WO2011040624A1 - 低降伏比、高強度および高靭性を有した鋼板及びその製造方法 - Google Patents

低降伏比、高強度および高靭性を有した鋼板及びその製造方法 Download PDF

Info

Publication number
WO2011040624A1
WO2011040624A1 PCT/JP2010/067316 JP2010067316W WO2011040624A1 WO 2011040624 A1 WO2011040624 A1 WO 2011040624A1 JP 2010067316 W JP2010067316 W JP 2010067316W WO 2011040624 A1 WO2011040624 A1 WO 2011040624A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
temperature
yield ratio
toughness
bainite
Prior art date
Application number
PCT/JP2010/067316
Other languages
English (en)
French (fr)
Inventor
嶋村純二
石川信行
鹿内伸夫
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to US13/499,472 priority Critical patent/US8778096B2/en
Priority to CA2775043A priority patent/CA2775043C/en
Priority to KR1020127011019A priority patent/KR101450976B1/ko
Priority to CN2010800439305A priority patent/CN102549189B/zh
Priority to RU2012117900/02A priority patent/RU2496904C1/ru
Priority to EP10820736.6A priority patent/EP2484792B1/en
Publication of WO2011040624A1 publication Critical patent/WO2011040624A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention is a steel plate having a low yield ratio, high strength, and high toughness suitable for use mainly in the field of line pipes (low yield ratio, high strength and high steel plate) and its manufacturing method.
  • the present invention relates to a steel sheet having a low yield ratio, high strength, and high toughness excellent in strain aging resistance and a method for producing the same.
  • the metal structure of a steel material is a structure in which a hard phase such as bainite and martensite is moderately dispersed in a ferrite that is a soft phase.
  • a low yield ratio and a high uniform elongation of the steel material can be achieved.
  • the uniform elongation said here is also called uniform elongation, and means the limit value of the permanent elongation in which a test piece parallel part deform
  • Patent Document 1 discloses that ferrite and tempering (T) are intermediate between quenching (Q) and tempering (T).
  • a heat treatment method is disclosed in which quenching (Q ′) from a two-phase region (two-phase, ( ⁇ + ⁇ ) temperature range) of austenite is performed.
  • Patent Document 2 as a method for preventing an increase in the production process, there is a method of delaying the start of accelerated cooling until the temperature of the steel material becomes equal to or lower than the Ar 3 transformation point where ferrite is generated after the rolling is completed at an Ar 3 temperature or higher. It is disclosed.
  • Patent Document 3 discloses that rolling of a steel material is finished at an Ar 3 transformation point or higher, A method for achieving a low yield ratio by controlling the acceleration cooling rate and the cooling stop temperature thereafter to obtain a two-phase structure of acicular ferrite and martensite is disclosed.
  • Patent Document 4 achieves a low yield ratio and excellent weld heat affected zone (HAZ) toughness without greatly increasing the amount of alloying elements added to the steel.
  • a method of controlling a Ti / N or Ca—O—S balance and making a three-phase structure of ferrite, bainite, and island martensite (MA) is disclosed.
  • Patent Document 5 discloses a technique for achieving a low yield ratio and a high uniform elongation performance by adding alloy elements such as Cu, Ni, and Mo.
  • welded steel pipes such as UOE steel pipes and electric welded pipes used for line pipes are usually formed into a tubular shape by cold forming a steel plate and welding the butting surface, which is usually used for anticorrosion, etc.
  • the outer surface of the steel pipe is subjected to a coating treatment such as polyethylene coating or powder epoxy coating, so that strain aging occurs due to processing distortion during pipe making and heating during coating treatment.
  • a coating treatment such as polyethylene coating or powder epoxy coating
  • the yield stress increases and the yield ratio in the steel pipe becomes larger than the yield ratio in the steel sheet.
  • Patent Documents 6 and 7 disclose fine precipitates of composite carbide containing Ti and Mo, or fine precipitates of composite carbide containing any two or more of Ti, Nb, and V.
  • a steel pipe having a low yield ratio, high strength and high toughness, which is excellent in strain aging resistance, and a method for producing the same are disclosed.
  • JP-A-55-97425 JP 55-41927 A Japanese Patent Laid-Open No. 1-176027 Japanese Patent No. 40669905 (Japanese Patent Laid-Open No. 2005-48224) JP 2008-248328 A JP 2005-60839 A Japanese Patent Laid-Open No. 2005-60840
  • Patent Document 2 has a problem that productivity is extremely lowered because it is necessary to cool the temperature range from the end of rolling to the start of accelerated cooling at a cooling rate of about standing to cool.
  • An object of the present invention is to provide a steel sheet having a low yield ratio, high strength and high toughness, and a method for producing the same.
  • the present inventors diligently studied a manufacturing process of a steel sheet, particularly a manufacturing process of controlled rolling, accelerated cooling after controlled rolling, and subsequent reheating, and obtained the following knowledge.
  • (A) During the accelerated cooling process, cooling is stopped in the middle of bainite transformation, that is, in a temperature region where non-transformed austenite exists, and then from the end temperature of bainite transformation (hereinafter referred to as Bf point).
  • Bf point the end temperature of bainite transformation
  • MA hard steel martensite
  • the pseudopolygonal ferrite referred to here refers to the ⁇ q structure in “Steel Bainite Photobook, Japan Iron and Steel Institute Basic Research Group, Bainite Research Section, (1992)”, which is more than polygonal ferrite ( ⁇ P).
  • ferrite means polygonal ferrite.
  • MA can be easily identified by, for example, etching with a 3% nital solution (nitric alcohol solution) and then observing it by electrolytic etching. When the microstructure of the steel sheet is observed with a scanning electron microscope (SEM), MA is observed as a white floating part.
  • SEM scanning electron microscope
  • (C) MA can be uniformly and finely dispersed by applying 50% or more cumulative pressure at 900 ° C. or lower in the austenite non-recrystallization temperature range (no-recrystallizationization range in austenite), while maintaining a low yield ratio. It is possible to improve the uniform elongation.
  • the present invention has been made by further studying the above knowledge, that is, the gist of the present invention is as follows.
  • the component composition is mass%, C: 0.03 to 0.06%, Si: 0.01 to 1.0%, Mn: 1.2 to 3.0%, P: 0 .015% or less, S: 0.005% or less, Al: 0.08% or less, Nb: 0.005 to 0.07%, Ti: 0.005 to 0.025%, N: 0.010% or less , O: 0.005% or less, consisting of the remainder Fe and inevitable impurities, the metal structure comprising a three-phase structure of bainite, island martensite, and pseudopolygonal ferrite, and the area of the bainite A fraction of 5 to 70%, an area fraction of the island-like martensite of 3 to 20%, an equivalent circle diameter of 3.0 ⁇ m or less, the balance being the pseudopolygonal ferrite, and a yield ratio of 85% or less, ⁇ Charpy absorbed energy at 30 ° C is 200J or higher, and further 250 ° C or lower Low yield ratio excellent in strain aging resistance characteristics, characterized by
  • the second invention further includes, in mass%, Cu: 0.5% or less, Ni: 1% or less, Cr: 0.5% or less, Mo: 0.5% or less, V: 0.1% or less, Ca: 0.0005 to 0.003%, B: One or more selected from 0.005% or less, and excellent strain aging resistance according to the first aspect of the invention
  • a steel sheet having a low yield ratio, high strength and high toughness is further subjected to a strain aging treatment having a uniform elongation of 6% or more and a temperature of 250 ° C. or less and 30 minutes or less. It is a steel plate having a uniform elongation of 6% or more even after being processed.
  • the steel having the component composition described in any of the first to third inventions is heated to a temperature of 1000 to 1300 ° C., and the cumulative rolling reduction at 900 ° C. or less is 50% or more.
  • accelerated cooling is performed from 500 ° C. to 680 ° C. at a cooling rate of 5 ° C./s or higher, and immediately after that, a temperature rising rate of 2.0 ° C./s or higher.
  • a steel plate having a low yield ratio, high strength and high toughness with excellent strain aging resistance is reduced without deteriorating the toughness of the weld heat affected zone or adding a large amount of alloying elements.
  • the steel plate mainly used for a line pipe can be stably manufactured in a large amount at a low cost, and the productivity and economy can be remarkably improved, which is extremely useful industrially.
  • C 0.03-0.06% C contributes to precipitation strengthening as a carbide and is an important element for MA formation. However, if it is added in an amount of less than 0.03%, it is insufficient for formation of MA, and sufficient strength may not be ensured. Addition exceeding 0.06% degrades the base metal toughness and weld heat affected zone (HAZ) toughness, so the C content is in the range of 0.03 to 0.06%. Preferably it is 0.04 to 0.06% of range.
  • HZ weld heat affected zone
  • Si 0.01 to 1.0% Si is added for deoxidation, but if it is added less than 0.01%, the deoxidation effect is not sufficient, and if added over 1.0%, the toughness and weldability are deteriorated, so the amount of Si is 0.8.
  • the range is 01 to 1.0%. Preferably it is 0.01 to 0.3% of range.
  • Mn 1.2 to 3.0% Mn is added to improve strength and toughness, further improve hardenability and promote MA formation. However, if less than 1.2%, the effect is not sufficient, and if added over 3.0%, toughness is added. In addition, since the weldability deteriorates, the amount of Mn is set in the range of 1.2 to 3.0%. Addition of 1.8% or more is desirable in order to stably produce MA regardless of fluctuations in components and production conditions.
  • P 0.015% or less
  • S 0.005% or less
  • P and S are unavoidable impurities and define the upper limit of the amount thereof.
  • the P content is 0.015% or less.
  • the amount of MnS produced increases remarkably and the toughness of the base material deteriorates, so the amount of S is made 0.005% or less. More preferably, P is 0.010% or less, and S is 0.002% or less.
  • Al 0.08% or less Al is added as a deoxidizer, but if less than 0.01% is added, the deoxidation effect is not sufficient, and if added over 0.08%, the cleanliness of the steel decreases. Since the toughness deteriorates, the Al content is set to 0.08% or less. Preferably, it is 0.01 to 0.08% of range. More preferably, it is in the range of 0.01 to 0.05%.
  • Nb 0.005 to 0.07%
  • Nb is an element that improves toughness by refining the structure and contributes to an increase in strength by improving the hardenability of solid solution Nb. The effect is manifested when 0.005% or more is added. However, if the addition is less than 0.005%, there is no effect, and if it exceeds 0.07%, the toughness of the weld heat-affected zone deteriorates, so the Nb content is in the range of 0.005 to 0.07%. More preferably, it is in the range of 0.01 to 0.05%.
  • Ti 0.005 to 0.025%
  • Ti is an important element that suppresses austenite coarsening during slab heating and improves the toughness of the base metal due to the pinning effect of TiN. The effect is manifested when 0.005% or more is added.
  • the Ti content is in the range of 0.005 to 0.025%. From the viewpoint of the toughness of the weld heat affected zone, the range is preferably 0.005% or more and less than 0.02%. More preferably, it is in the range of 0.007 to 0.016%.
  • N 0.010% or less N is treated as an inevitable impurity, but if the N content exceeds 0.010%, the weld heat affected zone toughness deteriorates, so the N content is 0.010% or less. Preferably it is 0.007% or less. More preferably, it is 0.006% or less of range.
  • O 0.005% or less
  • O is an unavoidable impurity and defines the upper limit of the amount thereof. Since O is coarse and causes inclusions that adversely affect toughness, the amount of O is set to 0.005% or less. More preferably, it is 0.003% or less.
  • the above are the basic components of the present invention.
  • the following Cu, Ni, Cr, Mo, V, Ca 1 or 2 or more of B may be contained.
  • Cu 0.5% or less Cu may not be added, but it may be added because it contributes to improving the hardenability of the steel. In order to obtain the effect, 0.05% or more is preferably added. However, if 0.5% or more is added, toughness deterioration occurs. Therefore, when Cu is added, the amount of Cu is preferably 0.5% or less. More preferably, it is 0.4% or less.
  • Ni 1% or less Ni does not need to be added, but adding it contributes to improving the hardenability of the steel, and in particular, adding a large amount does not cause deterioration of toughness. Since it is effective, it may be added. In order to obtain the effect, 0.05% or more is preferably added. However, since Ni is an expensive element, when adding Ni, the amount of Ni is preferably 1% or less. More preferably, it is 0.4% or less.
  • Cr 0.5% or less Cr may not be added, but it may be added because it is an effective element for obtaining sufficient strength even at low C as in the case of Mn. In order to acquire the effect, it is preferable to add 0.1% or more, but if added excessively, weldability deteriorates, and when added, the Cr content is preferably 0.5% or less. More preferably, it is 0.4% or less.
  • Mo 0.5% or less Mo does not need to be added, but is an element that improves hardenability and is an element that contributes to strength increase by strengthening MA generation and bainite phase. Also good. In order to obtain the effect, 0.05% or more is preferably added. However, if added over 0.5%, the toughness of the weld heat affected zone is deteriorated. Therefore, when added, the Mo content is preferably 0.5% or less, and further, the influence of welding heat is affected. From the viewpoint of the toughness of the part, the Mo content is more preferably 0.3% or less.
  • V 0.1% or less V may not be added, but V may be added because it is an element that improves hardenability and contributes to an increase in strength. In order to obtain the effect, it is preferable to add 0.005% or more, but if added over 0.1%, the toughness of the weld heat affected zone deteriorates. It is preferable to make it 1% or less. More preferably, it is 0.06% or less of range.
  • Ca 0.0005 to 0.003% Ca may be added because it improves the toughness by controlling the form of sulfide inclusions. The effect appears at 0.0005% or more, and when it exceeds 0.003%, the effect is saturated, and conversely the cleanliness is lowered and the toughness is deteriorated. Therefore, when added, the Ca content is 0.0005-0. It is preferable to set it in the range of 0.003%. More preferably, it is in the range of 0.001 to 0.003%.
  • B 0.005% or less B may be added because it is an element contributing to an increase in strength and toughness improvement of the weld heat affected zone (HAZ). In order to obtain the effect, it is preferable to add 0.0005% or more, but if added over 0.005%, the weldability is deteriorated, so when added, the amount of B is 0.005% or less. It is preferable to do. More preferably, it is 0.003% or less.
  • Ti / N which is the ratio of Ti amount and N amount, it is possible to suppress austenite coarsening of the weld heat affected zone by TiN particles, and to obtain good toughness of the weld heat affected zone. Therefore, Ti / N is preferably in the range of 2 to 8, and more preferably in the range of 2 to 5.
  • the balance other than the above components in the steel sheet of the present invention is Fe and inevitable impurities. However, the content of elements other than those described above is not rejected as long as the effects of the present invention are not impaired. For example, from the viewpoint of improving toughness, Mg: 0.02% or less and / or REM (rare earth metal): 0.02% or less can be included.
  • an island-like martensite (MA) having an area fraction of 3 to 20% and a pseudo-polygonal ferrite in the remainder are uniformly formed. .
  • a three-phase structure in which MA is uniformly formed in pseudopolygonal ferrite and bainite that is, a composite structure containing hard MA in soft pseudopolygonal ferrite and bainite, resulting in a low yield ratio and high uniformity. Elongation and improved low temperature toughness.
  • the area fraction of pseudopolygonal ferrite is 10% or more from the viewpoint of securing strength, and the area fraction of bainite is 5% or more from the viewpoint of securing toughness of the base material.
  • the soft phase is responsible for deformation, so that it is 6% or more, preferably 7% or more, more preferably 10% or more. High uniform elongation can be achieved.
  • the ratio of MA in the structure is an area fraction of MA (calculated from the average value of the ratios of the areas of the MA in any cross section of the steel sheet in the rolling direction and the sheet width direction), and is 3 to 20%. If the area fraction of MA is less than 3%, it may be insufficient to achieve a low yield ratio, and if it exceeds 20%, the base material toughness may be deteriorated.
  • FIG. 1 shows the relationship between the area fraction of MA and the yield ratio of the base material. It can be seen that if the area fraction of MA is less than 3%, it is difficult to achieve a yield ratio of 85% or less.
  • the area fraction of MA is desirably 5 to 15%.
  • FIG. 2 shows the relationship between the area fraction of MA and the uniform elongation of the base material. If the area fraction of MA is less than 3%, it is difficult to achieve uniform elongation of 6% or more.
  • the area fraction of MA is calculated from the average value of those area fractions occupied by MA by performing image processing on a microstructure photograph of at least four fields of view obtained by, for example, SEM (scanning electron microscope) observation. be able to.
  • the equivalent circle diameter of MA is set to 3.0 ⁇ m or less.
  • FIG. 3 shows the relationship between the equivalent circle diameter of MA and the toughness of the base material.
  • the equivalent circle diameter of MA can be obtained as an average value of the diameters obtained by subjecting the microstructure obtained by SEM observation to image processing, obtaining the diameter of a circle having the same area as each MA, and obtaining the diameter of each MA. .
  • the cooling start temperature is preferably equal to or higher than the Ar 3 temperature.
  • the mechanism of MA generation (mechanism) is roughly as follows. Detailed manufacturing conditions will be described later.
  • Accelerated cooling is completed during bainite transformation, that is, in the temperature range where untransformed austenite is present, and then reheating is performed from a temperature higher than the bainite transformation finish temperature (Bf point), and then the microstructure is changed in the manufacturing process. Is as follows.
  • the microstructure at the end of accelerated cooling is bainite, pseudopolygonal ferrite, and untransformed austenite. Thereafter, re-heating from a temperature higher than the Bf point causes transformation from untransformed austenite to bainite and pseudopolygonal ferrite.
  • bainite and pseudopolygonal ferrite can be dissolved in C (amount of solid solution of carbon). ) Is small, C is discharged into the surrounding untransformed austenite.
  • the reheating start after accelerated cooling, it is important to perform reheating from the temperature range where untransformed austenite exists, and when the reheating start temperature falls below the Bf point, the bainite transformation and pseudopolygonal ferrite transformation are completed and untransformed. Since austenite does not exist, the reheating start needs to be higher than the Bf point.
  • the cooling after reheating is not particularly specified because it does not affect the transformation of MA, but it is basically preferable to use air cooling.
  • a steel added with a certain amount of Mn is used, and accelerated cooling is stopped in the middle of the bainite transformation and pseudopolygonal ferrite transformation, and then reheating is performed immediately thereafter, thereby reducing the manufacturing efficiency (manufacturing efficiency).
  • a hard MA can be generated without causing it.
  • the metal structure is a structure that uniformly contains a certain amount of MA in the two phases of pseudo-polygonal ferrite and bainite. And those containing precipitates are also included in the scope of the present invention.
  • the strength decreases.
  • the area fraction of the structure other than pseudopolygonal ferrite, bainite and MA is low, the influence of the decrease in strength can be ignored. Therefore, if the total area fraction of the entire structure is 3% or less, the pseudopolygonal Metal structures other than the three types of ferrite, bainite, and MA, that is, ferrite (specifically, polygonal ferrite), pearlite, cementite, and the like may be contained in one kind or two or more kinds.
  • the metal structure described above can be obtained by manufacturing the steel having the above-described composition by the method described below.
