WO2023233980A1 - 熱延鋼板、角形鋼管、それらの製造方法および建築構造物 - Google Patents

熱延鋼板、角形鋼管、それらの製造方法および建築構造物 Download PDF

Info

Publication number
WO2023233980A1
WO2023233980A1 PCT/JP2023/018030 JP2023018030W WO2023233980A1 WO 2023233980 A1 WO2023233980 A1 WO 2023233980A1 JP 2023018030 W JP2023018030 W JP 2023018030W WO 2023233980 A1 WO2023233980 A1 WO 2023233980A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
hot
temperature
rolled steel
steel
Prior art date
Application number
PCT/JP2023/018030
Other languages
English (en)
French (fr)
Inventor
直道 岩田
晃英 松本
信介 井手
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2023547358A priority Critical patent/JP7424551B1/ja
Publication of WO2023233980A1 publication Critical patent/WO2023233980A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/06Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
    • B21C37/15Making tubes of special shape; Making tube fittings
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the present invention relates to a hot-rolled steel sheet and a square steel pipe (square column) manufactured from the hot-rolled steel sheet by cold roll forming.
  • the present invention relates to square steel pipes suitably used as structural members of large buildings.
  • the present invention relates to a building structure obtained using this square steel pipe.
  • buildings building structural members used in large buildings
  • buildings such as factories, warehouses, and commercial facilities
  • buildings are becoming stronger and stronger in order to reduce construction costs through weight reduction.
  • square steel pipes square columns
  • high strength is required in the flat plate part.
  • square steel pipes used for building structural members are also required to have excellent toughness from the perspective of earthquake resistance.
  • Square steel pipes are generally made from hot-rolled steel plates (hot-rolled steel strips) or thick steel plates, and are produced by cold-forming this material.
  • Examples of the cold forming method include a cold press bending method and a cold roll forming method.
  • Square steel pipes manufactured by roll-forming materials are cold-roll-formed hot-rolled steel sheets to form cylindrical open pipes, and the butt parts are electrically welded. Weld. After that, the cylindrical open tube (round steel tube) is compressed by several percent in the axial direction using rolls placed on the top, bottom, left and right of the open tube, and then formed into a square shape to produce a square steel tube.
  • square steel pipes manufactured by press-bending materials are made by cold press-bending thick steel plates to create a rectangular cross-sectional shape (square shape). ) or U-shaped, and these are manufactured by joining them by submerged arc welding.
  • the method for manufacturing roll-formed square steel pipes has the advantage of higher productivity and can be manufactured in a shorter period of time.
  • the flat plate part is not cold-formed and only the corners are work-hardened
  • roll-formed square steel pipes especially when cold-forming into a cylindrical shape, the entire circumference of the steel pipe is hardened. A large machining strain is introduced in the axial direction. Therefore, roll-formed square steel pipes have a problem in that not only the corners but also the flat plate parts have a high yield ratio in the tube axis direction and low toughness.
  • Patent Document 1 states that the carbon content is 0.20% or less by weight, Mn: 0.40 to 0.90%, and Nb: 0.005 to 0.040%. % and Ti: 0.005 to 0.050%.
  • a steel material containing one or two of Ti: 0.005 to 0.050% is rolled at a rolling reduction rate of 55% or more in the non-recrystallization temperature range, a rolling end temperature of 730 to 830 °C, and a coiling temperature of 550 °C.
  • Patent Document 2 describes that steel containing C: 0.07 to 0.18% and Mn: 0.3 to 1.5% in mass % is heated to a heating temperature of 1100 to 1300°C, and then rough rolled. Finishing temperature: 1150 to 950°C Rough rolling and finishing rolling start temperature: 1100 to 850°C Finish rolling finishing temperature: 900 to 750°C After finish rolling, the cooling stop temperature is 550°C or higher at the surface temperature. Primary cooling that cools the plate so that By applying tertiary cooling to 650°C or less and setting the frequency of the second phase included in the steel structure to 0.20 to 0.42, it exhibits a low yield ratio of 80% or less at a test temperature of 0°C. Square steel pipes have been proposed that have mechanical properties such that the absorbed energy in the Charpy impact test is 150 J or more.
  • Patent Document 3 describes that steel containing C: 0.07 to 0.18% and Mn: 0.3 to 1.5% in mass% is heated to a heating temperature of 1100 to 1300°C, and then roughened. Rolling end temperature: 1150 to 950°C Rough rolling and finish rolling start temperature: 1100 to 850°C, finish rolling end temperature: 900 to 750°C After finish rolling, the surface temperature is 750 to 650°C.
  • the average cooling rate in the temperature range of 750 to 650°C at the center of the plate is 4 to
  • the mechanical property exhibits a low yield ratio of 80% or less and has an absorbed energy of 150 J or more in the Charpy impact test at a test temperature of 0°C.
  • Square steel pipes with characteristics have been proposed.
  • Patent Document 4 describes, in mass %, C: 0.07 to 0.20%, Mn: 0.3 to 2.0%, P: 0.03% or less, S: 0.015% or less, Al: After heating the steel to a heating temperature of 1100 to 1300°C, it is then rough rolled. Finishing temperature: 1150 to 950°C Rough rolling and finish rolling start temperature: 1100 to 850°C Finish rolling end temperature: 900 to 750°C After finish rolling, start cooling and stop cooling at the center temperature of the plate. Cooling is performed to a cooling stop temperature of 580°C or less at a cooling rate with an average cooling rate of 4 to 25°C/s.
  • a cooling process is performed at least once, and then winding is performed at a winding temperature of 580°C or less, followed by cooling, which changes the steel structure at the center of the plate thickness into a main phase consisting of ferrite, pearlite, and pseudo-pearlite. and a second phase consisting of one or more selected from upper bainite and having an area ratio of 8 to 20%, and the average grain size of the steel structure including the main phase and the second phase is 7.
  • the steel structure on the front and back surfaces of the plate is single phase ferrite or single phase bainitic ferrite, the average grain size is 2 ⁇ 20 ⁇ m, exhibiting a low yield ratio of 90% or less, and the test temperature: Square steel pipes have been proposed that have mechanical properties such that the absorbed energy in the Charpy impact test at 0° C. is 27 J or more.
  • the hot-rolled steel sheet used as the raw material needs to have a steel structure that suppresses the increase in yield ratio during forming, and excellent low-temperature toughness that can withstand deterioration of toughness due to large working strains.
  • the square steel pipes manufactured by the methods disclosed in Patent Documents 1 to 3 mentioned above have a problem in that the yield ratio becomes high and a yield ratio of 90% or less cannot be satisfied, especially when the plate thickness exceeds 25 mm. be.
  • the present invention was made in view of the above-mentioned problems, and provides a hot-rolled steel plate with high yield strength and tensile strength, a low yield ratio, and excellent low-temperature toughness, a square steel pipe using the hot-rolled steel plate, and a rectangular steel pipe using the hot-rolled steel plate.
  • the present invention aims to provide a manufacturing method and a building structure using the square steel pipe.
  • (1) high yield strength, (2) high tensile strength, and (3) low yield ratio mean JIS No. 5 tensile test piece taken so that the tensile direction is parallel to the rolling direction.
  • (1) the yield strength is 250 MPa or more
  • (2) the tensile strength is 400 MPa or more
  • (3) the yield ratio is Indicates that it is 0.75 or less.
  • excellent low-temperature toughness means that the longitudinal direction of the test piece is parallel to the rolling direction at the t/2 position (center of the plate thickness) of the plate thickness t, in accordance with the regulations of JIS Z 2242 (2016).
  • the rectangular steel pipe in the present invention refers to a flat plate part that is measured by a tensile test in accordance with the provisions of JIS Z 2241 (2011) using a JIS No. 5 tensile test piece taken so that the tensile direction is parallel to the pipe axis direction.
  • the yield strength in the flat plate part is 295 MPa or more, the tensile strength in the flat plate part is 400 MPa or more, and the yield ratio in the flat plate part is 0.90 or less, and in accordance with the provisions of JIS Z 2242 (2018), Using a V-notch standard test piece taken at the t/4 position of the wall thickness t from , with the longitudinal direction of the test piece parallel to the tube axis direction, test temperature: -60°C, -40°C, -20°C, Charpy impact test is conducted at 0°C and +20°C, and the Charpy absorbed energy of the flat plate part at -20°C is 40 J or more, and the ductile-brittle transition temperature of the flat plate part is -5°C or less.
  • the present inventors conducted extensive studies to solve the above problems. As a result, the following findings (1) to (3) were obtained.
  • the C content In order for the hot rolled steel sheet to satisfy the yield strength and tensile strength targeted by the present invention, the C content must be 0.07% by mass or more. Furthermore, the main structure (main phase) in the center of the thickness of the hot rolled steel sheet and on the front and back surfaces of the sheet must be ferrite.
  • the hot-rolled steel sheet must contain pearlite, pseudo-pearlite, and It has a second phase consisting of one or more types selected from bainite, the total area ratio of pearlite and pseudo pearlite is 6 to 25%, the area ratio of upper bainite is 5% or less, and the center of the plate thickness In, when a region surrounded by a boundary where the orientation difference between adjacent crystals is 15° or more is defined as a crystal grain, the average crystal grain size of the steel structure including the main phase and the second phase is 10.0 to 30.0 ⁇ m.
  • the area ratio of crystal grains with a circular equivalent diameter of 40.0 ⁇ m or more is 20% or less
  • the number of crystal grains with a ratio of major axis to minor axis is 3.0 or more.
  • 30 pieces/mm 2 or less, and the difference in hardness between a position 1.0 mm inside the plate thickness direction from the front and back surfaces of the plate and the center of the plate thickness must be 40 HV or less.
  • %Mn and %Si are the contents (mass%) of each element.
  • Yield strength is 250 MPa or more, The tensile strength is 400 MPa or more, The yield ratio is 0.75 or less, Charpy absorbed energy at -20°C is 100 J or more,
  • a method for producing a square steel pipe comprising obtaining a square steel pipe by cold roll forming the hot rolled steel sheet according to any one of [1] to [4] above.
  • a hot-rolled steel plate with high yield strength and tensile strength, a low yield ratio, and excellent low-temperature toughness, a square steel pipe using the hot-rolled steel plate, a manufacturing method thereof, and a building using the square steel pipe A structure is provided.
  • FIG. 1 is a perspective view schematically showing an example of a building structure using the square steel pipe of the present invention.
  • FIG. 2 is a schematic diagram showing the sampling positions of flat plate tensile test pieces carried out in the present invention.
  • FIG. 3 is a schematic diagram showing the sampling positions of Charpy test pieces carried out in the present invention.
  • the hot rolled steel sheet of the present invention has, in mass %, C: 0.07% or more and 0.20% or less, Si: 0.40% or less, Mn: 0.20% or more and 1.00% or less, P: 0. 100% or less, S: 0.050% or less, Al: 0.005% or more and 0.100% or less, N: 0.0100% or less, and the content of Mn and Si satisfies the following formula (1).
  • the balance has a composition consisting of Fe and unavoidable impurities
  • the steel structure at the center of the plate thickness and on the front and back surfaces of the plate has a main phase consisting of ferrite and a total area ratio of pearlite and pseudo-pearlite of 6 to 25. % and a second phase in which the area ratio of upper bainite is 5% or less, and in the center of the plate thickness, the area surrounded by boundaries where the orientation difference between adjacent crystals is 15° or more is considered to be a crystal grain.
  • the average crystal grain size of the steel structure at the center of the plate thickness is 10.0 to 30.0 ⁇ m, and the crystal grains having a circular equivalent diameter of 40.0 ⁇ m or more are relative to the entire steel structure at the center of the plate thickness.
  • hot-rolled steel sheets, and hot-rolled steel strips are 1.0 ⁇ %Mn/%Si ⁇ 3.5 (1)
  • %Mn and %Si are the contents (mass%) of each element.
  • C 0.07% or more and 0.20% or less
  • C is an element that increases the strength of steel through solid solution strengthening. Further, C is an element that contributes to the formation of pearlite and pseudo-pearlite, which are one of the second phases.
  • it is necessary to contain 0.07% or more of C.
  • the C content is set to 0.07% or more and 0.20% or less.
  • the C content is preferably 0.08% or more, more preferably 0.10% or more. Further, the C content is preferably 0.18% or less, more preferably 0.17% or less.
  • Si 0.40% or less
  • Si is an element that increases the strength of steel through solid solution strengthening, and can be included as necessary. In order to obtain such an effect, it is desirable to contain 0.01% or more of Si. However, when the Si content exceeds 0.40%, oxides are likely to be generated in the electric resistance welded part, and the properties of the welded part are deteriorated. Furthermore, the toughness of the base material other than the electric resistance welded portion also decreases. Therefore, the Si content is set to 0.40% or less.
  • the Si content is preferably 0.01% or more, more preferably 0.05% or more. Further, the Si content is preferably 0.37% or less, more preferably 0.35% or less.
  • Mn 0.20% or more and 1.00% or less
  • Mn is an element that increases the strength of steel through solid solution strengthening. Furthermore, Mn is an element that contributes to the refinement of the structure by lowering the ferrite transformation start temperature. In order to ensure the strength and structure targeted by the present invention, it is necessary to contain 0.20% or more of Mn. However, when the Mn content exceeds 1.00%, the yield ratio exceeds 0.90 because the amount of bainite produced becomes too large, making it impossible to obtain the desired yield ratio. Furthermore, if the Mn content exceeds 1.00%, the hardness of the center segregation area increases, which may cause cracking during welding. Therefore, the Mn content is set to 0.20% or more and 1.00% or less. The Mn content is preferably 0.25% or more, more preferably 0.30% or more. Further, the Mn content is preferably 0.95% or less, more preferably 0.90% or less.
  • the P content is set within a range of 0.100% or less.
  • the P content is preferably 0.030% or less, more preferably 0.020% or less.
  • P it is preferable that P be 0.002% or more, since excessive reduction will lead to a rise in smelting costs.
  • S 0.050% or less S usually exists as MnS in steel, but MnS is stretched thin during the hot rolling process and has a negative effect on ductility. Therefore, in the present invention, it is preferable to reduce S as much as possible, but up to 0.050% is allowable. Therefore, the S content is set to 0.050% or less.
  • the S content is preferably 0.015% or less, more preferably 0.010% or less, even more preferably 0.008% or less. Although there is no particular lower limit for S, it is preferable for S to be 0.001% or more, since excessive reduction will lead to a rise in smelting costs.
  • Al 0.005% or more and 0.100% or less
  • Al is an element that acts as a strong deoxidizing agent. In order to obtain such an effect, it is necessary to contain 0.005% or more of Al. However, when the Al content exceeds 0.100%, weldability deteriorates, alumina-based inclusions increase, and the surface quality deteriorates. Moreover, the toughness of the welded part also decreases. Therefore, the Al content is set to 0.005% or more and 0.100% or less.
  • the Al content is preferably 0.010% or more, more preferably 0.015% or more. Further, the Al content is preferably 0.070% or less, more preferably 0.050% or less.
  • N is an unavoidable impurity, and is an element that has the effect of reducing toughness by firmly fixing the movement of dislocations.
  • the N content is set to 0.0100% or less.
  • the N content is preferably 0.0080% or less, more preferably 0.0040% or less, even more preferably 0.0035% or less. Note that excessive reduction causes a rise in smelting costs, so the N content is preferably 0.0010% or more, more preferably 0.0015% or more.
  • %Mn and %Si are the contents (mass%) of each element.
  • the contents of Mn and Si be within the ranges described above, and that the formula (1) satisfies 1.0 ⁇ %Mn/%Si ⁇ 3.5.
  • %Mn/%Si is preferably 1.2 or more, more preferably 1.4 or more.
  • %Mn/%Si is preferably 3.2 or less, more preferably 3.0 or less.
  • O oxygen
  • the remainder is Fe and unavoidable impurities.
  • O oxygen
  • Nb more than 0% and less than 0.005%
  • Ti more than 0% and less than 0.005%
  • V more than 0% and less than 0.01%
  • Cr more than 0% and less than 0.01%
  • Mo more than 0% and less than 0.01%
  • Cu more than 0% and less than 0.01%
  • Ni more than 0% and less than 0.01%
  • Ca more than 0% and less than 0.0005%
  • B more than 0% and less than 0.0003% are treated as inevitable impurities.
  • Nb 0.005% or more and 0.020% or less
  • Ti 0.005% or more and 0.020% or less
  • V 0.01% or more and 0.10% or less
  • Cr 0.01% or more and 0.50%
  • Mo 0.01% to 0.50%
  • Cu 0.01% to 0.30%
  • Ni 0.01% to 0.30%
  • Ca 0.0005% to 0.
  • B One or more types selected from 0.0003% or more and 0.0100% or less
  • Nb 0.005% or more and 0.020% or less
  • Ti 0.005% or more and 0.020% or less
  • Nb and Ti form fine carbides and nitrides in steel and improve the strength of steel through precipitation strengthening. It is a contributing element. In order to obtain such an effect, when Nb is contained, it is contained in an amount of 0.005% or more. Moreover, when containing Ti, it contains 0.005% or more of Ti. On the other hand, if the content of each of Nb and Ti exceeds 0.020%, coarse carbides and nitrides may be formed, leading to a decrease in toughness.
  • Nb when Nb is contained, the Nb content is 0.005% or more and 0.020% or less, and when Ti is contained, the Ti content is 0.005% or more and 0.020% or less.
  • Nb and Ti are preferably 0.007% or more, more preferably 0.009% or more. Further, each of Nb and Ti is preferably 0.018% or less, more preferably 0.016% or less.
  • V 0.01% or more and 0.10% or less
  • Cr 0.01% or more and 0.50% or less
  • Mo 0.01% or more and 0.50% or less
  • V, Cr, and Mo improve the hardenability of steel. It is an element that increases the strength of steel, and can be included as necessary.
  • the V content when containing V, Cr, and Mo, the V content should be 0.01% or more, the Cr content should be 0.01% or more, and the Mo content should be 0.01%.
  • the V content is 0.02% or more
  • the Cr content is 0.05% or more
  • the Mo content is 0.05% or more
  • the V content is 0.03% or more.
  • the Cr content is 0.08% or more, and the Mo content is 0.08% or more.
  • excessive content may lead to a decrease in toughness and deterioration in weldability. Therefore, when containing V, Cr, and Mo, the V content should be 0.10% or less, the Cr content should be 0.50% or less, and the Mo content should be 0.50% or less.
  • the V content is 0.08% or less, the Cr content is 0.40% or less, the Mo content is 0.40% or less, and more preferably the V content is 0.07%. %, the Cr content is 0.35% or less, and the Mo content is 0.35% or less.
  • Cu and Ni are elements that increase the strength of steel through solid solution strengthening, and are included as necessary. be able to.
  • the Cu content is set to 0.01% or more, and the Ni content is set to 0.01% or more.
  • the Cu content is 0.02% or more, and the Ni content is 0.02% or more. More preferably, the Cu content is 0.10% or more, and the Ni content is 0.10% or more.
