として使用することができる。(g)成分が線状構造を有する場合、SiH基は、分子鎖末端及び分子鎖末端でない部分のどちらか一方でのみケイ素原子に結合していても、その両方でケイ素原子に結合していてもよい。また、1分子中のケイ素原子の数(又は重合度)が、通常、2〜300個、好ましくは4〜150個程度であり、室温(25℃)において液状であるオルガノハイドロジェンポリシロキサンが、(g)成分として好ましく使用できる。
(g)成分としては、例えば、下記平均組成式(5);
SiO(4−p−q)/2 (5)
(式中、Rは同一又は異種の非置換もしくは置換の、炭素原子数が1〜10、より好ましくは1〜8の一価炭化水素基であり、p及びqは、好ましくは0.7≦p≦2.1、0.001≦q≦1.0、かつ0.8≦p+q≦3.0、より好ましくは1.0≦p≦2.0、0.01≦q≦1.0、かつ1.5≦p+q≦2.5を満足する正数である。)
で示されるオルガノハイドロジェンポリシロキサンが用いられる。上記Rとしては、例えば、上記平均組成式(1)中のRと同様の基(ただし、アルケニル基を除く。)が挙げられる。
上記平均組成式(3)で表されるオルガノハイドロジェンポリシロキサンの具体例としては1,1,3,3−テトラメチルジシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジフェニルシロキサン・ジメチルシロキサン共重合体、両末端メチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・メチルフェニルシロキサン・ジメチルシロキサン共重合体、(CHHSiO1/2単位と(CHSiO2/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位とからなる共重合体、(CHHSiO1/2単位とSiO4/2単位と(CSiO1/2単位とからなる共重合体などが挙げられる。
(g)成分の添加量は、全硬化性シリコーン組成物中のアルケニル基1モル当たり、特に、全硬化性シリコーン組成物中のケイ素原子に結合したアルケニル基1モル当たり、とりわけ、(f)成分中のケイ素原子に結合したアルケニル基1モル当たり、本(g)成分中のSiH基の量が0.1〜5.0モル、好ましくは0.5〜3.0モル、より好ましくは0.8〜2.0モルとなる量である。このとき、全硬化性シリコーン組成物中に存在するアルケニル基に対する(f)成分中のケイ素原子と結合したアルケニル基の割合は80〜100モル%が好ましく、90〜100モル%がより好ましい。全硬化性シリコーン組成物中にアルケニル基を有する成分として(f)成分しか存在しない場合には、(f)成分中のアルケニル基1モル当たり、本(g)成分中のSiHの量が0.1〜5.0モル、好ましくは0.5〜3.0モル、より好ましくは0.8〜2.0モルとなる量である。該添加量が上記SiHの量が0.1モルより少なくなる量であると、硬化するまでの時間が長くかかり、経済的に不利である。
また、該添加量が上記SiHの量が5.0モルより多くなる量であると該硬化反応物中に脱水素反応による発泡が生じてしまい、さらに該硬化反応物の強度及び耐熱性が悪影響を受ける。
・・(h)成分
(h)成分の白金族金属系触媒は、(f)成分と(g)成分との付加硬化反応(ヒドロシリル化反応)を促進させるための触媒として使用される。(h)成分としては、公知の白金族金属系触媒を用いることができるが、白金もしくは白金化合物を用いることがこのましい。(h)成分の具体例としては、白金黒、塩化第二白金、塩化白金酸、塩化白金酸のアルコール変性物、塩化白金酸とオレフィン、アルデヒド、ビニルシロキサン又はアセチレンアルコール類との錯体が挙げられる。
(h)成分の添加量は、触媒として有効量であり、希望する硬化反応速度に応じて適時増減すればよいが、(f)成分に対して白金族金属に換算して質量基準で、好ましくは0.1〜1,000ppm、より好ましくは0.2〜100ppmの範囲である。
・縮合硬化性シリコーン組成物:
縮合硬化性シリコーン組成物として、具体的には、例えば、
(i)シラノール基(即ちケイ素原子結合水酸基)又はケイ素原子結合加水分解性基を少なくとも2個、好ましくは分子鎖両末端に含有するオルガノポリシロキサン、
(j)任意成分として、加水分解性シラン及び/又はその部分加水分解縮合物、ならびに
(k)任意成分として、縮合反応触媒
を含有する縮合硬化性シリコーン組成物が挙げられる。
