WO2011040700A2 - 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법 - Google Patents

암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법 Download PDF

Info

Publication number
WO2011040700A2
WO2011040700A2 PCT/KR2010/005137 KR2010005137W WO2011040700A2 WO 2011040700 A2 WO2011040700 A2 WO 2011040700A2 KR 2010005137 W KR2010005137 W KR 2010005137W WO 2011040700 A2 WO2011040700 A2 WO 2011040700A2
Authority
WO
WIPO (PCT)
Prior art keywords
lactate
directly
lactic acid
ammonium
alkyl lactate
Prior art date
Application number
PCT/KR2010/005137
Other languages
English (en)
French (fr)
Other versions
WO2011040700A3 (ko
Inventor
장종산
황동원
이정호
황영규
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2011040700A2 publication Critical patent/WO2011040700A2/ko
Publication of WO2011040700A3 publication Critical patent/WO2011040700A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/56Lactic acid
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/08Preparation of carboxylic acid esters by reacting carboxylic acids or symmetrical anhydrides with the hydroxy or O-metal group of organic compounds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P41/00Processes using enzymes or microorganisms to separate optical isomers from a racemic mixture

Definitions

  • the present invention relates to a method for producing alkyl lactate directly from the ammonium lactate produced in the fermentation process.
  • Ethyl lactate has low volatility, does not smell much, is not only stable at over 150 °C, but also has excellent dissolving power and biodegradability. It is not only toxic to food additives and fragrances, but also toxic.
  • As an environmentally friendly solvent that can replace the halogenated solvent is a demand that is increasing. It can also be used as a raw material of lactide, a monomer of polylactic acid, which has recently been spotlighted as a biodegradable polymer material.
  • ethyl lactate can be prepared relatively easily through the distillation of lactic acid with ethanol.
  • the lactic acid is generally prepared from the fermentation process of carbohydrates such as glucose by anaerobic bacteria.
  • Lactic acid produced from the fermentation process is generally present in the form of ammonium, sodium, calcium, potassium lactate, since the corresponding cation hydrate is added to maintain the neutral conditions required for bacteria during the fermentation process. Therefore, in order to convert the lactate obtained from the fermentation process into lactic acid, it is usually required to acidify the lactate with an inorganic acid such as sulfuric acid after the fermentation process.
  • an inorganic acid such as sulfuric acid
  • the concentration of ammonium lactate obtained from the fermentation process is 20% by weight or less, so that it contains excess water.
  • lacamide is produced as a reaction by-product through the reaction of ammonia and lactic acid generated from decomposition of ammonium lactate.
  • the inventors of the present invention while studying an economical manufacturing method to increase the conversion rate to ethyl lactate without by-products, to prepare a mixture containing an aqueous solution of ammonium lactate and trialkyl phosphate-based organic solvent extract, and heated it After the lactic acid is prepared, the lactic acid is esterified with alcohol, and the pre-treatment process such as the addition of sulfuric acid required to prepare the lactic acid is not carried out, and the lactic acid is produced simultaneously with the alcohol to prepare the alkyl lactate.
  • the present invention was completed by finding that the alkyl lactate can be prepared more easily than the process of producing the alkyl lactate from the lactate salt produced in the fermentation process.
  • An object of the present invention is to provide a method for producing alkyl lactate directly from the ammonium lactate produced in the fermentation process.
  • the present invention is to prepare a mixture containing an aqueous solution of ammonium lactate and trialkyl phosphate-based organic solvent extractant produced in the fermentation process, heating it to produce lactic acid, and then lactic acid to alcohol and ester It provides a method for producing an alkyl lactate directly from ammonium lactate comprising the step of preparing an alkyl lactate by the reaction.
  • an alkyl lactate is prepared by esterification with alcohol while preparing lactic acid without performing a pretreatment step such as adding sulfuric acid to prepare lactic acid.
  • Alkyl lactate can be prepared more easily than the process for producing alkyl lactate from the resulting lactate salt, as well as the water produced as a reaction by-product when the esterification reaction with lactic acid, lactic acid included in the organic solvent or Through efficient separation of the alkyl lactate, it is possible to improve the reaction rate and yield, so that high efficiency, high purity alkyl lactate can be prepared.
  • FIG. 1 is a schematic diagram of a process for directly preparing an alkyl lactate from ammonium lactate according to the present invention.
  • the present invention provides a process for preparing alkyl lactate directly from ammonium lactate.
  • alkyl lactate of the present invention More specifically, the alkyl lactate of the present invention
  • the lactic acid obtained in step 1 may be prepared by a process comprising the step of esterifying the alcohol with an alcohol to produce an alkyl lactate (step 2).
  • step 1 prepares a mixture containing an aqueous solution of ammonium lactate produced in the fermentation process and a trialkyl phosphate organic solvent extractant capable of acting as an acid catalyst, and heats the ammonium lactate to lactic acid. After decomposition with ammonia, lactic acid is extracted to an organic layer to prepare lactic acid.
  • the aqueous ammonium lactate solution may be obtained by adding ammonia or amine to neutralize the fermentation broth to a fermentation broth containing sugar such as glucose and then using a fermentation process using microorganisms.
  • the microorganism that can be used in the fermentation process includes all microorganisms that can ferment the usual glucose.
  • the concentration of the ammonium lactate aqueous solution is preferably 5 to 70% by weight.
  • the trialkyl phosphate organic solvent extractant is a solvent for extracting lactic acid, and its boiling point is very high at 190 ° C. or higher, so that the trialkyl phosphate organic solvent extractant hardly evaporates even during decomposition of ammonium lactate.
  • a trialkyl phosphate organic solvent containing an alkyl group of C 1 to C 20 is preferably used, and a trialkyl phosphate organic solvent containing an alkyl group of C 1 to C 14 is used. It is more preferable to use.
  • the weight ratio of the aqueous ammonium lactate solution and the trialkyl phosphate organic solvent extractant is preferably 1: 1 to 1:50.
  • the weight ratio is less than 1: 1, there is a problem in that lactic acid extraction efficiency is reduced, and when it exceeds 1:50, there is a problem in that a lot of energy is consumed in the solvent separation process after lactic acid conversion of ammonium lactate.