  • excessive content may lead to a decrease in toughness and deterioration in weldability.
  • the Cu content is set to 0.30% or less, and the Ni content is set to 0.30% or less.
  • the Cu content is 0.20% or less, and the Ni content is 0.20% or less. More preferably, the Cu content is 0.15% or less, and the Ni content is 0.15% or less.
  • Ca 0.0005% or more and 0.0100% or less
  • Ca is an element that contributes to improving the toughness of steel by spheroidizing sulfides such as MnS that are thinly stretched in the hot rolling process. Can be included.
  • it is preferable to contain 0.0005% or more of Ca.
  • the Ca content exceeds 0.0100%, Ca oxide clusters are formed in the steel, which may deteriorate the toughness. Therefore, when Ca is contained, the Ca content is preferably 0.0100% or less.
  • the Ca content is preferably 0.0005% or more. More preferably, the Ca content is 0.0010% or more. Preferably, the Ca content is 0.0050% or less.
  • B 0.0003% or more and 0.0100% or less
  • B is an element that contributes to refinement of the structure by lowering the ferrite transformation start temperature.
  • B when B is contained, it is preferable to contain 0.0003% or more of B.
  • the B content exceeds 0.0100%, the yield ratio may increase. Therefore, when B is contained, it is preferably 0.0100% or less. More preferably, the B content is 0.0005% or more. Preferably, the B content is 0.0050% or less.
  • the steel structure at the center of the sheet thickness and on the front and back surfaces of the sheet has a main phase consisting of ferrite, a total area ratio of pearlite and pseudo pearlite of 6 to 25%, and an area ratio of upper bainite of 5%.
  • the difference in hardness between a position 1.0 mm inside in the thickness direction and the center of the thickness is 40 HV or less.
  • the equivalent circle diameter is the diameter of a circle having the same area as the target crystal grain.
  • the steel structure targets the center of the thickness of the hot-rolled steel sheet and the surface of the sheet (front and back surfaces of the sheet).
  • the plate surface is defined as a position within 1.0 mm from the surface of the steel plate in the plate thickness direction.
  • Ferrite Ferrite is a soft structure, and is used as the main phase in the present invention in order to obtain the desired yield strength and low yield ratio.
  • the area ratio of ferrite is 70% or more, more preferably 72% or more.
  • the area ratio of ferrite exceeds 94%, the strength decreases, and desired yield strength and tensile strength may not be obtained. Therefore, preferably, the area ratio of ferrite is 94% or less, and more preferably, the area ratio of ferrite is 92% or less.
  • Total area ratio of pearlite and pseudo-pearlite 6 to 25%, area ratio of upper bainite: 5% or less
  • Pearlite and pseudo-pearlite are hard structures, and are used to increase the strength of steel and obtain a low yield ratio. It is the most important steel structure.
  • the total area ratio of pearlite and pseudo-pearlite be 6% or more. This total area ratio is preferably 7% or more, more preferably 9% or more. If the area ratio of pearlite and pseudo-pearlite exceeds 25%, toughness may deteriorate. Therefore, the total area ratio of pearlite and pseudo-pearlite needs to be 25% or less. This total area ratio is preferably 23% or less, more preferably 21% or less.
  • the area ratio of pseudo pearlite is 5% or more.
  • the yield ratio can be suppressed to a low level when a square steel pipe is manufactured, so that better earthquake resistance can be obtained.
  • the area ratio of pseudo pearlite is preferably 15% or less.
  • Upper bainite is a structure with hardness intermediate between ferrite and pearlite, and increases the strength of steel. However, if the area ratio of upper bainite exceeds 5%, the low yield ratio targeted by the present invention cannot be obtained. Therefore, it is necessary that the area ratio of upper bainite is 5% or less. Preferably it is 4% or less. Upper bainite may be 0%.
  • the average crystal grain size of the steel structure at the center of the plate thickness is 10.
  • the steel structure of the present invention has a soft structure and a hard structure in order to obtain the low yield ratio, yield strength, and tensile strength that are aimed at in the present invention.
  • composite structure steel has poor toughness compared to single structure steel. Therefore, in the present invention, in order to achieve both the above-mentioned mechanical properties and excellent toughness, when a region surrounded by a boundary with a crystal orientation difference of 15° or more is defined as a crystal grain, a steel structure including a main phase and a second phase.
  • the crystal grain size, the area ratio of coarse crystal grains, and the number of elongated crystal grains are defined. If the average grain size (equivalent circle diameter) of the steel structure including the main phase and the second phase is less than 10.0 ⁇ m, the yield ratio increases and the yield ratio targeted by the present invention cannot be obtained.
  • the average grain size of the steel structure including the main phase and the second phase exceeds 30.0 ⁇ m, toughness deteriorates. Therefore, it is necessary that the average grain size of the steel structure including the main phase and the second phase is 10.0 to 30.0 ⁇ m. Preferably it is 11.0 ⁇ m or more, and even more preferably 12.5 ⁇ m or more. Further, the average crystal grain size is preferably 28.0 ⁇ m or less, and even more preferably 26.0 ⁇ m or less. However, even if the average crystal grain size is within the range of 10.0 to 30.0 ⁇ m, there are cases where the yield ratio and Charpy absorbed energy targeted by the present invention cannot be obtained.
  • crystal orientation difference can be measured by the SEM/EBSD method. Here, it can be measured by the method described below.
  • the position at the center in the width direction of the hot rolled steel plate and the plate thickness t/2 (t: plate thickness) (the center of the plate thickness in the present invention) and the plate surface (back surface of the steel plate (lower surface during hot rolling)) ) Take the test piece from the position.
  • the observation surface is made to be a cross section in the rolling direction during hot rolling, and after polishing, nital corrosion is performed.
  • Microstructure observation was performed using an optical microscope (magnification: 1000x) or a scanning electron microscope (SEM, magnification: 1000x) at the thickness t/2 position (center of thickness) of the hot rolled steel sheet and the back surface of the steel sheet (plate thickness center). Observe and image the tissue on the surface. The area ratios of ferrite, pearlite, pseudo pearlite, and upper bainite are determined from the obtained optical microscope image and SEM image.
  • the area ratio of each tissue is observed in 5 fields of view and calculated as the average value of the values obtained in each field of view.
  • the area ratio obtained by tissue observation is defined as the area ratio of each tissue.
  • the area ratio of ferrite, pearlite, pseudo pearlite, and upper bainite is calculated by calculating the area of each phase by distinguishing each phase by the shape and color shown below using an optical microscope image or SEM image. Calculate the area percentage of each phase by dividing by the total area of the image.
  • ferrite is a product of diffusion transformation, and exhibits a nearly recovered structure with a low dislocation density.
  • This includes polygonal ferrite and pseudopolygonal ferrite.
  • Pearlite is a structure in which cementite and ferrite are arranged in layers
  • pseudo-pearlite is a structure in which cementite arranged in dots in ferrite is confirmed.
  • upper bainite is a multi-phase structure of lath-like ferrite and cementite with a high dislocation density.
  • ferrite is white
  • pearlite is black
  • pseudo pearlite is black or gray
  • upper bainite is white or gray.
  • the average crystal grain size (average equivalent circular diameter) is measured using the SEM/EBSD method at the plate thickness t/2 position (plate thickness center).
  • the grain size is determined by determining the orientation difference between adjacent grains, and measuring boundaries where the orientation difference is 15° or more as grain boundaries.
  • the grain size (equivalent circle diameter) of each crystal grain is calculated from the obtained grain boundaries, and the arithmetic mean thereof is determined to be the average grain size (average equivalent circle diameter).
  • the area of crystal grains with an equivalent circle diameter of 40.0 ⁇ m or more can be calculated. Calculate the rate.
  • the major axis and minor axis can be calculated.
  • the number of crystal grains having a diameter ratio of 3.0 or more (number/mm 2 ) is calculated.
  • crystal grains having a diameter of less than 2.0 ⁇ m are excluded from the analysis target as measurement noise.
  • Difference in hardness between the position 1.0 mm inside in the thickness direction from the front and back surfaces of the sheet and the center of the sheet thickness 40 HV or less
  • the difference in hardness from the center part is 40 HV or less. If the difference in hardness between a position 1.0 mm inside the plate thickness direction from the front and back surfaces of the plate and the center of the plate thickness exceeds 40 HV, when manufacturing a square steel pipe, the yield ratio of the flat plate part of the square steel pipe must be 0.90. There is a risk that it will be exceeded. In addition, toughness may deteriorate in some cases.
  • the difference in hardness between a position 1.0 mm inside in the thickness direction from the front and back surfaces of the plate and the center of the plate thickness is preferably 35 HV or less, more preferably 30 HV or less.
  • the hardness at a position 1.0 mm inside the plate thickness direction from the front and back surfaces of the plate and the hardness at the center of the plate thickness is greater.
  • the hardness is measured at a position within 1.0 mm from the surface of the steel plate in the thickness direction and at a position within 1.0 mm from the back surface of the steel plate, and the larger hardness is measured by measuring the hardness at a position within 1.0 mm from the front and back surfaces of the steel plate in the thickness direction. Hardness at the internal position of .0mm.
  • Vickers hardness is measured with a test force of 9.8 N (1 kgf) in accordance with the regulations of JIS Z 2244 (2020). Measure at 10 points each, calculate the average value of 8 points excluding the maximum value and minimum value, and use the average value (total of Vickers hardness of 8 points/8) as the hardness of the test piece.
  • the above-described test piece for microstructure observation is used as the test piece, and the hardness is measured after mirror polishing the steel plate at a position 1.0 mm inside in the thickness direction from the front and back surfaces of the steel plate. Then, the difference (hardness difference) between the hardness of the front and back surfaces of the board and the hardness of the center of the board thickness is calculated.
  • the strength, yield ratio, and toughness (Charpy absorbed energy at -20°C, ductile-brittle transition temperature) targeted by the present invention can be achieved. It becomes possible to obtain a hot-rolled steel sheet having the following properties. Specifically, the hot rolled steel sheet of the present invention has a yield strength of 250 MPa or more, a tensile strength of 400 MPa or more, a yield ratio of 0.75 or less, a Charpy absorbed energy of 100 J or more at -20°C, and a ductility of - The brittle transition temperature can be -20°C or lower.
  • the hot rolled steel sheet of the present invention can be suitably used as a hot rolled steel sheet for low yield ratio square steel pipes, This makes it possible to obtain a square steel pipe with a low yield ratio, which will be described later.
  • the hot rolled steel sheet of the present invention preferably has a thickness of 20 mm or more. Further, the hot rolled steel sheet of the present invention preferably has a thickness of 20 to 32 mm.
  • the method for producing a hot rolled steel sheet of the present invention includes, for example, in a hot rolling process, a steel material having the above-mentioned composition is heated to a heating temperature of 1100°C or more and 1300°C or less, and then a rough rolling end temperature of 850°C. Hot rolling is performed at a temperature of 750° C. or higher and 850° C. or lower, and a total rolling reduction of 40% or higher and 59% or lower at 930° C. or higher.
  • the average cooling rate Vc (°C/s) at the center of the plate thickness and the average cooling rate Vs (°C/s) at the plate surface layer from the plate surface to a depth of 1.0 mm in the thickness direction are as follows (2) Formula and (3) are satisfied, the hot-rolled steel plate is air-cooled for 5 seconds or more from the start of cooling to the stop of cooling, and cooling is performed at a cooling stop temperature of 550°C or more and 680°C or less at the center of the plate thickness, and then, In the winding process, the hot-rolled steel sheet is wound at a center temperature of 550°C or higher and 680°C or lower. 2 ⁇ Vc ⁇ 15 (2) Vs/Vc ⁇ 2.0 (3)
  • °C in relation to temperature refers to the surface temperature of the steel material or steel plate (hot-rolled plate, raw steel plate). These surface temperatures can be measured with a radiation thermometer or the like. Further, the temperature at the center of the thickness of the steel plate can be determined by calculating the temperature distribution within the cross section of the steel plate by heat transfer analysis, and correcting the result based on the surface temperature of the steel plate. Furthermore, “hot-rolled steel sheet” includes hot-rolled steel sheet and hot-rolled steel strip.
  • the method for melting the steel material is not particularly limited, and any known melting method such as a converter, electric furnace, vacuum melting furnace, etc. is suitable.
  • the casting method is not particularly limited, it is manufactured to desired dimensions by a known casting method such as a continuous casting method. It should be noted that there is no problem in applying an ingot-blowing rolling method instead of the continuous casting method.
  • the molten steel may further be subjected to secondary refining such as ladle refining.
  • the obtained steel material (steel slab) is heated at a heating temperature of 1100°C or more and 1300°C or less, and then subjected to rough rolling with a rough rolling end temperature of 850°C or more and 1150°C or less.
  • a hot rolled steel sheet is obtained by performing finish rolling at a finish rolling end temperature of 750° C. or higher and 850° C. or lower, and hot rolling at a total rolling reduction of 40% or higher and 59% or lower at 930° C. or lower.
  • Heating temperature 1100° C. or more and 1300° C. or less If the heating temperature is less than 1100° C., the deformation resistance of the material to be rolled increases and rolling becomes difficult. On the other hand, if the heating temperature exceeds 1300°C, the austenite grains will become coarse and fine austenite grains will not be obtained in subsequent rolling (rough rolling, finish rolling), and the steel structure of the hot rolled steel sheet aimed at in the present invention will not be obtained. It becomes difficult to ensure an average crystal grain size. Further, it becomes difficult to suppress the formation of coarse bainite, and it is difficult to control the area ratio of crystal grains having a crystal grain size of 40.0 ⁇ m or more within the range targeted by the present invention.
  • the heating temperature in the hot rolling process is set to 1100°C or more and 1300°C or less.
  • the heating temperature in the hot rolling step is preferably 1120°C or higher.
  • the heating temperature in the hot rolling step is preferably 1280° C. or lower.
  • the present invention uses a direct delivery method in which the steel slab is charged into a heating furnace as a hot piece without being cooled to room temperature.
  • the energy-saving process of rolling can also be applied without problems.
  • Rough rolling end temperature 850°C or higher and 1150°C or lower If the rough rolling end temperature is lower than 850°C, the surface temperature of the steel plate becomes lower than the ferrite transformation start temperature during the subsequent finish rolling, a large amount of ferrite is generated, and the rolling direction This results in processed ferrite grains that are elongated, causing an increase in the yield ratio. On the other hand, if the rough rolling end temperature exceeds 1150° C., the reduction amount in the austenite non-recrystallization temperature range will be insufficient, and fine austenite grains will not be obtained.
  • the rough rolling end temperature is set to 850°C or more and 1150°C or less.
  • the rough rolling completion temperature is preferably 860°C or higher, more preferably 870°C or higher.
  • the rough rolling end temperature is preferably 1100°C or lower, more preferably 1050°C or lower.
  • Finish rolling end temperature 750°C or more and 850°C or less
  • the steel plate surface temperature becomes the ferrite transformation start temperature or less during finish rolling, and ferrite elongated in the rolling direction is formed, resulting in processing There is a possibility that the performance may decrease.
  • the finish rolling end temperature exceeds 850° C., the reduction amount in the austenite non-recrystallization temperature range will be insufficient, and fine austenite grains will not be obtained. As a result, the crystal grains become coarse, making it difficult to secure the strength targeted by the present invention. Moreover, it becomes difficult to suppress the generation of coarse bainite.
  • the finish rolling end temperature is set to 750°C or more and 850°C or less.
  • the finish rolling end temperature is preferably 770°C or higher, more preferably 780°C or higher.
  • the finish rolling end temperature is preferably 830°C or lower, more preferably 820°C or lower.
  • Total rolling reduction of 930°C or less 40% or more and 59% or less
  • the ferrite and bainite produced in the subsequent cooling process and winding process are refined.
  • the steel structure of the hot-rolled steel sheet having the strength and toughness targeted by the present invention can be obtained.
  • the total rolling reduction exceeds 59%, crystal grains with a large ratio of major axis to minor axis are likely to be produced, resulting in a decrease in toughness.
  • the total rolling reduction rate at 930° C. or lower is set to 59% or lower.
  • the total rolling reduction at 930°C or less is preferably 57% or less, more preferably 55% or less. If the total rolling reduction at 930° C. or less is less than 40%, the crystal grain size of ferrite or bainite becomes large, leading to a decrease in toughness. Therefore, the total rolling reduction rate below 930° C. is set to 40% or more.
  • the total rolling reduction at 930° C. or less is preferably 42% or more, more preferably 45% or more.
  • the reason why the temperature is 930°C or lower is that if the temperature exceeds 930°C, austenite recrystallizes in the rolling process, dislocations introduced by rolling disappear, and fine austenite cannot be obtained.
  • the above-mentioned total rolling reduction is calculated using the following formula using the plate thickness T E (mm) before the start of rolling and the final plate thickness T O (mm) after the end of rolling in a rolling pass in a temperature range of 930°C or less. It can be calculated with.
  • Total rolling reduction rate (%) 100 x (T E - T O )/T E
  • hot rolling may be performed in which the total rolling reduction at 930° C. or lower is 40% or more and 59% or less in both the above-mentioned rough rolling and finish rolling.
  • hot rolling may be performed in which only finish rolling is performed and the total rolling reduction is 40% or more and 59% or less at 930° C. or less. In the latter case, if it is not possible to achieve a total rolling reduction of 40% or more and 59% or less at 930°C or less by finish rolling alone, after cooling the slab to a temperature of 930°C or less during rough rolling, rough rolling is performed.
  • the total rolling reduction ratio at 930° C. or lower in both rolling and finish rolling is 40% or more and 59% or less.