・・(i)成分
(i)成分はシラノール基又はケイ素原子結合加水分解性基を少なくとも2個含有するオルガノポリシロキサンであり、縮合硬化性シリコーン組成物のベースポリマーである。(i)成分のオルガノポリシロキサンは、基本的には、原料の入手のしやすさの観点から、分子鎖(主鎖)がジオルガノシロキサン単位(R SiO2/2単位)の繰返しからなり、分子鎖両末端がトリオルガノシロキシ基(R SiO1/2)で封鎖された、分岐を有しない直鎖状構造、又は分子鎖が該ジオルガノシロキサン単位の繰返しからなる、分岐を有しない環状構造を有するが、分岐状構造を部分的に含有してもよい。
(i)成分のオルガノポリシロキサンにおいて、シラノール基以外の加水分解性基としては、例えば、アセトキシ基、オクタノイルオキシ基、ベンゾイルオキシ基等のアシロキし基;ジメチルケトオキシム基、メチルエチルケトオキシム基、ジエチルケトオキシム基等のケトオキシム基(即ち、イミノキシ基);メトキシ基、エトキシ基、プロポキシ基等のアルコキシ基;メトキシエトキシ基、エトキシエトキシ基、メトキシプロポキシ基等のアルコキシアルコキシ基;ビニロキシ基、イソプロペニルオキシ基,1−エチル−2−メチルビニルオキシ基等のアルケニルオキシ基;ジメチルアミノ基、ジエチルアミノ基、ブチルアミノ基、シクロヘキシルアミノ基等のアミノ基;ジメチルアミノキシ基、ジエチルアミノキシ基等のアミノキシ基;N−メチルアセトアミド、N−エチルアセトアミド基、N−メチルベンズアミド基等のアミド基等が挙げられる。
これらの加水分解性基は、例えば、トリアルコキシシロキシ基、ジアルコキシオルガノシロキシ基、トリアシロキシシロキシ基、ジアシロキシオルガノシロキシ基、トリイミノキシシロキシ基(即ち、トリケトオキシムシロキシ基)、ジイミノキシオルガノシロキシ基、トリアルケノキシシロキシ基、ジアルケノキシオツガノシロキシ基、トリアルコキシシロキシエチル基、ジアルコキシオルガノシロキシエチル基等の、2個もしくは3個の加水分解性基を含有するシロキシ基又は2個もしくは3個の加水分解性基を含有するシロキシアルキル基等の形で直鎖状ジオルガノポリシロキサンの分子鎖両末端に位置していることが望ましい。
ケイ素原子に結合した他の一価炭化水素基としては、上記平均組成式(1)における
について例示したものと同じ非置換又は置換の一価炭化水素基が挙げられる。
(i)成分としては、例えば、
Figure 2011079725
Figure 2011079725
Figure 2011079725
Figure 2011079725
Figure 2011079725
Figure 2011079725
[上記の式中、Xは前記シラノール基以外の加水分解性基、aは1、2又は3、n及びmはそれぞれ1〜1,000の整数である]
が挙げられる。
(i)成分の具体例としては、分子鎖両末端シラノール基封鎖ジメチルポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメトキシシロキシ基封鎖ジメチルシロキサン・ジフェニルポリシロキサン共重合体、分子鎖両末端2−トリメトキシシロキシエチル基封鎖ジメチルポリシロキサン等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
・(j)成分
(j)成分の加水分解性シラン及び/又はその部分加水分解縮合物は任意成分であり、硬化剤として作用する。ベースポリマーである(i)成分がシラノール基以外のケイ素原子結合加水分解性基を1分子中に少なくとも2個含有するオルガノポリシロキサンである場合には、(j)成分を縮合硬化性シリコーン組成物に添加するのを省略することができる。(j)成分としては、1分子中に少なくとも3個のケイ素原子結合加水分解性基を含有するシラン及び/又はその部分加水分解縮合物(即ち、少なくとも1個、好ましくは2個以上の加水分解性基が残存するオルガノポリシロキサン)が好適に使用される。
前記シランとしては、例えば、式:
SiX4−r (6)
(式中、Rは非置換もしくは置換の一価炭化水素基、Xは加水分解性基、rは0又は1である。)で表されるものが好ましく用いられる。前記Rとしては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基等のアルキル基;フェニル基、トリル基等のアリール基;ビニル基、アリル基等のアルケニル基が特に好ましくあげられる。