  • Step 1 may be performed by additionally adding trialkylamine to increase the extraction efficiency of lactic acid.
  • the amount of the trialkylamine added is preferably 20% by weight or less. If the amount of trialkylamine exceeds 20% by weight, a problem may occur that inhibits the activity of the acid catalyst used in the esterification reaction carried out in step 2.
  • Ammonium lactate may be decomposed into lactic acid and ammonia by heating a mixture of the aqueous ammonium lactate solution and the trialkyl phosphate organic solvent extractant.
  • the alkyl lactate is prepared by directly esterifying an aqueous solution of ammonium lactate and alcohol, the yield of the resulting alkyl lactate is very low, such as 20% or less due to the moisture contained in the reactant ammonium lactate in a large amount.
  • lactic acid is produced by reacting ammonia and lactic acid generated from decomposition of ammonium lactate.
  • alkyl lactate by esterifying a high concentration of lactic acid and alcohol from which water is removed after primary conversion of ammonium lactate to lactic acid.
  • the ammonium lactate can be decomposed into lactic acid and ammonia, and the resulting ammonia and water can be removed from the lactic acid.
  • the reaction is carried out at a high temperature, the decomposition of ammonium lactate and the removal of ammonia and water are easier, but it is preferably performed in the range of 100 to 150 ° C.
  • reaction temperature is less than 100 °C, there is a problem that the removal of ammonia and water is not easy, if the reaction temperature exceeds 150 °C, the production of lactamide by the reaction of ammonia and lactic acid generated during the decomposition of ammonium lactate Problems such as evaporation of organic solvents and side reactions may occur.
  • the reaction is preferably carried out at 1 atm or less, and more preferably at a reduced pressure of 10 to 400 mmHg in order to increase the removal efficiency of the ammonia and water produced.
  • step 2 is a step of preparing an alkyl lactate by esterifying the lactic acid obtained in step 1 with an alcohol.
  • the alcohol is preferably C 1 to C 4 lower alcohol, the molar ratio of lactic acid and alcohol is preferably 1: 1 to 1:10.
  • the molar ratio of lactic acid and alcohol is less than 1: 1, there is a problem that the reaction rate is reduced, and when it exceeds 1:10, there is a problem that ethanol is consumed in excess.
  • step 2 In order to increase the esterification rate of step 2, it is preferable to carry out under pressurized conditions of atmospheric pressure or higher.
  • the reaction is preferably carried out in the range of 70 to 150 °C.
  • the reaction temperature is less than 70 °C has a problem of low reaction rate, when the reaction temperature exceeds 150 °C there is a problem that the initial alcohol input concentration is increased due to the increase in the amount of evaporation of alcohol.
  • Step 2 may further include a distillation process step to separate the alkyl lactate and trialkyl phosphate.
  • reaction can be carried out in an alcohol recirculation system to minimize alcohol consumption.
  • an alkyl lactate is prepared by esterification with alcohol while preparing lactic acid without performing a pretreatment step such as adding sulfuric acid to prepare lactic acid.
  • Alkyl lactate can be prepared more easily than the process for producing alkyl lactate from the resulting lactate salt, as well as the water produced as a reaction by-product when the esterification reaction with lactic acid, lactic acid included in the organic solvent or Through efficient separation of the alkyl lactate, it is possible to improve the reaction rate and yield, so that high efficiency, high purity alkyl lactate can be prepared.
  • Ethyl lactate was obtained in the same manner as in Example 1, except that 0.5 g of Amberlyst catalyst was used instead of sulfuric acid and reacted for 20 hours while recycling ethanol. After the reaction was completed, gas chromatograph analysis showed that the final yield of ethyl lactate was 55%, lactamide was not confirmed.
  • Ethyl lactate was obtained in the same manner as in Example 1, except that 1.0 g of an Amberlyst catalyst was used instead of sulfuric acid and reacted for 10 hours while recycling ethanol. After the reaction was completed, gas chromatograph analysis showed that the final yield of ethyl lactate was 70%.
  • Ethyl lactate was obtained in the same manner as in Example 1, except that 0.5 g of Nafion catalyst was used instead of sulfuric acid and reacted for 15 hours while recycling ethanol. After the reaction was completed, gas chromatograph analysis showed that the final yield of ethyl lactate was 15%.
  • Example 5 Except that in Example 5 using 12g of 10% by weight ammonium lactate solution instead of 40% by weight ammonium lactate solution and 50g of triethyl phosphate was heated at 110 °C for 2 hours, Ethyl lactate was obtained in the same manner as in Example 5. After the reaction was completed, gas chromatograph analysis showed that the yield of the final ethyl lactate was 71%.
  • Propanol was used in place of methanol in Example 9, and propyl lactate was obtained in the same manner as in Example 10, except that the reaction solution was reacted for 10 hours while maintaining the temperature of the reaction solution at 95 ° C instead of 60 ° C. . After the reaction was completed, gas chromatograph analysis showed that the final yield of propyllactate was 73%.
  • Butylol was used in the same manner as in Example 10, except that Butanol was used instead of methanol in Example 9, and the reaction solution was reacted for 10 hours while maintaining the temperature of the reaction solution at 110 ° C instead of 60 ° C. . After the reaction was completed, gas chromatograph analysis showed that the final yield of butyl lactate was 68%.
  • alkyl lactate was prepared using only trialkylamine without using a trialkyl phosphate organic solvent extractant.
  • Example 7 in which the alkyl lactate was prepared by adding trialkylamine to the trialkyl phosphate organic solvent extractant according to the present invention, the yield was 10%, and only trialkylamine alone was used to give alkyl. In the case of Comparative Example 1 in which the lactate was prepared, the yield was 5%. Thus, it can be seen that the yield of alkyl lactate can be increased by additionally adding trialkylamine to increase the extraction efficiency of lactic acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 발효공정에서 생성되는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법에 관한 것으로, 더욱 구체적으로는 발효공정에서 생성되는 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고, 이를 가열하여 락트산을 제조하는 단계(단계 1); 및 상기 단계 1에서 얻은 락트산을 알코올과 에스테르화 반응시켜 알킬락테이트를 제조하는 단계(단계 2)를 포함하여 이루어지는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법에 관한 것이다. 본 발명에 따른 제조방법에 의하면, 락트산을 제조하는데 필요한 황산 첨가와 같은 전처리 공정을 수행하지 않고, 락트산을 제조함과 동시에 알코올과 에스테르화 반응시켜 알킬락테이트를 제조함으로써 기존의 발효공정에서 생성되는 락테이트염으로부터 알킬락테이트를 생성하는 공정보다 용이하게 알킬락테이트를 제조할 수 있을 뿐만 아니라, 락트산과 에스테르화 반응 수행시 반응부산물로 생성되는 물과, 유기용매에 포함되어 있는 락트산 또는 알킬락테이트의 효과적인 분리를 통해서 반응속도 및 수율을 향상시킬 수 있으므로 고효율, 고순도의 알킬락테이트를 제조할 수 있다.

