WO2022075027A1 - 電縫鋼管およびその製造方法 - Google Patents
電縫鋼管およびその製造方法 Download PDFInfo
- Publication number
- WO2022075027A1 WO2022075027A1 PCT/JP2021/034009 JP2021034009W WO2022075027A1 WO 2022075027 A1 WO2022075027 A1 WO 2022075027A1 JP 2021034009 W JP2021034009 W JP 2021034009W WO 2022075027 A1 WO2022075027 A1 WO 2022075027A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel pipe
- temperature
- steel
- pipe
- Prior art date
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 184
- 239000010959 steel Substances 0.000 title claims abstract description 184
- 238000000034 method Methods 0.000 title claims abstract description 78
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- 239000013078 crystal Substances 0.000 claims abstract description 67
- 239000000463 material Substances 0.000 claims abstract description 40
- 238000001816 cooling Methods 0.000 claims description 52
- 238000005096 rolling process Methods 0.000 claims description 40
- 239000010953 base metal Substances 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 36
- 229910000859 α-Fe Inorganic materials 0.000 claims description 33
- 238000004513 sizing Methods 0.000 claims description 25
- 229910001563 bainite Inorganic materials 0.000 claims description 19
- 230000009467 reduction Effects 0.000 claims description 18
- 238000005098 hot rolling Methods 0.000 claims description 17
- 239000000203 mixture Substances 0.000 claims description 15
- 238000004804 winding Methods 0.000 claims description 15
- 238000010438 heat treatment Methods 0.000 claims description 14
- 238000002441 X-ray diffraction Methods 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 11
- 239000012535 impurity Substances 0.000 claims description 10
- 238000009958 sewing Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 5
- 229910001566 austenite Inorganic materials 0.000 description 40
- 235000013339 cereals Nutrition 0.000 description 25
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 210000001519 tissue Anatomy 0.000 description 20
- 230000000694 effects Effects 0.000 description 18
- 229910000734 martensite Inorganic materials 0.000 description 18
- 230000007423 decrease Effects 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 13
- 238000003466 welding Methods 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 229910001562 pearlite Inorganic materials 0.000 description 11
- 229910052742 iron Inorganic materials 0.000 description 9
- 230000033001 locomotion Effects 0.000 description 8
- 230000009466 transformation Effects 0.000 description 8
- 238000001878 scanning electron micrograph Methods 0.000 description 7
- 229910001567 cementite Inorganic materials 0.000 description 6
- 230000006911 nucleation Effects 0.000 description 6
- 238000010899 nucleation Methods 0.000 description 6
- 239000006104 solid solution Substances 0.000 description 6
- 238000005728 strengthening Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 5
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 150000004767 nitrides Chemical class 0.000 description 5
- 238000005498 polishing Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000009863 impact test Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 238000000879 optical micrograph Methods 0.000 description 4
- 238000007670 refining Methods 0.000 description 4
- 230000000007 visual effect Effects 0.000 description 4
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 229910001568 polygonal ferrite Inorganic materials 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 238000003723 Smelting Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- -1 by mass% Substances 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000001887 electron backscatter diffraction Methods 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010962 carbon steel Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000005097 cold rolling Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011946 reduction process Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L9/00—Rigid pipes
- F16L9/17—Rigid pipes obtained by bending a sheet longitudinally and connecting the edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/0818—Manufacture of tubes by drawing of strip material through dies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/0822—Guiding or aligning the edges of the bent sheet
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K11/00—Resistance welding; Severing by resistance heating
- B23K11/08—Seam welding not restricted to one of the preceding subgroups
- B23K11/087—Seam welding not restricted to one of the preceding subgroups for rectilinear seams
- B23K11/0873—Seam welding not restricted to one of the preceding subgroups for rectilinear seams of the longitudinal seam of tubes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/18—Hardening; Quenching with or without subsequent tempering
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/84—Controlled slow cooling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/04—Hardening by cooling below 0 degrees Celsius
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D7/00—Modifying the physical properties of iron or steel by deformation
- C21D7/02—Modifying the physical properties of iron or steel by deformation by cold working
- C21D7/10—Modifying the physical properties of iron or steel by deformation by cold working of the whole cross-section, e.g. of concrete reinforcing bars
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/10—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies
- C21D8/105—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of tubular bodies of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/08—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
- C21D9/085—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/50—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for welded joints
- C21D9/505—Cooling thereof
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/004—Very low carbon steels, i.e. having a carbon content of less than 0,01%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/34—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2101/00—Articles made by soldering, welding or cutting
- B23K2101/04—Tubular or hollow articles
- B23K2101/06—Tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2103/00—Materials to be soldered, welded or cut
- B23K2103/02—Iron or ferrous alloys
- B23K2103/04—Steel or steel alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/002—Bainite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/005—Ferrite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/008—Martensite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/009—Pearlite
Definitions
- the present invention relates to an electrosewn steel pipe and a method for manufacturing the same, which are suitable for civil engineering and building structures, line pipes, and the like.
- Steel pipes used in civil engineering and building structures and large structures such as line pipes are required to have a low yield ratio and high toughness from the viewpoint of buckling resistance, impact resistance, etc.
- the electric resistance sewn steel pipe is made by cold-rolling a hot-rolled steel plate (hot-rolled steel strip) wound into a coil shape while continuously paying it out to form a cylindrical open pipe, and the pipe circumferential butt portion of the open pipe.
- the electrosewn steel pipe Since the electrosewn steel pipe is continuously manufactured in the cold, it has advantages such as high productivity and shape accuracy, but it has a disadvantage that the yield ratio is high because the material is work-hardened in the pipe-making process. .. Further, the thicker the wall, the greater the work hardening in the pipe making process, so that there is a problem that the yield ratio after the pipe making becomes higher.
- Patent Document 1 the metal structure of the base steel plate contains bainite ferrite having an area ratio of 50 to 92%, the average particle size of the polygonal ferrite is 15 ⁇ m or less, and the hardness of the electrosewn welded portion is high.
- Thick-walled electric resistance pipes having Hv160 to 240 and having a structure of an electric stitch welded portion of bainite, fine-grained ferrite and pearlite, or fine-grained ferrite and bainite are disclosed.
- Patent Document 2 describes a crystal having a polygonal ferrite component of 60 to 90%, an average crystal grain size of 15 ⁇ m or less, and a crystal grain size of 20 ⁇ m or more in the metal structure of the central portion of the base metal.
- Azrol electric resistance sewn steel pipes for line pipes are disclosed in which the coarse grain ratio, which is the grain area ratio, is 20% or less, and the yield ratio in the pipe axis direction is 80 to 95%.
- Patent Document 1 and Patent Document 2 have fine crystal grains in order to ensure high toughness.
- the yield ratio increases when the crystal grains are made fine, it is difficult to achieve both a low yield ratio and high toughness in a thick material having a wall thickness of more than 15 mm.
- the present invention has been made in view of the above circumstances, and provides an electric resistance sewn steel pipe having a low yield ratio and high toughness, which is suitable for large structures such as civil engineering and building structures and line pipes, and a method for manufacturing the same.
- the purpose is to do.
- High toughness as used in the present invention means that the Charpy absorption energy of the base metal portion at ⁇ 40 ° C. is 100 J or more. It is preferably 150 J or more.
- the yield stress, tensile strength, and Charpy absorption energy described above can be measured by the methods described in Examples described later.
- the present inventors have made diligent studies to solve the above problems. As a result, we focused on the fact that in the deformation of the electrosewn steel pipe, the plastic deformation progresses due to the movement of the movable dislocations at the initial stage of deformation, that is, at the stage of relatively low stress. Specifically, it was found that the yield stress is lower when the ratio of movable dislocations is higher even in the electric resistance sewn steel pipes having the same dislocation density. It was also found that by rolling the hot-rolled steel sheet at a low temperature, the movement of dislocations introduced into the crystal grains is suppressed, and the dislocations do not form cells and remain as movable dislocations in the crystal grains. rice field.
- the present invention has been completed based on the above findings, and has the following gist.
- An electrosewn steel pipe having a base material portion and a welded portion.
- the steel structure at the center of the wall thickness of the base metal is
- the bcc phase is 80% or more by volume
- the average crystal grain size is 15.0 ⁇ m or less
- the A value represented by the equation (1) is 0.55 or more and 0.85 or less.
- the yield ratio in the pipe axis direction is 90% or less
- A ⁇ / (( ⁇ / 2) 1/2 ⁇ b) ⁇ ⁇ ⁇ (1)
- ⁇ A parameter representing the degree of processing obtained by X-ray diffraction
- ⁇ Dislocation density (m -2 )
- b Burgers vector (m) of dislocations
- ⁇ Pi, Is.
- the component composition of the base material portion is mass%.
- a pipe making process in which the hot-rolled steel sheet is formed into a cylindrical shape at a temperature of -40 ° C or less by roll forming and welded by electric sewing to make a steel pipe material.
- the composition of the steel material is mass%. C: 0.001% or more and 0.30% or less, Si: 0.01% or more and 2.0% or less, Mn: 0.20% or more and 3.0% or less, P: 0.050% or less, S: 0.020% or less, Al: 0.005% or more and 0.10% or less, N: 0.010% or less,
- an electrosewn steel pipe having both a low yield ratio and high toughness and a method for manufacturing the same, even if the material is thick.
- FIG. 1 is a schematic view showing a cross section in the circumferential direction (cross section perpendicular to the pipe axis direction) of the periphery including the welded portion of the electrosewn steel pipe.
- the electrosewn steel pipe of the present invention has a base metal portion and a welded portion (electrosewn welded portion) extending in the pipe axis direction.
- the steel structure in the central portion of the base metal portion of the present invention has a bcc phase of 80% or more in volume fraction and an average crystal grain size of 15.0 ⁇ m or less, and has an A value represented by the formula (1). Is 0.55 or more and 0.85 or less, the yield ratio in the pipe axis direction is 90% or less, and the charpy absorption energy at ⁇ 40 ° C. of the base metal portion is 100 J or more.
- volume fraction of bcc phase in the central part of the base metal thickness 80% or more
- the bcc (body-centered cubic lattice) phase is compared with the phase such as fcc (face-centered cubic lattice) and hcp (hexagonal close-packed structure).