(j)成分の具体的例としては、例えば、メチルトリエトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、エチルオルソシリケート等及びこれらの部分加水分解縮合物が挙げられる。これらは1種単独でも2種以上組み合わせても使用することができる。
(j)成分の加水分解性シラン及び/又はその部分加水分解縮合物を用いる場合、その添加量は(i)成分100質量部に対して好ましくは0.01〜20質量部、特に好ましくは0.1〜10質量部である。(j)成分を用いる場合、その添加量が上記範囲内にあると本発明組成物の貯蔵安定性及び硬化反応速度は特に良好である。
・(j)成分
(j)成分の縮合反応触媒は任意成分であり、上記(j)成分の加水分解性シラン及び/又はその部分加水分解縮合物が、例えば、アミノキシ基、アミノ基、ケトオキシム基を有する場合には使用しなくてもよい。(k)成分の縮合反応触媒としては、例えばテトラブチルチタネート、テトライソブロピルチタネート、等の有機チタン酸エステル;ジイソプロポキシビス(アセチルアセトナート)チタン、ジイソプロポキシビス(エチルアセトアセテート)チタン等の有機チタンキレート化合物;アルミニウムトリス(アセチルアセトナート)、アルミニウムトリス(エチルアセトアセテート)等の有機アルミニウム化合物;ジルコニウムテトラ(アセチルアセトナート)、ジルコニウムテトラブチレート等の有機ジルコニウム化合物;ジブチルスズジオクトエート、ジブチルスズジラウレート、ジブチルスズジ(2−エチルヘキサノエート)等の有機スズ化合物;ナフテン酸スズ、オレイン酸スズ、ブチル酸スズ、ナフテン酸コバルト、ステアリン酸亜鉛等の有機カルボン酸の金属塩;へキシルアミン、リン酸ドデシルアミン等のアミン化合物、及びその塩;ベンジルトリエチルアンモニウムアセテート等の4級アンモニウム塩;酢酸カリウム、硝酸リチウム等のアルカリ金属の低級脂肪酸塩;ジメチルヒドロキシルアミン、ジエチルヒドロキシルアミン等のジアルキルヒドロキシルアミン:グアニジル基含有有機珪素化合物等が挙げられる。これらは1種単独でも2種以上を組み合わせても使用することができる。
(k)成分の縮合反応触媒を用いる場合、その添加量は、特に限定されず、触媒としての有効量でよいが、(i)成分100質量部に対して好ましくは0.01〜20質量部、特に好ましくは0.1〜10質量部である。(k)成分を用いる場合、その添加量が上記範囲内にあると、硬化時間と硬化温度の観点から経済的に有利である。
工程(1)において、硬化性シリコーン組成物を炭素質基材に含浸する際には、含浸の作業性を良好にするために、組成物は液状で使用する。例えば、液状組成物の形態としては、無溶剤液状組成物、水系エマルジョン組成物、又はトルエンやテトラヒドロフランなどの有機溶剤で希釈した溶液型組成物のいずれでもよい。液状組成物の粘度は炭素質基材の表面状態も考慮して炭素質基材の表面に適切な厚さの含浸層を形成できるように選択するが、組成物が無溶剤の液状の場合は加熱して1〜50,000mPa.s、好ましくは10〜10,000mPa.sとなるようして含浸に使用する。水系エマルジョン状態、又はトルエンやテトラヒドロフランなどの有機溶剤で希釈した状態においては、25℃において1〜50,000mPa.s、好ましくは10〜10,000mPa.sに調整する。この場合の含浸方法は特に限定されず、例えば、浸漬、スプレーなどの方法を採用することができる。含浸液の粘度が50,000mPa.sより高いと均一なシリコーン組成物の含浸層を形成することができない。
硬化性シリコーン組成物の基材への含浸は表面層部分だけでもよいし、基材の深部まで完全に含浸させてもよい。該組成物の一部が基材表面をコートするように残存してもよい。通常はコーティングを形成する形で基材表面を覆って残留するが、所望なら表面残留組成物は除去してもよい。表面を含浸率(即ち、深さ方向の含浸の程度)は、緻密化の目的及び所望の特性に応じて、適切に選択することができる。通常、0.01〜100%の範囲で選択でき、0.1〜100%が好ましく、1〜100%がより好ましい。含浸率が低すぎると、炭素質基材から不純物元素の漏出を十分に防止できなかったり、炭素質基材の機械的強度を十分に高めることができない。
工程(2):
工程(2)において、工程(1)で含浸された硬化性シリコーン組成物の硬化が行われ、シリコーン硬化物が細孔に含浸した状態である含浸層が形成される。このときの硬化条件は使用する硬化性シリコーン組成物の種類により適切に設定する。以下、この点を説明する。