Description

암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법
본 발명은 발효공정에서 생성되는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법에 관한 것이다.
에틸락테이트는 휘발성이 낮으며 냄새도 많이 나지 않고, 150 ℃이상에서도 안정할 뿐만 아니라 우수한 용해력을 동시에 가지고 있으며, 아울러 생분해가 가능한 특징을 가지고 있어 음식물 첨가제, 향료로서의 응용성이 있을 뿐만 아니라, 독성이 있는 할로겐화 용매를 대체할 수 있는 친환경용매로서 그 수요가 증가하고 있는 추세이다. 또한 최근 생분해성 고분자물질로서 각광을 받고 있는 폴리락트산의 모노머인 락타이드의 원료물질로도 사용될 수 있다.
일반적으로 에틸락테이트는 락트산을 에탄올과의 반응증류를 통해서 상대적으로 쉽게 제조할 수 있다. 상기 락트산은 일반적으로 혐기 박테리아에 의한 글루코스와 같은 탄수화물의 발효공정으로부터 제조된다. 발효공정으로부터 제조되는 락트산은 일반적으로 암모늄, 나트륨, 칼슘, 칼륨 락테이트의 형태로 존재하게 되는데, 이는 발효공정 중 박테리아에 필요한 중성조건을 유지하기 위해 해당 양이온 수화물이 첨가되기 때문이다. 따라서 발효공정으로부터 얻어진 락테이트를 락트산으로 전환하기 위해서는 통상적으로 발효공정 후 락테이트를 황산과 같은 무기산을 이용하여 산성화하는 단계를 필요로 한다. 하지만 이러한 락트산 전환 과정에서 부산물로서 암모늄, 나트륨, 칼슘, 칼륨 설페이트가 필연적으로 발생하는 문제점이 있다.
이러한 산성화 부산물을 발생하지 않는 방법으로서 암모늄락테이트 수용액을 고압분해법(USP-6291708), 전기투석법 및 분리막기술(USP-5723639) 등을 이용하여 락트산을 제조하는 방법이 제시되고 있으나, 고압 반응 장치 및 분리막 관련 설비투자 비용이 크고 반응속도도 느릴 뿐만 아니라 최종 락트산의 농도가 낮은 문제점이 있다.
한편, 암모늄락테이트 수용액과 에탄올의 에스테르화 반응을 통한 직접적인 에틸락테이트 제조방법의 경우 발효공정으로부터 얻을 수 있는 암모늄락테이트의 농도가 20 중량% 이하로서 과량의 수분을 포함하고 있기 때문에 역반응에 의해 에틸락테이트로의 전환율이 낮을 뿐 아니라 암모늄락테이트의 분해로부터 생성되는 암모니아와 락트산의 반응을 통해서 반응부산물로서 락트아마이드가 생성되는 문제점이 있다.
따라서, 글루코스의 발효로부터 생성되는 락테이트 수용액으로부터 부산물 없이 에틸락테이트로의 전환율을 높일 수 있는 경제적인 제조방법이 요구되고 있다.
이에, 본 발명자들은 부산물 없이 에틸락테이트로의 전환율을 높일 수 있는 경제적인 제조방법을 연구하던 중, 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고, 이를 가열하여 락트산을 제조한 후, 락트산을 알코올과 에스테르화 반응시킴으로써 락트산을 제조하는데 필요한 황산 첨가와 같은 전처리 공정을 수행하지 않고, 락트산을 제조함과 동시에 알코올과 에스테르화 반응시켜 알킬락테이트를 제조함으로써 기존의 발효공정에서 생성되는 락테이트염으로부터 알킬락테이트를 생성하는 공정보다 용이하게 알킬락테이트를 제조할 수 있음을 알아내고 본 발명을 완성하였다.
본 발명의 목적은 발효공정에서 생성되는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법을 제공하는 데 있다.
상기 목적을 달성하기 위하여, 본 발명은 발효공정에서 생성되는 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고, 이를 가열하여 락트산을 제조한 후, 락트산을 알코올과 에스테르화 반응시켜 알킬락테이트를 제조하는 단계를 포함하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법을 제공한다.
본 발명에 따른 알킬락테이트의 제조방법은 락트산을 제조하는데 필요한 황산 첨가와 같은 전처리 공정을 수행하지 않고, 락트산을 제조함과 동시에 알코올과 에스테르화 반응시켜 알킬락테이트를 제조함으로써 기존의 발효공정에서 생성되는 락테이트염으로부터 알킬락테이트를 생성하는 공정보다 용이하게 알킬락테이트를 제조할 수 있을 뿐만 아니라, 락트산과 에스테르화 반응 수행시 반응부산물로 생성되는 물과, 유기용매에 포함되어 있는 락트산 또는 알킬락테이트의 효과적인 분리를 통해서 반응속도 및 수율을 향상시킬 수 있으므로 고효율, 고순도의 알킬락테이트를 제조할 수 있다.
도 1은 본 발명에 따른 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 공정의 모식도이다.
본 발명은 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법을 제공한다.
이하, 본 발명을 상세히 설명한다.
보다 구체적으로 본 발명의 알킬락테이트는