- the effect of temperature on the motion of the displacement is large. Therefore, the bcc phase has a large effect of suppressing the movement of dislocations due to a decrease in temperature.
- the volume fraction of the above-mentioned bcc phase is set to 80% or more.
- the volume fraction of the bcc phase is preferably 85% or more, more preferably 90% or more.
- the upper limit of the volume ratio of the bcc phase is not particularly specified, but in order to obtain a bcc single-phase structure, it is necessary to rapidly cool the steel sheet after hot rolling, and in the central portion of the thick wall material, other than the bcc phase. It is difficult to avoid the phase completely. From this, the bcc phase is preferably 98% or less in volume fraction, and more preferably 97% or less in volume fraction. The balance other than the bcc phase is the fcc phase or cementite, and the volume fraction is preferably 20% or less.
- the volume fraction of the bcc phase is measured by X-ray diffraction as described in Examples described later. After mirror polishing the cross section parallel to both the pipe longitudinal direction and the wall thickness direction of the base metal part at the pipe circumference direction 90 ° when the welded part is 0 °, 100 ⁇ m electrolytic polishing is performed to remove the surface processed layer. The steel structure is measured using a test piece prepared so that the diffraction surface is at the center of the wall thickness. The K ⁇ ray of Mo is used for the measurement, and the volume fraction of the bcc phase is obtained from the integrated intensities of the (200), (220) and (311) planes of fcc iron and the (200) and (211) planes of bcc iron. At the same time, the volume fraction of the fcc phase is also obtained.
- Average crystal grain size of crystal grains in the central part of the base metal thickness 15.0 ⁇ m or less
- the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as the crystal grains.
- the average crystal grain size of the crystal grains in the central portion of the base metal is more than 15.0 ⁇ m, the total area of the crystal grain boundaries that hinder crack propagation is small, so that the high toughness desired by the present invention can be obtained. I can't. Therefore, the above-mentioned average crystal grain size is set to 15.0 ⁇ m or less.
- the average crystal grain size is preferably 10.0 ⁇ m or less, more preferably 8.0 ⁇ m or less. The smaller the average crystal grain size, the higher the yield ratio. Therefore, the average crystal grain size is preferably 2.0 ⁇ m or more.
- the average crystal grain size is more preferably 3.0 ⁇ m or more.
- the average crystal grain size is defined as the average circle equivalent diameter of the crystal grains when the region surrounded by the boundary where the orientation difference between adjacent crystals is 15 ° or more is defined as a crystal grain (grain boundary). ..
- the equivalent circle diameter is the diameter of a circle having the same area as the target crystal grain.
- the average crystal grain size can be measured by the method described in Examples described later.
- a test piece is prepared by mirror-polishing a cross section of the base metal portion at a position of 90 ° in the pipe circumferential direction when the welded portion is 0 °, which is parallel to both the pipe longitudinal direction and the wall thickness direction.
- a histogram of the crystal grain size distribution in the central part of the wall thickness of the test piece (horizontal axis: crystal grain size, vertical axis: graph showing the abundance ratio at each crystal grain size) was calculated. , Calculate the arithmetic average of the crystal grain size and use it as the average crystal grain size.
- the measurement conditions are an acceleration voltage: 15 kV, a measurement area: 500 ⁇ m ⁇ 500 ⁇ m, and a measurement step size (measurement resolution): 0.5 ⁇ m.
- an acceleration voltage 15 kV
- a measurement area 500 ⁇ m ⁇ 500 ⁇ m
- a measurement step size 0.5 ⁇ m.
- those having a crystal grain size of less than 2.0 ⁇ m are excluded from the analysis target as measurement noise.
- Equation (1) is an equation showing the relationship between ⁇ : a parameter representing the degree of processing obtained by X-ray diffraction, ⁇ : dislocation density (m -2 ), and b: Burgers vector (m) of dislocation (references). 3).
- ⁇ a parameter representing the degree of processing obtained by X-ray diffraction
- ⁇ dislocation density (m -2 )
- b Burgers vector (m) of dislocation (references). 3).
- the larger the A value the more uniformly the dislocations introduced into the crystal grains are distributed, indicating that the dislocations are not cellized and the proportion of dislocations remaining in the crystal grains as movable dislocations tends to be high. ..
- the A value represented by the above equation (1) is less than 0.55 in the conventional electric resistance pipe in which dislocations are cellized. Therefore, in the present invention, the A value is set to 0.55 or more in order to secure a sufficient amount of movable dislocations to obtain a desired yield ratio.
- the A value is preferably 0.60 or more, and preferably 0.80 or less.
- the A value is more preferably 0.61 or more, and more preferably 0.78 or less.
- the A value can be controlled within the above range by controlling the manufacturing conditions (tube making process and diameter reduction process (temperature)) described later.
- the shift density ⁇ the cross section parallel to both the pipe longitudinal direction and the wall thickness direction of the base metal is mirror-polished and then electropolished by 100 ⁇ m to remove the surface-processed layer so that the diffraction surface becomes the center of the wall thickness.
- X-ray diffraction is performed using the test piece prepared in 1. From the results, the dislocation density ⁇ can be obtained by using the modified Williamson-Hall method and the modified Warren-Averbach method (References 1 and 2).
- the parameter ⁇ can be obtained from the above X-ray diffraction results by using the direct-fitting / modified Williamson-Hall method (Reference 3).
- the Burgers vector b 0.248 ⁇ 10 -9 m can be used as the interatomic distance of ⁇ 111>, which is the slip direction of bcc iron.
- the yield ratio in the pipe axis direction 90% or less
- MPa) / tensile strength (MPa) ⁇ 100) is 90% or less.
- the yield ratio is preferably 87% or less, more preferably 86% or less. From the viewpoint of ensuring the required proof stress, the yield ratio is preferably 55% or more, more preferably 65% or more, still more preferably 75% or more.
- the Charpy absorption energy of the base metal portion at ⁇ 40 ° C. 100 J or more
- the charpy absorption energy of the base metal portion at ⁇ 40 ° C. of the base metal portion of the present invention is 100 J or more. If it is less than 100J, the earthquake resistance when used for pillars of civil engineering and building structures and line pipes is lowered.
- the Charpy absorption energy is preferably 150 J or more, and more preferably 160 J or more. Further, when the Charpy absorption energy is high, the average crystal grain size is small and the yield ratio is high, so that it is preferably 500 J or less, more preferably 400 J or less.
- the above-mentioned yield strength, tensile strength, and yield ratio can be obtained by carrying out a tensile test in accordance with the provisions of JIS Z 2241 as described in Examples described later.
- Charpy absorption energy can be obtained by conducting a Charpy impact test at a test temperature of -40 ° C using a V-notch standard test piece in accordance with JIS Z 2242, as described in Examples described later. ..
- the electric resistance pipe of the present invention has the above-mentioned steel structure, so that the above-mentioned characteristics can be obtained.
- the steel structure of the present invention can further have the following constitution.
- the total volume fraction of ferrite and bainite is preferably 85% or more with respect to the entire steel structure in the central part of the base metal.
- the residual structure excluding ferrite and bainite consists of one or more selected from pearlite, martensite and austenite.
- the total volume fraction of the residual structure is preferably 15% or less.
- Ferrite is a bcc phase and has a soft structure.
- Bainite is a bcc phase, harder than ferrite, softer than pearlite, martensite and austenite, and has an excellent toughness structure.
- the yield ratio decreases.
- the interface tends to be the starting point of fracture, which causes the toughness to decrease. Therefore, the total volume fraction of ferrite and bainite is preferably 85% or more. More preferably, it is 90% or more. Further, it is preferably 98% or less, and more preferably 97% or less.
- Pearlite and martensite are a mixed structure of bcc phase and cementite, respectively, and a bcc phase, both of which are hard structures.
- pearlite is approximately treated as a bcc phase.
- Pearlite is a tissue that lowers the yield ratio by mixing with a soft tissue, but on the other hand, it is a tissue that lowers the toughness, preferably 15% or less, and preferably 0% or more.
- the pearlite is more preferably 13% or less, and more preferably 1% or more.
- Martensite is a tissue that lowers the yield ratio by mixing with a soft tissue, but on the other hand, it is a tissue that lowers toughness, preferably 15% or less, and preferably 0% or more.
- the martensite is more preferably 13% or less, and more preferably 1% or more.
- Austenite is an fcc phase and has a hard structure. Austenite is a tissue that lowers the yield ratio by mixing with a soft tissue, but on the other hand, it is a tissue that lowers toughness, preferably 10% or less, and preferably 0% or more. The austenite is more preferably 8% or less, and more preferably 1% or more.
- the austenite grain boundary or the deformation zone in the austenite grain is the nucleation site.
- hot rolling by increasing the rolling down amount at low temperature where recrystallization of austenite is unlikely to occur, it is possible to introduce a large amount of dislocations into austenite to make austenite finer and to introduce a large amount of deformation zone in the grain. can.
- the area of the nucleation site increases, the frequency of nucleation increases, and the steel structure can be miniaturized.
- the above-mentioned effect can be obtained even if the above-mentioned steel structure exists within a range of ⁇ 1.0 mm in the wall-thickness direction centering on the central portion of the base metal portion. Therefore, in the present invention, the "steel structure in the central portion of the base metal portion" means that the above-mentioned steel structure exists in any of the range of ⁇ 1.0 mm in the wall thickness direction with the central portion of the wall thickness as the center. Means that you are.
- the steel structure can be observed by the method described in Examples described later.
- the test piece for microstructure observation is formed with a cross section perpendicular to the pipe longitudinal direction of the base metal portion at a position of 90 ° in the pipe circumferential direction when the observation surface is 0 ° at the welded portion, and with the wall thickness center portion. After collecting and polishing so as to be, it is manufactured by nital corrosion.
- an optical microscope magnification: 1000 times
- SEM scanning electron microscope
- the area ratio of bainite and the balance (ferrite, pearlite, martensite, austenite) is obtained from the obtained optical microscope image and SEM image.
- the area ratio of each tissue is calculated as the average value of the values obtained in each visual field by observing in 5 or more visual fields.