  • Manufacturing Conditions Steel having the above-described composition is melted by a conventional method using a melting means such as a converter (electric converter), an electric furnace (electric furnace), or the like, and is continuously cast or ingot-bundled. It is preferable to use a steel material such as a slab by a conventional method.
  • the melting method and the casting method are not limited to the methods described above. Thereafter, the shape is rolled into a desired shape, and after rolling, cooling and heating are performed.
  • temperatures such as heating temperature, rolling end temperature (finishing rolling temperature), cooling end temperature (finishing cooling temperature), and reheating temperature (reheating temperature) are the average temperatures of the steel plates.
  • the average temperature is obtained by calculation from the surface temperature of the slab or steel plate in consideration of parameters such as plate thickness and thermal conductivity.
  • the cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling end temperature (500 to 680 ° C.) by the time required for the cooling after the end of hot rolling. .
  • the heating rate is the average heating rate divided by the time required to reheat the temperature difference required for reheating to the reheating temperature (550 to 750 ° C.) after cooling. .
  • each manufacturing condition will be described in detail.
  • Ar 3 (° C.) 910-310C-80Mn-20Cu-15Cr-55Ni-80Mo
  • Heating temperature 1000-1300 ° C If the heating temperature is less than 1000 ° C, the required strength cannot be obtained because the solid solution of the carbide is insufficient. If the heating temperature exceeds 1300 ° C, the toughness of the base metal deteriorates, so the heating temperature is in the range of 1000 to 1300 ° C.
  • Rolling end temperature Ar 3 temperature or higher If the rolling end temperature is less than Ar 3 temperature, the subsequent ferrite transformation rate decreases, so that the concentration of C into untransformed austenite at the time of reheating becomes insufficient and MA is not generated. . Therefore, the rolling end temperature is set to Ar 3 temperature or higher.
  • Cumulative rolling reduction of 900 ° C. or less 50% or more This condition is one of the important production conditions in the present invention.
  • the temperature range of 900 ° C. or lower corresponds to the austenite non-recrystallization temperature range. Since the austenite grains can be refined by setting the cumulative rolling reduction in this temperature range to 50% or more, the number of MA production sites generated at the prior austenite grain boundaries increases thereafter. This contributes to suppression of coarsening.
  • the cumulative rolling reduction at 900 ° C. or less is set to 50% or more.
  • Cooling rate 5 ° C / s or more, cooling stop temperature: 500-680 ° C Immediately after rolling, accelerated cooling is performed.
  • the cooling start temperature becomes Ar 3 temperature or lower and polygonal ferrite is generated, the strength is lowered and the formation of MA is difficult to occur. Therefore, the cooling start temperature is preferably set to Ar 3 temperature or higher.
  • the cooling rate is 5 ° C / s or more.
  • the cooling rate after completion of rolling is set to 5 ° C./s or more.
  • the bainite and quasi-polygonal ferrite transformation during reheating is completed without maintaining the temperature during subsequent reheating. It is possible.
  • the cooling stop temperature is 500 to 680 ° C. This process is an important production condition in the present invention.
  • C-concentrated untransformed austenite present after reheating is transformed into MA upon subsequent air cooling.
  • the cooling stop temperature is less than 500 ° C., the bainite and pseudopolygonal ferrite transformation is completed, so that MA is not generated during air cooling, and a low yield ratio cannot be achieved. If it exceeds 680 ° C, C is consumed in the pearlite that precipitates during cooling and MA is not generated. From the viewpoint of securing the area fraction, it is preferably 550 to 660 ° C. For this accelerated cooling, any cooling system can be used.
  • Temperature increase rate after accelerated cooling 2.0 ° C / s or more, reheating temperature: 550 to 750 ° C Immediately after the accelerated cooling is stopped, reheating is performed to a temperature of 550 to 750 ° C. at a temperature rising rate of 2.0 ° C./s or more.
  • reheating immediately after stopping accelerated cooling means reheating at a temperature rising rate of 2.0 ° C./s or more within 120 seconds after stopping accelerated cooling.
  • the untransformed austenite is transformed into bainite and pseudopolygonal ferrite during reheating after the accelerated cooling, and C is discharged to the remaining untransformed austenite. It transforms into MA during air cooling after reheating.
  • the reheating temperature range is set to a range of 550 to 750 ° C.
  • the reheating start needs to be higher than the Bf point.
  • the manufacturing method of the present invention is used, sufficient MA can be obtained even if cooled immediately after reheating, so that a low yield ratio and a high uniform elongation can be achieved.
  • the temperature can be maintained within 30 minutes during reheating.
  • the cooling rate after reheating is preferably basically air cooling.
  • a heating device can be installed downstream of the cooling equipment for performing accelerated cooling.
  • the heating device it is preferable to use a gas burner furnace or an induction heating apparatus capable of rapid heating of the steel sheet.
  • the MA generation sites are increased through the refinement of austenite grains, and the MA is increased. It can be uniformly finely dispersed, and while maintaining a low yield ratio of 85% or less, the Charpy absorbed energy at ⁇ 30 ° C. can be improved to 200 J or more compared to the conventional case. Furthermore, in the present invention, since the coarsening of the MA is suppressed by increasing the heating rate of reheating after accelerated cooling, the equivalent circle diameter of the MA can be refined to 3.0 ⁇ m or less. Moreover, uniform elongation of 6% or more can be achieved.
  • the steel of the present invention has little MA decomposition, and a three-phase structure of bainite, MA and pseudopolygonal ferrite. It is possible to maintain a predetermined metal structure consisting of As a result, in the present invention, the yield stress (YS) increases due to strain aging even in a general steel pipe coating process (coating process) of 250 ° C. for 30 minutes even after a high temperature and a long thermal history.
  • the steel according to the present invention has a yield ratio of 85% even if it is subjected to a thermal history that deteriorates characteristics due to strain aging if it is a conventional steel.
  • Charpy absorbed energy at ⁇ 30 ° C .: 200 J or more can be secured.
  • uniform elongation of 6% or more can be achieved.
  • Steels (steel types A to J) having the composition shown in Table 1 were made into slabs by a continuous casting method, and thick steel plates (Nos. 1 to 16) having thicknesses of 20 and 33 mm were produced.
  • the heated slab was rolled by hot rolling, it was immediately cooled using a water-cooled accelerated cooling facility and reheated using an induction heating furnace or a gas combustion furnace.
  • the induction furnace was installed on the same line as the accelerated cooling equipment.
  • Table 2 shows the production conditions of each steel plate (No. 1 to 16).
  • temperature such as heating temperature, rolling completion temperature, cooling stop (end) temperature, and reheating temperature
  • the average temperature was calculated from the surface temperature of the slab or steel plate using parameters such as plate thickness and thermal conductivity.
  • the cooling rate is an average cooling rate obtained by dividing the temperature difference required for cooling to the cooling stop (end) temperature (460 to 630 ° C.) by the time required for the cooling after the hot rolling is completed.
  • the reheating rate (temperature increase rate) is the average temperature increase rate divided by the time required to reheat the temperature difference required for reheating to the reheating temperature (530 to 680 ° C.) after cooling. is there.
  • Tensile strength of 517 MPa or more was determined as the strength required for the present invention.
  • the yield ratio and uniform elongation were evaluated by the average value of two tensile test specimens having a full thickness in the rolling direction. A yield ratio of 85% or less and a uniform elongation of 6% or more were defined as the deformation performance required for the present invention.
  • the manufactured steel plate was held at 250 ° C. for 30 minutes and subjected to strain aging treatment, followed by the base material tensile test and Charpy impact test, and the weld heat affected zone (HAZ) Charpy impact test. Conducted and evaluated.
  • the evaluation criteria after the strain aging treatment were determined based on the same criteria as the evaluation criteria before the strain aging treatment described above.
  • the composition of components and the production method are all within the scope of the present invention, and before and after strain aging treatment at 250 ° C. for 30 minutes, the tensile strength is 517 MPa or higher, the yield ratio is 85% or less, and uniform. It had a low yield ratio of 6% or more and a high uniform elongation, and the toughness of the base metal and the weld heat affected zone was good.
  • the structure of the steel sheet is a structure in which MA is formed in two phases of pseudopolygonal ferrite and bainite.
  • the area fraction of MA is 3 to 20% and the equivalent circle diameter is 3.0 ⁇ m or less.
  • the rate was 5% or more and 70% or less.
  • the area fraction of MA was calculated
  • No. which is a comparative example. 8-13 although the component composition is within the scope of the present invention, the production method is outside the scope of the present invention, so the structure is outside the scope of the present invention, and either before or after the strain aging treatment at 250 ° C. for 30 minutes. However, the yield ratio and uniform elongation were insufficient or sufficient strength and toughness could not be obtained.
  • No. Nos. 14 to 16 have component compositions outside the scope of the present invention. No. 14 is the yield ratio and uniform elongation. No. 15 was out of the scope of the invention in terms of tensile strength, uniform elongation, and yield ratio. No. In No. 16, the weld heat affected zone (HAZ) toughness was out of the scope of the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

API 5L X70グレード以下の耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板及びその製造方法を提供する。具体的には、成分組成が、質量%で、C:0.03~0.06%、Si:0.01~1.0%、Mn:1.2~3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005~0.07%、Ti:0.005~0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織が、ベイナイトと、島状マルテンサイトと、擬ポリゴナルフェライトとの3相組織からなり、前記ベイナイトの面積分率を5~70%、前記島状マルテンサイトの面積分率を3~20%かつ円相当径を3.0μm以下、残部を前記擬ポリゴナルフェライトとした、250℃以下の温度で30分以下の歪時効処理の前後における降伏比が85%以下、-30℃でのシャルピー吸収エネルギーが200J以上であることを特徴とする耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板

Description

低降伏比、高強度および高靭性を有した鋼板及びその製造方法
 本発明は、主にラインパイプ(line pipe)分野での使用に好適な、低降伏比、高強度および高靭性を有した鋼板(low yield ratio,high strength and high toughness steel plate)とその製造方法に関するものであり、特に、耐歪時効特性(strain ageing resistance)に優れた低降伏比、高強度および高靭性を有した鋼板とその製造方法に関する。
 近年、溶接構造用鋼材においては、高強度、高靱性に加え、耐震性(earthquake−proof)の観点から低降伏比化、高一様伸びが要求されている。一般に、鋼材の金属組織を、軟質相(soft phase)であるフェライト(ferrite)の中に、ベイナイト(bainite)やマルテンサイト(martensite)などの硬質相(hard phase)が適度に分散した組織にすることで、鋼材の低降伏比化および、高一様伸び化が可能であることが知られている。なお、ここで言う一様伸びは、均一伸びとも呼ばれ、引張試験において、試験片平行部がほぼ一様に変形する永久伸びの限界値を言う。通常、最大引張荷重に対応する永久伸びとして求められる。
 上記のような軟質相の中に硬質相が適度に分散した組織を得る製造方法として、特許文献1には、焼入れ(quenching)(Q)と焼戻し(tempering)(T)の中間に、フェライトとオーステナイト(austenite)の2相域(two−phase,(γ+α)temperature range)からの焼入れ(Q’)を施す熱処理方法が開示されている。
 特許文献2には、製造工程が増加することがない方法として、Ar温度以上で圧延終了後、鋼材の温度がフェライトが生成するAr変態点以下になるまで加速冷却の開始を遅らせる方法が開示されている。
 特許文献1、特許文献2に開示されている様な複雑な熱処理を行わずに低降伏比化を達成する技術として、特許文献3には、Ar変態点以上で鋼材の圧延を終了し、その後の加速冷却速度と冷却停止温度を制御することで、針状フェライト(acicular ferrite)とマルテンサイトの2相組織とし、低降伏比化を達成する方法が開示されている。
 さらには、特許文献4には、鋼材の合金元素の添加量を大きく増加させることなく、低降伏比ならびに優れた溶接熱影響部(welded heat affected zone)(HAZ)の靭性(toughness)を達成する技術として、Ti/NやCa−O−Sバランスを制御しながら、フェライト、ベイナイトおよび、島状マルテンサイト(island martensite,M−A constituent)の3相組織とする方法が開示されている。
 また、特許文献5には、Cu、Ni、Moなどの合金元素の添加により、低降伏比かつ高一様伸び性能を達成する技術が開示されている。
 一方、ラインパイプに用いられるUOE鋼管や電縫鋼管(electric welded tube)のような溶接鋼管は、鋼板を冷間で管状へ成形して、突き合わせ部(abutting surface)を溶接後、通常防食等の観点から鋼管外面にポリエチレンコーティング(polyethylene coating)や粉体エポキシコーティング(powder epoxy coating)のようなコーティング処理が施されるため、製管時の加工歪みとコーティング処理時の加熱により歪時効が生じ、降伏応力が上昇し、鋼管における降伏比は鋼板における降伏比よりも大きくなってしまうという問題がある。これに対しては、たとえば、特許文献6および7には、TiとMoを含有する複合炭化物の微細析出物、あるいは、Ti、Nb、Vのいずれか2種以上を含有する複合炭化物の微細析出物を活用した、耐歪時効特性に優れた低降伏比高強度および高靱性を有した鋼管およびその製造方法が開示されている。
特開昭55−97425号公報 特開昭55−41927号公報 特開平1−176027号公報 特許4066905号公報 (特開2005−48224号公報) 特開2008−248328号公報 特開2005−60839号公報 特開2005−60840号公報
 しかしながら、特許文献1に記載の熱処理方法では、二相域焼入れ温度を適当に選択することにより、低降伏比化が達成可能であるが、熱処理工程数が増加するため、生産性の低下や、製造コストの増加を招くという問題がある。
 また、特許文献2に記載の技術では、圧延終了から加速冷却開始までの温度域を放冷程度の冷却速度で冷却する必要があるため、生産性が極端に低下するという問題がある。
 さらには、特許文献3に記載の技術では、その実施例が示すように、引張強さで490N/mm(50kg/mm)以上の鋼材とするために、鋼材の炭素含有量を高めるか、あるいはその他の合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部の靭性の劣化が問題となる。
 また、特許文献4記載の技術では、パイプラインなどに用いられる場合に要求される一様伸び性能についてはミクロ組織(microstructure)の影響など必ずしも明確となっていなかった。また、母材の低温靱性の評価は−10℃において実施されているだけで、それよりも低温における靱性が要求される新しい用途においての適用可否は不明である。
 特許文献5に記載の技術では、合金元素の添加量を増やした成分組成とする必要があるため、素材コストの上昇を招くだけでなく、溶接熱影響部の靭性の劣化が問題となる。また、母材および溶接熱影響部の低温靱性の評価は−10℃において実施されているだけである。
 特許文献6または7に記載の技術では、耐歪時効特性は改善されたものの、母材および溶接熱影響部の低温靱性の評価は−10℃において実施されているだけである。
 また、特許文献1~7には、フェライト相が必須であるが、API規格でX60以上と高強度化するにつれて、フェライト相を含む場合、引張強度の低下を招き、強度を確保するためには合金元素の増量が必要となるため、合金コストの上昇や低温靱性の低下を招く恐れがあった。
 そこで、本発明は、このような従来技術の課題を解決し、高製造効率および、低コストで製造可能な、API 5LX60グレード以上、(ここでは、特に、X65およびX70グレード)の耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板及びその製造方法を提供することを目的とする。
 本発明者らは上記課題を解決するために、鋼板の製造方法、特に制御圧延及び制御圧延後の加速冷却とその後の再加熱という製造プロセスについて鋭意検討した結果、以下の知見を得た。
 (a)加速冷却過程でベイナイト変態(bainite transformation)途中、すなわち未変態オーステナイト(non−transformed austenite)が存在する温度領域で冷却を停止し、その後ベイナイト変態の終了温度(以下Bf点と呼ぶ)より高い温度から再加熱を行うことにより、鋼板の金属組織を、擬ポリゴナルフェライト(quasi−polygonal ferrites)、ベイナイトの2相の混合相中に硬質な島状マルテンサイト(以下MAと呼ぶ)が均一に生成した組織とし、低降伏比化が可能である。なお、ここで言う擬ポリゴナルフェライトとは、「鋼のベイナイト写真集,日本鉄鋼協会基礎研究会ベイナイト調査研究部会編,(1992)」中のαq組織を指し、ポリゴナルフェライト(αP)よりも低温で生成し、ポリゴナルフェライトのような等軸状(equiaxed)の粒ではなく、不規則な多角形状(irregular changeful shape)の粒であるという特徴を有する。
 特許文献1~7に開示された通常のフェライト相(狭義にはポリゴナルフェライトとも呼ばれる相)よりも低温で生成する擬ポリゴナルフェライトを活用することにより、伸びなど変形性能を損なわずに強度の低下を抑制できる。以下、特に断らない限りフェライトは、ポリゴナルフェライトのことを意味する。
 MAは、たとえば3%ナイタール溶液(nital:硝酸アルコール溶液)でエッチング後、電解エッチング(electrolytic etching)して観察すると、容易に識別可能である。走査型電子顕微鏡(scanning electron microscope)(SEM)で鋼板のミクロ組織を観察すると、MAは白く浮き立った部分として観察される。
 (b)オーステナイト安定化元素(austenite stabilizing elements)としてMnを適量添加することにより、未変態オーステナイトが安定化するため、Cu、Ni、Mo等の焼入性向上元素を多量添加しなくても硬質なMAの生成が可能である。
 (c)オーステナイト未再結晶温度域(no−recrystallization temperature range in austenite)の900℃以下で50%以上の累積圧下を加えることによりMAを均一微細分散させることができ、低降伏比を維持しながら、一様伸びを向上させることが可能である。
 (d)さらに、上記(c)のオーステナイト未再結晶温度域における圧延条件と、上記(a)の再加熱条件との両方を適切に制御することにより、MAの形状を制御できる、すなわち、円相当径の平均値で3.0μm以下に微細化することができる。そして、その結果、従来鋼であれば時効により降伏比の劣化などが生じるような熱履歴を受けてもMAの分解が少なく、時効後も所望の組織形態および特性を維持することが可能である。
 本発明は上記の知見に更に検討を加えてなされたもので、すなわち、本発明の要旨は、以下の通りである。
 第一の発明は、成分組成が、質量%で、C:0.03~0.06%、Si:0.01~1.0%、Mn:1.2~3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005~0.07%、Ti:0.005~0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織が、ベイナイトと、島状マルテンサイトと、擬ポリゴナルフェライトとの3相組織からなり、前記ベイナイトの面積分率が5~70%、前記島状マルテンサイトの面積分率が3~20%かつ円相当径が3.0μm以下、残部が前記擬ポリゴナルフェライトであり、降伏比が85%以下、−30℃でのシャルピー吸収エネルギーが200J以上であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても降伏比が85%以下、−30℃でのシャルピー吸収エネルギーが200J以上であることを特徴とする耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板である。
 第二の発明は、さらに、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005~0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有することを特徴とする第一の発明に記載の耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板である。
 第三の発明は、第一または第二の発明のいずれかに記載の鋼板が、さらに、一様伸びが6%以上であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが6%以上である鋼板である。
 第四の発明は、第一~第三の発明のいずれかに記載の成分組成を有する鋼を、1000~1300℃の温度に加熱し、900℃以下での累積圧下率が50%以上となるようにAr温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500℃~680℃まで加速冷却を行い、その後直ちに2.0℃/s以上の昇温速度で550~750℃まで再加熱を行うことを特徴とする耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板の製造方法である。
 本発明によれば、耐歪時効特性に優れた低降伏比、高強度および高靭性を有した鋼板を、溶接熱影響部の靭性を劣化させたり、多量の合金元素を添加することなく、低コストで製造することができる。このため主にラインパイプに使用する鋼板を、安価で大量に安定して製造することができ、生産性および経済性を著しく高めることができ産業上極めて有用である。
MAの面積分率と母材の降伏比の関係を示す図である。 MAの面積分率と母材の一様伸びの関係を示す図である。 MAの円相当径と母材の靭性の関係を示す図である。
 以下に本発明の各構成要件の限定理由について説明する。
 1.成分組成について
 はじめに、本発明の鋼の成分組成を規定した理由を説明する。なお、成分%は、すべて質量%を意味する。
 C:0.03~0.06%
 Cは炭化物として析出強化に寄与し、且つMA生成に重要な元素であるが、0.03%未満の添加ではMAの生成に不十分であり、また十分な強度が確保できないおそれがある。0.06%を超える添加は母材靭性および溶接熱影響部(HAZ)靭性を劣化させるため、C量は0.03~0.06%の範囲とする。好ましくは0.04~0.06%の範囲である。
 Si:0.01~1.0%
 Siは脱酸のため添加するが、0.01%未満の添加では脱酸効果が十分でなく、1.0%を超えて添加すると、靭性や溶接性を劣化させるため、Si量は0.01~1.0%の範囲とする。好ましくは0.01~0.3%の範囲である。
 Mn:1.2~3.0%
 Mnは強度、靭性向上、更に焼入性を向上しMA生成を促すために添加するが、1.2%未満の添加ではその効果が十分でなく、3.0%を超えて添加すると、靱性ならびに溶接性が劣化するため、Mn量は1.2~3.0%の範囲とする。成分や製造条件の変動によらず、安定してMAを生成するためには、1.8%以上の添加が望ましい。
 P:0.015%以下、S:0.005%以下
 本発明でP、Sは不可避的不純物であり、その量の上限を規定する。Pは、含有量が多いと中央偏析が著しく、母材靭性が劣化するため、P量は0.015%以下とする。Sは、含有量が多いとMnSの生成量が著しく増加し、母材の靭性が劣化するため、S量は0.005%以下とする。さらに好適には、Pは、0.010%以下、Sは、0.002%以下の範囲である。
 Al:0.08%以下
 Alは脱酸剤として添加されるが、0.01%未満の添加では脱酸効果が十分でなく、0.08%を超えて添加すると鋼の清浄度が低下し、靱性が劣化するため、Al量は0.08%以下とする。好ましくは、0.01~0.08%の範囲である。さらに好適には、0.01~0.05%の範囲である。
 Nb:0.005~0.07%
 Nbは組織の微細粒化により靭性を向上させ、さらに固溶Nbの焼入性向上により強度上昇に寄与する元素である。その効果は、0.005%以上の添加で発現する。しかし、0.005%未満の添加では効果がなく、0.07%を超えて添加すると溶接熱影響部の靭性が劣化するため、Nb量は0.005~0.07%の範囲とする。さらに好適には、0.01~0.05%の範囲である。
 Ti:0.005~0.025%
 TiはTiNのピニング効果(pinning effect)により、スラブ加熱時のオーステナイトの粗大化を抑制し、母材の靭性を向上させる重要な元素である。その効果は、0.005%以上の添加で発現する。しかし、0.025%を超える添加は溶接熱影響部の靭性の劣化を招くため、Ti量は0.005~0.025%の範囲とする。溶接熱影響部の靭性の観点からは、好ましくは、0.005%以上0.02%未満の範囲である。さらに好適には、0.007~0.016%の範囲である。
 N:0.010%以下
 Nは不可避的不純物として扱うが、N量が0.010%を超えると、溶接熱影響部靭性が劣化するため、N量は0.010%以下とする。好ましくは0.007%以下である。さらに好適には、0.006%以下の範囲である。
 O:0.005%以下
 本発明でOは不可避的不純物であり、その量の上限を規定する。Oは粗大で靱性に悪影響を及ぼす介在物の生成の原因となるため、O量は0.005%以下とする。さらに好適には、0.003%以下の範囲である。
 以上が本発明の基本成分であるが、鋼板の強度・靱性をさらに改善し、且つ焼入性を向上させMAの生成を促す目的で、以下に示すCu、Ni、Cr、Mo、V、Ca、Bの1種又は2種以上を含有してもよい。
 Cu:0.5%以下
 Cuは、添加しなくてもよいが、添加することで鋼の焼入性向上に寄与するので添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、0.5%以上の添加を行うと、靱性劣化が生じるため、Cuを添加する場合は、Cu量は0.5%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
 Ni:1%以下
 Niは、添加しなくてもよいが、添加することで鋼の焼入性の向上に寄与し、特に、多量に添加しても靱性の劣化を生じないため、強靱化に有効であることから、添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、Niは高価な元素であるため、Niを添加する場合は、Ni量は1%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
 Cr:0.5%以下
 Crは、添加しなくてもよいが、Mnと同様に低Cでも十分な強度を得るために有効な元素であるので添加してもよい。その効果を得るためには、0.1%以上添加することが好ましいが、過剰に添加すると溶接性が劣化するため、添加する場合は、Cr量は0.5%以下とすることが好ましい。さらに好適には、0.4%以下の範囲である。
 Mo:0.5%以下
 Moは、添加しなくてもよいが、焼入性を向上させる元素であり、MA生成やベイナイト相を強化することで強度上昇に寄与する元素であるので添加してもよい。その効果を得るためには、0.05%以上添加することが好ましい。しかし、0.5%を超えて添加すると、溶接熱影響部の靭性の劣化を招くことから、添加する場合には、Mo量は0.5%以下とすることが好ましく、さらに、溶接熱影響部の靭性の観点からMo量は0.3%以下とすることがさらに好ましい。
 V:0.1%以下
 Vは、添加しなくてもよいが、焼入性を高め、強度上昇に寄与する元素であるので添加してもよい。その効果を得るためには、0.005%以上添加することが好ましいが、0.1%を超えて添加すると溶接熱影響部の靭性が劣化するため、添加する場合は、V量は0.1%以下とすることが好ましい。さらに好適には、0.06%以下の範囲である。
 Ca:0.0005~0.003%
 Caは硫化物系介在物の形態を制御して靭性を改善するので添加してもよい。0.0005%以上でその効果が現れ、0.003%を超えると効果が飽和し、逆に清浄度を低下させて靭性を劣化させるため、添加する場合にはCa量は0.0005~0.003%の範囲とすることが好ましい。さらに好適には、0.001~0.003%の範囲である。
 B:0.005%以下
 Bは強度上昇、溶接熱影響部(HAZ)の靭性の改善に寄与する元素であるので添加してもよい。その効果を得るためには、0.0005%以上添加することが好ましいが、0.005%を超えて添加すると溶接性を劣化させるため、添加する場合は、B量は0.005%以下とすることが好ましい。さらに好適には、0.003%以下の範囲である。
 なお、Ti量とN量の比であるTi/Nを最適化することで、TiN粒子により溶接熱影響部のオーステナイト粗大化を抑制することでき、良好な溶接熱影響部の靭性を得ることが出来るため、Ti/Nは2~8の範囲とすることが好ましく、2~5の範囲とすることがさらに好ましい。
 本発明の鋼板における上記成分以外の残部は、Feおよび不可避的不純物である。ただし、本発明の作用効果を害さない範囲であれば、上記以外の元素の含有を拒むものではない。たとえば、靱性改善の観点から、Mg:0.02%以下、および/またはREM(希土類金属):0.02%以下を含むことができる。
 次に、本発明の金属組織について説明する。
 2.金属組織について
 本発明では、面積分率5~70%のベイナイトに加えて面積分率が3~20%の島状マルテンサイト(MA)と残部に擬ポリゴナルフェライトを均一に含む金属組織とする。
 擬ポリゴナルフェライト、ベイナイトにMAが均一に生成した3相組織、すなわち、軟質な擬ポリゴナルフェライト、ベイナイトに、硬質なMAを含んだ複合組織とすることで、低降伏比化、高一様伸び化や低温靱性の改善を達成している。
 強度確保の観点から擬ポリゴナルフェライトの面積分率を10%以上に、母材の靭性確保の観点からベイナイトの面積分率を5%以上とすることが望ましい。
 大変形を受ける地震地帯等へ適用される際には、低降伏比化に加え高一様伸び性能が要求されることがある。上記のような、軟質の擬ポリゴナルフェライト、ベイナイトと硬質のMAとの複相組織では、軟質相が変形を担うため、6%以上、好ましくは7%以上、より好ましくは、10%以上の高一様伸び化が達成可能である。
 組織中のMAの割合は、MAの面積分率(圧延方向や板幅方向等の鋼板の任意の断面におけるそれらのMAの面積の割合の平均値から算出)で、3~20%とする。MAの面積分率が3%未満では低降伏比化を達成するには不十分な場合があり、また20%を超えると母材靱性を劣化させる場合がある。図1に、MAの面積分率と母材の降伏比の関係を示す。MAの面積分率が3%未満では降伏比85%以下を達成することが困難であることが分かる。
 また、低降伏比化および高一様伸び化の観点から、MAの面積分率は5~15%とすることが望ましい。図2にMAの面積分率と母材の一様伸びの関係を示す。MAの面積分率が3%未満では一様伸び6%以上を達成することが困難である。
なお、MAの面積分率は、例えばSEM(走査型電子顕微鏡)観察により得られた少なくとも4視野以上のミクロ組織写真を画像処理することによってMAの占めるそれらの面積分率の平均値から算出することができる。
 また、母材の靭性確保の観点からMAの円相当径は3.0μm以下とする。図3にMAの円相当径と母材の靭性の関係を示す。MAの円相当径が3.0μm未満では、母材の−30℃でのシャルピー吸収エネルギーを200J以上とすることが困難となる。
なお、MAの円相当径は、SEM観察により得られたミクロ組織を画像処理し、個々のMAと同じ面積の円の直径を個々のMAについて求め、それらの直径の平均値として求めることができる。
 本発明では、Cu、Ni、Mo等の高価な合金元素を多量に添加しなくてもMAを生成させるために、Mn、Siを添加し未変態オーステナイトを安定化させ、再加熱、その後の空冷(air cooling)中のパーライト変態(pearlitic transformation)やセメンタイト生成(cementite precipitation)を抑制することが重要である。
また、フェライト生成を抑制する観点から、冷却の開始温度はAr温度以上であることが好ましい。
 本発明における、MA生成のメカニズム(mechanism)は概略以下の通りである。詳細な製造条件は後述する。
 スラブ(slab)を加熱後、オーステナイト領域で圧延を終了し、その後Ar変態温度以上で加速冷却(accelerated cooling)を開始する。
 加速冷却をベイナイト変態途中すなわち未変態オーステナイトが存在する温度域で終了し、その後ベイナイト変態の終了温度(Bf点)より高い温度から再加熱を行い、その後冷却する製造プロセスにおいて、そのミクロ組織の変化は次の通りである。
 加速冷却終了時のミクロ組織はベイナイトと擬ポリゴナルフェライト、未変態オーステナイトである。その後、Bf点より高い温度から再加熱を行うことで未変態オーステナイトからベイナイトおよび擬ポリゴナルフェライトへの変態が生じるが、ベイナイトおよび擬ポリゴナルフェライトはC固溶可能量(amount of solid solution of carbon)が少ないためCが周囲の未変態オーステナイトへ排出される。
 そのため、再加熱時のベイナイトおよび擬ポリゴナルフェライト変態の進行に伴い、未変態オーステナイト中のC量が増加する。このとき、オーステナイト安定化元素である、Cu、Ni等が一定以上含有されていると、再加熱終了時でもCが濃縮した未変態オーステナイトが残存し、再加熱後の冷却でMAへと変態し、最終的にベイナイト、擬ポリゴナルフェライトの2相組織の中に、MAが生成した組織となる。
 本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイト変態および擬ポリゴナルフェライト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。
 また、再加熱後の冷却については、MAの変態に影響を与えないため特に規定しないが、基本的に空冷とすることが好ましい。本発明では、Mnを一定量添加した鋼を用い、ベイナイト変態および擬ポリゴナルフェライト変態途中で加速冷却を停止し、その後直ちに連続的に再加熱を行うことで、製造効率(manufacturing efficiency)を低下させることなく硬質なMAを生成させることができる。
 なお、本発明に係る鋼では、金属組織が、擬ポリゴナルフェライトとベイナイトの2相に一定量のMAを均一に含む組織であるが、本発明の作用効果を損なわない程度で、その他の組織や析出物を含有するものも、本発明の範囲に含む。
 具体的には、フェライト、パーライトやセメンタイトなどが1種または2種以上混在する場合は、強度が低下する。しかし、擬ポリゴナルフェライト、ベイナイトおよびMA以外の組織の面積分率が低い場合は強度の低下の影響が無視できるため、組織全体に対する合計の面積分率で3%以下であれば、擬ポリゴナルフェライトとベイナイトとMAとの3種以外の金属組織を、すなわちフェライト(具体的には、ポリゴナルフェライト)、パーライトやセメンタイト等を1種または2種以上含有してもよい。
 以上述べた金属組織は、上述した組成の鋼を用いて、以下に述べる方法で製造することにより得ることができる。
 3.製造条件について
 上述した組成を有する鋼を、転炉(steel converter)、電気炉(electric furnace)等の溶製手段で常法により溶製し、連続鋳造法(continuous casting)または造塊~分塊法等で常法によりスラブ等の鋼素材とすることが好ましい。なお、溶製方法、鋳造法については上記した方法に限定されるものではない。その後、性能所望の形状に圧延し、圧延後に、冷却および加熱を行う。
 なお、本発明において、加熱温度、圧延終了温度(finishing rolling temperature)、冷却終了温度(finishing cooling temperature)および、再加熱温度(reheating temperature)等の温度は鋼板の平均温度とする。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率(thermal conductivity)等のパラメーター(parameter)を考慮して、計算により求めたものである。また、冷却速度(cooling rate)は、熱間圧延終了後、冷却終了温度(500~680℃)まで冷却に必要な温度差をその冷却を行うのに要した時間で割った平均冷却速度である。
 また、昇温速度(heating rate)は、冷却後、再加熱温度(550~750℃)までの再加熱に必要な温度差を再加熱するのに要した時間で割った平均昇温速度である。以下、各製造条件について詳しく説明する。
 なお、Ar温度は、以下の式より計算される値を用いる。
Ar(℃)=910−310C−80Mn−20Cu−15Cr−55Ni−80Mo
 加熱温度(heating temperature):1000~1300℃
 加熱温度が1000℃未満では炭化物の固溶が不十分で必要な強度が得られず、1300℃を超えると母材靭性が劣化するため、加熱温度は、1000~1300℃の範囲とする。
 圧延終了温度:Ar温度以上
 圧延終了温度がAr温度未満であると、その後のフェライト変態速度が低下するため、再加熱時の未変態オーステナイトへのCの濃縮が不十分となりMAが生成しない。そのため圧延終了温度をAr温度以上とする。
 900℃以下の累積圧下率(accumulative rolling reduction):50%以上
 この条件は、本発明において重要な製造条件の一つである。900℃以下という温度域は、オーステナイト未再結晶温度域に相当する。この温度域における累積圧下率を50%以上とすることにより、オーステナイト粒を微細化することができるので、その後、旧オーステナイト粒界(prior austenite grain boundaries)に生成するMAの生成サイトが増え、MAの粗大化の抑制に寄与する。
 900℃以下の累積圧下率が50%未満であると、生成するMAの円相当径が3.0μmを超えるため、一様伸びが低下したり母材の靭性が低下したり場合がある。そのため900℃以下の累積圧下率を50%以上とする。
 冷却速度:5℃/s以上、冷却停止温度:500~680℃
 圧延終了後、直ちに加速冷却を実施する。冷却開始温度がAr温度以下となりポリゴナルフェライト(polygonal ferrite)が生成すると、強度低下が起こり、且つMAの生成も起こりにくくなるため、冷却開始温度をAr温度以上とすることが好ましい。
 冷却速度は5℃/s以上とする。冷却速度が5℃/s未満では冷却時にパーライトを生成するため、十分な強度や低降伏比が得られない。よって、圧延終了後の冷却速度は、5℃/s以上とする。
 本発明では、加速冷却によりベイナイトおよび擬ポリゴナルフェライト変態領域まで過冷する(supercooling)ことにより、その後の再加熱時に温度保持することなく、再加熱時のベイナイトおよび擬ポリゴナルフェライト変態を完了させることが可能である。
 冷却停止温度は500~680℃とする。本プロセスは本発明において、重要な製造条件である。本発明では再加熱後に存在するCの濃縮した未変態オーステナイトがその後の空冷時にMAへと変態する。
 すなわち、ベイナイトおよび擬ポリゴナルフェライト変態途中の未変態オーステナイトが存在する温度域で冷却を停止する必要がある。冷却停止温度が500℃未満では、ベイナイトおよび擬ポリゴナルフェライト変態が完了するため空冷時にMAが生成せず低降伏比化が達成できない。680℃を超えると冷却中に析出するパーライトにCが消費されMAが生成しないため、加速冷却停止温度を
Figure JPOXMLDOC01-appb-I000001
面積分率を確保する観点からは、好ましくは550~660℃である。この加速冷却については、任意の冷却設備(cooling system)を用いることが可能である。
 加速冷却後の昇温速度:2.0℃/s以上、再加熱温度:550~750℃
加速冷却停止後、直ちに2.0℃/s以上の昇温速度で550~750℃の温度まで再加熱を行う。
 ここで、加速冷却停止後、直ちに再加熱するとは、加速冷却停止後、120秒以内に2.0℃/s以上の昇温速度で再加熱することを言う。
 本プロセスも本発明において重要な製造条件である。前記加速冷却後の再加熱時に未変態オーステナイトがベイナイトおよび擬ポリゴナルフェライトへと変態し、それに伴い、残る未変態オーステナイトへCが排出されることにより、このCが濃化した未変態オーステナイトは、再加熱後の空冷時にMAへと変態する。
 MAを得るためには、加速冷却後Bf点より高い温度から550~750℃の温度域まで再加熱する必要がある。
 昇温速度が2.0℃/s未満では、目的の再加熱温度に達するまでに長時間を要するため製造効率が悪化し、またMAの粗大化を招く場合があり、十分な低降伏比、靭性あるいは一様伸びを得ることができない。この機構は必ずしも明確ではないが、再加熱の昇温速度を2℃/s以上と大きくすることにより、C濃縮領域の粗大化を抑制し、再加熱後の冷却過程で生成するMAの粗大化が抑制されるものと考えられる。
 再加熱温度が550℃未満ではベイナイト変態および擬ポリゴナルフェライト変態が十分起こらずCの未変態オーステナイトへの排出が不十分となり、MAが生成せず低降伏比化が達成できない。再加熱温度が750℃を超えるとベイナイトの軟化により十分な強度が得られないため、再加熱の温度域を550~750℃の範囲とする。
 本発明では、加速冷却後、未変態オーステナイトが存在する温度域から再加熱を行うことが重要であり、再加熱開始温度がBf点以下となるとベイナイトおよび擬ポリゴナルフェライト変態が完了し未変態オーステナイトが存在しなくなるため、再加熱開始はBf点より高い温度とする必要がある。
 確実にベイナイト変態および擬ポリゴナルフェライト変態させるCを未変態オーステナイトへ濃化させるためには、再加熱開始温度より50℃以上昇温することが望ましい。再加熱温度において、特に温度保持時間を設定する必要はない。
 本発明の製造方法を用いれば再加熱後直ちに冷却しても、十分なMAが得られるため、低降伏比化、高一様伸び化が達成できる。しかし、よりCの拡散を促進させMA体積分率を確保するために、再加熱時に、30分以内の温度保持を行うことができる。
 30分を超えて温度保持を行うと、ベイナイト相において回復が起こり強度が低下する場合がある。また、再加熱後の冷却速度は基本的には空冷とすることが好ましい。
加速冷却後の再加熱を行うための設備として、加速冷却を行うための冷却設備の下流側に加熱装置を設置することができる。加熱装置としては、鋼板の急速加熱が可能であるガス燃焼炉(gas burner furnace)や誘導加熱装置(induction heating apparatus)を用いる事が好ましい。
 以上、述べたように、本発明においては、まず、オーステナイト未再結晶温度域の900℃以下で50%以上の累積圧下を加えることにより、オーステナイト粒の微細化を通じてMA生成サイトを増やし、MAを均一微細分散させることができ、85%以下の低降伏比を維持しながら、−30℃でのシャルピー吸収エネルギーが200J以上と従来に比べ向上させることができる。さらに、本発明においては、加速冷却後の再加熱の昇温速度を大きくすることにより、MAの粗大化を抑制するので、MAの円相当径を3.0μm以下に微細化することができる。また、一様伸び6%以上を達成することができる。
 これにより、従来鋼であれば歪時効により特性劣化するような熱履歴(thermal history)を受けても、本発明鋼ではMAの分解が少なく、ベイナイトとMAと擬ポリゴナルフェライトとの3相組織からなる所定の金属組織を維持することが可能となる。その結果、本発明においては、250℃で30分という、一般的な鋼管のコーティング工程(coating process)では高温かつ長時間に相当する熱履歴を経ても、歪時効による降伏応力(YS)上昇や、これに伴う降伏比の上昇や一様伸びの低下を抑制することができ、従来鋼であれば歪時効により特性劣化するような熱履歴を受けても、本発明鋼では降伏比:85%以下、−30℃でのシャルピー吸収エネルギー:200J以上を確保することができる。また、一様伸び6%以上を達成することができる。
表1に示す成分組成の鋼(鋼種A~J)を連続鋳造法によりスラブとし、板厚20、33mmの厚鋼板(No.1~16)を製造した。
 加熱したスラブを熱間圧延により圧延した後、直ちに水冷型の加速冷却設備を用いて冷却を行い、誘導加熱炉またはガス燃焼炉を用いて再加熱を行った。誘導加熱炉は加速冷却設備と同一ライン上に設置した。
 各鋼板(No.1~16)の製造条件を表2に示す。なお、加熱温度、圧延終了温度、冷却停止(終了)温度および、再加熱温度等の温度は鋼板の平均温度とした。平均温度は、スラブもしくは鋼板の表面温度より、板厚、熱伝導率等のパラメータを用いて計算により求めた。
また、冷却速度は、熱間圧延終了後、冷却停止(終了)温度(460~630℃)までの冷却に必要な温度差をその冷却を行うのに要した時間で除した平均冷却速度である。また、再加熱速度(昇温速度)は、冷却後、再加熱温度(530~680℃)までの再加熱に必要な温度差を再加熱するのに要した時間で除した平均昇温速度である。
 以上のようにして製造した鋼板の機械的性質(mechanical property)を測定した。測定結果を表3に示す。引張強度は、圧延方向(rolling direction)に直角方向の全厚の引張試験片(tension test specimen)を2本採取し、引張試験を行い、その平均値で評価した。
 引張強度517MPa以上(API 5L X60以上)を本発明に必要な強度とした。降伏比、一様伸びは、圧延方向の全厚の引張試験片(tension test specimen)を2本採取し、引張試験を行い、その平均値で評価した。降伏比85%以下、一様伸び6%以上を本発明に必要な変形性能とした。
 母材靭性については、圧延方向に直角方向のフルサイズシャルピーVノッチ試験片を3本採取し、シャルピー試験を行い、−30℃での吸収エネルギーを測定し、その平均値を求めた。−30℃での吸収エネルギーが200J以上のものを良好とした。
 溶接熱影響部(HAZ)の靭性については、再現熱サイクル装置(Reproducing Apparatus of Weld Thermal Cycles)によって入熱40kJ/cmに相当する熱履歴を加えた試験片を3本採取し、シャルピー衝撃試験(Charpy impact test)を行った。そして、−30℃での吸収エネルギー(absorbed energy)を測定し、その平均値を求めた。−30℃でのシャルピー吸収エネルギーが100J以上のものを良好とした。
 なお、製造した鋼板を250℃にて30分間保持して、歪時効処理(strain ageing treatment)した後、母材の引張試験およびシャルピー衝撃試験、溶接熱影響部(HAZ)のシャルピー衝撃試験を同様に実施し、評価した。なお、歪時効処理後の評価基準は、上述した歪時効処理前の評価基準と同一の基準で判定した。
 表3において、発明例であるNo.1~7はいずれも、成分組成および製造方法が本発明の範囲内であり、250℃にて30分間の歪時効処理前後で、引張強度517MPa以上の高強度で降伏比85%以下、一様伸び6%以上の低降伏比、高一様伸びであり、母材ならびに溶接熱影響部の靭性は良好であった。
 また、鋼板の組織は擬ポリゴナルフェライト、ベイナイトの2相にMAが生成した組織であり、MAの面積分率は3~20%かつ円相当径3.0μm以下の範囲内、ベイナイトは面積分率5%以上70%以下であった。なお、MAの面積分率は、走査型電子顕微鏡(SEM)で観察したミクロ組織から画像処理により求めた。
 一方、比較例であるNo.8~13は、成分組成は本発明の範囲内であるが、製造方法が本発明の範囲外であるため、組織が本発明の範囲外となり、250℃、30分の歪時効処理前後のいずれにおいても、降伏比、一様伸びが不十分か十分な強度、靭性が得られなかった。No.14~16は成分組成が本発明の範囲外であるので、No.14は降伏比、一様伸びが、No.15は引張強度、一様伸び、降伏比が何れも発明の範囲外となった。
No.16は、溶接熱影響部(HAZ)靭性が発明の範囲外となった。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004

Claims (4)

  1.  成分組成が、質量%で、C:0.03~0.06%、Si:0.01~1.0%、Mn:1.2~3.0%、P:0.015%以下、S:0.005%以下、Al:0.08%以下、Nb:0.005~0.07%、Ti:0.005~0.025%、N:0.010%以下、O:0.005%以下を含有し、残部Fe及び不可避的不純物からなり、金属組織が、ベイナイトと、島状マルテンサイトと、擬ポリゴナルフェライトとの3相組織からなり、前記ベイナイトの面積分率が5~70%、前記島状マルテンサイトの面積分率が3~20%かつ円相当径が3.0μm以下、残部が前記擬ポリゴナルフェライトであり、降伏比が85%以下、−30℃でのシャルピー吸収エネルギーが200J以上であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても降伏比が85%以下、−30℃でのシャルピー吸収エネルギーが200J以上である鋼板。
  2.  請求項1に記載の鋼板が、さらに、質量%で、Cu:0.5%以下、Ni:1%以下、Cr:0.5%以下、Mo:0.5%以下、V:0.1%以下、Ca:0.0005~0.003%、B:0.005%以下の中から選ばれる一種または二種以上を含有する鋼板。
  3.  請求項1または請求項2のいずれかに記載の鋼板が、さらに、一様伸びが6%以上であり、さらに250℃以下の温度で30分以下の歪時効処理を施した後においても一様伸びが6%以上である鋼板。
  4.  請求項1~3のいずれかに記載の成分組成を有する鋼を、1000~1300℃の温度に加熱し、900℃以下での累積圧下率が50%以上となるようにAr温度以上の圧延終了温度で熱間圧延した後、5℃/s以上の冷却速度で500℃~680℃まで加速冷却を行い、その後直ちに2.0℃/s以上の昇温速度で550~750℃まで再加熱を行う鋼板の製造方法。
PCT/JP2010/067316 2009-09-30 2010-09-28 低降伏比、高強度および高靭性を有した鋼板及びその製造方法 WO2011040624A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/499,472 US8778096B2 (en) 2009-09-30 2010-09-28 Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
CA2775043A CA2775043C (en) 2009-09-30 2010-09-28 Low yield ratio, high strength and high toughness steel plate and method for manufacturing the same
KR1020127011019A KR101450976B1 (ko) 2009-09-30 2010-09-28 저항복비, 고강도 및 고인성을 가진 강판 및 그 제조 방법
CN2010800439305A CN102549189B (zh) 2009-09-30 2010-09-28 具有低屈服比、高强度以及高韧性的钢板及其制造方法
RU2012117900/02A RU2496904C1 (ru) 2009-09-30 2010-09-28 Толстолистовая сталь, характеризующаяся низким соотношением между пределом текучести и пределом прочности, высокой прочностью и высокой ударной вязкостью, и способ ее изготовления
EP10820736.6A EP2484792B1 (en) 2009-09-30 2010-09-28 Steel plate with low yield ratio, high strength, and high toughness and process for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009226704 2009-09-30
JP2009-226704 2009-09-30

Publications (1)

Publication Number Publication Date
WO2011040624A1 true WO2011040624A1 (ja) 2011-04-07

Family

ID=43826425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/067316 WO2011040624A1 (ja) 2009-09-30 2010-09-28 低降伏比、高強度および高靭性を有した鋼板及びその製造方法

Country Status (8)

Country Link
US (1) US8778096B2 (ja)
EP (1) EP2484792B1 (ja)
JP (1) JP4844687B2 (ja)
KR (1) KR101450976B1 (ja)
CN (1) CN102549189B (ja)
CA (1) CA2775043C (ja)
RU (1) RU2496904C1 (ja)
WO (1) WO2011040624A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220624A (zh) * 2012-03-29 2014-12-17 杰富意钢铁株式会社 耐应变时效特性优良的低屈服比高强度钢板及其制造方法以及使用该钢板的高强度焊接钢管

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472071B2 (ja) * 2010-12-13 2014-04-16 新日鐵住金株式会社 ラインパイプ用鋼材
JP6006477B2 (ja) * 2011-06-24 2016-10-12 株式会社神戸製鋼所 低温靭性と強度のバランスに優れた高強度鋼板の製造方法、及びその制御方法
JP5768603B2 (ja) * 2011-08-31 2015-08-26 Jfeスチール株式会社 高一様伸び特性を備え、かつ溶接部低温靱性に優れた高強度溶接鋼管、およびその製造方法
JP6064320B2 (ja) * 2012-01-04 2017-01-25 Jfeスチール株式会社 耐延性破壊特性に優れた低降伏比高強度鋼板
JP5780171B2 (ja) * 2012-02-09 2015-09-16 新日鐵住金株式会社 曲げ性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板とその製造方法
JP5516785B2 (ja) 2012-03-29 2014-06-11 Jfeスチール株式会社 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5516659B2 (ja) 2012-06-28 2014-06-11 Jfeスチール株式会社 中温域の長期耐軟化性に優れた高強度電縫鋼管及びその製造方法
KR101388308B1 (ko) * 2012-07-30 2014-04-25 현대제철 주식회사 석출 경화형 강판 및 그 제조 방법
JP5732017B2 (ja) * 2012-10-03 2015-06-10 株式会社神戸製鋼所 歪時効前後の靭性変化が少ない厚鋼板
KR101482359B1 (ko) * 2012-12-27 2015-01-13 주식회사 포스코 극저온 인성이 우수하고 저항복비 특성을 갖는 고강도 강판 및 그의 제조방법
JP6252291B2 (ja) * 2014-03-26 2017-12-27 新日鐵住金株式会社 鋼板及びその製造方法
JP2015189984A (ja) * 2014-03-27 2015-11-02 Jfeスチール株式会社 低降伏比高強度高靭性鋼板、低降伏比高強度高靭性鋼板の製造方法および鋼管
CN106133175B (zh) * 2014-03-31 2018-09-07 杰富意钢铁株式会社 耐应变时效特性和耐hic特性优良的高变形能力管线管用钢材及其制造方法以及焊接钢管
WO2015151468A1 (ja) * 2014-03-31 2015-10-08 Jfeスチール株式会社 耐歪時効特性及び耐hic特性に優れた高変形能ラインパイプ用鋼材およびその製造方法ならびに溶接鋼管
DE102014221068A1 (de) * 2014-10-16 2016-04-21 Sms Group Gmbh Anlage und Verfahren zur Herstellung von Grobblechen
CN105695898B (zh) * 2014-11-28 2018-06-26 鞍钢股份有限公司 一种浮式lng管线用x70q热轧厚板及其生产方法
RU2667943C1 (ru) * 2015-03-06 2018-09-25 ДжФЕ СТИЛ КОРПОРЕЙШН Высокопрочная стальная труба, полученная электросваркой методом сопротивления, и способ её изготовления
CA2980983C (en) * 2015-03-27 2020-05-19 Jfe Steel Corporation High-strength steel, method for manufacturing high-strength steel, steel pipe, and method for manufacturing steel pipe
KR101949036B1 (ko) * 2017-10-11 2019-05-08 주식회사 포스코 저온 변형시효 충격특성이 우수한 후강판 및 그 제조방법
KR102447058B1 (ko) * 2018-01-30 2022-09-23 제이에프이 스틸 가부시키가이샤 라인 파이프용 강재 및 그 제조 방법 그리고 라인 파이프의 제조 방법
CN109097702A (zh) * 2018-08-31 2018-12-28 武汉钢铁有限公司 具有良好疲劳性能和焊接性能的高强桥壳钢及其制备方法
KR102119975B1 (ko) * 2018-11-29 2020-06-08 주식회사 포스코 저온인성과 연신율이 우수하며, 항복비가 작은 후물 고강도 라인파이프용 강재 및 그 제조방법
ES2895456T3 (es) 2018-12-11 2022-02-21 Ssab Technology Ab Producto de acero de alta resistencia y método de fabricación del mismo
WO2022075027A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 電縫鋼管およびその製造方法
CN112501496B (zh) * 2020-10-20 2022-01-04 江苏省沙钢钢铁研究院有限公司 一种在线淬火型双相低屈强比钢板及其生产方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541927A (en) 1978-09-16 1980-03-25 Kobe Steel Ltd Production of high toughness, high tensile steel excelling in processability
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
JPH01176027A (ja) 1987-12-29 1989-07-12 Nippon Steel Corp 低降伏比高張力溶接構造用鋼板の製造方法
JPH0466905B2 (ja) 1983-04-26 1992-10-26 Ricoh Kk
JP2004300567A (ja) * 2003-03-19 2004-10-28 Kobe Steel Ltd 高張力鋼板およびその製造方法
JP2005048224A (ja) 2003-07-31 2005-02-24 Jfe Steel Kk 溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法
JP2005060840A (ja) 2003-07-31 2005-03-10 Jfe Steel Kk 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP2005060839A (ja) 2003-07-31 2005-03-10 Jfe Steel Kk 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP2006265577A (ja) * 2005-03-22 2006-10-05 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2007031796A (ja) * 2005-07-28 2007-02-08 Kobe Steel Ltd 低降伏比高張力鋼板
JP2008248328A (ja) 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57110650A (en) * 1980-12-26 1982-07-09 Kobe Steel Ltd High strength hot rolled steel plate with superior stretch flanging property and resistance weldability
JPH03264645A (ja) * 1982-03-29 1991-11-25 Kobe Steel Ltd 伸びフランジ性等にすぐれた高強度鋼板
JPH03264646A (ja) * 1982-03-29 1991-11-25 Kobe Steel Ltd 伸びフランジ性等にすぐれた高強度鋼板
JPH0949026A (ja) * 1995-08-07 1997-02-18 Kobe Steel Ltd 強度−伸びバランス及び伸びフランジ性にすぐれる高強度熱延鋼板の製造方法
JPH10237583A (ja) * 1997-02-27 1998-09-08 Sumitomo Metal Ind Ltd 高張力鋼およびその製造方法
JPH1176027A (ja) 1997-07-07 1999-03-23 Masaru Ijuin 折込紐付き寝具
JP4294854B2 (ja) * 1997-07-28 2009-07-15 エクソンモービル アップストリーム リサーチ カンパニー 優れた超低温靭性を有する超高強度、溶接性鋼
JPH11256270A (ja) * 1998-03-13 1999-09-21 Kobe Steel Ltd 母材および大入熱溶接熱影響部の靱性に優れた高張力鋼板およびその製造方法
JPH11279700A (ja) * 1998-03-30 1999-10-12 Nkk Corp 耐座屈特性に優れた鋼管及びその製造方法
JP3551064B2 (ja) * 1999-02-24 2004-08-04 Jfeスチール株式会社 耐衝撃性に優れた超微細粒熱延鋼板およびその製造方法
JP3968011B2 (ja) * 2002-05-27 2007-08-29 新日本製鐵株式会社 低温靱性および溶接熱影響部靱性に優れた高強度鋼とその製造方法および高強度鋼管の製造方法
JP4205922B2 (ja) * 2002-10-10 2009-01-07 新日本製鐵株式会社 変形性能および低温靱性ならびにhaz靱性に優れた高強度鋼管およびその製造方法
JP4008378B2 (ja) * 2003-04-18 2007-11-14 株式会社神戸製鋼所 靭性および溶接性に優れた低降伏比高強度鋼
EP1662014B1 (en) * 2003-06-12 2018-03-07 JFE Steel Corporation Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof
JP4412098B2 (ja) 2003-07-31 2010-02-10 Jfeスチール株式会社 溶接熱影響部靭性に優れた低降伏比高強度鋼板及びその製造方法
RU2270873C1 (ru) * 2005-03-15 2006-02-27 Федеральное Государственное Унитарное Предприятие "Центральный Научно-Исследовательский Институт Конструкционных Материалов "Прометей" (Фгуп "Цнии Км "Прометей") Способ производства штрипсовой стали для труб подводных морских газопроводов высоких параметров
JP4997805B2 (ja) * 2005-03-31 2012-08-08 Jfeスチール株式会社 高強度厚鋼板およびその製造方法、ならびに高強度鋼管
JP4730088B2 (ja) * 2005-12-27 2011-07-20 Jfeスチール株式会社 低降伏比高強度厚鋼板およびその製造方法
JP4940886B2 (ja) * 2006-10-19 2012-05-30 Jfeスチール株式会社 耐hic特性に優れたラインパイプ用高強度鋼板およびその製造方法
JP4969282B2 (ja) * 2007-03-26 2012-07-04 株式会社神戸製鋼所 溶接熱影響部の靭性に優れた高強度低降伏比鋼材
JP4490472B2 (ja) * 2007-11-12 2010-06-23 株式会社神戸製鋼所 溶接熱影響部および母材の低温靭性に優れた低降伏比高張力鋼板並びにその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541927A (en) 1978-09-16 1980-03-25 Kobe Steel Ltd Production of high toughness, high tensile steel excelling in processability
JPS5597425A (en) 1979-01-19 1980-07-24 Nippon Kokan Kk <Nkk> Preparation of high-tensile steel with low yield ratio, low carbon and low alloy
JPH0466905B2 (ja) 1983-04-26 1992-10-26 Ricoh Kk
JPH01176027A (ja) 1987-12-29 1989-07-12 Nippon Steel Corp 低降伏比高張力溶接構造用鋼板の製造方法
JP2004300567A (ja) * 2003-03-19 2004-10-28 Kobe Steel Ltd 高張力鋼板およびその製造方法
JP2005048224A (ja) 2003-07-31 2005-02-24 Jfe Steel Kk 溶接熱影響部靱性に優れた低降伏比高強度高靱性鋼板の製造方法
JP2005060840A (ja) 2003-07-31 2005-03-10 Jfe Steel Kk 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP2005060839A (ja) 2003-07-31 2005-03-10 Jfe Steel Kk 耐歪時効特性に優れた低降伏比高強度高靱性鋼管及びその製造方法
JP2006265577A (ja) * 2005-03-22 2006-10-05 Jfe Steel Kk 高強度高靱性鋼板の製造方法
JP2007031796A (ja) * 2005-07-28 2007-02-08 Kobe Steel Ltd 低降伏比高張力鋼板
JP2008248328A (ja) 2007-03-30 2008-10-16 Jfe Steel Kk 低降伏比高強度高靱性鋼板及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Atlas for Bainitic Microstructures", 1992, BAINITE COMMITTEE OF THE IRON AND STEEL INSTITUTE OF JAPAN
See also references of EP2484792A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104220624A (zh) * 2012-03-29 2014-12-17 杰富意钢铁株式会社 耐应变时效特性优良的低屈服比高强度钢板及其制造方法以及使用该钢板的高强度焊接钢管

Also Published As

Publication number Publication date
CN102549189A (zh) 2012-07-04
JP2011094231A (ja) 2011-05-12
CN102549189B (zh) 2013-11-27
EP2484792A1 (en) 2012-08-08
KR20120062005A (ko) 2012-06-13
JP4844687B2 (ja) 2011-12-28
CA2775043A1 (en) 2011-04-07
US20120241057A1 (en) 2012-09-27
EP2484792A4 (en) 2013-03-06
KR101450976B1 (ko) 2014-10-15
RU2496904C1 (ru) 2013-10-27
CA2775043C (en) 2015-03-24
EP2484792B1 (en) 2016-07-13
US8778096B2 (en) 2014-07-15

Similar Documents

Publication Publication Date Title
JP4844687B2 (ja) 低降伏比高強度高靭性鋼板及びその製造方法
JP5821173B2 (ja) 低降伏比高強度高一様伸び鋼板及びその製造方法
JP5516784B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5516785B2 (ja) 低降伏比高強度鋼板およびその製造方法並びにそれを用いた高強度溶接鋼管
JP5532800B2 (ja) 耐歪時効特性に優れた低降伏比高強度高一様伸び鋼板及びその製造方法
JP5092498B2 (ja) 低降伏比高強度高靱性鋼板及びその製造方法
JP5141073B2 (ja) X70グレード以下の低降伏比高強度高靱性鋼管およびその製造方法
WO2013100106A1 (ja) 変形性能と低温靭性に優れた高強度鋼管、高強度鋼板、および前記鋼板の製造方法
WO2004111286A1 (ja) 低降伏比高強度高靭性の厚鋼板と溶接鋼管及びそれらの製造方法
JP5903880B2 (ja) 耐サワー特性と溶接熱影響部靭性に優れたラインパイプ用高強度鋼板及びその製造方法
JP2006291349A (ja) 高変形性能を有するラインパイプ用鋼板およびその製造方法。
JP4507708B2 (ja) 低降伏比高強度高靱性鋼板の製造方法
JP6288288B2 (ja) ラインパイプ用鋼板及びその製造方法とラインパイプ用鋼管
JP5842577B2 (ja) 耐歪時効性に優れた高靱性低降伏比高強度鋼板
JP4507730B2 (ja) 低降伏比高強度高靱性鋼板及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080043930.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820736

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2775043

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2805/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127011019

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2010820736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010820736

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012117900

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 13499472

Country of ref document: US