발효공정에서 생성되는 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고, 이를 가열하여 락트산을 제조하는 단계(단계 1); 및
상기 단계 1에서 얻은 락트산을 알코올과 에스테르화 반응시켜 알킬락테이트를 제조하는 단계(단계 2)를 포함하여 이루어지는 공정에 의해 제조될 수 있다.
이하, 본 발명에 따른 상기 제조방법을 단계별로 더욱 구체적으로 설명한다.
먼저, 본 발명에 따른 상기 단계 1은 발효공정에서 생성되는 암모늄락테이트 수용액과 산 촉매가 작용할 수 있는 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고 이를 가열하여 암모늄락테이트를 락트산과 암모니아로 분해한 후, 락트산을 유기층으로 추출하여 락트산을 제조하는 단계이다.
상기 암모늄락테이트 수용액은 글루코스와 같은 설탕이 포함된 발효액에 발효액을 중성화하기 위해서 암모니아 또는 아민을 첨가한 후 미생물을 이용한 발효공정을 이용하여 얻을 수 있다. 이때, 발효공정에 사용될 수 있는 미생물은 통상의 글루코스를 발효할 수 있는 모든 미생물을 포함한다. 상기 암모늄락테이트 수용액의 농도는 5 내지 70 중량%인 것이 바람직하다.
상기 트리알킬포스페이트계 유기용매 추출제는 락트산을 추출하기 위한 용매로서, 끓는점이 190 ℃ 이상으로 매우 높아 암모늄락테이트의 분해반응시에도 거의 증발하지 않는 장점이 있다. 상기 트리알킬포스페이트계 유기용매 추출제로는 C1 내지 C20의 알킬기를 포함하는 트리알킬포스페이트계 유기용매를 사용하는 것이 바람직하며, C1 내지 C14의 알킬기를 포함하는 트리알킬포스페이트계 유기용매를 사용하는 것이 더욱 바람직하다.
상기 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제의 중량비는 1:1 내지 1:50인 것이 바람직하다. 상기 중량비가 1:1 미만인 경우 락트산 추출효율이 감소하는 문제가 있으며, 1:50을 초과하는 경우 암모늄락테이트의 락트산 전환 후 용매분리공정에서 많은 에너지가 소요되는 문제가 있다.
상기 단계 1은 락트산의 추출효율을 증가시키기 위해 추가적으로 트리알킬아민을 첨가하여 수행할 수 있다. 이때, 첨가되는 트리알킬아민의 양은 20 중량% 이하인 것이 바람직하다. 트리알킬아민의 양이 20 중량%를 초과하는 경우에는 단계 2에서 수행하는 에스테르화 반응에 사용되는 산 촉매의 활성을 저해하는 문제점이 발생할 수 있다.
상기 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제의 혼합물을 가열하여 암모늄락테이트를 락트산과 암모니아로 분해할 수 있다. 암모늄락테이트 수용액과 알코올을 직접 에스테르화 반응시켜 알킬락테이트를 제조하는 경우, 생성되는 알킬락테이트의 수율은 반응물인 암모늄락테이트에 다량으로 포함되어 있는 수분으로 인해 20% 이하로 매우 낮다. 또한, 이러한 경우 암모늄락테이트의 분해로부터 생성되는 암모니아와 락트산이 반응하여 락트아마이드가 생성되는 문제점이 있다. 따라서, 암모늄락테이트를 락트산으로 1차 전환한 후 수분이 제거된 고농도의 락트산과 알코올을 에스테르화 반응시켜 알킬락테이트를 제조하는 것이 바람직하다. 상기 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제의 혼합물을 가열함으로써 암모늄락테이트를 락트산과 암모니아로 분해할 수 있을 뿐만 아니라, 생성되는 암모니아와 물을 락트산으로부터 제거할 수 있다. 상기 반응은 높은 온도에서 수행할수록 암모늄락테이트의 분해 및 암모니아와 물의 제거가 용이하나, 100 내지 150 ℃의 범위에서 수행하는 것이 바람직하다. 상기 반응온도가 100 ℃ 미만인 경우에는 암모니아와 물의 제거가 용이하지 않은 문제가 있으며, 반응온도가 150 ℃를 초과하는 경우에는 암모늄락테이트의 분해시 생성되는 암모니아와 락트산의 반응에 의한 락트아마이드의 생성, 유기용매의 증발, 부반응 등의 문제점이 발생할 수 있다.
상기 반응은 생성되는 암모니아와 물의 제거 효율을 높이기 위해 1 기압 이하에서 수행하는 것이 바람직하며, 10 내지 400 ㎜Hg의 감압 조건에서 수행하는 것이 더욱 바람직하다.
다음으로, 상기 단계 2는 상기 단계 1에서 얻은 락트산을 알코올과 에스테르화 반응시켜 알킬락테이트를 제조하는 단계이다.
상기 알코올은 C1 내지 C4의 저급 알코올을 사용하는 것이 바람직하며, 상기 락트산과 알코올의 몰비는 1:1 내지 1:10인 것이 바람직하다. 상기 락트산과 알코올의 몰비가 1:1 미만인 경우에는 반응속도가 감소하는 문제가 있으며, 1:10을 초과하는 경우에는 에탄올이 과량으로 소모되는 문제가 있다.
상기 단계 2의 에스테르화 반응속도를 높이기 위해 산 촉매를 사용하여 수행할 수 있다. 상기 촉매로는 황산, 엠버리스트(Amberlyst), 나피온(Nafion), 나피온-실리카 복합물(Nafion-Silica Composite), Keggin형 헤테로폴리 산(Keggin-type heteropoly acid, H(8-x)XM12O40(X = Si4+, P5+ , M = W6+ 또는 Mo6+)), Nb2O5, HNbMoO6, 제올라이트(Zeolite) 등을 사용할 수 있다.