- the area ratio obtained by observing the tissue is defined as the volume fraction of each tissue.
- Ferrite is a product of diffusion transformation and exhibits a structure with low dislocation density and almost recovery. This includes polygonal ferrite and pseudopolygonal ferrite.
- Bainite is a double-phase structure of lath-like ferrite and cementite with high dislocation density.
- Pearlite is an eutectoid structure of iron and iron carbide (ferrite + cementite), and exhibits a lamellar structure in which linear ferrite and cementite are alternately arranged.
- Martensite is a bcc phase and is a lath-like low-temperature transformation structure with a very high dislocation density.
- the SEM image shows a bright contrast as compared with ferrite and bainite.
- the area ratio of the tissue observed as martensite or austenite is measured from the obtained SEM image, and the measured value is measured by the method described later.
- the value obtained by subtracting the volume ratio of austenite is taken as the volume ratio of martensite.
- the volume fraction of austenite is measured by X-ray diffraction using a test piece prepared by the same method as the test piece used for measuring the dislocation density.
- the volume fraction of austenite is obtained from the integrated intensities of the (200), (220) and (311) planes of the obtained fcc iron and the (200) and (211) planes of the bcc iron.
- the base material portion of the present invention has C: 0.001% or more and 0.30% or less, Si: 0.01% or more and 2.0% or less, Mn: 0.20% or more and 3.0% or less in terms of mass%. , P: 0.050% or less, S: 0.020% or less, Al: 0.005% or more and 0.10% or less, N: 0.010% or less, Ti: 0.15% or less, and the balance is It is preferable to have a component composition consisting of Fe and unavoidable impurities.
- C 0.001% or more and 0.30% or less
- C is an element that increases the strength of steel by solid solution strengthening. Further, C is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it is necessary to contain 0.001% or more of C.
- C is an element that promotes the formation of pearlite, enhances hardenability, contributes to the formation of martensite, and contributes to the stabilization of austenite, and thus contributes to the formation of a hard phase.
- the C content exceeds 0.30%, the proportion of the hard phase becomes high, the toughness decreases, and the weldability also deteriorates. Therefore, the C content is set to 0.001% or more and 0.30% or less.
- the C content is preferably 0.010% or more, more preferably 0.040% or more.
- the C content is preferably 0.27% or less, more preferably 0.25% or less.
- Si 0.01% or more and 2.0% or less
- Si is an element that increases the strength of steel by solid solution strengthening. In order to obtain such an effect, it contains 0.01% or more of Si. However, when the Si content exceeds 2.0%, the yield ratio becomes high and the toughness decreases. Therefore, the Si content is 0.01% or more and 2.0% or less.
- the Si content is preferably 0.05% or more, more preferably 0.10% or more.
- the Si content is preferably 1.0% or less, more preferably 0.50% or less.
- Mn 0.20% or more and 3.0% or less
- Mn is an element that increases the strength of steel by solid solution strengthening.
- Mn is an element that contributes to the miniaturization of the steel structure by lowering the ferrite transformation start temperature. In order to obtain such an effect, it is necessary to contain Mn of 0.20% or more. However, if the Mn content exceeds 3.0%, the yield stress becomes high due to the solid solution strengthening and the miniaturization of the steel structure, so that the yield ratio desired in the present invention cannot be obtained. Therefore, the Mn content is set to 0.20% or more and 3.0% or less.
- the Mn content is preferably 0.40% or more, more preferably 0.60% or more.
- the Mn content is preferably 2.5% or less, more preferably 2.0% or less.
- the P content is set to 0.050% or less.
- the P content is preferably 0.020% or less, more preferably 0.010% or less.
- the P content is preferably 0.002% or more because excessive reduction causes an increase in smelting cost.
- S 0.020% or less S usually exists as MnS in steel, but MnS is thinly stretched in the hot rolling process and adversely affects ductility. Therefore, in the present invention, it is preferable to reduce S as much as possible, but up to 0.020% is acceptable. Therefore, the S content is 0.020% or less.
- the S content is preferably 0.010% or less, more preferably 0.008% or less.
- the S content is preferably 0.0002% or more because excessive reduction causes an increase in smelting cost.
- Al 0.005% or more and 0.10% or less
- Al is an element that acts as a powerful deoxidizing agent. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al. However, when the Al content exceeds 0.10%, the weldability deteriorates, the amount of alumina-based inclusions increases, and the surface texture deteriorates. In addition, the toughness of the weld is reduced. Therefore, the Al content is set to 0.005% or more and 0.10% or less.
- the Al content is preferably 0.010% or more, more preferably 0.015% or more.
- the Al content is preferably 0.080% or less, more preferably 0.070% or less.
- N 0.010% or less
- N is an unavoidable impurity and is an element having an action of lowering toughness by firmly fixing the motion of dislocations.
- the N content is preferably 0.0080% or less. From the viewpoint of refining cost, the N content is preferably 0.0008% or more, more preferably 0.0010% or more.
- Ti 0.15% or less
- Ti is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel. Further, since it has a high affinity with N, it is an element that detoxifies N in steel as a nitride and contributes to improvement of toughness of steel. In order to obtain the above-mentioned effects, it is preferable to contain 0.001% or more of Ti. However, when the Ti content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, the Ti content is set to 0.15% or less. The Ti content is more preferably 0.005% or more, still more preferably 0.008% or more. The Ti content is more preferably 0.13% or less, still more preferably 0.10% or less.
- the rest other than the above components are Fe and unavoidable impurities.
- O may be contained in an amount of 0.0050% or less.
- O refers to total oxygen including O as an oxide.
- the above-mentioned components it is preferable to use the above-mentioned components as the basic component composition.
- the present invention for the purpose of further improving the characteristics, in addition to the above-mentioned basic components, Cu: 1.0% or less, Ni: 1.0% or less, Cr: 1.0%, if necessary.
- Mo 1.0% or less
- Nb 0.15% or less
- V 0.15% or less
- Ca 0.010% or less
- B 0.010% or less. It can contain two or more kinds.
- Cu 1.0% or less (including 0%) Cu is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed.
- the Cu content is preferably 0.01% or more.
- the toughness may be lowered and the weldability may be deteriorated. Therefore, when Cu is contained, the Cu content is preferably 1.0% or less.
- the Cu content is more preferably 0.05% or more, still more preferably 0.10% or more.
- the Cu content is more preferably 0.70% or less, still more preferably 0.50% or less.
- Ni 1.0% or less (including 0%)
- Ni is an element that increases the strength of steel by solid solution strengthening, and can be contained as needed.
- the Ni content is preferably 0.01% or more.
- the content of Ni exceeds 1.0%, the toughness may be lowered and the weldability may be deteriorated. Therefore, when Ni is contained, the Ni content is preferably 1.0% or less.
- the Ni content is more preferably 0.05% or more, still more preferably 0.10% or more.
- the Ni content is more preferably 0.70% or less, still more preferably 0.50% or less.
- Cr 1.0% or less (including 0%) Cr is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed.
- the Cr content is preferably 0.01% or more.
- the Cr content is more preferably 0.05% or more, still more preferably 0.10% or more.
- the Cr content is more preferably 0.70% or less, still more preferably 0.50% or less.
- Mo 1.0% or less (including 0%) Mo is an element that enhances the hardenability of steel and increases the strength of steel, and can be contained as needed.
- the Mo content is preferably 0.01% or more.
- the Mo content is more preferably 0.05% or more, still more preferably 0.10% or more.
- the Mo content is more preferably 0.70% or less, still more preferably 0.50% or less.
- Nb 0.15% or less (including 0%)
- Nb is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in steel, and also contributes to the miniaturization of structure by suppressing the coarsening of austenite during hot rolling. And can be contained as needed.
- Nb when Nb is contained, it is preferable to contain 0.002% or more of Nb.
- the Nb content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, when Nb is contained, the Nb content is preferably 0.15% or less.
- the Nb content is more preferably 0.005% or more, still more preferably 0.010% or more.
- the Nb content is more preferably 0.13% or less, still more preferably 0.10% or less.
- V 0.15% or less (including 0%)
- V is an element that contributes to improving the strength of steel by forming fine carbides and nitrides in the steel, and can be contained as needed.
- V when V is contained, it is preferable to contain 0.002% or more of V.
- the V content when the V content exceeds 0.15%, the yield ratio becomes high and the toughness decreases. Therefore, when V is contained, the V content is preferably 0.15% or less.
- the V content is more preferably 0.005% or more, still more preferably 0.010% or more.
- the V content is more preferably 0.13% or less, still more preferably 0.10% or less.
- Ca 0.010% or less (including 0%) Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process, and can be contained as needed.
- the Ca content is preferably 0.010% or less.
- the Ca content is more preferably 0.0008% or more, still more preferably 0.0010% or more.
- the Ca content is more preferably 0.008% or less, still more preferably 0.0060% or less.
- B 0.010% or less (including 0%)
- B is an element that contributes to the miniaturization of the structure by lowering the ferrite transformation start temperature, and can be contained as needed.
- B it is preferable to contain 0.0003% or more of B.
- the B content is preferably 0.010% or less.
- the B content is more preferably 0.0005% or more, still more preferably 0.0008% or more.
- the B content is more preferably 0.0050% or less, still more preferably 0.0030% or less, and even more preferably 0.0020% or less.
- the wall thickness of the base metal portion is preferably 15 mm or more and 30 mm or less. .. From the viewpoint of low yield ratio and high toughness, it is more preferably 15 mm or more and 25 mm or less. As described above, according to the present invention, even a thick material having a wall thickness of more than 15 mm can achieve both a low yield ratio and high toughness. As a result, when the electrosewn steel pipe of the present invention is used for a large structure, it exhibits excellent buckling resistance.
- the electric resistance pipe of the present invention preferably has an outer diameter of 350 mm or more and 750 mm or less. From the viewpoint of low yield ratio and high toughness, it is more preferably 400 mm or more and 750 mm or less.
- the rough rolling end temperature 850 ° C. or higher and 1150 ° C. or lower
- the finish rolling finish temperature 750 ° C. or higher and 900 ° C.
- the total reduction rate at 930 ° C. or lower hot-rolled at 50% or more to obtain a hot-rolled plate (hot-rolled step), and then the hot-rolled plate is subjected to hot rolling at the center temperature of the plate thickness and the average cooling rate.