・有機過酸化物硬化性シリコーン組成物の場合:
有機過酸化物硬化性シリコーン組成物を含浸した基材を加熱することでラジカル反応が進行し、硬化反応が進行し、有機過酸化物シリコーン組成物は硬化する。有機過酸化物シリコーン組成物を硬化させる温度条件は、この際の加熱温度としては、硬化反応が含浸量、又は塗工量に依存するため、特に限定されないが、好ましくは80℃〜300℃、より好ましくは150℃〜250℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃〜250℃である。この際のキュア時間は好ましくは10分〜48時間さらに好ましくは30分〜24時間である。
・紫外線硬化性シリコーン組成物の場合:
紫外線硬化性シリコーン組成物を含浸した基材に、紫外線を照射することで、光重合開始剤が反応し、硬化反応が進行し、紫外線硬化性シリコーン組成物は硬化する。紫外線照射条件は、硬化反応が含浸量又は塗工量に依存するため、特に限定されないが、365nmに発光波長を持った紫外線発光ダイオードを用い、照度5〜500mW/cm、好ましくは10〜200mW/cm、光量0.5〜100J/cm、好ましくは.10〜50J/cmの条件で紫外線照射を行うことで硬化させることができる。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃〜250℃である。この際のキュア時間は好ましくは10分〜48時間さらに好ましくは30分〜24時間である。
・付加硬化性シリコーン組成物の場合:
付加硬化性シリコーン組成物を含浸した基材を加熱することで、ヒドロシリル化反応が進行し、付加硬化性シリコーン組成物は硬化する。この際の加熱温度としては、硬化反応が含浸量又は塗工量に依存するため、特に限定されないが、好ましくは80〜300℃、より好ましくは100〜200℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃〜250℃である。この際のキュア時間は好ましくは10分〜48時間さらに好ましくは30分〜24時間である。
・縮合硬化性シリコーン組成物の場合:
縮合硬化性シリコーン組成物を含浸した基材を加熱することで縮合反応が進行し、縮合硬化性シリコーン組成物は硬化する。縮合硬化性シリコーン組成物を硬化させる温度条件は、この際の加熱温度としては、硬化反応が含浸量又は塗工量に依存するため、特に限定されないが、好ましくは80℃〜300℃、より好ましくは100℃〜200℃である。また、必要に応じて2次キュアを行ってもよく、その際の温度条件としては好ましくは120℃以上、より好ましくは150℃〜250℃である。この際のキュア時間は好ましくは10分〜48時間さらに好ましくは30分〜24時間である。
工程(3):
工程(3)において、前工程で形成された基材細孔に含浸した状態にあるシリコーン硬化物を非酸化性雰囲気下で加熱分解させ、炭化ケイ素に転化させる。
この加熱処理は非酸化性雰囲気下、好ましくは不活性ガス雰囲気下で行う。不活性ガスとしては、例えば窒素ガス、アルゴンガス、ヘリウムガス等が挙げられ、特に高純度のもの炭化ケイ素を得るにはアルゴンガスが好ましい。
また、該加熱処理は1500を超え、2200℃以下の範囲の温度で行われる。この加熱の温度は1600℃以上が好ましい。また、該加熱の温度は2100℃以下が好ましく、2000℃以下がより好ましい。この加熱処理により、まず、400〜1500℃の範囲でシリコーンに含まれる炭素−水素結合の開裂が起こり水素は材料から脱離するが、炭素及びケイ素は脱離せずに無機化が進行する。1500℃を超えると一酸化炭素の脱離が始まり、やがて炭化ケイ素となる。また2200℃を超えると炭化ケイ素の昇華が激しい。
また、加熱処理の完了点は、例えば加熱生成物を1800℃で1時間加熱しても質量減少がシリコーン組成物換算で1質量%未満となった時である。
以下に、実施例を示し、本発明をより詳細に説明するが、本発明はこれら実施例に限定されるものではない。なお、本実施例において、基材の細孔に含浸した状態の炭化ケイ素のケイ素、炭素及び酸素の平均元素比を単に「元素比」という。
[実施例1]
材料:
(A)下式で表される一分子中にアルケニル基を含有するジオルガノポリシロキサン 100質量部、
Figure 2011079725