상기 단계 2의 에스테르화 반응속도를 높이기 위해 대기압 이상의 가압 조건에서 수행하는 것이 바람직하다.
상기 반응은 70 내지 150 ℃의 범위에서 수행하는 것이 바람직하다. 상기 반응온도가 70 ℃ 미만인 경우에는 반응 속도가 낮은 문제가 있으며, 반응온도가 150 ℃를 초과하는 경우에는 알코올의 증발량 증가로 인하여 초기 알코올 투입 농도가 증가하는 문제가 있다.
상기 단계 2는 알킬락테이트와 트리알킬포스페이트를 분리하기 위해 추가적으로 증류공정 단계를 더 포함할 수 있다.
또한, 상기 반응은 알코올 소모량을 최소화하기 위하여 알코올 재순환시스템에서 수행할 수 있다.
본 발명에 따른 알킬락테이트의 제조방법은 락트산을 제조하는데 필요한 황산 첨가와 같은 전처리 공정을 수행하지 않고, 락트산을 제조함과 동시에 알코올과 에스테르화 반응시켜 알킬락테이트를 제조함으로써 기존의 발효공정에서 생성되는 락테이트염으로부터 알킬락테이트를 생성하는 공정보다 용이하게 알킬락테이트를 제조할 수 있을 뿐만 아니라, 락트산과 에스테르화 반응 수행시 반응부산물로 생성되는 물과, 유기용매에 포함되어 있는 락트산 또는 알킬락테이트의 효과적인 분리를 통해서 반응속도 및 수율을 향상시킬 수 있으므로 고효율, 고순도의 알킬락테이트를 제조할 수 있다.
이하, 본 발명을 실시예에 의해 더욱 구체적으로 설명한다. 단, 하기의 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명의 내용이 하기의 실시예에 의해 제한되는 것은 아니다.
<실시예 1> 에틸락테이트의 제조 1
20 중량% 암모늄락테이트 용액 12 g, 트리부틸포스페이트 50 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 200 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크를 가열하여 반응액의 최종온도가 110 ℃가 유지될 수 있도록 조절하였다. 1시간 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 에탄올 20 g과 98 중량% 0.45 g의 황산을 추가로 첨가하였다. 이후 반응액의 온도를 85 ℃로 유지하고 에탄올을 재순환하면서 3시간 동안 반응을 진행하여 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 에틸락테이트의 최종 수율은 60%이었으며, 락트아마이드는 확인되지 않았다.
<실시예 2> 에틸락테이트의 제조 2
상기 실시예 1에서 황산 대신에 0.5 g의 엠버리스트(amberlyst) 촉매를 사용하고 에탄올을 재순환하면서 20시간 동안 반응하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 에틸락테이트의 최종 수율은 55%이었으며, 락트아마이드는 확인되지 않았다.
<실시예 3> 에틸락테이트의 제조 3
상기 실시예 1에서 황산 대신에 1.0 g의 엠버리스트(amberlyst) 촉매를 사용하고 에탄올을 재순환하면서 10시간 동안 반응하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 에틸락테이트의 최종 수율은 70%이었다.
<실시예 4> 에틸락테이트의 제조 4
상기 실시예 1에서 황산 대신에 0.5 g의 나피온(nafion) 촉매를 사용하고 에탄올을 재순환하면서 15시간 동안 반응하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 에틸락테이트의 최종 수율은 15%이었다.
<실시예 5> 에틸락테이트의 제조 5
40 중량% 암모늄락테이트 용액 12 g, 트리에틸포스페이트 120 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 200 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크 가열을 시작하여 최종적인 반응액의 온도가 120 ℃가 유지될 수 있도록 조절하였다. 30분 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 에탄올 20 g과 1.0 g의 엠버리스트(amberlyst) 촉매를 추가로 첨가하였다. 이후 반응액의 온도를 85 ℃로 유지하고 10시간 동안 반응을 진행하여 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 최종 에틸락테이트의 수율은 72%이었다.
<실시예 6> 에틸락테이트의 제조 6
상기 실시예 5에서 40 중량% 암모늄락테이트 용액 대신에 10 중량% 암모늄락테이트 용액 12g을 사용하고, 트리에틸포스페이트 50 g을 사용하여 110 ℃에서 2시간 동안 가열반응시키는 것을 제외하고는, 상기 실시예 5와 동일한 방법으로 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 최종 에틸락테이트의 수율은 71%이었다.