  • the upper limit of the finished plate thickness is not particularly specified, but from the viewpoint of ensuring the necessary rolling reduction and controlling the temperature of the steel plate, the finished plate thickness is preferably 32 mm or less.
  • the hot rolled sheet (raw steel sheet for hot rolled steel sheet, hereinafter also simply referred to as raw steel sheet) is cooled in a cooling step.
  • the average cooling rate Vc to the cooling stop temperature at the center of the plate thickness 2 ° C / s or more and 15 ° C / s or less, to the cooling stop temperature at the plate surface layer from the front and back surfaces of the plate to a depth of 1.0 mm in the thickness direction.
  • the average cooling rate Vs is between Vc and Vs/Vc ⁇ 2.0, and the hot-rolled steel sheet is air-cooled for 5 seconds or more from the start of cooling to the stop of cooling, and the cooling stop temperature at the center of the sheet thickness is Cooling is performed at a temperature of 550°C or more and 680°C or less.
  • Average cooling rate Vc from the start of cooling to the cooling stop temperature (550 to 680°C) at the center of the thickness 2°C/s or more and 15°C/s or less
  • the average cooling rate Vc is preferably 4°C/s or more, more preferably 5°C/s or more. Preferably it is 12°C/s or less, more preferably 10°C/s or less.
  • the average cooling rate Vs (°C/s) from the start of cooling to the cooling stop temperature (550 to 680°C) at the plate surface layer is 2.0 of the average cooling rate Vc (°C/s) from the start of cooling to the cooling stop temperature at the center of the plate thickness. If the ratio exceeds twice that, a large amount of bainite will be generated in the surface layer of the plate, and the steel structure targeted by the present invention will not be obtained, and the desired yield ratio and Charpy absorbed energy will not be obtained.
  • the average cooling rate Vs until cooling stops at the surface layer of the plate is a value greater than or equal to the average cooling rate Vc until cooling stops at the center of the plate thickness. (1.0 ⁇ Vs/Vc).
  • the average cooling rate Vs until the cooling stops in the plate surface layer part the larger value of the average cooling rate at a position 1.0 mm inside from the plate surface or the plate back surface is used.
  • Air-cooling time 5 seconds or more
  • Air cooling time is preferably 10 seconds or more.
  • the upper limit is not particularly defined, if the air cooling time exceeds 100 seconds, the productivity will drop significantly, so the air cooling time is preferably 100 seconds or less. More preferably, it is 90 seconds or less. Note that air cooling is performed between the start of cooling and the stop of cooling. Air cooling is not particularly limited, but refers to cooling at a rate of 0.01 to 0.90° C./s in the surface layer of the plate.
  • Cooling stop temperature 550°C or more and 680°C or less If the cooling stop temperature is less than 550°C at the center of the thickness of the hot rolled sheet (raw steel sheet), the temperature will decrease in the length direction and/or width direction of the hot rolled sheet during cooling. Unevenness tends to occur, and there is a possibility that variations in mechanical properties will occur. On the other hand, if the cooling stop temperature exceeds 680° C. at the thickness center temperature of the hot rolled sheet, the ferrite grains become coarse and the desired average crystal grain size cannot be obtained.
  • the cooling stop temperature is the thickness center temperature of the hot rolled sheet, and is preferably 560°C or higher, more preferably 580°C or higher. Preferably it is 660°C or lower, more preferably 650°C or lower.
  • the average cooling rate is ((temperature of the hot rolled steel sheet before cooling (at the start of cooling) (°C) - temperature of the hot rolled steel sheet up to the cooling stop temperature (550 to 680°C) (°C)) /cooling time (s)), and can be calculated from the temperature distribution in the cross section of the hot rolled steel sheet obtained by heat transfer analysis.
  • the cooling time used in calculating this average cooling rate includes the time during which air cooling is performed. Examples of the cooling method include water cooling such as water injection from a nozzle, cooling by cooling gas injection, and the like. In the present invention, it is preferable to perform a cooling operation (treatment) on both sides of the hot-rolled sheet so that both sides of the hot-rolled sheet are cooled under the same conditions.
  • the amount and pressure of cooling water or cooling gas, the injection time and angle, the conveyance speed of the hot rolled steel sheet, etc. are adjusted. If cooling water or cooling gas is constantly injected at a specific position on the surface of a hot-rolled steel sheet, or if a large amount of cooling water or cooling gas is instantaneously injected onto the surface of a hot-rolled steel sheet, the surface of the steel sheet will be rapidly cooled, and the surface layer of the sheet will be The difference in cooling rate between the thickness of the plate and the center of the thickness becomes large.
  • the hot-rolled steel sheet is wound up in a winding process, and then left to cool.
  • the hot rolled steel sheet is wound at a winding temperature of 550° C. or higher and 680° C. or lower at the thickness center temperature of the hot rolled steel sheet. If the coiling temperature is less than 550° C., a large amount of upper bainite is generated on the surface of the steel sheet, and the area ratio may exceed 5%. If the winding temperature exceeds 680° C., the ferrite grains become coarse and the desired crystal grain size cannot be obtained.
  • the winding temperature is more preferably 570°C or higher, even more preferably 580°C or higher. Further, the winding temperature is more preferably 660°C or lower, even more preferably 650°C or lower.
  • the square steel pipe of the present invention is made from the hot rolled steel plate of the present invention.
  • the square steel pipe of the present invention has a yield strength of 295 MPa or more, a tensile strength of 400 MPa or more, and a low yield ratio of 0.90 or less in the flat plate part in the tube axis direction, and the test temperature: It can have low-temperature toughness such that the absorbed energy in the Charpy impact test at -20°C is 40 J or more and the ductile-brittle transition temperature is -5°C or lower, for example, in cold regions where the temperature is below freezing. It can be suitably used as a structural member of buildings in low-temperature environments such as
  • a hot-rolled steel plate is roll-formed into a cylindrical open pipe (round steel pipe), and the butt portions are electrical resistance welded. Thereafter, the round steel tube is compressed by several percent in the axial direction of the tube using rolls placed on the top, bottom, left and right of the tube, and is formed into a square shape to obtain a square steel tube.
  • the round steel pipe is formed by a roll forming method using rolls. It is formed into a square shape to produce square steel pipes.
  • a large processing strain is introduced in the pipe axial direction, so there is a problem that the yield ratio in the pipe axial direction tends to increase and the toughness tends to decrease.
  • the rectangular steel pipe of the present invention is made of the hot-rolled steel sheet of the present invention, an increase in the yield ratio, etc. is suppressed, and even if the square steel pipe is thick-walled, for example, 20 mm or more, the yield ratio is low. In addition, it can have low-temperature toughness.
  • the square steel pipe in the present invention is limited to a square steel pipe in which all the side lengths are equal (the value of (long side length / short side length) is 1.0) when viewed in a vertical cross-sectional view in the pipe axis direction. It also includes square steel pipes in which the value of (long side length/short side length) exceeds 1.0. However, if the value of (long side length/short side length) of the square steel pipe exceeds 2.5, local buckling tends to occur on the long side side, and the compressive strength in the tube axis direction decreases. Therefore, the value of (long side length/short side length) of the square steel pipe is preferably 1.0 or more and 2.5 or less. The value of (long side length/short side length) is more preferably 1.0 or more and 2.0 or less.
  • the square steel pipe of the present invention is manufactured.
  • the yield strength of the flat plate part is 295 MPa or more
  • the tensile strength of the flat plate part is 400 MPa or more
  • the yield ratio of the flat plate part is 0.90 or less
  • the Charpy absorbed energy at -20°C of the flat plate part is 40 J or more
  • the flat plate part has a yield strength of 295 MPa or more.
  • a square steel pipe with a ductile-brittle transition temperature of -5°C or lower can be obtained. Since the square steel pipe of the present invention has a ductile-brittle transition temperature of less than 0° C., it can be suitably used as a structural member of buildings in cold regions where the temperature is below freezing.
  • FIG. 1 is a schematic diagram showing an example of the architectural structure of the present invention.
  • the building structure of the present invention uses the above-described square steel pipe (low yield ratio square steel pipe) 1 of the present invention as a column material.
  • Reference numerals 4, 5, 6, and 7 respectively indicate a girder, a small beam, a diaphragm, and a stud.
  • the square steel pipe of the present invention has excellent mechanical properties in the flat plate portion. Therefore, the building structure of the present invention using this square steel pipe as a column material exhibits excellent seismic performance.
  • Molten steel having the composition shown in Table 1 was cast into a slab.
  • the obtained slabs were subjected to a hot rolling process, a cooling process, and a winding process under the conditions shown in Table 2 to obtain hot rolled steel sheets.
  • a pipe-making process in the pipe-making process described below was performed. Note that the total rolling reduction of 930° C. or less specified in the hot rolling process is the total rolling reduction of only finish rolling.
  • the obtained hot rolled steel plate was formed into a cylindrical round steel tube by roll forming, and the butt portions were welded by electric resistance welding. Thereafter, the round steel pipe is formed into a square shape (square shape when viewed in vertical cross section in the direction of the pipe axis) using rolls placed on the top, bottom, left and right sides of the round steel pipe, and has a corner part and a flat plate part, and has the side length (mm) and thickness shown in Table 4. A roll-formed square steel pipe with a thickness (mm) was obtained.
  • test piece was taken from the obtained hot-rolled steel sheet and subjected to the following microstructure observation, hardness measurement, tensile test, and Charpy impact test.
  • test pieces for microstructural observation were placed at the center of the hot rolled steel sheet in the width direction and at the thickness t/2 (t: thickness) (the center of the sheet thickness in the present invention) and at the back side of the steel sheet (heated The sample was taken from the position of the lower surface during inter-rolling.
  • the structure of the steel plate surface (upper surface during hot rolling) and the steel plate back surface (lower surface during hot rolling) is the same, and a specimen for microstructure observation may be taken from either the front or back surface of the steel plate, but here, The location of specimens for microstructural observation was unified at the back surface of the steel plate (lower surface during hot rolling).
  • the observation surface was made to be a vertical cross section parallel to the rolling direction during hot rolling (a cross section in which the normal direction of the observation surface is the sheet width direction), and after polishing, nital corrosion was performed.
  • which of the two sides of the final steel sheet is the back side is determined by winding after cooling so that the hot-rolled surface side (top side) is the outside of the hot-rolled coil.
  • an arc-shaped steel plate is obtained. Therefore, the outside and inside of the hot-rolled coil can be determined from the shape of the arc-shaped steel plate, and the front and back surfaces at the time of rolling can be determined. was identified.
  • Microstructure observation was performed using an optical microscope (magnification: 1000x) or a scanning electron microscope (SEM, magnification: 1000x) at the thickness t/2 position (center of thickness) of the hot rolled steel sheet and the back surface of the steel sheet (plate thickness center). The tissues on the front and back surfaces were observed and images were taken. The area ratios of ferrite, pearlite, pseudo pearlite, and upper bainite were determined from the obtained optical microscope images and SEM images.
  • the area ratio of each tissue was observed in 5 fields of view and calculated as the average value of the values obtained in each field of view.
  • the area ratio obtained by tissue observation was defined as the area ratio of each tissue.
  • the area ratio of ferrite, pearlite, pseudo pearlite, and upper bainite is calculated by calculating the area of each phase by distinguishing each phase by the shape and color shown below using an optical microscope image or SEM image.
  • the area ratio of each phase was calculated by dividing by the total area of the image.
  • ferrite is a product of diffusion transformation, and exhibits a nearly recovered structure with a low dislocation density.
  • This includes polygonal ferrite and pseudopolygonal ferrite.
  • Pearlite is a structure in which cementite and ferrite are arranged in layers
  • pseudo-pearlite is a structure in which cementite arranged in dots in ferrite is confirmed.
  • upper bainite is a multi-phase structure of lath-like ferrite and cementite with a high dislocation density.
  • ferrite is white
  • pearlite is black
  • pseudo pearlite is black or gray
  • upper bainite is white or gray.
  • the average crystal grain size (average equivalent circular diameter) was measured using the SEM/EBSD method at the plate thickness t/2 position (plate thickness center).
  • the crystal grain size was determined by determining the orientation difference between adjacent crystal grains, and measuring the boundary where the orientation difference was 15° or more as a grain boundary.
  • the grain size (equivalent circle diameter) of each crystal grain was calculated from the obtained grain boundaries, and the arithmetic mean thereof was determined to be the average grain size (average equivalent circle diameter).
  • the area of crystal grains with an equivalent circle diameter of 40.0 ⁇ m or more can be calculated.
  • the rate was calculated.
  • the major axis and minor axis can be calculated.
  • the number of crystal grains having a diameter ratio of 3.0 or more was calculated.
  • those with a crystal grain size of less than 2.0 ⁇ m were excluded from the analysis target as measurement noise.
  • the larger hardness is taken as the hardness at a position 1.0 mm inside in the thickness direction from the front and back surfaces of the steel plate.
  • the difference (hardness difference) between the hardness at a position 1.0 mm inside in the thickness direction from the front and back surfaces of the steel plate and the hardness at the center of the thickness was calculated.
  • test pieces were taken from the obtained square steel pipe (roll-formed square steel pipe) and subjected to the following tensile test and Charpy impact test.
  • FIG. 2 is a schematic diagram showing the sampling positions of the tensile test pieces of the flat plate portion.
  • JIS No. 5 tensile test pieces were taken from the flat plate part of the square steel pipe so that the tensile direction was parallel to the pipe axis direction.
  • a tensile test was conducted on the sampled tensile test piece in accordance with the provisions of JIS Z 2241 (2011), and the yield strength YS and tensile strength TS were measured. The ratio was calculated.
  • the tensile test piece of the flat plate part was taken from the center of the width of the flat plate part (see symbol X in Figure 2) at the 3 o'clock side when the welded part of the square steel pipe is in the 12 o'clock direction. .
  • the number of test pieces was two each, and their average values were calculated to determine YS, TS, and yield ratio.
  • FIG. 3 is a schematic diagram showing the sampling positions of Charpy test pieces.
  • the Charpy impact test as shown in Figure 3, samples were taken from a flat plate part of a square steel pipe at a position t/4 of the wall thickness t from the outside surface of the square steel pipe, with the longitudinal direction of the specimen parallel to the pipe axis direction.
  • a V-notch standard test piece conforming to the provisions of JIS Z 2242 (2016) was used (see symbol Y in FIG. 3).
  • Charpy impact tests were conducted at test temperatures of -60°C, -40°C, -20°C, 0°C, and +20°C in accordance with the provisions of JIS Z 2242 (2018).
  • the number of test pieces was three at each test temperature, and the average value (J) of the ductile-brittle transition temperature and absorbed energy was determined.
  • steel No. 1 to 20 are examples of the present invention, and steel No. 1 to 20 are examples of the present invention.
  • Nos. 21 to 45 are comparative examples.
  • the hot-rolled steel sheets of the examples of the present invention each have a steel structure in the center of the thickness and the surface of the plate that is pearlite and pseudo-pearlite with a total area ratio of 6 to 25%, and area ratio of 5% or less. If a region containing upper bainite and surrounded by boundaries with an orientation difference of 15° or more between adjacent crystals at the center of the plate thickness is defined as a crystal grain, the average crystal grain size of the steel structure at the center of the plate thickness is 10.
  • the number of crystal grains was 30 pieces/mm 2 or less, and the difference in hardness between the steel plate surface and the center of the plate thickness was 40 HV or less. Further, the yield strength was 250 MPa or more, the tensile strength was 400 MPa or more, the yield ratio was 0.75 or less, the Charpy absorbed energy at -20°C was 100 J or more, and the ductile-brittle transition temperature was -20°C or less.
  • all of the square steel pipes manufactured using the hot rolled steel sheets of the examples of the present invention have a yield strength of 295 MPa or more in the flat plate part, a tensile strength of 400 MPa or more in the flat plate part, and a yield ratio in the flat plate part. was 0.90 or less, the Charpy absorbed energy at -20°C of the flat plate part was 40 J or more, and the ductile-brittle transition temperature of the flat plate part was -5°C or less.
  • the slab heating temperature exceeds the range of the present invention, the crystal grains become coarse, the average crystal grain size exceeds 30.0 ⁇ m, and the crystal grain size (circular equivalent diameter) is 40.0 ⁇ m or more.
  • the area ratio of crystal grains exceeded 20%.
  • the yield strength, tensile strength, Charpy absorbed energy at -20°C and ductile-brittle transition temperature did not reach the desired values.
  • Comparative example No. Steel No. 41 had a cooling stop temperature and a coiling temperature below the range of the present invention, so the area ratio of upper bainite was more than 5%. As a result, the hardness difference exceeded 40 HV, and the yield ratio did not reach the desired value.
  • Comparative example No. Steel No. 42 (Steel C) had an average grain size of more than 30.0 ⁇ m because the cooling stop temperature and coiling temperature exceeded the range of the present invention. As a result, the yield strength, tensile strength, Charpy absorbed energy at -20°C and ductile-brittle transition temperature did not reach the desired values.
  • the average cooling rate Vc at the center of the plate thickness was below the range of the present invention, so the average crystal grain size exceeded 30.0 ⁇ m, and the area ratio with grain sizes of 40.0 ⁇ m or more exceeded 20%.
  • the total area ratio of pearlite and pseudo-pearlite in the center of the plate thickness was less than 6%, and the yield strength, tensile strength, Charpy absorbed energy at -20°C, and ductile-brittle transition temperature did not reach the desired values. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