- cooling stop temperature 400 ° C or more and 650 ° C or less (cooling step), and then the cooled hot-rolled sheet at a temperature of 400 ° C or more and 650 ° C or less.
- a hot-rolled hot-rolled steel sheet (winding process), then a hot-rolled steel sheet is formed into a cylindrical shape at a temperature of -40 ° C or less by roll forming, and then electro-sewn to make a steel pipe material (pipe-making process), and then.
- the diameter of the steel pipe material is reduced at a temperature of -40 ° C or less (sizing process) to manufacture an electro-rolled steel pipe.
- the "°C” indication regarding the temperature shall be the surface temperature of the steel material, steel plate (hot rolled plate), and steel pipe material unless otherwise specified. These surface temperatures can be measured with a radiation thermometer or the like. The temperature at the center of the thickness of the steel sheet can be obtained by calculating the temperature distribution in the cross section of the steel sheet by heat transfer analysis and correcting the result by the surface temperature of the steel sheet.
- the "hot-rolled steel plate” shall include hot-rolled plates and hot-rolled steel strips.
- the melting method of the steel material is not particularly limited, and any known melting method such as a converter, an electric furnace, or a vacuum melting furnace is suitable.
- the casting method is also not particularly limited, but it is manufactured to a desired size by a known casting method such as a continuous casting method. It should be noted that there is no problem even if the ingot-breaking rolling method is applied instead of the continuous casting method.
- the molten steel may be further subjected to secondary refining such as ladle refining.
- Heating temperature 1100 ° C or higher and 1300 ° C or lower
- the heating temperature is set to 1100 ° C. or higher and 1300 ° C. or lower. This heating temperature is more preferably 1120 ° C. or higher. Further, this heating temperature is more preferably 1280 ° C. or lower.
- the steel slab in addition to the conventional method in which a steel slab (slab) is manufactured, cooled to room temperature, and then heated again, the steel slab is not cooled to room temperature and is charged into a heating furnace as a hot piece.
- Rough rolling end temperature 850 ° C or higher and 1150 ° C or less
- the rough rolling end temperature is less than 850 ° C
- the surface temperature of the steel sheet becomes lower than the ferrite transformation start temperature during the subsequent finish rolling, a large amount of processed ferrite is generated, and yielding occurs.
- the ratio goes up.
- the rough rolling end temperature exceeds 1150 ° C.
- the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the electrosewn steel pipe, which is the object of the present invention, and the toughness is lowered.
- the rough rolling end temperature is more preferably 860 ° C. or higher.
- the rough rolling end temperature is more preferably 1000 ° C. or lower.
- the finish rolling start temperature is preferably 800 ° C. or higher and 950 ° C. or lower.
- the finish rolling start temperature is less than 800 ° C., the steel sheet surface temperature becomes lower than the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio increases.
- the finish rolling start temperature exceeds 950 ° C., the austenite becomes coarse and a sufficient deformation zone is not introduced into the austenite. Therefore, it becomes difficult to secure the average crystal grain size of the steel structure, which is the object of the present invention, and the toughness is lowered.
- the finish rolling start temperature is more preferably 820 ° C. or higher.
- the finish rolling start temperature is more preferably 930 ° C. or lower.
- Finish rolling end temperature 750 ° C or more and 900 ° C or less
- the finish rolling end temperature is less than 750 ° C
- the steel sheet surface temperature becomes below the ferrite transformation start temperature during finish rolling, a large amount of processed ferrite is generated, and the yield ratio is high.
- the finish rolling end temperature exceeds 900 ° C.
- the amount of rolling in the austenite unrecrystallized temperature range is insufficient, and fine austenite grains cannot be obtained. As a result, it becomes difficult to secure the average crystal grain size of the steel structure of the electrosewn steel pipe, which is the object of the present invention, and the toughness is lowered.
- the finish rolling end temperature is more preferably 770 ° C. or higher.
- the finish rolling end temperature is more preferably 880 ° C. or lower.
- Total reduction rate at 930 ° C. or lower 50% or more
- the ferrite, bainite and the residual structure produced in the subsequent cooling process and winding process are finely divided.
- the steel structure of the bainite pipe having the strength and toughness desired in the present invention can be obtained.
- the total reduction rate of 930 ° C. or lower is set to 50% or more.
- the total reduction rate at 930 ° C. or lower is less than 50%, sufficient processing strain cannot be introduced in the hot rolling process, so that a structure having the average crystal grain size desired in the present invention cannot be obtained.
- the total reduction rate at 930 ° C. or lower is more preferably 55% or more, still more preferably 57% or more.
- the upper limit of the total reduction rate is not specified, but if it exceeds 80%, the effect of improving the toughness on the increase in the reduction rate becomes small, and the equipment load only increases. Therefore, the total reduction rate at 930 ° C. or lower is preferably 80% or less. More preferably, it is 70% or less.
- the above-mentioned total rolling reduction rate at 930 ° C. or lower refers to the total rolling reduction rate of each rolling path in the temperature range of 930 ° C. or lower.
- the hot rolled plate is cooled in the cooling process.
- cooling is performed at an average cooling rate up to the cooling stop temperature: 5 ° C./s or more and 30 ° C./s or less, and a cooling stop temperature: 400 ° C. or more and 650 ° C. or less.
- Average cooling rate from the start of cooling to the stop of cooling (end of cooling) 5 ° C / s or more and 30 ° C / s or less.
- the average cooling rate is preferably 10 ° C./s or higher.
- the average cooling rate is preferably 25 ° C./s or less.
- Cooling stop temperature 400 ° C. or higher and 650 ° C. or lower
- the cooling shutdown temperature is preferably 430 ° C. or higher.
- the cooling shutdown temperature is preferably 620 ° C. or lower.
- the average cooling rate is a value obtained by ((center temperature of the thickness of the hot-rolled plate before cooling-center temperature of the thickness of the hot-rolled plate after cooling) / cooling time) unless otherwise specified.
- the cooling method include water cooling such as injection of water from a nozzle, cooling by injection of cooling gas, and the like.
- Winding temperature 400 ° C or higher and 650 ° C or lower
- the winding temperature is 400 ° C. or higher and 650 ° C. or lower. If the take-up temperature is less than 400 ° C., a large amount of martensite is generated and the toughness is lowered.
- the winding temperature exceeds 650 ° C., the frequency of nucleation of ferrite or bainite decreases, and these become coarse, so that a structure having the average crystal grain size desired in the present invention cannot be obtained.
- the take-up temperature is preferably 430 ° C. or higher.
- the winding temperature is preferably 620 ° C. or lower.
- a tube-making process Temperature of hot-rolled steel sheet: -40 ° C or less
- a tube-making process is performed in the tube-making process.
- a hot-rolled steel sheet is continuously dispensed and rolled into a cylindrical open pipe (round steel pipe) at a temperature of -40 ° C or less, and the butt portion in the circumferential direction of the open pipe is subjected to high-frequency electrical resistance.
- pressure welding is performed by pressure welding with an upset using a squeeze roll and welding is performed to obtain a steel pipe material.
- the hot-rolled steel sheet wound into a coil is cooled in advance to -40 ° C or lower. Further, a part of the pipe making equipment may be cooled to ⁇ 40 ° C. or lower.
- the motion of dislocations introduced in the pipe making process can be suppressed, dislocations can be prevented from being entangled, and dislocations can remain as movable dislocations. That is, since the dislocations introduced into the crystal grains are uniformly distributed, the A value becomes large.
- the temperature of the hot-rolled steel sheet in the pipe making step is more preferably ⁇ 50 ° C. or lower, still more preferably ⁇ 55 ° C. or lower.
- the lower limit of the temperature of the hot-rolled steel sheet in the pipe-making process is not specified, but from the viewpoint of increasing the pipe-making load due to the increase in deformation resistance of the hot-rolled steel sheet, temperature control of hydraulic equipment, etc., and cooling cost, the temperature is -90 ° C or higher. It is preferable to have. More preferably, it is ⁇ 80 ° C. or higher.
- the amount of upset during electric stitch welding is controlled so that inclusions such as oxides and nitrides that cause a decrease in toughness can be discharged together with molten steel.
- the amount of upset is preferably 20% or more of the plate thickness. However, if the amount of upset is more than 100% of the plate thickness, the squeeze roll load becomes large. Therefore, it is preferable that the upset amount is in the range of 20% or more of the plate thickness and 100% or less of the plate thickness. More preferably, it is 40% or more of the plate thickness. More preferably, it is 80% or less of the plate thickness.
- the upset amount is obtained as the difference between the outer peripheral length of the steel pipe (open pipe) before the electric sewing welding and the outer peripheral length of the steel pipe after the electric sewing welding.
- the cooling method of the electrosewn steel pipe in the sizing step is, for example, a method of continuously performing a sizing step immediately after the pipe making step of cooling to a temperature of -40 ° C. or lower as described above, and electric sewing after the pipe making step.
- a method of recooling the steel pipe and performing a sizing process can be mentioned.
- a part of the equipment in the sizing step may be cooled to ⁇ 40 ° C. or lower.
- the temperature of the electrosewn steel pipe before the sizing process is set to -40 ° C or lower, the movement of dislocations introduced in the sizing process can be suppressed, dislocation entanglement can be prevented, and dislocations can remain as movable dislocations. That is, since the dislocations introduced into the crystal grains are uniformly distributed, the A value becomes large.
- the temperature of the electrosewn steel pipe in the sizing step is more preferably ⁇ 50 ° C. or lower, still more preferably ⁇ 55 ° C. or lower.
- the lower limit of the temperature of the sewn steel pipe in the sizing process is not specified, but it should be -90 ° C or higher from the viewpoint of increasing the sizing load due to the increase in deformation resistance of the sewn steel pipe, temperature control of hydraulic equipment, etc., and cooling cost. Is preferable. More preferably, it is ⁇ 80 ° C. or higher.