<실시예 7> 에틸락테이트의 제조 7
20 중량% 암모늄락테이트 용액 12 g, 트리부틸포스페이트 40 g, 트리도데실아민 10 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 200 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크 가열을 시작하여 최종적인 반응액의 온도가 110 ℃가 유지될 수 있도록 조절하였다. 1시간 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 에탄올 20 g과 1.0 g의 엠버리스트(amberlyst) 촉매를 추가로 첨가하였다. 이후 반응액의 온도를 85 ℃로 유지하고 20시간 동안 반응을 진행하여 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 최종 에틸락테이트의 수율은 10%이었다.
<실시예 8> 에틸락테이트의 제조 8
20 중량% 암모늄락테이트 용액 12 g, 트리부틸포스페이트 100 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 10 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크 가열을 시작하여 최종적인 반응액의 온도가 140 ℃가 유지될 수 있도록 조절하였다. 30분 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 에탄올 20 g과 1.0 g의 엠버리스트(amberlyst) 촉매를 추가로 첨가하였다. 이후 반응액의 온도를 85 ℃로 유지하고 10시간 동안 반응을 진행하여 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 최종 에틸락테이트의 수율은 65%이었다.
<실시예 9> 메틸락테이트의 제조
20 중량% 암모늄락테이트 용액 12 g, 트리부틸포스페이트 50 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 200 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크를 가열하여 반응액의 최종온도가 110 ℃가 유지될 수 있도록 조절하였다. 1시간 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 메탄올 20 g과 1.0 g의 엠버리스트(amberlyst) 촉매를 추가로 첨가하였다. 이후 반응액의 온도를 60 ℃로 유지하고 에탄올을 재순환하면서 10시간 동안 반응을 진행하여 메틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 메틸락테이트의 최종 수율은 55%이었다.
<실시예 10> 프로필락테이트의 제조
상기 실시예 9에서 메탄올 대신에 프로판올을 사용하고, 반응액의 온도를 60 ℃ 대신에 95 ℃로 유지하면서 10시간 동안 반응하는 것을 제외하고는 상기 실시예 10과 동일한 방법으로 프로필락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 프로필락테이트의 최종 수율은 73%이었다.
<실시예 11> 부틸락테이트의 제조
상기 실시예 9에서 메탄올 대신에 부탄올을 사용하고, 반응액의 온도를 60 ℃ 대신에 110 ℃로 유지하면서 10시간 동안 반응하는 것을 제외하고는 상기 실시예 10과 동일한 방법으로 부틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 부틸락테이트의 최종 수율은 68%이었다.
<비교예 1> 에틸락테이트의 제조 1
트리알킬포스페이트계 유기용매 추출제를 사용하지 않고, 트리알킬아민만을 사용하여 알킬락테이트를 제조하였다.
20 중량% 암모늄락테이트 용액 12 g, 트리도데실아민 50 g을 250 ㎖ 플라스크에 넣고 진공펌프를 연결하여 반응기 내의 진공도를 200 ㎜Hg 정도로 유지하였다. 이후 반응물이 포함된 플라스크 가열을 시작하여 최종적인 반응액의 온도가 110 ℃가 유지될 수 있도록 조절하였다. 1시간 동안 반응시킨 후, 진공펌프를 끄고 반응액의 온도를 80 ℃이하로 유지한 상태에서 99 중량% 에탄올 20 g과 1.0 g의 엠버리스트(amberlyst) 촉매를 추가로 첨가하였다. 이후 반응액의 온도를 85 ℃로 유지하고 40시간 동안 반응을 진행하여 에틸락테이트를 수득하였다. 반응이 완료된 후, 기체크로마토그래프 분석 결과 최종 에틸락테이트의 수율은 5%이었다.
이를 통해, 본 발명에 따른 트리알킬포스페이트계 유기용매 추출제에 추가적으로 트리알킬아민을 첨가하여 알킬락테이트를 제조한 실시예 7의 경우에는 수율이 10%이며, 트리알킬아민만을 단독으로 사용하여 알킬락테이트를 제조한 비교예 1의 경우에는 수율이 5%를 나타내므로 락트산의 추출효율을 증가시키기 위해 트리알킬아민을 추가적으로 첨가함으로써 알킬락테이트의 수율을 증가시킬 수 있음을 알 수 있다.