(式中n、mはn/m=4/1で該シロキサンの25℃における粘度が600mPa.sとなるような数である。)、
及び、
(B)ベンゾイルパーオキサイド 0.5質量部、
(C)下式で表されるケイ素原子に結合する水素原子を有するジオルガノポリシロキサン 33質量部、
Figure 2011079725
上記の(A)〜(C)成分をプラネタリーミキサー(登録商標、井上製作所(株)製混合機)に投入し室温にて一時間攪拌し、室温で1000mPa.sの粘度を有する硬化性シリコーン組成物を得た。この組成物をテトラヒドロフランに溶解し10質量%テトラヒドロフラン溶液とした。基材として石墨粉末を冷間等方圧加圧(CIP)処理して円板状に成形して得られた、平均孔径5μmの細孔を有する多孔質炭素成形体(直径15mm×厚さ2mm)を使用した。該円盤上炭素成形体を上記の組成物溶液に浸した後、室温にて乾燥した。乾燥後、組成物は炭素成形体の内部に浸透するとともに表面をコートする状態であった。処理後の炭素成形体は溶液浸漬前に比して、10%質量が増量していた。得られたシリコーン組成物含浸炭素成形体を約200℃の温度で30分加熱した。その後、該成形体を、炭素製容器に入れ、雰囲気炉内で、アルゴンガス雰囲気下、100℃/時間の昇温速度で20時間かけて温度を2000℃まで高め、その2000℃で2時間保持した後、室温まで冷却したところ、黄緑色の外観を有する成形体を得た。その後、該成形体を200℃/時間の割合で室温まで冷却した。
・元素比の測定:
該成形体の表面に形成された黄緑色被膜を一部削り取り、炭素分析装置(LECO社製、商品名:CS-444LS)を用いて炭素分析を行ったところ、炭素の割合は30.3質量%であった。また、この黄緑色の被覆について、酸素分析装置(LECO社製、商品名:TC436)を用いて酸素分析を行ったところ、酸素の含有量は検出限界である0.1質量%未満であった。元素比はSi1C1.02であった。
・不純物元素の分析:
上記の硬化性シリコーン組成物を多孔質炭素質基材に含浸せずに、炭素製の容器に5g入れた状態で処理した以外は、上記と同様にして硬化させ、熱処理を行って緑色の固体を得た。これをICP発光分析に供したところ、種々の元素の含有量について表1に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure 2011079725
上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムはいずれも検出限界未満であった。
[実施例2]
下記式
Figure 2011079725
で示される液状のオルガノポリシロキサン100質量部、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン2質量部、2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド1質量部、テトラメトキシシランの部分加水分解縮合物(メトキシシロキサンオリゴマー)1質量部、及び下記式
Figure 2011079725
で示されるチタンキレート化合物0.1質量部を混合して紫外線硬化性シリコーン組成物を得た。この組成物をテトラヒドロフランに溶解し10質量%テトラヒドロフラン溶液とした。この溶液に、実施例1で用いたものと同種の多孔質炭素成形体(直径15mm×厚さ2mm)を浸した後、室温にて乾燥した。こうして処理した成形体は、上記の溶液処理前に比して質量が10%増量していた。得られたシリコーン組成物含浸炭素成形体に、メタルハライド水銀灯2灯(照度80W/cm、エネルギー量400mJ/s)を用いて紫外線を照射し、シリコーン組成物を硬化させた。その後、該成形体を、実施例1と同様に非酸化性雰囲気下で加熱処理を施したところ、表面が黄緑色に変わった。該成形体の黄緑色の表面の被膜を一部削り取り、炭素分析装置(LECO社製、商品名:CS-444LS)を用いて炭素分析を行ったところ、炭素の含有量は30.3質量%であった。また、この黄緑色の含浸について酸素分析装置(LECO社製、商品名:TC436)を用いて酸素分析を行ったところ、酸素の含有量は0.2質量%以下であった。元素比はSi1C1.02であった。
・不純物元素の分析:
実施例1と同様にして元素分析用試料を作製し、ICP発光分析に供したところ、表2に示す結果が得られた。「<0.1」は測定限界である0.1ppm未満であったことを意味する。
Figure 2011079725