- Diameter reduction rate (optimal conditions) In order to improve the outer diameter accuracy and roundness, it is preferable to reduce the diameter of the steel pipe so that the circumference of the steel pipe is reduced by a total of 0.5% or more in the sizing step. However, when the diameter is reduced so that the circumference of the steel pipe decreases at a rate of more than 4.0% in total, the bending amount in the pipe axial direction when passing through the roll becomes large, and the yield ratio increases. Therefore, it is preferable to reduce the diameter so that the circumference of the steel pipe decreases at a rate of 0.5% or more and 4.0% or less.
- the ratio is more preferably 1.0% or more.
- the ratio is more preferably 3.0% or less.
- the increase in the yield ratio is suppressed by minimizing the bending amount in the pipe axis direction when the steel pipe material passes through the sizing roll. For this reason, it is preferable to perform multi-step diameter reduction using a plurality of sizing stands, and the diameter reduction of each sizing stand is such that the pipe circumference is 1.0% or less when comparing adjacent sizing stands. It is preferable to reduce the amount at.
- the ratio is preferably 0.50% or more.
- the electric resistance pipe of the present invention is manufactured by the method for manufacturing an electric resistance pipe described above.
- the method for manufacturing an electrosewn steel pipe of the present invention can also be applied to a thick-walled material in which the wall thickness of the base metal portion is in the range of 15 mm or more and 30 mm or less.
- the steel pipe is an electric resistance pipe.
- the electric resistance steel pipe is cut perpendicular to the pipe axis direction, the cut surface including the welded portion (electrically sewn welded portion) is polished, corroded by a corrosive liquid, and observed with an optical microscope. If the width of the melt-solidified portion of the welded portion (electrically sewn welded portion) in the pipe circumferential direction is 1.0 ⁇ m or more and 1000 ⁇ m or less over the entire thickness of the pipe, the pipe is an electrosewn steel pipe.
- the corrosive liquid may be appropriately selected according to the steel component and the type of steel pipe.
- FIG. 1 is a cross-sectional view of the welded portion and its peripheral region in the circumferential direction, and shows a state after the cut surface including the welded portion is polished and corroded.
- the melt-solidified portion 3 can be visually recognized as a region having a structure shape and contrast different from those of the base metal portion 1 and the weld heat-affected zone 2.
- the melt-solidified portion 3 of the electrosewn steel pipe of carbon steel and low alloy steel can be identified as a region observed white by an optical microscope in the above cross section corroded by nital.
- the molten steel having the composition shown in Table 1 was melted and used as a slab (steel material).
- the obtained slab was subjected to a hot rolling step, a cooling step, and a winding step under the conditions shown in Table 2 to obtain a hot-rolled steel sheet (hot-rolled steel sheet for electric resistance pipe).
- the hot-rolled steel sheet cooled to the temperature shown in Table 2 was formed into a cylindrical open pipe (round steel pipe) by roll forming, and the butt portion of the open pipe was welded by electric stitching to obtain a steel pipe material ( Pipe making process). Subsequently, the diameter of the steel pipe material was reduced at the temperatures shown in Table 2 (sizing step) to obtain an electrosewn steel pipe having an outer diameter D (mm) and a wall thickness t (mm) shown in Table 2.
- test pieces were collected from the obtained electrosewn steel pipe, and dislocation analysis, microstructure analysis, tensile test, and Charpy impact test were carried out by the methods shown below.
- various test pieces were taken from the base metal portion 90 ° away from the electric stitch welded portion in the pipe circumferential direction when the electric stitch welded portion was set to 0 °.
- the dislocation density ⁇ is a test prepared by mirror-polishing a cross section parallel to both the longitudinal direction and the wall thickness direction and then electropolishing 100 ⁇ m to remove the surface processed layer so that the diffraction surface is at the center of the wall thickness.
- X-ray diffraction was performed using the pieces, and the results were determined using the modified Williamson-Hall method and the modified Warren-Averbach method (references 1 and 2 described above). CuK ⁇ rays were used as the X-ray source.
- the tube voltage was 45 kV and the tube current was 200 mA.
- the parameter ⁇ was obtained from the result of the above X-ray diffraction by using the direct-fitting / modified Williamson-Hall method (Reference 3 above).
- the Burgers vector b for dislocations was 0.248 ⁇ 10 -9 m.
- the test piece for microstructure analysis was prepared by collecting the test piece so that the observation surface had a cross section parallel to both the longitudinal direction of the tube and the wall thickness direction and the center portion of the wall thickness, mirror-polished, and then nital-corroded.
- the tissue analysis was performed by observing and imaging the tissue in the central part of the wall thickness using an optical microscope (magnification: 1000 times) or a scanning electron microscope (SEM, magnification: 1000 times).
- the area ratio of ferrite, bainite, pearlite and the balance (martensite, austenite) was determined.
- the area ratio of each tissue was calculated as the average value of the values obtained in each visual field by observing in 5 or more visual fields.
- the area ratio obtained by the tissue analysis was taken as the volume fraction of each tissue.
- the area ratio of the tissue observed as martensite or austenite was measured from the obtained SEM image, and then the austenite measured by the method described later was measured. The value obtained by subtracting the volume ratio was taken as the volume ratio of martensite.
- the volume fraction of austenite was measured by X-ray diffraction using a test piece prepared in the same manner as the test piece for dislocation analysis.
- the K ⁇ ray of Mo was used for the measurement, and the volume fraction of austenite was obtained from the integrated intensities of the (200), (220) and (311) planes of fcc iron and the (200) and (211) planes of bcc iron.
- the volume fraction of the bcc phase was also determined at the same time.
- the average crystal grain size was measured as follows. First, using the SEM / EBSD method, a histogram of the crystal grain size distribution (horizontal axis: crystal grain size, vertical axis: graph showing the abundance ratio at each crystal grain size) is calculated, and the arithmetic average of the crystal grain size is calculated. I asked. Specifically, for the crystal grain size, the orientation difference between adjacent crystal grains was obtained, and the equivalent circle diameter of the crystal grains was measured with the boundary having an orientation difference of 15 ° or more as the crystal grain (grain boundary). The diameter equivalent to the average circle was defined as the average crystal grain size.
- the equivalent circle diameter is the diameter of a circle having the same area as the target crystal grain.
- the above measurement conditions were an acceleration voltage: 15 kV, a measurement area: 500 ⁇ m ⁇ 500 ⁇ m, and a measurement step size: 0.5 ⁇ m.
- the crystal grain size analysis those having a crystal grain size of less than 2.0 ⁇ m were excluded from the analysis target as measurement noise, and the obtained area fraction was regarded as equal to the volume fraction.
- the tensile test was carried out in accordance with the regulations of JIS Z 2241 by collecting the tensile test pieces of JIS No. 5 so that the tensile direction was parallel to the longitudinal direction of the pipe.
- the yield stress YS (MPa) and the tensile strength TS (MPa) were measured, and the yield ratio YR (%) defined by (YS / TS) ⁇ 100 was calculated.
- the yield stress YS was set to the flow stress at a nominal strain of 0.5%.
- steel pipe No. 1 to 5, 12, 13, 19 to 22 are examples of the present invention, and steel pipe Nos. 6 to 11 and 14 to 18 are comparative examples.
- the steel structure of the base metal portion has a bcc phase of 80% or more in volume fraction, an average crystal grain size of 15.0 ⁇ m or less, and a value of A of 0.55 or more. It was 0.85 or less.
- the mechanical properties of these electric resistance pipes of the present invention were that the yield ratio was 90% or less and the Charpy absorption energy at ⁇ 40 ° C. was 100 J or more.
- Base metal part 2 Welding heat affected zone 3 Melt solidification part
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- General Engineering & Computer Science (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Rigid Pipes And Flexible Pipes (AREA)
Abstract
Description
[1] 母材部と溶接部を有する電縫鋼管であって、
前記母材部の肉厚中央部における鋼組織は、
bcc相が体積率で80%以上であり、
平均結晶粒径が15.0μm以下であり、
(1)式で表されるA値が0.55以上0.85以下であり、
管軸方向の降伏比が90%以下であり、
前記母材部の-40℃におけるシャルピー吸収エネルギーが100J以上である、電縫鋼管。
A=φ/((πρ/2)1/2×b)・・・(1)
ここで、(1)式において、
φ:X線回折により得られる加工度を表すパラメータ、
ρ:転位密度(m-2)、
b:転位のバーガースベクトル(m)、
π:円周率、
である。
[2] 前記母材部の成分組成は、質量%で、
C:0.001%以上0.30%以下、
Si:0.01%以上2.0%以下、
Mn:0.20%以上3.0%以下、
P:0.050%以下、
S:0.020%以下、
Al:0.005%以上0.10%以下、
N:0.010%以下、
Ti:0.15%以下
を含み、残部がFeおよび不可避的不純物からなる、[1]に記載の電縫鋼管。
[3] 前記成分組成に加えてさらに、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.15%以下、
V:0.15%以下、
Ca:0.010%以下、
B:0.010%以下
のうちから選ばれた1種または2種以上を含む、[2]に記載の電縫鋼管。
[4] 前記母材部の肉厚が15mm以上30mm以下である、[1]~[3]のいずれかに記載の電縫鋼管。
[5] 前記母材部の肉厚中央部における鋼組織は、フェライトとベイナイトの体積率の合計が85%以上である、[1]~[4]のいずれかに記載の電縫鋼管。
[6] [1]~[5]のいずれかに記載の電縫鋼管の製造方法であって、
鋼素材を、
加熱温度:1100℃以上1300℃以下に加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、930℃以下での合計圧下率:50%以上で熱間圧延を施して熱延板とする熱間圧延工程と、
前記熱延板に、板厚中心温度で、平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却する冷却工程と、
前記熱延板を、400℃以上650℃以下の温度で巻取り熱延鋼板とする巻取工程と、
ロール成形により前記熱延鋼板を-40℃以下の温度で円筒状に成形し、電縫溶接を施して鋼管素材とする造管工程と、
前記鋼管素材を-40℃以下の温度で縮径して電縫鋼管を得るサイジング工程を有する、
電縫鋼管の製造方法。
[7] 前記鋼素材の成分組成は、質量%で、
C:0.001%以上0.30%以下、
Si:0.01%以上2.0%以下、
Mn:0.20%以上3.0%以下、
P:0.050%以下、
S:0.020%以下、
Al:0.005%以上0.10%以下、
N:0.010%以下、
Ti:0.15%以下
を含み、残部がFeおよび不可避的不純物からなる、[6]に記載の電縫鋼管の製造方法。
[8] 前記成分組成に加えてさらに、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.15%以下、
V:0.15%以下、
Ca:0.010%以下、
B:0.010%以下
のうちから選ばれた1種または2種以上を含む、[7]に記載の電縫鋼管の製造方法。
[9] 前記電縫鋼管の母材部の肉厚が15mm以上30mm以下である、[6]~[8]のいずれかに記載の電縫鋼管の製造方法。
ここで、(1)式において、
φ:X線回折により得られる加工度を表すパラメータ
ρ:転位密度(m-2)
b:転位のバーガースベクトル(m)
π:円周率
である。
bcc(体心立方格子)相は、fcc(面心立方格子)やhcp(六方最密構造)等の相と比較して、転位の運動に及ぼす温度の影響が大きい。このため、bcc相は、温度低下による転位の運動の抑制効果が大きい。すなわち、bcc相の体積率が高いほど、電縫鋼管を低温で造管した際に、より多くの転位の運動が抑制されるため、転位同士が絡み合いにくく、可動転位の割合が高くなる。その結果、降伏比が低下する。このような効果を十分に得るため、上記したbcc相の体積率は80%以上とする。bcc相の体積率は、好ましくは85%以上であり、より好ましくは90%以上である。
本発明では、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒とする。母材部の肉厚中央部における結晶粒の平均結晶粒径が15.0μm超の場合、亀裂伝播の障害となる結晶粒界の総面積が小さいため、本発明で目的とする高靱性が得られない。よって、上記した平均結晶粒径は15.0μm以下とする。平均結晶粒径は、好ましくは10.0μm以下であり、より好ましくは8.0μm以下である。なお、平均結晶粒径が小さいほど降伏比が上昇するため、平均結晶粒径は2.0μm以上であることが好ましい。平均結晶粒径は、より好ましくは3.0μm以上である。
A値は、転位の分布状態と相関があるパラメータであり、上記した(1)式で表すことができる。
(1)式は、φ:X線回折により得られる加工度を表すパラメータ、ρ:転位密度(m-2)、およびb:転位のバーガースベクトル(m)の関係を示す式である(参考文献3)。
A値が大きいほど、結晶粒内に導入された転位が均一に分布しており、転位がセル化しておらず、可動転位として結晶粒内に残存している割合が高い傾向にあることを示す。
[参考文献2]M. Kumagai, M. Imafuku, S. Ohya: ISIJ International, 54 (2014), 206.