Claims (18)

  1. 발효공정에서 생성되는 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제를 포함하는 혼합물을 제조하고, 이를 가열하여 락트산을 제조하는 단계(단계 1); 및
    상기 단계 1에서 얻은 락트산을 알코올과 에스테르화 반응시켜 알킬락테이트를 제조하는 단계(단계 2)를 포함하여 이루어지는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  2. 제1항에 있어서, 상기 단계 1의 발효공정에서 생성되는 암모늄락테이트 수용액의 농도는 5 내지 70 중량%인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  3. 제1항에 있어서, 상기 단계 1의 트리알킬포스페이트계 유기용매 추출제는 C1 내지 C20의 알킬기를 포함하는 트리알킬포스페이트계 유기용매인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  4. 제3항에 있어서, 상기 트리알킬포스페이트계 유기용매 추출제는 C1 내지 C14의 알킬기를 포함하는 트리알킬포스페이트계 유기용매인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  5. 제1항에 있어서, 상기 단계 1의 암모늄락테이트 수용액과 트리알킬포스페이트계 유기용매 추출제의 중량비는 1:1 내지 1:50인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  6. 제1항에 있어서, 상기 단계 1은 락트산의 추출효율을 증가시키기 위해 추가적으로 트리알킬아민을 첨가하여 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  7. 제6항에 있어서, 상기 트리알킬아민은 20 중량% 이하로 사용하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  8. 제1항에 있어서, 상기 단계 1은 100 내지 150 ℃의 범위에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  9. 제1항에 있어서, 상기 단계 1은 1 기압 이하에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  10. 제1항에 있어서, 상기 단계 1은 10 내지 400 ㎜Hg의 감압 조건에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  11. 제1항에 있어서, 상기 단계 2의 알코올은 C1 내지 C4의 저급 알코올인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  12. 제1항에 있어서, 상기 단계 2의 락트산과 알코올의 몰비는 1:1 내지 1:10인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  13. 제1항에 있어서, 상기 단계 2는 반응속도를 높이기 위해 산 촉매를 사용하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  14. 제13항에 있어서, 상기 산 촉매는 황산, 엠버리스트(Amberlyst), 나피온(Nafion), 나피온-실리카 복합물(Nafion-Silica Composite), Keggin형 헤테로폴리 산(Keggin-type heteropoly acid, H(8-x)XM12O40(X = Si4+, P5+ , M = W6+ 또는 Mo6+)), Nb2O5, HNbMoO6 및 제올라이트(Zeolite)로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  15. 제1항에 있어서, 상기 단계 2는 반응속도를 높이기 위해 대기압 이상의 가압 조건에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  16. 제1항에 있어서, 상기 단계 2는 70 내지 150 ℃의 범위에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  17. 제1항에 있어서, 알킬락테이트와 트리알킬포스페이트를 분리하기 위해 상기 단계 2는 추가적으로 증류공정 단계를 더 포함하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
  18. 제1항에 있어서, 상기 단계 2는 알코올 소모량을 최소화하기 위하여 알코올 재순환시스템에서 수행하는 것을 특징으로 하는 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법.
PCT/KR2010/005137 2009-09-30 2010-08-05 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법 WO2011040700A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2009-0092950 2009-09-30
KR1020090092950A KR101140649B1 (ko) 2009-09-30 2009-09-30 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법

Publications (2)

Publication Number Publication Date
WO2011040700A2 true WO2011040700A2 (ko) 2011-04-07
WO2011040700A3 WO2011040700A3 (ko) 2011-06-03

Family

ID=43826746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/005137 WO2011040700A2 (ko) 2009-09-30 2010-08-05 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법

Country Status (2)