上記の結果から、半導体装置分野で通常問題となる不純物元素であるニッケル、クロム、鉄、アルミニウムはいずれも検出限界未満であった。
本発明の炭化ケイ素含浸炭素質基材は、例えば、半導体装置製造分野において、半導体ウエハーを熱処理したり、半導体ウエハーに微量元素を熱拡散したりする工程においてボード、プロセスチューブなどに有用である。

Claims (5)

  1. 多孔質炭素質基材と、該基材の少なくとも表面層に含浸した状態にある炭化ケイ素とを有する炭化ケイ素含浸炭素質材料であって、
    炭素質基材の少なくとも表面層に、硬化性シリコーン組成物を含浸させ、
    こうして含浸した前記硬化性シリコーン組成物を硬化させ、
    こうして得られた含浸状態のシリコーン硬化物を非酸化性雰囲気下で熱分解して炭化ケイ素に転化させる、
    ことにより得られる炭化ケイ素含浸炭素質材料。
  2. 前記硬化性シリコーン組成物が有機過酸化物硬化性シリコーン組成物、放射線硬化性シリコーン組成物、付加硬化性シリコーン組成物、又は縮合硬化性シリコーン組成物である請求項1に係る炭化ケイ素含浸炭素質材料。
  3. 前記の加熱温度が1500℃を超え、2200℃の範囲内である請求項1又は2に係る炭化ケイ素含浸炭素質材料。
  4. 炭素質基材の少なくとも表面層に硬化性シリコーン組成物を含浸させ、
    こうして含浸した前記硬化性シリコーン組成物を硬化させ、
    こうして得られた含浸状態のシリコーン硬化物を非酸化性雰囲気下で熱分解して炭化ケイ素に転化させる、
    工程を有する炭化ケイ素含浸炭素質材料の製造方法。
  5. 請求項1〜3のいずれか一項に係る炭化ケイ素含浸炭素質材料を用いた半導体製造装置。
JP2009235745A 2009-10-09 2009-10-09 炭化ケイ素含浸炭素質材料 Pending JP2011079725A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009235745A JP2011079725A (ja) 2009-10-09 2009-10-09 炭化ケイ素含浸炭素質材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009235745A JP2011079725A (ja) 2009-10-09 2009-10-09 炭化ケイ素含浸炭素質材料