強度および低温靱性に優れた熱延鋼板、角形鋼管、それらの製造方法および建築構造物を提供する。 所定の成分組成を有し、板厚中心部および板表裏面の鋼組織が、フェライトからなる主相と、パーライトおよび擬似パーライトの合計の面積率が6~25%、上部ベイナイトの面積率が5%以下である第二相とを有し、板厚中心部において隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、板厚中央部の鋼組織の平均結晶粒径が10.0~30.0μm、円相当径で40.0μm以上の結晶粒が面積率で20%以下、且つ、長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の個数が30個/mm2以下であり、鋼板表裏面から板厚方向に1.0mm内部の位置と板厚中心部の硬度差が40HV以下である。

Description

熱延鋼板、角形鋼管、それらの製造方法および建築構造物
 本発明は、熱延鋼板、および、該熱延鋼板を素材とし冷間でロール成形により製造される角形鋼管(角コラム)に関する。特に大型建築物の建築構造部材に好適に用いられる角形鋼管に関する。さらに、この角形鋼管を用いて得られる建築構造物に関する。
 近年、例えば、工場、倉庫、商業施設などの大型建築物(以下、建築物と称する)に用いられる建築構造部材は、軽量化による施工コスト削減のため、高強度化が進んでいる。特に、建築物の柱材として用いられる平板部と角部を有する角形鋼管(角コラム)では、平板部に高い強度が求められている。同時に、建築構造部材に用いられる角形鋼管は、耐震性の観点から、優れた靱性を備えることも求められる。
 角形鋼管は、一般に熱延鋼板(熱延鋼帯)または厚鋼板を素材とし、この素材を冷間で成形することにより製造される。冷間で成形する方法としては、冷間でプレス曲げ成形する方法あるいは冷間でロール成形する方法がある。
 素材をロール成形して製造される角形鋼管(以下、ロール成形角形鋼管と称する場合もある)は、熱延鋼板を冷間でロール成形して円筒状のオープン管とし、その突合せ部分を電縫溶接する。その後、オープン管の上下左右に配置されたロールにより、円筒状のオープン管(丸形鋼管)に対して管軸方向に数%の絞りを加え、続けて角形に成形して角形鋼管を製造する。一方、素材をプレス曲げ成形して製造される角形鋼管(以下、プレス成形角形鋼管と称する場合もある)は、厚鋼板を冷間でプレス曲げ成形して断面形状をロの字型(四角形状)あるいはコの字型(U字形状)とし、これらをサブマージアーク溶接により接合して製造する。
 ロール成形角形鋼管の製造方法は、プレス成形角形鋼管の製造方法と比較して生産性が高く、短期間での製造が可能であるという利点がある。しかし、プレス成形角形鋼管では、平板部には冷間成形が加わらず角部のみが加工硬化するのに対し、ロール成形角形鋼管では、特に円筒状に冷間成形する際に鋼管全周にわたり管軸方向に大きな加工ひずみが導入される。そのため、ロール成形角形鋼管は角部だけでなく平板部においても管軸方向の降伏比が高く、靱性が低いという問題がある。
 さらに、ロール成形角形鋼管は、肉厚が大きいほどロール成形時の加工硬化が大きくなるため、降伏比はより高くなり、靱性はより低下する。そのため、特に厚肉のロール成形角形鋼管を製造する場合には、ロール成形による降伏比の上昇および靱性の低下にも耐えうるような素材を選択する必要がある。
 このような要求に対し、例えば、特許文献1には、重量%で、Cを0.20%以下含有し、さらにMn:0.40~0.90%、Nb:0.005~0.040%およびTi:0.005~0.050%のうち1種または2種を含有する鋼素材を、未再結晶温度域における圧下率55%以上、圧延終了温度730~830℃、巻取り温度550℃以下の熱延によりコイルとする熱延工程により、鋼管成形工程における外周長絞りを板厚の3倍以下とすることで、降伏比が90%以下で試験温度0℃におけるシャルピー吸収エネルギーが27J以上である角形鋼管が提案されている。
 特許文献2には、質量%で、C:0.07~0.18%、Mn:0.3~1.5%を含む鋼を、加熱温度:1100~1300℃に加熱したのち、粗圧延終了温度:1150~950℃とする粗圧延と仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施したあと、表面温度で冷却停止温度が550℃以上となるように冷却する一次冷却と、3~15s間空冷する二次冷却と、板厚中央部温度で750~650℃の温度域の平均冷却速度が4~15℃/sとなる冷却速度で650℃以下まで冷却する三次冷却を施し、鋼組織に含まれる第二相頻度の値を0.20~0.42とすることによって、80%以下の低降伏比を示し試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備する角形鋼管が提案されている。
 特許文献3には、質量%で、C:0.07~0.18%、Mn:0.3~1.5%を含む鋼を、加熱温度:1100~1300℃に加熱したのち、次いで粗圧延終了温度:1150~950℃とする粗圧延と仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施したあと、表面温度で750~650℃の温度域の平均冷却速度が20℃/s以下、板厚中心部温度が650℃に到達するまでの時間が35s以内でかつ板厚中心部の750~650℃の温度域の平均冷却速度が4~15℃/sとなるように、500~650℃の巻取温度まで冷却することで、80%以下の低降伏比を示し試験温度:0℃でシャルピー衝撃試験の吸収エネルギーが150J以上の機械的特性を具備する角形鋼管が提案されている。
 特許文献4には、質量%で、C:0.07~0.20%、Mn:0.3~2.0%、P:0.03%以下、S:0.015%以下、Al:0.01~0.06%、N:0.006%以下を含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼を、加熱温度:1100~1300℃に加熱した後、次いで粗圧延終了温度:1150~950℃とする粗圧延と仕上圧延開始温度:1100~850℃、仕上圧延終了温度:900~750℃とする仕上圧延を施したあと、板厚中心温度で冷却開始から冷却停止までの平均冷却速度が4~25℃/sとなる冷却速度で冷却停止温度:580℃以下まで冷却を施し、冷却開始から10s間である初期冷却工程において0.2s以上3.0s未満の放冷工程を1回以上有し、その後巻取温度:580℃以下で巻取りを行ったあと、放冷することで板厚中心部の鋼組織が、フェライトからなる主相と、パーライト、擬似パーライトおよび上部ベイナイトから選択される1種または2種以上からなり面積率が8~20%である第二相とを有し、主相と第二相とを含む鋼組織の平均結晶粒径が7~20μmであり、板厚表裏面の鋼組織が、フェライト単相またはベイニティックフェライト単相であり、平均結晶粒径が2~20μmとなり、90%以下の低降伏比を示し、試験温度:0℃でのシャルピー衝撃試験の吸収エネルギーが27J以上の機械的特性を具備する角形鋼管が提案されている。
特開平9-87743号公報 特許第5594165号公報 特許第5589885号公報 特許第6388091号公報
 ここで、冷間でのロール成形により製造される角形鋼管は、その肉厚が大きくなるほど、または、辺の長さが小さくなるほど角形鋼管に導入される加工歪が増加し、降伏比の上昇と靭性の低下がより大きくなる。そのため、素材となる熱延鋼板には、成形時の降伏比の上昇を抑制する鋼組織と、大きな加工歪による靭性の悪化に耐えうる優れた低温靭性を具備することが必要となる。しかし、上記の特許文献1~3で開示された方法で製造される角形鋼管では、特に板厚が25mmを超える場合に、降伏比が高くなってしまい降伏比90%以下を満足できないという問題がある。
 特許文献4に記載の技術では、低降伏比および高靱性を得るためには、板表裏面の鋼組織がフェライト単相またはベイニティックフェライト単相である必要があり、パーライトや擬似パーライトの生成を抑制するため、熱延鋼板を製造する際の冷却工程で急冷する等、製造可能な設備や条件が制約されるという課題がある。
 本発明は、上記の課題を鑑みてなされたものであり、降伏強度および引張強度が高く、降伏比が低く、低温靭性に優れた熱延鋼板、該熱延鋼板を用いた角形鋼管、それらの製造方法および前記角形鋼管を用いた建築構造物を提供することを目的とする。
 ここで、(1)降伏強度が高いこと、(2)引張強度が高いこと、(3)降伏比が低いこととは、引張方向が圧延方向と平行になるように採取したJIS5号引張試験片を用い、JIS Z 2241(2011)の規定に準拠した引張試験により、順に、(1)降伏強度が250MPa以上であること、(2)引張強度が400MPa以上であること、(3)降伏比が0.75以下であることを指す。
 また、低温靭性に優れるとは、JIS Z 2242(2018)の規定に準拠し、板厚tのt/2位置(板厚中心部)において、試験片長手方向が圧延方向と平行となるように採取したVノッチ標準試験片を用い、試験温度:-80℃、-60℃、-40℃、-20℃、0℃でシャルピー衝撃試験を行い、-20℃におけるシャルピー吸収エネルギーが100J以上、延性-脆性遷移温度が-20℃以下であることを指す。
 また、本発明における角形鋼管とは、引張方向が管軸方向と平行になるように、採取したJIS5号引張試験片を用い、JIS Z 2241(2011)の規定に準拠した引張試験により、平板部における降伏強度が295MPa以上であり、平板部における引張強度が400MPa以上であり、平板部における降伏比が0.90以下であること、さらに、JIS Z 2242(2018)の規定に準拠し、管外面から肉厚tのt/4位置において、試験片長手方向が管軸方向と平行となるように採取したVノッチ標準試験片を用い、試験温度:-60℃、-40℃、-20℃、0℃、+20℃でシャルピー衝撃試験を行い、平板部の-20℃におけるシャルピー吸収エネルギーが40J以上であり、平板部の延性-脆性遷移温度が-5℃以下である角形鋼管を指す。
 本発明者らは上記課題を解決すべく鋭意検討を行った。その結果、以下の知見(1)~(3)を得た。
 (1)熱延鋼板が、本発明で目的とする降伏強度および引張強度を満足するためには、Cの含有量を0.07質量%以上とする必要がある。さらに、熱延鋼板の板厚中心部および板表裏面における主体組織(主相)をフェライトとする必要がある。
 (2)熱延鋼板が、上記(1)を満足する鋼組織において、さらに本発明で目的とする低温靱性と降伏比を得るためには、上記(1)に加えて、パーライト、擬似パーライトおよびベイナイトから選択される1種または2種以上からなる第二相を有し、パーライトおよび擬似パーライトの合計の面積率を6~25%、上部ベイナイトの面積率を5%以下とし、板厚中心部において、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、主相と第二相とを含む鋼組織の平均結晶粒径が10.0~30.0μm、円相当径で40.0μm以上の結晶粒が面積率で20%以下、且つ、長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の個数が30個/mm以下であり、板表裏面から板厚方向に1.0mm内部の位置と板厚中心部の硬度差を40HV以下とすることが必要である。
 (3)上記の鋼組織を得るためには、成分組成を適切な範囲に調整し、且つ、MnとSiの含有量を特定の範囲に制御すること、さらに熱間圧延工程後の冷却工程における冷却停止温度および巻取温度を適切な範囲に調整することが必要である。
 本発明は、これらの知見に基づいて完成されたものであり、下記の要旨からなる。
[1]質量%で、
C :0.07%以上0.20%以下、
Si:0.40%以下、
Mn:0.20%以上1.00%以下、
P :0.100%以下、
S :0.050%以下、
Al:0.005%以上0.100%以下、
N :0.0100%以下、
を含有し、
あるいはさらに、
Nb:0.005%以上0.020%以下、
Ti:0.005%以上0.020%以下、
V:0.01%以上0.10%以下、
Cr:0.01%以上0.50%以下、
Mo:0.01%以上0.50%以下、
Cu:0.01%以上0.30%以下、
Ni:0.01%以上0.30%以下、
Ca:0.0005%以上0.0100%以下、
B:0.0003%以上0.0100%以下
のうちから選ばれた1種または2種以上を含有し、
MnとSiの含有量が下記(1)式を満足し、
残部がFeおよび不可避的不純物からなる成分組成を有し、
板厚中心部および板表裏面の鋼組織が、
フェライトからなる主相と、パーライトおよび擬似パーライトの合計の面積率が6~25%であり、上部ベイナイトの面積率が5%以下である第二相とを有し、
前記板厚中心部において、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
前記板厚中心部の前記鋼組織の平均結晶粒径が10.0~30.0μmであり、
円相当径で40.0μm以上の前記結晶粒が面積率で20%以下であり、且つ、
短径に対する長径の比である(長径)/(短径)が3.0以上である前記結晶粒の個数が30個/mm以下であり、
板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差が40HV以下である、熱延鋼板。
1.0≦%Mn/%Si≦3.5      ・・・(1)
ここで、%Mn、%Siは各元素の含有量(質量%)である。
[2]降伏強度が250MPa以上であり、
引張強度が400MPa以上であり、
降伏比が0.75以下であり、
-20℃におけるシャルピー吸収エネルギーが100J以上であり、
延性-脆性遷移温度が-20℃以下である、前記[1]に記載の熱延鋼板。
[3]前記鋼組織は、面積率で、前記擬似パーライトを5~15%有する、前記[1]または[2]に記載の熱延鋼板。
[4]板厚が20mm以上である、前記[1]~[3]のいずれかに記載の熱延鋼板。
[5]前記[1]~[4]のいずれかに記載の熱延鋼板の製造方法であって、
鋼素材を、加熱温度:1100℃以上1300℃以下で加熱した後、
粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:40%以上59%以下である熱間圧延を施す熱間圧延工程と、
次いで、板厚中心部の平均冷却速度Vc(℃/s)および板表裏面から厚み方向1.0mm深さまでの板表層部の平均冷却速度Vs(℃/s)について、下記(2)式および(3)式を満足し、
冷却開始から冷却停止までの間に熱延鋼板を5秒以上空冷し、板厚中心部の冷却停止温度:550℃以上680℃以下で冷却を施す冷却工程と、
次いで、板厚中心温度:550℃以上680℃以下で巻取る巻取工程と、を含む、熱延鋼板の製造方法。
2≦Vc≦15     ・・・(2)
Vs/Vc≦2.0   ・・・(3)
[6]前記[1]~[4]のいずれかに記載の熱延鋼板を素材とする、角形鋼管。
[7]前記[1]~[4]のいずれかに記載の熱延鋼板を冷間でロール成形することにより角形鋼管を得る、角形鋼管の製造方法。
[8]前記[6]に記載の角形鋼管が柱材として用いられる建築構造物。
 本発明によれば、降伏強度および引張強度が高く、降伏比が低く、低温靭性に優れた熱延鋼板、該熱延鋼板を用いた角形鋼管、それらの製造方法および前記角形鋼管を用いた建築構造物が提供される。
図1は、本発明の角形鋼管を使用した建築構造物の一例を模式的に示す斜視図である。 図2は、本発明で実施した平板部引張試験片の採取位置を示す概略図である。 図3は、本発明で実施したシャルピー試験片の採取位置を示す概略図である。
 以下、本発明について詳細に説明する。
 <熱延鋼板>
 本発明の熱延鋼板は、質量%で、C:0.07%以上0.20%以下、Si:0.40%以下、Mn:0.20%以上1.00%以下、P:0.100%以下、S:0.050%以下、Al:0.005%以上0.100%以下、N:0.0100%以下を含有し、MnとSiの含有量が下記(1)式を満足し、残部がFeおよび不可避的不純物からなる成分組成を有し、板厚中心部および板表裏面の鋼組織が、フェライトからなる主相と、パーライトおよび擬似パーライトの合計の面積率が6~25%であり、上部ベイナイトの面積率が5%以下である第二相とを有し、板厚中心部において、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、前記板厚中心部の鋼組織の平均結晶粒径が10.0~30.0μmであり、円相当径で40.0μm以上の前記結晶粒が板厚中心部における鋼組織全体に対して面積率で20%以下であり、且つ、短径に対する長径の比(長径と短径の比(=(長径)/(短径))が3.0以上である結晶粒の個数が30個/mm以下であり、板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差が40HV以下であることを特徴とする。なお、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。
1.0≦%Mn/%Si≦3.5      ・・・(1)
ここで、%Mn、%Siは各元素の含有量(質量%)である。
 以下に、本発明の熱延鋼板の成分組成について説明する。なお、特に断りがない限り、鋼組成を示す「%」は「質量%」である。
 C:0.07%以上0.20%以下
 Cは固溶強化により鋼の強度を上昇させる元素である。また、Cは、第二相の一つであるパーライトおよび擬似パーライトの形成に寄与する元素である。本発明で目的とする強度および降伏比を確保するためには、0.07%以上のCを含有することが必要である。しかしながら、C含有量が0.20%を超えると、硬質相の割合が高くなり靱性が低下し、また降伏比が0.90を超え所望の降伏比が得られなくなる。また、溶接性も悪化する。このため、C含有量は0.07%以上0.20%以下とする。C含有量は、好ましくは0.08%以上であり、より好ましくは0.10%以上である。また、C含有量は、好ましくは0.18%以下であり、より好ましくは0.17%以下である。
 Si:0.40%以下
 Siは固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。このような効果を得るためには、0.01%以上のSiを含有することが望ましい。しかし、Si含有量が0.40%を超えると、電縫溶接部に酸化物が生成しやすくなり、溶接部特性が低下する。また電縫溶接部以外の母材部の靱性も低下する。このため、Si含有量は0.40%以下とする。Si含有量は、好ましくは0.01%以上であり、より好ましくは0.05%以上である。また、Si含有量は、好ましくは0.37%以下であり、より好ましくは0.35%以下である。
 Mn:0.20%以上1.00%以下
 Mnは固溶強化により鋼の強度を上昇させる元素である。また、Mnはフェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。本発明で目的とする強度および組織を確保するためには、0.20%以上のMnを含有することが必要である。しかしながら、Mn含有量が1.00%を超えると、ベイナイトの生成量が多くなりすぎることで降伏比が0.90を超え、所望の降伏比が得られなくなる。また、Mn含有量が1.00%を超えると、中心偏析部の硬度が上昇し、溶接時に割れの原因となる可能性が有る。このため、Mn含有量は0.20%以上1.00%以下とする。Mn含有量は、好ましくは0.25%以上であり、より好ましくは0.30%以上である。また、Mn含有量は、好ましくは0.95%以下であり、より好ましくは0.90%以下である。
 P:0.100%以下
 Pは、粒界に偏析し材料の不均質を招くため、不可避的不純物としてできるだけ低減することが好ましいが、0.100%までは許容できる。このため、P含有量は0.100%以下の範囲内とする。P含有量は、好ましくは0.030%以下であり、より好ましくは0.020%以下である。なお、特にPの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Pは0.002%以上とすることが好ましい。
 S:0.050%以下
 Sは、鋼中では通常、MnSとして存在するが、MnSは、熱間圧延工程で薄く延伸され、延性に悪影響を及ぼす。このため、本発明ではSをできるだけ低減することが好ましいが、0.050%までは許容できる。このため、S含有量は0.050%以下とする。S含有量は、好ましくは0.015%以下であり、より好ましくは0.010%以下であり、より一層好ましくは0.008%以下である。なお、特にSの下限は規定しないが、過度の低減は製錬コストの高騰を招くため、Sは0.001%以上とすることが好ましい。
 Al:0.005%以上0.100%以下
 Alは、強力な脱酸剤として作用する元素である。このような効果を得るためには、0.005%以上のAlを含有することが必要である。しかし、Al含有量が0.100%を超えると溶接性が悪化するとともに、アルミナ系介在物が多くなり、表面性状が悪化する。また溶接部の靱性も低下する。このため、Al含有量は0.005%以上0.100%以下とする。Al含有量は、好ましくは0.010%以上であり、より好ましくは0.015%以上である。また、Al含有量は、好ましくは0.070%以下であり、より好ましくは0.050%以下である。
 N:0.0100%以下
 Nは、不可避的不純物であり、転位の運動を強固に固着することで靭性を低下させる作用を有する元素である。本発明では、Nは不純物としてできるだけ低減することが望ましいが、Nの含有量は0.0100%までは許容できる。このため、N含有量は0.0100%以下とする。N含有量は、好ましくは0.0080%以下であり、より好ましくは0.0040%以下であり、より一層好ましくは0.0035%以下である。なお、過度の低減は製錬コストの高騰を招くため、N含有量は0.0010%以上とすることが好ましく、0.0015%以上とすることがより好ましい。
 1.0≦%Mn/%Si≦3.5      ・・・(1)
ここで、%Mn、%Siは各元素の含有量(質量%)である。
 本発明では、MnとSiの含有量を前述した範囲とし、さらに、(1)式として1.0≦%Mn/%Si≦3.5を満足することが必要である。本関係式を満足することで、後述するような、パーライトおよび/または擬似パーライトの面積率が6~25%、上部ベイナイトの面積率が5%以下である第二相を有した鋼組織を得ることが可能となり、本発明で目的とする強度、降伏比、シャルピー吸収エネルギー、延性-脆性遷移温度を得ることができる。%Mn/%Siは、好ましくは、1.2以上であり、より好ましくは1.4以上である。また、%Mn/%Siは、好ましくは、3.2以下であり、より好ましくは3.0以下である。
 残部はFeおよび不可避的不純物である。ただし、本発明の効果を損なわない範囲においては、O(酸素)を0.005%以下含有することを拒むものではない。
 また、後述する任意元素となるNb、Ti、V、Cr、Mo、Cu、Ni、Ca、Bについて、Nb:0%超0.005%未満、Ti:0%超0.005%未満、V:0%超0.01%未満、Cr:0%超0.01%未満、Mo:0%超0.01%未満、Cu:0%超0.01%未満、Ni:0%超0.01%未満、Ca:0%超0.0005%未満、B:0%超0.0003%未満を不可避的不純物として扱う。
 上記の成分が本発明における熱延鋼板の基本の成分組成である。上記した必須元素で本発明で目的とする特性は得られるが、必要に応じて下記の元素を含有することができる。
 Nb:0.005%以上0.020%以下、Ti:0.005%以上0.020%以下、V:0.01%以上0.10%以下、Cr:0.01%以上0.50%以下、Mo:0.01%以上0.50%以下、Cu:0.01%以上0.30%以下、Ni:0.01%以上0.30%以下、Ca:0.0005%以上0.0100%以下、B:0.0003%以上0.0100%以下のうちから選ばれた1種または2種以上
 Nb:0.005%以上0.020%以下、Ti:0.005%以上0.020%以下
 NbおよびTiは鋼中で微細な炭化物、窒化物を形成し、析出強化を通じて鋼の強度向上に寄与する元素である。このような効果を得るため、Nbを含有する場合、Nbを0.005%以上含有する。また、Tiを含有する場合、Tiを0.005%以上含有する。
一方、Nb、Tiのそれぞれについて、0.020%を超える含有は、粗大な炭化物、窒化物が形成され、靱性の低下を招く恐れがある。このため、Nbを含有する場合、Nbの含有量は0.005%以上0.020%以下とし、Tiを含有する場合、Tiの含有量は0.005%以上0.020%以下とする。Nb、Tiのそれぞれについて、好ましくは0.007%以上であり、より好ましくは0.009%以上である。また、Nb、Tiのそれぞれについて、好ましくは0.018%以下であり、より好ましくは0.016%以下である。
 V:0.01%以上0.10%以下、Cr:0.01%以上0.50%以下、Mo:0.01%以上0.50%以下
 V、Cr、Moは、鋼の焼入れ性を高め、鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るために、V、Cr、Moを含有する場合には、V含有量は0.01%以上とし、Cr含有量は0.01%以上とし、Mo含有量は0.01%以上とする。好ましくは、V含有量は0.02%以上であり、Cr含有量は0.05%以上、Mo含有量は0.05%以上であり、より好ましくは、V含有量は0.03%以上であり、Cr含有量は0.08%以上であり、Mo含有量は0.08%以上である。
一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、V、Cr、Moを含有する場合には、それぞれV含有量は0.10%以下とし、Cr含有量は0.50%以下とし、Mo含有量は0.50%以下とする。好ましくは、V含有量は0.08%以下であり、Cr含有量は0.40%以下であり、Mo含有量は0.40%以下であり、より好ましくは、V含有量は0.07%以下であり、Cr含有量は0.35%以下であり、Mo含有量は0.35%以下である。
 Cu:0.01%以上0.30%以下、Ni:0.01%以上0.30%以下
 Cu、Niは、固溶強化により鋼の強度を上昇させる元素であり、必要に応じて含有することができる。上記した効果を得るために、Cu、Niを含有する場合には、それぞれCu含有量は0.01%以上とし、Ni含有量は0.01%以上とする。好ましくは、Cu含有量は0.02%以上であり、Ni含有量は0.02%以上である。より好ましくは、Cu含有量は0.10%以上であり、Ni含有量は0.10%以上である。一方、過度の含有は、靱性の低下および溶接性の悪化を招く恐れがある。よって、Cu、Niを含有する場合には、それぞれCu含有量は0.30%以下とし、Ni含有量は0.30%以下とする。好ましくは、Cu含有量は0.20%以下であり、Ni含有量は0.20%以下である。より好ましくは、Cu含有量は0.15%以下であり、Ni含有量は0.15%以下である。
 Ca:0.0005%以上0.0100%以下
 Caは、熱間圧延工程で薄く延伸されるMnS等の硫化物を球状化することで鋼の靱性向上に寄与する元素であり、必要に応じて含有できる。このような効果を得るために、Caを含有する場合は、0.0005%以上のCaを含有することが好ましい。しかし、Ca含有量が0.0100%を超えると、鋼中にCa酸化物クラスターが形成され、靱性が悪化する場合がある。このため、Caを含有する場合は、Ca含有量は0.0100%以下とすることが好ましい。なお、Ca含有量は0.0005%以上とすることが好ましい。より好ましくは、Ca含有量は0.0010%以上である。好ましくは、Ca含有量は0.0050%以下である。
 B:0.0003%以上0.0100%以下
 Bは、フェライト変態開始温度を低下させることで組織の微細化に寄与する元素である。このような効果を得るために、Bを含有する場合は、0.0003%以上のBを含有することが好ましい。しかし、B含有量が0.0100%を超えると、降伏比が上昇する場合がある。このため、Bを含有する場合は、0.0100%以下とすることが好ましい。より好ましくは、B含有量は0.0005%以上である。好ましくは、B含有量は0.0050%以下である。
 次に、本発明の熱延鋼板の鋼組織を限定した理由について説明する。
 本発明の熱延鋼板における、板厚中心部および板表裏面の鋼組織が、フェライトからなる主相と、パーライトおよび擬似パーライトの合計の面積率が6~25%、上部ベイナイトの面積率が5%以下である第二相とを有し、板厚中心部において、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、前記板厚中心部の鋼組織の平均結晶粒径が10.0~30.0μmであり、円相当径で40.0μm以上の上記結晶粒が板厚中心部における鋼組織全体に対して面積率で20%以下であり、且つ、短径に対する長径の比(長径と短径の比(=(長径)/(短径))が3.0以上である結晶粒の個数が30個/mm以下であり、板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差が40HV以下である。
 なお、本発明において、円相当径(結晶粒径)とは、対象となる結晶粒と面積が等しい円の直径とする。また、鋼組織は、熱延鋼板の板厚中心部および板表面(板表裏面)を対象とする。ここで、板表面(板表裏面)とは、鋼板の表面から板厚方向に1.0mm内部の位置とする。
 主相:フェライト
 フェライトは、軟質な組織であり、所望の降伏強度および低降伏比を得るために、本発明では主相とする。好ましくは、フェライトは面積率で70%以上であり、より好ましくは72%以上である。フェライトの面積率が94%を超えると強度が低下し、所望の降伏強度および引張強度が得られない場合がある。そのため、好ましくは、フェライトは面積率で94%以下であり、より好ましくは、フェライトは面積率で92%以下である。
 パーライトおよび擬似パーライトの合計の面積率:6~25%、上部ベイナイトの面積率:5%以下
 パーライトおよび擬似パーライトは硬質な組織であり、鋼の強度を上昇させ、また低降伏比を得るために最も重要な鋼組織である。本発明で目的とする降伏強度、引張強度、降伏比を得るためには、パーライトおよび擬似パーライトの合計の面積率を6%以上とすることが必要である。この合計の面積率は、好ましくは7%以上であり、より好ましくは9%以上である。パーライトおよび擬似パーライトの面積率が25%を超えると靱性が悪化する場合がある。そのため、パーライトおよび擬似パーライトの合計の面積率は25%以下であることが必要である。この合計の面積率は、好ましくは23%以下であり、より好ましくは21%以下である。
 また、擬似パーライトの面積率が5%以上であることが好ましい。擬似パーライトが面積率で5%以上存在すると、角形鋼管を製造した時に降伏比が低く抑えられるため、より優れた耐震性が得られる。擬似パーライトの面積率を15%超えとするには、熱間圧延における冷却工程でパーライトが生成する温度範囲を急冷する必要があるため、製造条件が限定される。そのため、擬似パーライトの面積率は15%以下であることが好ましい。
 上部ベイナイトはフェライトとパーライトの中間的な硬さを有する組織であり、鋼の強度を上昇させる。しかしながら、上部ベイナイトの面積率が5%を超えると、本発明で目的とする低降伏比が得られない。そのため、上部ベイナイトの面積率が5%以下であることが必要である。好ましくは4%以下である。上部ベイナイトは0%であってもよい。
 なお、フェライト、パーライト、擬似パーライト、上部ベイナイトの面積率は、以下に記載の方法で測定することができる。
 板厚中心部において、隣り合う結晶の方位差(結晶方位差)が15°以上の境界で囲まれた領域を結晶粒としたとき、板厚中心部の鋼組織の平均結晶粒径が10.0~30.0μm、円相当径で40.0μm以上の前記結晶粒が面積率で20%以下、且つ、長径と短径の比(=(長径)/(短径))が3.0以上の前記結晶粒の個数が30個/mm以下
 上述のとおり、本発明の鋼組織は、本発明で目的とする低降伏比、降伏強度、および引張強度を得るために、軟質組織と硬質組織を混合させた鋼(以下、「複合組織鋼」と称する)とする。しかし、複合組織鋼は、単一組織鋼と比較して靱性が悪い。そこで、本発明では、上記の機械特性と優れた靱性を両立するため、結晶方位差が15°以上の境界によって囲まれた領域を結晶粒としたとき、主相と第二相を含む鋼組織の結晶粒径、粗大な結晶粒の面積率および伸長した結晶粒の個数を規定する。
 主相と第二相とを含む鋼組織の平均結晶粒径(円相当径)が、10.0μm未満であると、降伏比が増加して本発明で目的とする降伏比が得られない。一方、主相と第二相とを含む鋼組織の平均結晶粒径が30.0μmを超えると、靱性が悪化する。そのため、主相と第二相とを含む鋼組織の平均結晶粒径は10.0~30.0μmであることが必要である。好ましくは11.0μm以上であり、より一層好ましくは12.5μm以上である。また、平均結晶粒径は28.0μm以下であることが好ましく、より一層好ましくは26.0μm以下である。
しかしながら、平均結晶粒径が10.0~30.0μmの範囲内であっても、本発明で目的とする降伏比およびシャルピー吸収エネルギーを得られない場合があった。本発明者らの鋭意検討の結果、本発明で目的とする靱性を得るためには、円相当径で40.0μm以上の結晶粒が板厚中心部における鋼組織全体に対して面積率で20%以下であることが必要であり、本発明で目的とする降伏比を得るためには、長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の個数が30個/mm以下であることが必要であることが明らかとなった。
 なお、結晶方位差、平均結晶粒径、および結晶粒径(円相当径)が40.0μm以上の結晶粒の面積率は、SEM/EBSD法によって測定することが可能である。ここでは、以下に記載の方法で測定することができる。
 組織観察においては、熱延鋼板の幅方向中央部かつ板厚t/2の位置(t:板厚)(本発明における板厚中心部)および板表面(鋼板裏面(熱間圧延時の下面))の位置から試験片を採取する。観察面が熱間圧延時の圧延方向断面となるようにし、研磨した後、ナイタール腐食して作製する。
 組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、熱延鋼板の板厚t/2位置(板厚中心部)および鋼板裏面(板表面)における組織を観察し、撮像する。得られた光学顕微鏡像およびSEM像から、フェライト、パーライト、擬似パーライト、上部ベイナイトの面積率を求める。
 各組織の面積率は、5視野で観察を行い、各視野で得られた値の平均値として算出する。ここでは、組織観察により得られた面積率を、各組織の面積率とする。フェライト、パーライト、擬似パーライト、上部ベイナイトの面積率は、光学顕微鏡像またはSEM像を用いて、以下に示す形状および色で各相を判別して各相の面積を算出し、光学顕微鏡像またはSEM像の全体の面積で除して各相の面積率を算出する。
 ここで、フェライトは拡散変態による生成物のことであり、転位密度が低くほぼ回復した組織を呈する。ポリゴナルフェライトおよび擬ポリゴナルフェライトがこれに含まれる。パーライトはセメンタイトとフェライトが層状に並んだ組織であり、擬似パーライトはフェライト中に点列状に並んだセメンタイトが確認される組織である。また、上部ベイナイトは転位密度が高いラス状のフェライトとセメンタイトの複相組織である。上記の形状の他に、フェライトは白色、パーライトは黒色、擬似パーライトは黒色または灰色、上部ベイナイトは白色または灰色であることから判別する。
 また、平均結晶粒径(平均円相当径)は、板厚t/2位置(板厚中心部)を対象にして、SEM/EBSD法を用いて測定する。測定領域は500μm×1000μm(=0.5mm)、測定ステップサイズは0.5μmとする。結晶粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界を結晶粒界として測定する。得られた結晶粒界から各結晶粒の粒径(円相当径)を算出し、その算術平均を求めて、平均結晶粒径(平均円相当径)とする。また、円相当径が40.0μm以上の結晶粒の面積の総和を算出し、測定領域の面積(0.5mm)で除することで、円相当径が40.0μm以上の結晶粒の面積率を算出する。上記した円相当径および結晶粒の面積は、SEM/EBSD法の測定で得られたデータをEDAX社製のOIM Analysisを用いて解析することで得られる。
また、結晶粒の長径と短径は、JIS R 1670(2006)に記載の方法で測定し、長径と短径の比(=(長径)/(短径))を算出する。長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の数を測定し、測定領域の面積(0.5mm2)で除することで、長径と短径の比が3.0以上の結晶粒の個数(個/mm2)を算出する。なお、結晶粒径解析および結晶粒個数の測定においては、結晶粒径が2.0μm未満のものは測定ノイズとして解析対象から除外する。
 板表裏面から板厚方向に1.0mm内部の位置と板厚中心部の硬度差:40HV以下
 本発明の熱延鋼板における、板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差は40HV以下である。板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差が40HVを超える場合は、角形鋼管を製造した時に、角形鋼管の平板部の降伏比が0.90を超える恐れがある。また、靭性が悪化する場合もある。板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差は、好ましくは35HV以下であり、より好ましくは30HV以下である。
ここで、板表裏面から板厚方向に1.0mm内部の位置の硬度と板厚中心部の硬度とでは、板表裏面から板厚方向に1.0mm内部の位置の硬度の方が大きくなるため、本発明では、鋼板表面から板厚方向の1.0mm内部の位置および鋼板の裏面から1.0mm内部の位置の硬度を測定し、大きい方の硬度を鋼板表裏面から板厚方向に1.0mm内部の位置の硬度とする。
 また、上記の硬度の測定方法としては、まず、JIS Z 2244(2020)の規定に準拠して、試験力9.8N(1kgf)でビッカース硬さを測定する。各10点測定して、最大値と最小値を除いた8点の平均値を算出し、平均値(8点のビッカース硬さの合計/8)をその試験片の硬度とする。試験片には、前述した組織観察用の試験片を用い、鋼板表裏面から板厚方向に1.0mm内部の位置において鏡面研磨したのち、硬度測定を行う。そして、板表裏面の硬度と板厚中心部の硬度との差(硬度差)を算出する。
 上記した成分組成および鋼組織を満足し、さらに特定の硬度差を満足することにより、本発明の目的とする強度、降伏比および靱性(-20℃におけるシャルピー吸収エネルギー、延性-脆性遷移温度)を有する熱延鋼板を得ることが可能となる。
 具体的には、本発明の熱延鋼板では、降伏強度を250MPa以上とし、引張強度を400MPa以上とし、降伏比を0.75以下とし、-20℃におけるシャルピー吸収エネルギーを100J以上とし、延性-脆性遷移温度を-20℃以下とすることができる。
本発明の熱延鋼板は、低降伏比角形鋼管用途の熱延鋼板として好適に用いることができ、
後述の低降伏比を有する角形鋼管を得ることを可能にする。
 本発明の熱延鋼板は、板厚が20mm以上であることが好ましい。また、本発明の熱延鋼板は、板厚が20~32mmであることが好ましい。
 <熱延鋼板の製造方法>
 次に、本発明の熱延鋼板の製造方法として、本発明の一実施形態に係る熱延鋼板の製造方法を説明する。
 本発明の熱延鋼板の製造方法は、例えば、熱間圧延工程において、上記した成分組成を有する鋼素材を、加熱温度:1100℃以上1300℃以下に加熱した後、粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:40%以上59%以下である熱間圧延を施す。
次いで、冷却工程において、板厚中心部の平均冷却速度Vc(℃/s)および板表面から厚み方向1.0mm深さまでの板表層部の平均冷却速度Vs(℃/s)が下記(2)式および(3)式を満足し、冷却開始から冷却停止までの間に熱延鋼板を5秒以上空冷し、板厚中心の冷却停止温度:550℃以上680℃以下で冷却を施し、次いで、巻取工程において、板厚中心温度:550℃以上680℃以下で巻取り熱延鋼板とする。
2≦Vc≦15     ・・・(2)
Vs/Vc≦2.0   ・・・(3)
 なお、以下の製造方法の説明において、温度に関する「℃」表示は、特に断らない限り、鋼素材や鋼板(熱延板、素材鋼板)の表面温度とする。
これらの表面温度は、放射温度計等で測定することができる。また、鋼板板厚中心部の温度は、鋼板断面内の温度分布を伝熱解析により計算し、その結果を鋼板の表面温度によって補正することで求めることができる。また、「熱延鋼板」には、熱延鋼板、熱延鋼帯を含むものとする。
 本発明において、鋼素材(鋼スラブ)の溶製方法は特に限定されず、転炉、電気炉、真空溶解炉等の公知の溶製方法のいずれもが適合する。鋳造方法も特に限定されないが、連続鋳造法等の公知の鋳造方法により、所望寸法に製造される。なお、連続鋳造法に代えて、造塊-分塊圧延法を適用しても何ら問題はない。溶鋼にはさらに、取鍋精錬等の二次精錬を施してもよい。
 (熱間圧延工程)
 次いで、熱間圧延工程において、得られた鋼素材(鋼スラブ)を、加熱温度を1100℃以上1300℃以下として加熱した後、粗圧延終了温度を850℃以上1150℃以下とする粗圧延を施し、仕上圧延終了温度を750℃以上850℃以下とする仕上げ圧延を施し、かつ、930℃以下での合計圧下率が40%以上59%以下である熱間圧延を施して熱延鋼板とする。
 加熱温度:1100℃以上1300℃以下
 加熱温度が1100℃未満である場合、被圧延材の変形抵抗が大きくなり圧延が困難となる。一方、加熱温度が1300℃を超えると、オーステナイト粒が粗大化し、後の圧延(粗圧延、仕上圧延)において微細なオーステナイト粒が得られず、本発明で目的とする熱延鋼板の鋼組織の平均結晶粒径を確保することが困難となる。また、粗大なベイナイトの生成を抑制することが困難となり、結晶粒径が40.0μm以上の結晶粒の面積率を、本発明で目的とする範囲に制御することが難しい。このため、熱間圧延工程における加熱温度は、1100℃以上1300℃以下とする。熱間圧延工程における加熱温度は、好ましくは1120℃以上である。また、熱間圧延工程における加熱温度は、好ましくは1280℃以下である。
 なお、本発明では、鋼スラブ(スラブ)を製造した後、一旦室温まで冷却し、その後再度加熱する従来法に加え、室温まで冷却しないで、温片のままで加熱炉に装入する、直送圧延の省エネルギープロセスも問題なく適用できる。
 粗圧延終了温度:850℃以上1150℃以下
 粗圧延終了温度が850℃未満である場合、後の仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、多量のフェライトが生成し、圧延方向に伸長した加工フェライト粒となり、降伏比が上昇する原因となる。一方、粗圧延終了温度が1150℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、本発明で目的とする熱延鋼板の鋼組織が得られず、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、平均結晶粒径が10.0~30.0μmであり、且つ、長径と短径の比(=(長径)/(短径))が3.0以上である結晶粒の個数が30個/mm以下であり、円相当径で40.0μm以上の上記結晶粒が鋼組織全体に対して面積率で20%以下である鋼組織を得ることが困難となる。
また、粗大なベイナイトの生成を抑制することが困難となる。このため、粗圧延終了温度は、850℃以上1150℃以下とする。粗圧延終了温度は、好ましくは860℃以上であり、より好ましくは870℃以上である。また、粗圧延終了温度は、好ましくは1100℃以下であり、より好ましくは1050℃以下である。
 仕上圧延終了温度:750℃以上850℃以下
 仕上圧延終了温度が750℃未満である場合、仕上圧延中に鋼板表面温度がフェライト変態開始温度以下になり、圧延方向に伸長したフェライトが形成され、加工性が低下する可能性が有る。一方、仕上圧延終了温度が850℃を超えると、オーステナイト未再結晶温度域での圧下量が不足し、微細なオーステナイト粒が得られない。その結果、結晶粒が粗大になり、本発明で目的とする強度の確保が困難となる。また、粗大なベイナイトの生成を抑制することが困難となる。このため、仕上圧延終了温度は、750℃以上850℃以下とする。仕上圧延終了温度は、好ましくは770℃以上であり、より好ましくは780℃以上である。また、仕上圧延終了温度は、好ましくは830℃以下であり、より好ましくは820℃以下である。
 930℃以下の合計圧下率:40%以上59%以下
 本発明では、熱間圧延工程においてオーステナイト中のサブグレインを微細化することで、続く冷却工程、巻取工程で生成するフェライト、ベイナイトを微細化し、本発明で目的とする強度および靱性を有する熱延鋼板の鋼組織を得られる。熱間圧延工程においてオーステナイト中のサブグレインを微細化するためには、オーステナイト未再結晶温度域での圧下率を高くし、十分な加工ひずみを導入する必要がある。しかしながら、合計圧下率が59%を超えると、長径と短径の比が大きな結晶粒が生成し易く、靱性の低下を招く。そのため、本発明では、930℃以下の合計圧下率を59%以下とする。930℃以下の合計圧下率は、好ましくは57%以下であり、より好ましくは55%以下である。930℃以下の合計圧下率が40%未満となると、フェライトやベイナイトの結晶粒径が大きくなり、靱性の低下を招く。そのため、930℃以下の合計圧下率は40%以上とする。930℃以下の合計圧下率は、好ましくは42%以上であり、より好ましくは45%以上である。
 なお、930℃以下としたのは、930℃超では圧延工程においてオーステナイトが再結晶し、圧延により導入された転位が消失してしまい、微細化したオーステナイトが得られないためである。
 上記した合計圧下率とは、930℃以下の温度域における圧延パスにおいて、圧延開始前の板厚T(mm)、圧延終了後の最終板厚T(mm)を用いて、以下の式で計算することができる。
合計圧下率(%)=100×(T-T)/T
 なお、スラブを熱間圧延するに際し、上記した粗圧延および仕上圧延の両方において930℃以下の合計圧下率を40%以上59%以下とする熱間圧延としても良い。あるいは、仕上圧延のみで930℃以下の合計圧下率を40%以上59%以下とする熱間圧延としても良い。後者において、仕上圧延のみで930℃以下の合計圧下率を40%以上59%以下とすることができない場合には、粗圧延の途中でスラブを冷却して温度を930℃以下とした後、粗圧延と仕上圧延の両方における930℃以下の合計圧下率を40%以上59%以下とする。
 本発明では、仕上板厚(仕上圧延後の鋼板の板厚)の上限は特に規定しないが、必要圧下率の確保や鋼板温度管理の観点より、仕上板厚は32mm以下とすることが好ましい。
 (冷却工程)
 熱間圧延工程後、熱延板(熱延鋼板用素材鋼板、以下単に素材鋼板とも記す。)に冷却工程で冷却を施す。冷却工程では、板厚中心部における冷却停止温度までの平均冷却速度Vc:2℃/s以上15℃/s以下、板表裏面から厚み方向1.0mm深さまでの板表層部における冷却停止温度までの平均冷却速度VsがVcとの間に、Vs/Vc≦2.0を満足し、冷却開始から冷却停止までの間に熱延鋼板を5秒以上空冷し、板厚中心部における冷却停止温度を550℃以上680℃以下として冷却を施す。
 板厚中心部における冷却開始から冷却停止温度(550~680℃)までの平均冷却速度Vc:2℃/s以上15℃/s以下
 熱延鋼板の板厚中心部の温度で、冷却開始から後述する冷却停止温度(550~680℃)までの温度域における平均冷却速度Vcが2℃/s未満では、フェライトの核生成頻度が減少し、フェライト粒が粗大化するため、所望の強度を得られない。また、本発明で目的とする平均結晶粒径が40.0μm以上である結晶粒の面積率を所望の範囲に制御することが困難である。一方で、平均冷却速度Vcが15℃/sを超えると、多量の上部ベイナイトが生成し、本発明で目的とする降伏比が得られない。平均冷却速度Vcは、好ましくは4℃/s以上であり、より好ましくは5℃/s以上である。好ましくは12℃/s以下であり、より好ましくは10℃/s以下である。
 Vs/Vc≦2.0
 板表層部における冷却開始から冷却停止温度(550~680℃)までの平均冷却速度Vs(℃/s)が板厚中心部における冷却停止までの平均冷却速度Vc(℃/s)の2.0倍を超えると、板表層部にベイナイトが多量に生成し、本発明の目的とする鋼組織が得られず、所望の降伏比およびシャルピー吸収エネルギーが得られない。
好ましくはVs/Vc≦1.8であり、より好ましくはVs/Vc≦1.7である。下限は特に規定しないが、熱延鋼板は表裏面から冷却されるため、板表層部における冷却停止までの平均冷却速度Vsは板厚中心部における冷却停止までの平均冷却速度Vc以上の値となる(1.0≦Vs/Vc)。ここで、板表層部における冷却停止までの平均冷却速度Vsは、板表面または板裏面から1.0mm内部の位置における平均冷却速度のうち、大きい方の値を用いる。
 なお、本発明では、結晶粒径が粗大になることを抑制する観点から、仕上圧延終了後直ちに冷却を開始することが好ましい。
 空冷時間:5s以上
 冷却工程において、熱延鋼板を5s以上空冷することで、熱延板の板表層部と板厚中心部の温度差が小さくなり、本発明で目的とする機械特性を有する熱延鋼板が得られる。空冷時間が5s未満では、板表層部と板厚中心部の温度差が大きくなり、所望の降伏比が得られない。空冷時間は好ましくは10s以上である。上限は特に規定しないが、空冷時間が100sを超える場合には生産性が著しく低下するため、空冷時間は100s以下が好ましい。より好ましくは90s以下である。なお、空冷は冷却開始から冷却停止までの間に行う。
空冷とは、特に限定されないが、板表層部において0.01~0.90℃/sでの冷却のことを指す。
 冷却停止温度:550℃以上680℃以下
 熱延板(素材鋼板)の板厚中心温度で、冷却停止温度が550℃未満では、冷却中に熱延板の長さ方向および/または幅方向で温度ムラが生じやすく、機械特性にバラつきが生じる可能性が有る。一方で、熱延板の板厚中心温度で、冷却停止温度が680℃を超えると、フェライト粒が粗大化し、所望の平均結晶粒径が得られない。冷却停止温度は、熱延板の板厚中心温度で、好ましくは560℃以上であり、より好ましくは580℃以上である。好ましくは660℃以下であり、より好ましくは650℃以下である。
 なお、本発明において、平均冷却速度は、((冷却前(冷却開始時)の熱延鋼板の温度(℃)-冷却停止温度(550~680℃)までの熱延鋼板の温度(℃))/冷却時間(s))で求められる値であり、伝熱解析によって得られた熱延鋼板断面内の温度分布から算出することができる。この平均冷却速度の算出の際に用いられる冷却時間には、空冷を行っている時間も含まれる。
冷却方法は、ノズルからの水の噴射等の水冷や、冷却ガスの噴射による冷却等が挙げられる。本発明では、熱延板の両面が同条件で冷却されるように、熱延板両面に冷却操作(処理)を施すことが好ましい。また、上記した冷却速度を得るために、冷却水または冷却ガスの量や圧力、噴射時間・角度および熱延鋼板の搬送速度等を調整する。冷却水または冷却ガスを熱延鋼板表面の特定位置に常に噴射する、または、瞬間的に多量の冷却水または冷却ガスを熱延鋼板表面に噴射すると、鋼板表面が急冷却されるため、板表層部と板厚中心部の冷却速度の差が大きくなる。そのため、熱延鋼板の特定位置が急冷却されないように、冷却水または冷却ガスを噴射するノズルの位置を適切に配置することや、冷却水または冷却ガスの噴射量・時間を適切に調整することで、板表層部と板厚中心部の冷却速度の差を所定の範囲内に制御することが可能となる。本発明で規定した冷却速度が得られるように、あらかじめ伝熱解析を行って熱延鋼板の冷却処理の条件を決定したのち、この条件を製造条件に反映させることができる。
 (巻取工程)
 冷却工程後に、巻取工程において、熱延鋼板を巻取り、その後放冷する。
巻取工程では、鋼板組織の観点より、熱延鋼板の板厚中心温度で、巻取温度を550℃以上680℃以下として巻取る。巻取温度が550℃未満では、鋼板表面に多量の上部ベイナイトが生成し、面積率が5%を超える場合がある。巻取温度が680℃超えでは、フェライト粒が粗大化するとともに、所望の結晶粒径が得られない。巻取温度は、より好ましくは570℃以上であり、より一層好ましくは580℃以上である。また、巻取温度は、より好ましくは660℃以下であり、より一層好ましくは650℃以下である。
 <角形鋼管>
 本発明の角形鋼管は、前記本発明の熱延鋼板を素材とする。本発明の角形鋼管は、管軸方向で、平板部において、降伏強度が295MPa以上であり、引張強度が400MPa以上であり、0.90以下の低降伏比を示し、平板部において、試験温度:-20℃でのシャルピー衝撃試験の吸収エネルギーが40J以上、延性-脆性遷移温度が-5℃以下となる低温靭性を具備するものとすることができ、例えば、気温が氷点下になるような寒冷地等の低温環境下における建築物の構造部材として好適に使用することができる。
 本発明の角形鋼管の製造方法としては、造管工程では、熱延鋼板をロール成形により円筒状のオープン管(丸形鋼管)とし、その突合せ部分を電縫溶接する。その後、丸形鋼管に対して上下左右に配置されたロールにより、円筒状のまま管軸方向に数%の絞りを加え、角形状に成形して角形鋼管を得る。
 例えば、コイル状の本発明の熱延鋼板を、冷間でロールを用いたロール成形法により円形に成形して丸形鋼管を製造した後に、丸形鋼管を、ロールを用いたロール成形法により角形に成形して角形鋼管を製造する。丸形鋼管へのロール成形を冷間で行うと、管軸方向に大きな加工歪が導入されるため、管軸方向の降伏比が上昇しやすく、靭性が低下しやすいという問題がある。しかしながら、本発明の角形鋼管においては、前記本発明の熱延鋼板を素材としているため、降伏比の上昇等が抑制されて、例えば、20mm以上の厚肉のものであっても、低降伏比且つ低温靭性を具備するものとすることができる。
 なお、本発明における角形鋼管には、管軸方向垂直断面視で、各々の辺長がすべて等しい((長辺長さ/短辺長さ)の値が1.0である)角形鋼管に限られず、(長辺長さ/短辺長さ)の値が1.0超の角形鋼管も含まれる。ただし、角形鋼管の(長辺長さ/短辺長さ)の値が2.5を超えると、長辺側で局部座屈が生じやすくなり管軸方向の圧縮強度が低下する。そのため、角形鋼管の(長辺長さ/短辺長さ)の値は、1.0以上2.5以下とすることが好ましい。(長辺長さ/短辺長さ)の値は、より好ましくは1.0以上2.0以下である。
 以上により、本発明の角形鋼管が製造される。本発明によれば、平板部の降伏強度が295MPa以上、平板部の引張強度が400MPa以上、平板部の降伏比が0.90以下、平板部の-20℃におけるシャルピー吸収エネルギーが40J以上、平板部の延性-脆性遷移温度が-5℃以下である、角形鋼管を得られる。本発明の角形鋼管は延性-脆性遷移温度が0℃未満であるため、気温が氷点下になるような寒冷地の建築物の構造部材として好適に使用することができる。
 <建築構造物>
 図1は、本発明の建築構造物の一例を示す模式図である。
 本発明の建築構造物は、前述した本発明の角形鋼管(低降伏比角形鋼管)1を柱材として使用される。符号4、5、6、7は、順に大梁、小梁、ダイアフラム、間柱を示す。
本発明の角形鋼管は、前述したように、平板部の機械的特性に優れる。そのため、この角形鋼管を柱材として使用した本発明の建築構造物は、優れた耐震性能を発揮する。
 以下、実施例に基づいてさらに本発明を詳細に説明する。なお、本発明は以下の実施例に限定されない。
 表1に示す成分組成を有する溶鋼を鋳造してスラブとした。得られたスラブを表2に示す条件の熱間圧延工程、冷却工程、巻取工程を経て、熱延鋼板とした。巻取工程後、以下に示す造管工程における造管処理を行った。なお、熱間圧延工程において規定する930℃以下の合計圧下率は、仕上圧延のみでの合計圧下率である。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
 得られた熱延鋼板を、ロール成形により円筒状の丸形鋼管に成形し、その突合せ部分を電縫溶接した。その後、丸形鋼管の上下左右に配置したロールにより角形状(管軸方向垂直断面視で正方形状)に成形し、角部および平板部を有し、表4に示す辺長(mm)および肉厚(mm)のロール成形角形鋼管を得た。
 得られた熱延鋼板から試験片を採取して、以下に示す組織観察、硬さ測定、引張試験、シャルピー衝撃試験を実施した。
 [組織観察]
 組織観察用の試験片は、熱延鋼板の幅方向中央部かつ板厚t/2の位置(t:板厚)(本発明における板厚中心部)および板表裏面のうちの鋼板裏面(熱間圧延時の下面)の位置から採取した。鋼板表面(熱間圧延時の上面)と鋼板裏面(熱間圧延時の下面)の組織は同等であり、鋼板表裏面のどちらから組織観察用試験片を採取しても良いが、ここでは、組織観察用試験片の採取位置を鋼板裏面(熱間圧延時の下面)で統一した。観察面が熱間圧延時の圧延方向に平行な垂直断面(観察面の法線方向が板幅方向となる断面)となるようにし、研磨した後、ナイタール腐食して作製した。
なお、最終的に得られた鋼板の両面のうちいずれが裏面であるかについては、冷却後の巻取りにおいて、熱間圧延の表面側(上面側)が熱延コイルの外側になるように巻取ることから、巻取り後の熱延鋼板の一部を切断すると円弧状の鋼板が得られるため、円弧状の鋼板の形状から熱延コイルの外側と内側を判別して、圧延時の表裏面を特定した。
 組織観察は、光学顕微鏡(倍率:1000倍)または走査型電子顕微鏡(SEM、倍率:1000倍)を用いて、熱延鋼板の板厚t/2位置(板厚中心部)および鋼板裏面(板表裏面)における組織を観察し、撮像した。得られた光学顕微鏡像およびSEM像から、フェライト、パーライト、擬似パーライト、上部ベイナイトの面積率を求めた。
 各組織の面積率は、5視野で観察を行い、各視野で得られた値の平均値として算出した。ここでは、組織観察により得られた面積率を、各組織の面積率とした。フェライト、パーライト、擬似パーライト、上部ベイナイトの面積率は、光学顕微鏡像またはSEM像を用いて、以下に示す形状および色で各相を判別して各相の面積を算出し、光学顕微鏡像またはSEM像の全体の面積で除して各相の面積率を算出した。
 ここで、フェライトは拡散変態による生成物のことであり、転位密度が低くほぼ回復した組織を呈する。ポリゴナルフェライトおよび擬ポリゴナルフェライトがこれに含まれる。パーライトはセメンタイトとフェライトが層状に並んだ組織であり、擬似パーライトはフェライト中に点列状に並んだセメンタイトが確認される組織である。また、上部ベイナイトは転位密度が高いラス状のフェライトとセメンタイトの複相組織である。上記の形状の他に、フェライトは白色、パーライトは黒色、擬似パーライトは黒色または灰色、上部ベイナイトは白色または灰色であることから判別した。
 また、平均結晶粒径(平均円相当径)は、板厚t/2位置(板厚中心部)を対象にして、SEM/EBSD法を用いて測定した。測定領域は500μm×1000μm(=0.5mm)、測定ステップサイズは0.5μmとした。結晶粒径は、隣接する結晶粒の間の方位差を求め、方位差が15°以上の境界を結晶粒界として測定した。得られた結晶粒界から各結晶粒の粒径(円相当径)を算出し、その算術平均を求めて、平均結晶粒径(平均円相当径)とした。また、円相当径が40.0μm以上の結晶粒の面積の総和を算出し、測定領域の面積(0.5mm)で除することで、円相当径が40.0μm以上の結晶粒の面積率を算出した。円相当径および結晶粒の面積の算出は、SEM/EBSD法の測定で得られたデータをEDAX社製のOIM Analysisを用いて解析することで得た。
また、結晶粒の長径と短径は、JIS R 1670(2006)に記載の方法で測定し、長径と短径の比(=(長径)/(短径))を算出した。長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の数を測定し、測定領域の面積(0.5mm2)で除することで、長径と短径の比が3.0以上の結晶粒の個数(個/mm2)を算出した。なお、結晶粒径解析および結晶粒個数の測定においては、結晶粒径が2.0μm未満のものは測定ノイズとして解析対象から除外した。
 [引張試験]
 得られた熱延鋼板から、引張方向が圧延方向と平行になるように、JIS5号引張試験片を採取した。採取した引張試験片について、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、降伏強度YS、引張強度TSを測定し、(降伏強度)/(引張強度)で定義される降伏比を算出した。なお、試験片本数は各2本とし、それらの平均値を算出してYS、TS、降伏比を求めた。
 [シャルピー衝撃試験]
 得られた熱延鋼板の板厚tのt/2位置(板厚中心部)において、試験片長手方向が圧延方向と平行となるように採取した、JIS Z 2242(2018)の規定に準拠したVノッチ標準試験片を用いた。JIS Z 2242(2018)の規定に準拠して、試験温度:-80℃、-60℃、-40℃、-20℃、0℃でシャルピー衝撃試験を実施した。なお、試験片本数は各試験温度で3本とし、延性-脆性遷移温度および吸収エネルギーの平均値(J)を求めた。
 [硬度]
 JIS Z 2244(2020)の規定に準拠して、試験力9.8N(1kgf)でビッカース硬さを測定した。各10点測定して、最大値と最小値を除いた8点の平均値を算出し、平均値(8点のビッカース硬さの合計/8)をその試験片の硬度とした。試験片には、前述した組織観察用の試験片を用い、鋼板表裏面から板厚方向に1.0mm内部の位置と、板厚中心部において鏡面研磨したのち、硬度測定を行った。鋼板表裏面から板厚方向に1.0mm内部の位置の硬度については、大きい方の硬度を鋼板表裏面から板厚方向に1.0mm内部の位置の硬度とする。
また、鋼板表裏面から板厚方向に1.0mm内部の位置の硬度と板厚中心部の硬度との差(硬度差)を算出した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 
 また、得られた角形鋼管(ロール成形角形鋼管)から試験片を採取して、以下に示す引張試験、シャルピー衝撃試験を実施した。
 [引張試験]
 図2は、平板部の引張試験片の採取位置を示す概略図である。
 引張試験は、図2に示すように、引張方向が管軸方向と平行になるように、角形鋼管の平板部からJIS5号引張試験片を採取した。採取した引張試験片について、JIS Z 2241(2011)の規定に準拠して引張試験を実施し、降伏強度YS、引張強度TSを測定し、(降伏強度)/(引張強度)で定義される降伏比を算出した。なお、平板部の引張試験片は、角形鋼管の溶接部を12時方向としたときの3時の辺部における、平板部の幅中央部の位置(図2中、符号X参照)から採取した。なお、試験片本数は各2本とし、それらの平均値を算出してYS、TS、降伏比を求めた。
 [シャルピー衝撃試験]
 図3は、シャルピー試験片の採取位置を示す概略図である。
 シャルピー衝撃試験は、図3に示すように、角形鋼管の管外面から肉厚tのt/4位置において、試験片長手方向が管軸方向と平行となるように、角形鋼管の平板部から採取した、JIS Z 2242(2018)の規定に準拠したVノッチ標準試験片を用いた(図3中、符号Y参照)。JIS Z 2242(2018)の規定に準拠して、試験温度:-60℃、-40℃、-20℃、0℃、+20℃でシャルピー衝撃試験を実施した。なお、試験片本数は各試験温度で3本とし、延性-脆性遷移温度および吸収エネルギーの平均値(J)を求めた。
 得られた結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 
 表3、4中、鋼No.1~20は本発明例であり、鋼No.21~45は比較例である。
 表3に示すように、本発明例の熱延鋼板は、いずれも板厚中心部および板表面部における鋼組織が、合計の面積率6~25%のパーライトおよび擬似パーライト、面積率5%以下の上部ベイナイトを含み、かつ板厚中心部において、隣り合う結晶の方位差15°以上の境界によって囲まれる領域を結晶粒としたとき、板厚中央部の鋼組織の平均結晶粒径が10.0~30.0μm、円相当径が40.0μm以上の結晶粒の面積率が20%以下であり、長径と短径の比(=(長径)/(短径))が3.0以上の結晶粒の個数が30個/mm以下であり、かつ、鋼板表面と板厚中心部の硬度差が40HV以下であった。さらに、降伏強度が250MPa以上、引張強度が400MPa以上、降伏比が0.75以下、-20℃におけるシャルピー吸収エネルギーが100J以上、延性-脆性遷移温度が-20℃以下であった。
 また、表4に示すように、本発明例の熱延鋼板を用いて製造した角形鋼管は、いずれも平板部における降伏強度が295MPa以上、平板部における引張強度が400MPa以上、平板部における降伏比が0.90以下、平板部の-20℃におけるシャルピー吸収エネルギーが40J以上、平板部の延性-脆性遷移温度が-5℃以下であった。
 比較例のNo.21(鋼U)は、Mn/Si=0.8であり、本発明の範囲外となっていたため、パーライトおよび擬似パーライトの合計の面積率が6%未満となり、引張強度および降伏比が所望の値に達しなかった。
 比較例のNo.22(鋼V)は、Mn/Si=7.9であり、本発明の範囲外となっていたため、パーライトおよび擬似パーライトの合計の面積率が25%超となり、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.23(鋼W)は、Cの含有量が本発明の範囲を上回っていたため、第二相の面積率が本発明の範囲外となり、また、結晶粒径(円相当径)40.0μm以上の結晶粒の面積率が20%超となり、降伏比、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.24(鋼X)は、Siの含有量が本発明の範囲を上回ったため、擬似パーライトの面積率が過度に増加し、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.25(鋼Y)は、Mnの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、降伏比が所望の値に達しなかった。
 比較例のNo.26(鋼Z)は、Nbの含有量が本発明の範囲を上回り、上部ベイナイトの量が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.27(鋼AA)は、Tiの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となり、また、粗大な炭化物や窒化物が形成されたと考えられる。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、その結果、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.28(鋼AB)は、Vの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.29(鋼AC)は、Crの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.30(鋼AD)は、Moの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.31(鋼AE)は、Cuの含有量が本発明の範囲を上回ったため、Cuが粗大に析出したと考えられる。その結果、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.32(鋼AF)は、Niの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.33(鋼AG)は、Caの含有量が本発明の範囲を上回ったため、Ca酸化物クラスターが形成されたと考えられる。その結果、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.34(鋼AH)は、Bの含有量が本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となった。その結果、長径と短径の比が3.0以上の結晶粒の個数が30個/mm超となり、硬度差が40HV超となり、降伏比が所望の値に達しなかった。
 比較例のNo.35(鋼AI)は、Cの含有量が本発明の範囲を下回っていたため、パーライトおよび擬似パーライトの合計の面積率が6%未満となり、平均結晶粒径が30.0μm超となり、さらに結晶粒径(円相当径)40.0μm以上の結晶粒の面積率が20%超となり、降伏強度、引張強度、降伏比、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.36(鋼C)は、スラブ加熱温度が本発明の範囲を上回っており、結晶粒が粗大化し、平均結晶粒径が30.0μm超となり、結晶粒径(円相当径)40.0μm以上の結晶粒の面積率が20%超となった。その結果、降伏強度、引張強度、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.37(鋼C)は、仕上圧延終了温度が本発明の範囲を上回ったため、930℃以下での合計圧下率が本発明の範囲を下回り、粗大なベイナイトの生成を抑制できず、平均結晶粒径が30.0μm超となり、結晶粒径(円相当径)40.0μm以上の結晶粒の面積率が20%超となった。その結果、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.38(鋼C)は、930℃以下での合計圧下率が本発明の範囲を上回っており、圧延方向に伸長した粗大なベイナイトが生成し、長径/短径の比が3.0以上の結晶粒の個数が30個/mm超となった。その結果、延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.39(鋼C)は、板厚中心部の平均冷却速度Vcが本発明の範囲を上回ったため、さらには空冷時間が本発明の範囲を下回ったため、上部ベイナイトの面積率が5%超となり、本発明の範囲外となった。その結果、硬度差が40HV超となり、降伏比が所望の値に達しなかった。
 比較例のNo.40(鋼C)は、Vs/Vcが本発明の範囲を上回ったため、上部ベイナイトの面積率が5%超となり、鋼板表層部に多量の上部ベイナイトが生成したと考えられる。その結果、硬度差が40HV超となり、降伏比、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.41(鋼C)は、冷却停止温度および巻取温度が本発明の範囲を下回ったため、上部ベイナイトの面積率が5%超となった。その結果、硬度差が40HV超となり、降伏比が所望の値に達しなかった。
 比較例のNo.42(鋼C)は、冷却停止温度および巻取温度が本発明の範囲を上回ったため、平均結晶粒径が30.0μm超となった。その結果、降伏強度、引張強度、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.43(鋼C)は、板厚中心部の平均冷却速度Vcが本発明の範囲を下回ったため、平均結晶粒径が30.0μm超となり、粒径40.0μm以上の面積率が20%超となり、また、板厚中心部のパーライトおよび擬似パーライトの合計の面積率が6%未満となり、降伏強度、引張強度、-20℃におけるシャルピー吸収エネルギーおよび延性-脆性遷移温度が所望の値に達しなかった。
 比較例のNo.44(鋼C)は、930℃以下での合計圧下率が本発明の範囲を上回っており、板厚中心部の平均冷却速度Vcが本発明の範囲を大きく上回ったため、上部ベイナイトの面積率が5%超となり、また、平均結晶粒径が10.0μm未満となり、降伏比が所望の値に達しなかった。
 比較例のNo.45(鋼C)は、空冷時間が本発明の範囲を下回ったため、板表層部と板厚中央部の温度差が大きくなったと推定される。その結果、鋼板表層部に多量のベイナイトが生成し、その結果、硬度差が40HV超となり、降伏比が所望の値に達しなかった。
 1   角形鋼管
 4   大梁
 5   小梁
 6   ダイアフラム
 7   間柱
 

Claims (8)

  1. 質量%で、
    C :0.07%以上0.20%以下、
    Si:0.40%以下、
    Mn:0.20%以上1.00%以下、
    P :0.100%以下、
    S :0.050%以下、
    Al:0.005%以上0.100%以下、
    N :0.0100%以下、
    を含有し、
    あるいはさらに、
    Nb:0.005%以上0.020%以下、
    Ti:0.005%以上0.020%以下、
    V:0.01%以上0.10%以下、
    Cr:0.01%以上0.50%以下、
    Mo:0.01%以上0.50%以下、
    Cu:0.01%以上0.30%以下、
    Ni:0.01%以上0.30%以下、
    Ca:0.0005%以上0.0100%以下、
    B:0.0003%以上0.0100%以下
    のうちから選ばれた1種または2種以上を含有し、
    MnとSiの含有量が下記(1)式を満足し、
    残部がFeおよび不可避的不純物からなる成分組成を有し、
    板厚中心部および板表裏面の鋼組織が、
    フェライトからなる主相と、パーライトおよび擬似パーライトの合計の面積率が6~25%であり、上部ベイナイトの面積率が5%以下である第二相とを有し、
    前記板厚中心部において、隣り合う結晶の方位差が15°以上の境界で囲まれた領域を結晶粒としたとき、
    前記板厚中心部の前記鋼組織の平均結晶粒径が10.0~30.0μmであり、
    円相当径で40.0μm以上の前記結晶粒が面積率で20%以下であり、且つ、
    短径に対する長径の比である(長径)/(短径)が3.0以上である前記結晶粒の個数が30個/mm以下であり、
    板表裏面から板厚方向に1.0mm内部の位置と板厚中心部との硬度差が40HV以下である、熱延鋼板。
    1.0≦%Mn/%Si≦3.5      ・・・(1)
    ここで、%Mn、%Siは各元素の含有量(質量%)である。
  2. 降伏強度が250MPa以上であり、
    引張強度が400MPa以上であり、
    降伏比が0.75以下であり、
    -20℃におけるシャルピー吸収エネルギーが100J以上であり、
    延性-脆性遷移温度が-20℃以下である、請求項1に記載の熱延鋼板。
  3. 前記鋼組織は、面積率で、前記擬似パーライトを5~15%有する、請求項1または2に記載の熱延鋼板。
  4. 板厚が20mm以上である、請求項1~3のいずれかに記載の熱延鋼板。
  5. 請求項1~4のいずれかに記載の熱延鋼板の製造方法であって、
    鋼素材を、加熱温度:1100℃以上1300℃以下で加熱した後、
    粗圧延終了温度:850℃以上1150℃以下、仕上圧延終了温度:750℃以上850℃以下、かつ930℃以下での合計圧下率:40%以上59%以下である熱間圧延を施す熱間圧延工程と、
    次いで、板厚中心部の平均冷却速度Vc(℃/s)および板表裏面から厚み方向1.0mm深さまでの板表層部の平均冷却速度Vs(℃/s)について、下記(2)式および(3)式を満足し、
    冷却開始から冷却停止までの間に熱延鋼板を5秒以上空冷し、板厚中心部の冷却停止温度:550℃以上680℃以下で冷却を施す冷却工程と、
    次いで、板厚中心温度:550℃以上680℃以下で巻取る巻取工程と、を含む、熱延鋼板の製造方法。
    2≦Vc≦15     ・・・(2)
    Vs/Vc≦2.0   ・・・(3)
  6. 請求項1~4のいずれかに記載の熱延鋼板を素材とする、角形鋼管。
  7. 請求項1~4のいずれかに記載の熱延鋼板を冷間でロール成形することにより角形鋼管を得る、角形鋼管の製造方法。
  8. 請求項6に記載の角形鋼管が柱材として用いられる建築構造物。
     
PCT/JP2023/018030 2022-06-03 2023-05-15 熱延鋼板、角形鋼管、それらの製造方法および建築構造物 WO2023233980A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023547358A JP7424551B1 (ja) 2022-06-03 2023-05-15 熱延鋼板、角形鋼管、それらの製造方法および建築構造物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-090799 2022-06-03
JP2022090799 2022-06-03

Publications (1)

Publication Number Publication Date
WO2023233980A1 true WO2023233980A1 (ja) 2023-12-07

Family

ID=89026434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/018030 WO2023233980A1 (ja) 2022-06-03 2023-05-15 熱延鋼板、角形鋼管、それらの製造方法および建築構造物

Country Status (3)

Country Link
JP (1) JP7424551B1 (ja)
TW (1) TW202407114A (ja)
WO (1) WO2023233980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7571918B1 (ja) 2023-06-29 2024-10-23 Jfeスチール株式会社 角形鋼管およびその製造方法ならびに建築構造物

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170775A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
WO2021200402A1 (ja) * 2020-04-02 2021-10-07 Jfeスチール株式会社 電縫鋼管およびその製造方法
WO2022054898A1 (ja) * 2020-09-14 2022-03-17 Jfeスチール株式会社 厚鋼板およびその製造方法
JP2022048121A (ja) * 2020-09-14 2022-03-25 Jfeスチール株式会社 厚鋼板およびその製造方法ならびに構造物
WO2022075027A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 電縫鋼管およびその製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150955A1 (ja) 2017-02-17 2018-08-23 Jfeスチール株式会社 高強度熱延鋼板およびその製造方法
CN112513308A (zh) 2018-07-31 2021-03-16 杰富意钢铁株式会社 高强度热轧镀覆钢板
CN115398019B (zh) 2020-08-31 2023-07-07 日本制铁株式会社 钢板及其制造方法
KR20220147126A (ko) 2020-08-31 2022-11-02 닛폰세이테츠 가부시키가이샤 강판 및 그 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020170775A1 (ja) * 2019-02-20 2020-08-27 Jfeスチール株式会社 角形鋼管およびその製造方法並びに建築構造物
WO2021200402A1 (ja) * 2020-04-02 2021-10-07 Jfeスチール株式会社 電縫鋼管およびその製造方法
WO2022054898A1 (ja) * 2020-09-14 2022-03-17 Jfeスチール株式会社 厚鋼板およびその製造方法
JP2022048121A (ja) * 2020-09-14 2022-03-25 Jfeスチール株式会社 厚鋼板およびその製造方法ならびに構造物
WO2022075027A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 電縫鋼管およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7571918B1 (ja) 2023-06-29 2024-10-23 Jfeスチール株式会社 角形鋼管およびその製造方法ならびに建築構造物

Also Published As

Publication number Publication date
JP7424551B1 (ja) 2024-01-30
JPWO2023233980A1 (ja) 2023-12-07
TW202407114A (zh) 2024-02-16

Similar Documents

Publication Publication Date Title
US10287661B2 (en) Hot-rolled steel sheet and method for producing the same
US20150176110A1 (en) Thick-walled high-strength hot rolled steel sheet with excellent low-temperature toughness and method of producing same
KR102498954B1 (ko) 각형 강관 및 그 제조 방법 그리고 건축 구조물
KR102498956B1 (ko) 열연 강판 및 그 제조 방법
JP6874913B2 (ja) 角形鋼管およびその製造方法ならびに建築構造物
TWI762881B (zh) 電焊鋼管及其製造方法以及鋼管樁
US20220373108A1 (en) Electric resistance welded steel pipe, method for producing the same, line pipe, and building structure
US20240026999A1 (en) Electric resistance welded steel pipe and method for manufacturing the same
US20240229200A1 (en) Electric resistance welded steel pipe and method for producing the same
KR102555312B1 (ko) 전봉 강관 및 그의 제조 방법, 그리고 강관 말뚝
WO2023053837A1 (ja) 角形鋼管およびその製造方法、熱延鋼板およびその製造方法、並びに建築構造物
CN114729426B (zh) 电阻焊钢管用热轧钢板及其制造方法、电阻焊钢管及其制造方法、管线管、建筑结构物
JP7424551B1 (ja) 熱延鋼板、角形鋼管、それらの製造方法および建築構造物
KR20230059820A (ko) 각형 강관 및 그 제조 방법 그리고 건축 구조물
JP7396552B1 (ja) 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
WO2024062686A1 (ja) 熱延鋼板、角形鋼管およびそれらの製造方法並びに建築構造物
JP7571918B1 (ja) 角形鋼管およびその製造方法ならびに建築構造物
JP2004076101A (ja) 溶接性に優れた高強度高靭性鋼管素材およびその製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2023547358

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23815740

Country of ref document: EP

Kind code of ref document: A1