Country Link
KR (1) KR101140649B1 (ko)
WO (1) WO2011040700A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107522687A (zh) * 2017-08-29 2017-12-29 沈阳金博地生态环保科技有限公司 磷钨杂多酸催化乳酸合成丙交酯的方法
KR20180018680A (ko) 2015-06-10 2018-02-21 미리안트 코포레이션 주요 부산물인 아세트알데히드로 아크릴산의 신규한 제조 방법
CN109438228A (zh) * 2018-09-28 2019-03-08 武汉三江航天固德生物科技有限公司 乳酸乙酯的节能生产工艺及装置
CN110637005A (zh) * 2017-03-15 2019-12-31 Cj第一制糖株式会社 一种制备乳酸烷基酯的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018169181A1 (ko) * 2017-03-15 2018-09-20 씨제이제일제당 (주) 알킬 락테이트의 제조 방법
KR102422368B1 (ko) 2020-09-29 2022-07-18 한국화학연구원 금속 유기산염의 에스테르화 방법 및 이를 이용한 이산화탄소의 전환 반응 시스템
US11607674B2 (en) 2019-11-19 2023-03-21 Korea Research Institute Of Chemical Technology Heterogeneous catalyst complex for carbon dioxide conversion

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534679B2 (en) * 1997-10-14 2003-03-18 Cargill, Incorporated Lactic acid processing; methods; arrangements; and, products
KR20050084179A (ko) * 2002-12-05 2005-08-26 아르끄마 연속식 에틸 락테이트 제조 방법
KR20050085397A (ko) * 2002-12-05 2005-08-29 아르끄마 에틸 락테이트의 연속 제조 방법
WO2006124633A1 (en) * 2005-05-13 2006-11-23 Cargill, Incorporated Production of lactic acid

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6534679B2 (en) * 1997-10-14 2003-03-18 Cargill, Incorporated Lactic acid processing; methods; arrangements; and, products
KR20050084179A (ko) * 2002-12-05 2005-08-26 아르끄마 연속식 에틸 락테이트 제조 방법
KR20050085397A (ko) * 2002-12-05 2005-08-29 아르끄마 에틸 락테이트의 연속 제조 방법
WO2006124633A1 (en) * 2005-05-13 2006-11-23 Cargill, Incorporated Production of lactic acid

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180018680A (ko) 2015-06-10 2018-02-21 미리안트 코포레이션 주요 부산물인 아세트알데히드로 아크릴산의 신규한 제조 방법
CN110637005A (zh) * 2017-03-15 2019-12-31 Cj第一制糖株式会社 一种制备乳酸烷基酯的方法
CN107522687A (zh) * 2017-08-29 2017-12-29 沈阳金博地生态环保科技有限公司 磷钨杂多酸催化乳酸合成丙交酯的方法
CN109438228A (zh) * 2018-09-28 2019-03-08 武汉三江航天固德生物科技有限公司 乳酸乙酯的节能生产工艺及装置

Also Published As

Publication number Publication date
KR20110035303A (ko) 2011-04-06
KR101140649B1 (ko) 2012-05-03
WO2011040700A3 (ko) 2011-06-03

Similar Documents

Publication Publication Date Title
WO2011040700A2 (ko) 암모늄락테이트로부터 알킬락테이트를 직접 제조하는 방법
CN112830907B (zh) 制备5-羟甲基糠醛的方法
WO2015012538A1 (ko) 지방을 이용한 지방산알킬에스테르의 제조방법
WO2012111988A1 (ko) 이성분계 상에서 해조류 유래 갈락탄을 이용한 5-클로로메틸-2-푸르푸랄의 제조방법
CN104098461A (zh) 一种β-羟基-β-甲基丁酸的纯化方法
CN106831471A (zh) 一种脱除少量醋酸或甲酸并精制dmf的方法
CN111689908B (zh) 一种合成4,6-二羟基嘧啶的后处理方法
CN113072444A (zh) 一种分离提取r-3-羟基丁酸甲酯的方法
CN109970580B (zh) 一种r-3-氨基丁醇的提取制备方法
CN102863408B (zh) 一种炎琥宁的制备方法
CN104072369B (zh) 一种制备丙二酸二异丙酯的工艺
CN112047842A (zh) 一种1,4-二烯烃类化合物及其制备方法与应用
WO2018169181A1 (ko) 알킬 락테이트의 제조 방법
CN105566257B (zh) 一种高光学纯度乙酰基四氢呋喃的工业化制备方法
CN101665512A (zh) 一种高纯度磷酸二异辛酯的合成方法
CN101357930B (zh) 一种阿德福韦酯的制备方法
CN107673970A (zh) 一种三丁酸甘油酯的制备方法
CN102993061B (zh) 一种利用1,6-萘二磺酸产品母液转化生产2,7-萘二磺酸钠产品的制备方法
CN113105319A (zh) 一种贝派地酸的制备方法
CN101265188A (zh) 一种2-氧代-4-苯基丁酸乙酯的制备方法
WO2016143988A1 (ko) 미세조류로부터 바이오디젤, 바이오디젤 첨가제 및 알킬포메이트의 동시 제조방법
CN103112968B (zh) 苯氧羧酸类生产废水中高cod成分的处理方法
WO2010068053A2 (ko) 홍조류 추출물을 이용한 메탄가스 생산방법
CN110746373A (zh) 一种从头孢松钠粗品母液中制备2、2’-二硫代二苯并噻唑的方法及其应用
CN113896646B (zh) 一种4-甲基-3-氧代-n-苯基戊酰胺的高效绿色制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10820773

Country of ref document: EP

Kind code of ref document: A2