[参考文献3]S. Takaki, T. Masumura and T. Tsuchiyama: ISIJInternational,59(2019), 567.
本発明の電縫鋼管は、溶接部を0°としたときの管周方向90°位置の母材部における、管軸方向の降伏比(=降伏応力(MPa)/引張強さ(MPa)×100)が90%以下である。降伏比が90%を超える場合、土木建築構造物の柱材等に用いた際の耐震性や、ラインパイプに用いた際の耐震性および耐座屈性が低下する。上記降伏比は、好ましくは87%以下であり、より好ましくは86%以下である。必要な耐力を確保するための観点から、上記降伏比は、好ましくは55%以上であり、より好ましくは65%以上であり、さらに好ましくは75%以上である。
本発明の電縫鋼管は、母材部の-40℃におけるシャルピー吸収エネルギーが100J以上である。100J未満の場合、土木建築構造物の柱材等やラインパイプに用いた際の耐震性が低下する。上記シャルピー吸収エネルギーは、好ましくは150J以上であり、より好ましくは160J以上である。また、シャルピー吸収エネルギーが高い場合、平均結晶粒径が小さく降伏比が高くなるため、好ましくは500J以下であり、より好ましくは400J以下である。
マルテンサイトは軟質組織と混合させることで降伏比を低下させる組織であるが、一方で靭性を低下させる組織であり、15%以下とすることが好ましく、0%以上とすることが好ましい。マルテンサイトは、13%以下とすることがより好ましく、1%以上とすることがより好ましい。
Cは、固溶強化により鋼の強度を上昇させる元素である。また、Cはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るためには、0.001%以上のCを含有することが必要である。また、Cは、パーライトの生成を促進し、焼入れ性を高めてマルテンサイトの生成に寄与し、オーステナイトの安定化に寄与することから、硬質相の形成にも寄与する元素である。C含有量が0.30%を超えると、硬質相の割合が高くなり靱性が低下し、また溶接性も悪化する。このため、C含有量は0.001%以上0.30%以下とする。C含有量は、好ましくは0.010%以上であり、より好ましくは0.040%以上である。また、C含有量は、好ましくは0.27%以下であり、より好ましくは0.25%以下である。
Siは、固溶強化により鋼の強度を上昇させる元素である。このような効果を得るためには、0.01%以上のSiを含有する。しかし、Si含有量が2.0%を超えると、降伏比が高くなり、靱性が低下する。このため、Si含有量は0.01%以上2.0%以下とする。Si含有量は、好ましくは0.05%以上であり、より好ましくは0.10%以上である。また、Si含有量は、好ましくは1.0%以下であり、より好ましくは0.50%以下である。
Mnは、固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで鋼組織の微細化に寄与する元素である。このような効果を得るためには、0.20%以上のMnを含有することが必要である。しかしながら、Mn含有量が3.0%を超えると、固溶強化および鋼組織の微細化に起因して降伏応力が高くなるため、本発明で目的とする降伏比が得られなくなる。このため、Mn含有量は0.20%以上3.0%以下とする。Mn含有量は、好ましくは0.40%以上であり、より好ましくは0.60%以上である。また、Mn含有量は、好ましくは2.5%以下であり、より好ましくは2.0%以下である。
Pは、粒界に偏析して材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.050%までは許容できる。このため、P含有量は0.050%以下とする。P含有量は、好ましくは0.020%以下であり、より好ましくは0.010%以下である。なお、特にPの含有量の下限は規定しないが、過度の低減は製錬コストの高騰を招くため、P含有量は0.002%以上とすることが好ましい。
Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性に悪影響を及ぼす。このため、本発明ではSをできるだけ低減することが好ましいが、0.020%までは許容できる。したがって、S含有量は0.020%以下とする。S含有量は、好ましくは0.010%以下であり、より好ましくは0.008%以下である。なお、特にSの含有量の下限は規定しないが、過度の低減は製錬コストの高騰を招くため、S含有量は0.0002%以上とすることが好ましい。
Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが必要である。しかし、Al含有量が0.10%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.005%以上0.10%以下とする。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.015%以上である。Al含有量は、好ましくは0.080%以下であり、より好ましくは0.070%以下である。
Nは、不可避的不純物であり、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.010%までは許容できる。このため、N含有量は0.010%以下とする。N含有量は、好ましくは0.0080%以下である。精錬コストの観点から、N含有量は好ましくは0.0008%以上であり、より好ましくは0.0010%以上である。
Tiは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素である。また、Nとの親和性が高いため鋼中のNを窒化物として無害化し、鋼の靭性向上にも寄与する元素である。上記した効果を得るため、0.001%以上のTiを含有することが好ましい。しかし、Ti含有量が0.15%を超えると降伏比が高くなり、また靱性が低下する。このため、Ti含有量は0.15%以下とする。Ti含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.008%以上である。Ti含有量は、より好ましくは0.13%以下であり、さらに好ましくは0.10%以下である。
Cuは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Cuを含有する場合には、Cu含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるCuの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cuを含有する場合には、Cu含有量は1.0%以下とすることが好ましい。Cu含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Cu含有量は、より好ましくは0.70%以下であり、さらに好ましくは0.50%以下である。
Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Niを含有する場合には、Ni含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるNiの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Niを含有する場合には、Ni含有量は1.0%以下とすることが好ましい。Ni含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Ni含有量は、より好ましくは0.70%以下であり、さらに好ましくは、0.50%以下である。
Crは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Crを含有する場合には、Cr含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるCrの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Crを含有する場合には、Cr含有量は1.0%以下とすることが好ましい。Cr含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Cr含有量は、より好ましくは0.70%以下であり、さらに好ましくは0.50%以下である。
Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るため、Moを含有する場合には、Mo含有量は0.01%以上とすることが好ましい。一方、1.0%を超えるMoの含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Moを含有する場合には、Mo含有量は1.0%以下とすることが好ましい。Mo含有量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。また、Mo含有量は、より好ましくは0.70%以下であり、さらに好ましくは0.50%以下である。
Nbは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与し、また、熱間圧延中のオーステナイトの粗大化を抑制することで組織の微細化にも寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Nbを含有する場合は、0.002%以上のNbを含有することが好ましい。しかし、Nb含有量が0.15%を超えると降伏比が高くなり靱性が低下する。このため、Nbを含有する場合は、Nb含有量は0.15%以下とすることが好ましい。Nb含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。Nb含有量は、より好ましくは0.13%以下であり、さらに好ましくは0.10%以下である。
Vは、鋼中で微細な炭化物、窒化物を形成することで鋼の強度向上に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Vを含有する場合は、0.002%以上のVを含有することが好ましい。しかし、V含有量が0.15%を超えると、降伏比が高くなり、また靱性が低下する。このため、Vを含有する場合は、V含有量は0.15%以下とすることが好ましい。V含有量は、より好ましくは0.005%以上であり、さらに好ましくは0.010%以上である。V含有量は、より好ましくは0.13%以下であり、さらに好ましくは0.10%以下である。
Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Caを含有する場合は、0.0005%以上のCaを含有することが好ましい。しかし、Ca含有量が0.010%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する。このため、Caを含有する場合は、Ca含有量は0.010%以下とすることが好ましい。Ca含有量は、より好ましくは0.0008%以上であり、さらに好ましくは0.0010%以上である。また、Ca含有量は、より好ましくは0.008%以下であり、さらに好ましくは0.0060%以下である。
Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素であり、必要に応じて含有できる。上記した効果を得るため、Bを含有する場合は、0.0003%以上のBを含有することが好ましい。しかし、B含有量が0.010%を超えると降伏比が上昇し、また靱性が悪化する。このため、Bを含有する場合は、B含有量は0.010%以下とすることが好ましい。B含有量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0008%以上である。B含有量は、より好ましくは0.0050%以下であり、さらに好ましくは0.0030%以下であり、さらにより好ましくは0.0020%以下である。
加熱温度:1100℃以上1300℃以下
加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、本発明で目的とする電縫鋼管の鋼組織の平均結晶粒径を確保することが困難となる。このため、熱間圧延工程における加熱温度は、1100℃以上1300℃以下とする。この加熱温度は、より好ましくは1120℃以上である。また、この加熱温度は、より好ましくは1280℃以下である。
粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、本発明で目的とする電縫鋼管の鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。粗圧延終了温度は、より好ましくは860℃以上である。また、粗圧延終了温度は、より好ましくは1000℃以下である。