Publications (1)

Publication Number Publication Date
JP2011079725A true JP2011079725A (ja) 2011-04-21

Family

ID=44074183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009235745A Pending JP2011079725A (ja) 2009-10-09 2009-10-09 炭化ケイ素含浸炭素質材料

Country Status (1)

Country Link
JP (1) JP2011079725A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107896A (ja) * 2013-12-05 2015-06-11 信越半導体株式会社 炭化珪素被覆黒鉛部材の製造方法、炭化珪素被覆黒鉛部材、及びシリコン結晶の製造方法。
JP2020523267A (ja) * 2017-06-09 2020-08-06 ペーエスツェー テクノロジーズ ゲーエムベーハー 炭化ケイ素の層の製造方法
CN114045110A (zh) * 2021-12-08 2022-02-15 刁嘉乐 一种有机硅无溶剂浸渍树脂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526714A (en) * 1975-07-05 1977-01-19 Tohoku Daigaku Kinzoku Zairyo Manufacture of carbon products coated with silicon carbide
JPH03275579A (ja) * 1990-03-23 1991-12-06 Shin Etsu Chem Co Ltd 炭化けい素被覆膜の製造方法
JP2000344587A (ja) * 1999-06-04 2000-12-12 Mitsubishi Gas Chem Co Inc 高耐熱樹脂複合セラミックスの製造法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS526714A (en) * 1975-07-05 1977-01-19 Tohoku Daigaku Kinzoku Zairyo Manufacture of carbon products coated with silicon carbide
JPH03275579A (ja) * 1990-03-23 1991-12-06 Shin Etsu Chem Co Ltd 炭化けい素被覆膜の製造方法
JP2000344587A (ja) * 1999-06-04 2000-12-12 Mitsubishi Gas Chem Co Inc 高耐熱樹脂複合セラミックスの製造法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015107896A (ja) * 2013-12-05 2015-06-11 信越半導体株式会社 炭化珪素被覆黒鉛部材の製造方法、炭化珪素被覆黒鉛部材、及びシリコン結晶の製造方法。
JP2020523267A (ja) * 2017-06-09 2020-08-06 ペーエスツェー テクノロジーズ ゲーエムベーハー 炭化ケイ素の層の製造方法
CN114045110A (zh) * 2021-12-08 2022-02-15 刁嘉乐 一种有机硅无溶剂浸渍树脂及其制备方法

Similar Documents

Publication Publication Date Title
JP5630333B2 (ja) 易焼結性炭化ケイ素粉末及び炭化ケイ素セラミックス焼結体
JP5177793B2 (ja) 炭化ケイ素の製造方法
JP5488607B2 (ja) 炭化ケイ素被覆炭素材料の製造方法
WO2011052695A1 (ja) 球状炭化ケイ素粉末、その製造方法、及びそれを使用する炭化ケイ素セラミックス成形体の製造方法
JPWO2011043425A1 (ja) 炭化ケイ素成形体の製造方法
JP2011079725A (ja) 炭化ケイ素含浸炭素質材料
WO2011043426A1 (ja) 炭化ケイ素接合体及び炭化ケイ素部材の接合方法
JPWO2011059041A1 (ja) 炭化ケイ素粉末組成物及びそれを用いる炭化ケイ素成形体の製造方法
US20080053051A1 (en) Method of producing heat-resistant inorganic textile and heat-resistant inorganic textile produced using the method
WO2011043427A1 (ja) 多孔質炭化ケイ素基材の緻密化方法
JP2008081397A (ja) 無機成形体の製造方法、及び該方法により得られる無機成形体
JP2008081921A (ja) 耐熱性無機繊維製品の製造方法及び該方法により製造された耐熱性無機繊維製品
JP2013047182A (ja) 炭化ケイ素の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111027

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120820

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130423

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130903