仕上圧延開始温度は、800℃以上950℃以下であることが好ましい。仕上圧延開始温度が800℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、仕上圧延開始温度が950℃を超えると、オーステナイトが粗大化し、かつオーステナイト中に十分な変形帯が導入されない。そのため、本発明で目的とする鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。仕上圧延開始温度は、より好ましくは820℃以上である。また、仕上圧延開始温度は、より好ましくは930℃以下である。
仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量の加工フェライトが生成し、降伏比が上昇する。一方、仕上圧延終了温度が900℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、本発明で目的とする電縫鋼管の鋼組織の平均結晶粒径を確保することが困難となり、靱性が低下する。仕上圧延終了温度は、より好ましくは770℃以上である。また、仕上圧延終了温度は、より好ましくは880℃以下である。
本発明では、熱間圧延工程においてオーステナイト中のサブグレインを微細化することで、続く冷却工程、巻取工程で生成するフェライト、ベイナイトおよび残部組織を微細化し、本発明で目的とする強度および靱性を有する電縫鋼管の鋼組織が得られる。熱間圧延工程においてオーステナイト中のサブグレインを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。これを達成するため、本発明では、930℃以下の合計圧下率を50%以上とする。
熱間圧延工程後、冷却工程で、熱延板に冷却処理を施す。冷却工程では、冷却停止温度までの平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却する。
熱延板の板厚中心温度で、冷却開始から後述する冷却停止までの温度域における平均冷却速度が5℃/s未満では、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、本発明で目的とする平均結晶粒径を有する組織が得られない。一方で、平均冷却速度が30℃/sを超えると、多量のマルテンサイトが生成し、靱性が低下する。平均冷却速度は、好ましくは10℃/s以上である。また、平均冷却速度は、好ましくは25℃/s以下である。
熱延板の板厚中心温度で、冷却停止温度が400℃未満では、多量のマルテンサイトが生成し、靱性が低下する。一方で、冷却停止温度が650℃を超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、本発明で目的とする平均結晶粒径を有する組織が得られない。また、未変態オーステナイトへのC濃縮が進行しやすいため、オーステナイト分率が高くなり、bcc相の体積率が低下する場合がある。冷却停止温度は、好ましくは430℃以上である。また、冷却停止温度は、好ましくは620℃以下である。
巻取温度:400℃以上650℃以下
冷却工程後、巻取工程で、熱延鋼板をコイル状に巻取り、その後放冷する。巻取工程では、鋼板組織の観点より、巻取温度:400℃以上650℃以下で巻取る。巻取温度が400℃未満では、多量のマルテンサイトが生成し、靱性が低下する。巻取温度が650℃を超えると、フェライトまたはベイナイトの核生成頻度が減少し、これらが粗大化するため、本発明で目的とする平均結晶粒径を有する組織が得られない。また、未変態オーステナイトへのC濃縮が進行しやすいため、オーステナイト分率が高くなり、bcc相の体積率が低下する場合がある。巻取温度は、好ましくは430℃以上である。また、巻取温度は、好ましくは620℃以下である。
熱延鋼板の温度:-40℃以下
巻取工程後に、造管工程で造管処理を施す。造管工程では、熱延鋼板を連続的に払い出しながら、-40℃以下の温度でロール成形により円筒状のオープン管(丸型鋼管)とし、該オープン管の管周方向突合せ部を高周波電気抵抗加熱により溶融させながら、スクイズロールによるアプセットで圧接接合して電縫溶接し、鋼管素材とする。
電縫溶接時のアプセット量は、靱性低下の原因となる酸化物や窒化物等の介在物を溶鋼とともに排出できるように制御する。アプセット量は、板厚の20%以上とすることが好ましい。ただし、アプセット量が板厚の100%超である場合、スクイズロール負荷が大きくなる。そのため、アプセット量は、板厚の20%以上、板厚の100%以下の範囲に御することが好ましい。より好ましくは板厚の40%以上である。より好ましくは板厚の80%以下である。
鋼管素材の縮径の温度:-40℃以下
電縫溶接後のサイジング工程では、鋼管素材に対して上下左右に配置されたロール(サイジングロール)により鋼管素材を-40℃以下で縮径し、外径および真円度を所望の値に調整する。
外径精度および真円度を向上させるには、サイジング工程において鋼管周長が合計で0.5%以上の割合で減少するように鋼管を縮径することが好ましい。ただし、鋼管周長が合計で4.0%超の割合で減少するように縮径した場合、ロール通過時の管軸方向の曲げ量が大きくなり、降伏比が上昇する。そのため、鋼管周長が0.5%以上4.0%以下の割合で減少するように縮径することが好ましい。該割合は、より好ましくは、1.0%以上である。また該割合は、より好ましくは3.0%以下である。
転位密度ρは、管長手方向および肉厚方向の両方に平行な断面を鏡面研磨した後、100μm電解研磨して表面加工層を除去し、回折面が肉厚中央部となるように作製した試験片を用いてX線回折を行い、その結果からmodified Williamson-Hall法およびmodifiedWarren-Averbach法(上記した参考文献1、2)を用いて求めた。X線源には、CuKα線を用いた。管電圧は45kV、管電流は200mAとした。
A=φ/((πρ/2)1/2×b)・・・(1)
表3に、それぞれ求めた値を示す。
組織解析用の試験片は、観察面が管長手方向および肉厚方向の両方に平行な断面で、かつ肉厚中央部となるように採取し、鏡面研磨した後、ナイタール腐食して作製した。組織解析は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、肉厚中央部における組織を観察し、撮像した。
引張試験は、引張方向が管長手方向と平行になるように、JIS5号の引張試験片を採取し、JIS Z 2241の規定に準拠して実施した。降伏応力YS(MPa)、引張強さTS(MPa)を測定し、(YS/TS)×100で定義される降伏比YR(%)を算出した。ただし、降伏応力YSは、公称ひずみ0.5%における流動応力とした。
シャルピー衝撃試験は、得られた電縫鋼管の肉厚中央部から、試験片長手方向が管長手方向と平行になるように、Vノッチ試験片を採取した。JIS Z 2242の規定に準拠して-40℃において試験を実施し、吸収エネルギー(J)を求めた。試験本数は各3本とし、それらの吸収エネルギーの平均値を電縫鋼管の吸収エネルギーとした。
2 溶接熱影響部
3 溶融凝固部
Claims (9)
- 母材部と溶接部を有する電縫鋼管であって、
前記母材部の肉厚中央部における鋼組織は、
bcc相が体積率で80%以上であり、
平均結晶粒径が15.0μm以下であり、
(1)式で表されるA値が0.55以上0.85以下であり、
管軸方向の降伏比が90%以下であり、
前記母材部の-40℃におけるシャルピー吸収エネルギーが100J以上である、電縫鋼管。
A=φ/((πρ/2)1/2×b)・・・(1)
ここで、(1)式において、
φ:X線回折により得られる加工度を表すパラメータ、
ρ:転位密度(m-2)、
b:転位のバーガースベクトル(m)、
π:円周率、
である。 - 前記母材部の成分組成は、質量%で、
C:0.001%以上0.30%以下、
Si:0.01%以上2.0%以下、
Mn:0.20%以上3.0%以下、
P:0.050%以下、
S:0.020%以下、
Al:0.005%以上0.10%以下、
N:0.010%以下、
Ti:0.15%以下
を含み、残部がFeおよび不可避的不純物からなる、請求項1に記載の電縫鋼管。 - 前記成分組成に加えてさらに、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.15%以下、
V:0.15%以下、
Ca:0.010%以下、
B:0.010%以下
のうちから選ばれた1種または2種以上を含む、請求項2に記載の電縫鋼管。 - 前記母材部の肉厚が15mm以上30mm以下である、請求項1~3のいずれかに記載の電縫鋼管。
- 前記母材部の肉厚中央部における鋼組織は、フェライトとベイナイトの体積率の合計が85%以上である、請求項1~4のいずれかに記載の電縫鋼管。
- 請求項1~5のいずれかに記載の電縫鋼管の製造方法であって、
鋼素材を、
加熱温度:1100℃以上1300℃以下に加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上900℃以下、かつ、930℃以下での合計圧下率:50%以上で熱間圧延を施して熱延板とする熱間圧延工程と、
前記熱延板に、板厚中心温度で、平均冷却速度:5℃/s以上30℃/s以下、冷却停止温度:400℃以上650℃以下で冷却する冷却工程と、
前記熱延板を、400℃以上650℃以下の温度で巻取り熱延鋼板とする巻取工程と、
ロール成形により前記熱延鋼板を-40℃以下の温度で円筒状に成形し、電縫溶接を施して鋼管素材とする造管工程と、
前記鋼管素材を-40℃以下の温度で縮径して電縫鋼管を得るサイジング工程を有する、
電縫鋼管の製造方法。 - 前記鋼素材の成分組成は、質量%で、
C:0.001%以上0.30%以下、
Si:0.01%以上2.0%以下、
Mn:0.20%以上3.0%以下、
P:0.050%以下、
S:0.020%以下、
Al:0.005%以上0.10%以下、
N:0.010%以下、
Ti:0.15%以下
を含み、残部がFeおよび不可避的不純物からなる、請求項6に記載の電縫鋼管の製造方法。 - 前記成分組成に加えてさらに、質量%で、
Cu:1.0%以下、
Ni:1.0%以下、
Cr:1.0%以下、
Mo:1.0%以下、
Nb:0.15%以下、
V:0.15%以下、
Ca:0.010%以下、
B:0.010%以下
のうちから選ばれた1種または2種以上を含む、請求項7に記載の電縫鋼管の製造方法。 - 前記電縫鋼管の母材部の肉厚が15mm以上30mm以下である、請求項6~8のいずれかに記載の電縫鋼管の製造方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180066581.7A CN116234644A (zh) | 2020-10-05 | 2021-09-15 | 电阻焊钢管及其制造方法 |
US18/028,872 US20240026999A1 (en) | 2020-10-05 | 2021-09-15 | Electric resistance welded steel pipe and method for manufacturing the same |
EP21877329.9A EP4206345A4 (en) | 2020-10-05 | 2021-09-15 | ELECTRICAL RESISTANCE WELDED STEEL PIPE AND METHOD FOR MANUFACTURING SAME |
KR1020237010956A KR20230060522A (ko) | 2020-10-05 | 2021-09-15 | 전봉 강관 및 그 제조 방법 |
JP2021576658A JP7081727B1 (ja) | 2020-10-05 | 2021-09-15 | 電縫鋼管およびその製造方法 |
CA3190830A CA3190830A1 (en) | 2020-10-05 | 2021-09-15 | Electric resistance welded steel pipe and method for manufacturing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-168164 | 2020-10-05 | ||
JP2020168164 | 2020-10-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022075027A1 true WO2022075027A1 (ja) | 2022-04-14 |
Family
ID=81126802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/034009 WO2022075027A1 (ja) | 2020-10-05 | 2021-09-15 | 電縫鋼管およびその製造方法 |
Country Status (8)
Country | Link |
---|---|
US (1) | US20240026999A1 (ja) |
EP (1) | EP4206345A4 (ja) |
JP (1) | JP7081727B1 (ja) |
KR (1) | KR20230060522A (ja) |
CN (1) | CN116234644A (ja) |
CA (1) | CA3190830A1 (ja) |
TW (1) | TWI783700B (ja) |
WO (1) | WO2022075027A1 (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023214472A1 (ja) * | 2022-05-06 | 2023-11-09 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法ならびに電縫鋼管およびその製造方法 |
WO2023233980A1 (ja) * | 2022-06-03 | 2023-12-07 | Jfeスチール株式会社 | 熱延鋼板、角形鋼管、それらの製造方法および建築構造物 |
JP7549286B1 (ja) | 2024-02-13 | 2024-09-11 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
JP7549285B1 (ja) | 2024-02-13 | 2024-09-11 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293903B1 (ja) | 2011-08-23 | 2013-09-18 | 新日鐵住金株式会社 | 厚肉電縫鋼管及びその製造方法 |
WO2015079661A1 (ja) * | 2013-11-28 | 2015-06-04 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
WO2017163987A1 (ja) * | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | ラインパイプ用電縫鋼管 |
JP6260757B1 (ja) | 2017-06-22 | 2018-01-17 | 新日鐵住金株式会社 | ラインパイプ用アズロール電縫鋼管及び熱延鋼板 |
JP6575734B1 (ja) * | 2019-03-04 | 2019-09-18 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
WO2020022481A1 (ja) * | 2018-07-27 | 2020-01-30 | 日本製鉄株式会社 | 高強度鋼板 |
JP6690788B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
JP6690787B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57133582A (en) | 1981-02-06 | 1982-08-18 | Fujitsu Ltd | Method for bubble transfer of magnetic bubble memory |
JP3888279B2 (ja) * | 2002-10-07 | 2007-02-28 | Jfeスチール株式会社 | 建築用低降伏比電縫鋼管及び角コラムの製造方法 |
EP1662014B1 (en) * | 2003-06-12 | 2018-03-07 | JFE Steel Corporation | Steel plate and welded steel tube exhibiting low yield ratio, high strength and high toughness and method for production thereof |
CN102549189B (zh) * | 2009-09-30 | 2013-11-27 | 杰富意钢铁株式会社 | 具有低屈服比、高强度以及高韧性的钢板及其制造方法 |
JP5742123B2 (ja) * | 2010-07-16 | 2015-07-01 | Jfeスチール株式会社 | ラインパイプ用高強度溶接鋼管向け高張力熱延鋼板およびその製造方法 |
CN104220622B (zh) * | 2012-04-13 | 2016-11-02 | 杰富意钢铁株式会社 | 具有优良的低温韧性的高强度厚壁电阻焊钢管及其制造方法 |
JP5708723B2 (ja) * | 2013-07-09 | 2015-04-30 | Jfeスチール株式会社 | 低温破壊靭性に優れたラインパイプ用厚肉電縫鋼管およびその製造方法 |
WO2016103624A1 (ja) * | 2014-12-25 | 2016-06-30 | Jfeスチール株式会社 | 深井戸向けコンダクターケーシング用高強度厚肉電縫鋼管およびその製造方法並びに深井戸向け高強度厚肉コンダクターケーシング |
JP6572963B2 (ja) * | 2017-12-25 | 2019-09-11 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
CN111041344A (zh) * | 2019-10-23 | 2020-04-21 | 舞阳钢铁有限责任公司 | 高强韧性低屈强比易焊接的固定海上结构钢板及生产方法 |
-
2021
- 2021-09-15 WO PCT/JP2021/034009 patent/WO2022075027A1/ja active Application Filing
- 2021-09-15 CN CN202180066581.7A patent/CN116234644A/zh active Pending
- 2021-09-15 US US18/028,872 patent/US20240026999A1/en active Pending
- 2021-09-15 JP JP2021576658A patent/JP7081727B1/ja active Active
- 2021-09-15 KR KR1020237010956A patent/KR20230060522A/ko unknown
- 2021-09-15 EP EP21877329.9A patent/EP4206345A4/en active Pending
- 2021-09-15 CA CA3190830A patent/CA3190830A1/en active Pending
- 2021-09-28 TW TW110136002A patent/TWI783700B/zh active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5293903B1 (ja) | 2011-08-23 | 2013-09-18 | 新日鐵住金株式会社 | 厚肉電縫鋼管及びその製造方法 |
WO2015079661A1 (ja) * | 2013-11-28 | 2015-06-04 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法 |
WO2017163987A1 (ja) * | 2016-03-22 | 2017-09-28 | 新日鐵住金株式会社 | ラインパイプ用電縫鋼管 |
JP6260757B1 (ja) | 2017-06-22 | 2018-01-17 | 新日鐵住金株式会社 | ラインパイプ用アズロール電縫鋼管及び熱延鋼板 |
WO2020022481A1 (ja) * | 2018-07-27 | 2020-01-30 | 日本製鉄株式会社 | 高強度鋼板 |
JP6575734B1 (ja) * | 2019-03-04 | 2019-09-18 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
JP6690788B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
JP6690787B1 (ja) * | 2019-03-29 | 2020-04-28 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法、並びに鋼管杭 |
Non-Patent Citations (4)
Title |
---|
M. KUMAGAIM. IMAFUKUS. OHYA, ISIJ INTERNATIONAL, vol. 54, 2014, pages 206 |
S. TAKAKIT. MASUMURAT. TSUCHIYAMA, ISIJ INTERNATIONAL, vol. 59, 2019, pages 567 |
See also references of EP4206345A4 |
T. UNGARA. BORBELY, APPL. PHYS. LETT., vol. 69, 1996, pages 3173 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023214472A1 (ja) * | 2022-05-06 | 2023-11-09 | Jfeスチール株式会社 | 熱延鋼板およびその製造方法ならびに電縫鋼管およびその製造方法 |
JP7563585B2 (ja) | 2022-05-06 | 2024-10-08 | Jfeスチール株式会社 | 電縫鋼管およびその製造方法 |
WO2023233980A1 (ja) * | 2022-06-03 | 2023-12-07 | Jfeスチール株式会社 | 熱延鋼板、角形鋼管、それらの製造方法および建築構造物 |
JP7549286B1 (ja) | 2024-02-13 | 2024-09-11 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
JP7549285B1 (ja) | 2024-02-13 | 2024-09-11 | 日本製鉄株式会社 | ラインパイプ用電縫鋼管 |
Also Published As
Publication number | Publication date |
---|---|
CA3190830A1 (en) | 2022-04-14 |
EP4206345A1 (en) | 2023-07-05 |
KR20230060522A (ko) | 2023-05-04 |
US20240026999A1 (en) | 2024-01-25 |
CN116234644A (zh) | 2023-06-06 |
JP7081727B1 (ja) | 2022-06-07 |
TWI783700B (zh) | 2022-11-11 |
EP4206345A4 (en) | 2024-01-17 |
TW202219292A (zh) | 2022-05-16 |
JPWO2022075027A1 (ja) | 2022-04-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7081727B1 (ja) | 電縫鋼管およびその製造方法 | |
JP6947333B2 (ja) | 電縫鋼管およびその製造方法ならびにラインパイプおよび建築構造物 | |
JP6693607B1 (ja) | 熱延鋼板およびその製造方法 | |
JP7088417B2 (ja) | 電縫鋼管およびその製造方法 | |
WO2024053168A1 (ja) | 電縫鋼管およびその製造方法 | |
JP6973681B2 (ja) | 電縫鋼管用熱延鋼板およびその製造方法、電縫鋼管およびその製造方法、ラインパイプ、建築構造物 | |
JP7284380B2 (ja) | ラインパイプ用電縫鋼管 | |
JP7211566B1 (ja) | 高強度熱延鋼板およびその製造方法、並びに高強度電縫鋼管およびその製造方法 | |
JP7563585B2 (ja) | 電縫鋼管およびその製造方法 | |
JP7439998B1 (ja) | 電縫鋼管およびその製造方法 | |
JP7276641B1 (ja) | 電縫鋼管およびその製造方法 | |
JP2024106089A (ja) | 鋼管杭継手用電縫鋼管、鋼管杭継手および鋼管杭 | |
KR20240151784A (ko) | 열연 강판 및 그 제조 방법 그리고 전봉 강관 및 그 제조 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021576658 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21877329 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3190830 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18028872 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237010956 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2021877329 Country of ref document: EP Effective date: 20230330 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |