WO2020022481A1 - 高強度鋼板 - Google Patents

高強度鋼板 Download PDF

Info

Publication number
WO2020022481A1
WO2020022481A1 PCT/JP2019/029432 JP2019029432W WO2020022481A1 WO 2020022481 A1 WO2020022481 A1 WO 2020022481A1 JP 2019029432 W JP2019029432 W JP 2019029432W WO 2020022481 A1 WO2020022481 A1 WO 2020022481A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
steel sheet
amount
strength steel
Prior art date
Application number
PCT/JP2019/029432
Other languages
English (en)
French (fr)
Inventor
真衣 永野
林 宏太郎
上西 朗弘
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to MX2020012659A priority Critical patent/MX2020012659A/es
Priority to CN201980036428.2A priority patent/CN112204162B/zh
Priority to US17/054,467 priority patent/US11486028B2/en
Priority to JP2019565584A priority patent/JP6677364B1/ja
Publication of WO2020022481A1 publication Critical patent/WO2020022481A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C2202/00Physical properties

Definitions

  • the present invention relates to a high-strength steel sheet, specifically, a high-strength steel sheet having a tensile strength of 1300 MPa or more, which is suitable for structural members such as automobiles mainly used after being pressed and has excellent bake hardenability. is there.
  • a high-strength steel sheet specifically, a high-strength steel sheet having a tensile strength of 1300 MPa or more, which is suitable for structural members such as automobiles mainly used after being pressed and has excellent bake hardenability. is there.
  • Priority is claimed on Japanese Patent Application No. 2018-141244 filed on July 27, 2018, the content of which is incorporated herein by reference.
  • the bake hardening is performed by interstitial elements (carbon and nitrogen) diffusing into dislocations formed by press molding (hereinafter, also referred to as “prestrain”) during baking at 150 ° C. to 200 ° C. and fixing the dislocations. This is the strain aging phenomenon that occurs.
  • Patent Document 1 discloses a high-strength steel sheet mainly composed of bainite and martensite. In the high-strength steel sheet disclosed in Patent Document 1, after the steel material is heated to a temperature range of three or more Ac, a predetermined treatment is performed to increase the dislocation density, thereby improving the bake hardenability. .
  • the amount of strain introduced by press molding generally differs depending on the specific conditions and locations of the molding process. Therefore, in order to surely improve the bake hardenability of a steel sheet even if there is a difference in strain amount, it is necessary to uniformly develop bake hardening by the same amount at any strain amount. For that purpose, it is important to produce not only the evaluation based on the bake hardening amount due to one prestrain but also the evaluation based on the bake hardening amount based on a plurality of prestrains, and to produce a material having a small prestrain dependence of the bake hardening amount. Become.
  • Patent Document 1 discloses only the amount of bake hardening when the pre-strain is 1%, and thus the amount of bake hardening when the amount of other pre-strain is not known.
  • the dislocation density is also important as a control factor of the bake hardening amount.
  • Non-Patent Documents 2 and 3 if the dislocation density is too high, the amount of carbon segregation per unit length of dislocation may be reduced. In some cases, the interaction between dislocations may reduce the number of movable dislocations. For this reason, simply increasing the dislocation density as in Patent Literature 1 may increase the prestrain dependency of the bake hardening amount, resulting in a decrease in the bake hardening amount.
  • the excellent bake hardenability here means (1) a large amount of bake harden and (2) high uniform bake hardenability. However, it is difficult to achieve both (1) and (2) in an organization mainly composed of normal martensite as in Patent Document 1.
  • an object of the present invention is to provide a high-strength steel sheet having a large bake hardening amount and high uniform bake hardenability.
  • the present inventors considered that in order to achieve the above object, attention should not be paid to the amount of dissolved carbon and the dislocation density. This is because there is a sufficient amount of solute carbon in martensite, and if the dislocation density is controlled, uniform bake hardenability cannot be ensured as in Patent Document 1. Then, the present inventors considered that it is important to pay attention to the dislocation formation behavior in which bake hardening easily occurs.
  • Dislocations generally refer to linear crystal defects. For example, when they are entangled to form dislocation cells, they become immobilized by themselves. In such a case, the amount of dislocations fixed due to carbon or the like diffused during bake hardening decreases, and as a result, the bake hardening amount decreases. In general, the ease with which dislocation cells are generated depends on the amount of pre-strain, and the amount of bake hardening greatly varies depending on the amount of pre-strain. Then, the present inventors considered that it is possible to improve the bake hardenability by suppressing dislocation cell formation, and made intensive studies.
  • the present inventors have found that the formation of precipitates, for example, iron carbide, which is finer and larger than the size of the cells to be formed, can suppress dislocation cell formation.
  • the present inventors thought that this would improve the bake hardenability, but the precipitation of precipitates such as iron carbide caused an uneven hardness difference in the structure, and rather promoted the formation of dislocation cells. Problem arises.
  • the non-uniform hardness difference was caused by precipitation strengthening caused by non-uniform precipitation of precipitates.
  • the present inventors have found that such non-uniform precipitation occurs from micro-segregation, and more specifically, from micro-segregation of Si required to precipitate a precipitate.
  • micro-segregation is a phenomenon in which the concentration of alloy elements generated from solidification is unevenly distributed, and a plane perpendicular to the thickness direction is continuous in a layered manner.
  • the present inventors controlled the hot rolling process to suppress the micro segregation of Si by making it into a complicated shape to form a uniform structure (hereinafter, uniform structure), and to reduce the amount of precipitates such as iron carbide in a very large amount. It has been found that baking hardenability is greatly improved by precipitating uniformly and uniformly.
  • the high-strength steel sheet excellent in the bake hardenability of the present invention which can achieve the above-mentioned object in this way is as follows. (1) In mass%, C: 0.13 to 0.40%, Si: 0.500 to 3.000%, Mn: 2.50-5.00%, P: 0.100% or less, S: 0.010% or less, Al: 0.001 to 2.000%, N: 0.010% or less, the balance being Fe and impurities, It contains 95% or more martensite in area ratio, and the remaining structure is 5% or less in area ratio, The ratio C1 / C2 of the upper limit C1 (% by mass) and the lower limit C2 (% by mass) of the Si concentration in the cross section in the thickness direction is 1.25 or less; Having a long diameter of 0.05 ⁇ m or more and 1.00 ⁇ m or less and a precipitate having an aspect ratio of 1: 3 or more at a number density of 30 pieces / ⁇ m 2 or more, A high-strength steel sheet having a ten
  • the microsegregation of Si is made to have a uniform structure, and specific precipitates are made to appear on the entire surface of the lath in martensite by heat treatment at a certain temperature, thereby preventing dislocation from being cellified and efficiently dislocation.
  • dispersing carbon in the steel to cause the dislocations to adhere it is possible to provide a high-strength steel sheet having excellent bake hardenability.
  • This high-strength steel sheet is further strengthened by being baked at the time of painting after press forming, so that it is suitable as a structural field in fields such as automobiles.
  • the high-strength steel sheet according to the embodiment of the present invention is C: 0.13 to 0.40%, Si: 0.500 to 3.000%, Mn: 2.50-5.00%, P: 0.100% or less, S: 0.010% or less, Al: 0.001 to 2.000%, N: 0.010% or less, the balance being Fe and impurities, It contains 95% or more martensite in area ratio, and the remaining structure is 5% or less in area ratio,
  • the ratio C1 / C2 of the upper limit C1 (% by mass) and the lower limit C2 (% by mass) of the Si concentration in the cross section in the thickness direction is 1.25 or less; Having a long diameter of 0.05 ⁇ m or more and 1.00 ⁇ m or less and a precipitate having an aspect ratio of 1: 3 or more at a number density of 30 pieces / ⁇ m 2 or more, It is characterized in that the tensile strength is 1300 MPa or more.
  • % which is a unit of the content of each element contained in a high-strength steel sheet and a slab means “% by mass” unless otherwise specified.
  • C has the effect of increasing the amount of dissolved carbon and increasing the bake hardenability. In addition, it has the effect of enhancing the hardenability and increasing the strength by incorporating it into the martensite structure. If the C content is less than 0.13%, a sufficient amount of solute carbon cannot be secured when carbides such as iron carbides are precipitated, and the bake hardening amount decreases. Therefore, the C content is set to 0.13% or more, preferably 0.16% or more, and more preferably 0.20% or more. On the other hand, if the C content exceeds 0.40%, incomplete martensitic transformation occurs during cooling after annealing, and the retained austenite fraction increases, deviating from the embodiment of the present invention. Also, the strength is too high to ensure the moldability. Therefore, the C content is set to 0.40% or less, preferably 0.35% or less.
  • Si 0.500% to 3.000%
  • Si is an element necessary for precipitating fine and large amounts of precipitates such as iron carbide for suppressing dislocation cells. If the Si content is less than 0.500%, even if the segregation is made to have a uniform structure, a sufficient action and effect cannot be obtained, and coarse precipitates are generated, and the formation of dislocation cells cannot be suppressed. Therefore, the Si content is set to 0.500% or more, more preferably 1.000% or more. On the other hand, when the Si content is more than 3.000%, the effect of precipitating fine and large amounts of precipitates is saturated, which unnecessarily increases the cost and deteriorates the surface properties. Therefore, the Si content is set to not more than 3.000%, preferably not more than 2.000%.
  • Mn is an element for improving hardenability, and is an element necessary for forming a martensite structure without limiting the cooling rate.
  • the Mn content is set to 2.50% or more, and preferably 3.00% or more.
  • the excessive Mn content lowers the low-temperature toughness due to the precipitation of MnS, so the content is made 5.00% or less, preferably 4.50% or less.
  • P 0.100% or less
  • P is not an essential element and is contained, for example, as an impurity in steel. From the viewpoint of weldability, the lower the P content, the better. In particular, when the P content exceeds 0.100%, the weldability is significantly reduced. Therefore, the P content is set to 0.100% or less, preferably 0.030% or less. Reducing the P content is costly and attempting to reduce it to less than 0.0001% will significantly increase costs. Therefore, the P content may be 0.0001% or more. Further, since P contributes to improvement in strength, the P content may be set to 0.0001% or more from such a viewpoint.
  • S is not an essential element but is contained as an impurity in steel, for example. From the viewpoint of weldability, the lower the S content, the better. As the S content increases, the amount of MnS precipitated increases, and the low-temperature toughness decreases. In particular, when the S content exceeds 0.010%, the weldability and the low-temperature toughness are significantly reduced. Therefore, the S content is set to 0.010% or less, preferably 0.003% or less. Cost reduction is required to reduce the S content, and an attempt to reduce the content to less than 0.0001% significantly increases the cost. Therefore, the S content may be 0.0001% or more.
  • Al 0.001% to 2.000%
  • Al content is set to 0.001% or more, preferably 0.010% or more.
  • the Al content is set to 2.000% or less, preferably 1.000% or less.
  • N is not an essential element and is contained, for example, as an impurity in steel. From the viewpoint of weldability, the lower the N content, the better. In particular, when the N content exceeds 0.010%, the weldability is significantly reduced. Therefore, the N content is set to 0.010% or less, preferably 0.006% or less. Reducing the N content is costly, and attempting to reduce it to less than 0.0001% significantly increases the cost. Therefore, the N content may be 0.0001% or more.
  • the basic component composition of the high-strength steel sheet of the present invention and the slab used for its production are as described above. Further, the high-strength steel sheet of the present invention and the slab used for the production thereof may contain the following optional elements as necessary.
  • Ti, Nb and V contribute to improvement in strength. Therefore, Ti, Nb or V or any combination thereof may be contained.
  • the content of Ti, Nb, or V, or the total content of any combination of two or more thereof is preferably 0.003% or more.
  • the Ti content, the Nb content or the V content, or the total content of any combination of two or more thereof is set to 0.100% or less.
  • the limiting ranges in the case of each component alone are: Ti: 0.003% to 0.100%, Nb: 0.003% to 0.100%, and V: 0.003% to 0.100%.
  • the total content when these are arbitrarily combined is also 0.003 to 0.100%.
  • Cu, Ni, Mo and Cr contribute to improvement in strength. Therefore, Cu, Ni, Mo, or Cr or any combination thereof may be contained.
  • the content of Cu, Ni, Mo and Cr is preferably 0.005 to 1.000% in the case of each component alone, and two or more of these may be arbitrarily combined. In this case, the total content is preferably 0.005% or more and 1.000% or less.
  • the content of Cu, Ni, Mo, and Cr, or the total content of any combination of two or more of them is more than 1.000%, the effect of the above-described effect is saturated, and the cost is increased.
  • the upper limit of the content of Cu, Ni, Mo and Cr, or the total content when two or more of these are arbitrarily combined is 1.000%. That is, Cu: 0.005% to 1.00%, Ni: 0.005% to 1.000%, Mo: 0.005% to 1.000%, and Cr: 0.005% to 1.000%.
  • the total content when these are arbitrarily combined is preferably 0.005 to 1.000%.
  • W, Ca, Mg, and REM contribute to fine dispersion of inclusions and increase toughness. Therefore, W, Ca, Mg, or REM or any combination thereof may be contained. In order to sufficiently obtain this effect, the total content of W, Ca, Mg, and REM, or any combination of two or more thereof is preferably 0.0003% or more. On the other hand, if the total content of W, Ca, Mg and REM exceeds 0.010%, the surface properties deteriorate. Therefore, the total content of W, Ca, Mg, and REM is set to 0.010% or less. That is, W: 0.005% or less, Ca: 0.005% or less, Mg: 0.005% or less, REM: 0.010% or less, and the total content of any two or more of these is 0. It is preferably from 0.0003 to 0.010%.
  • REM rare earth metal
  • REM content means the total content of these 17 elements.
  • Lanthanoids are industrially added, for example, in the form of misch metal.
  • B is a hardenability improving element and is an element useful for forming a martensite structure.
  • B is preferably contained at 0.0001% (1 ppm) or more. However, if B is contained in excess of 0.0030% (30 ppm), the above-mentioned effect is saturated and is economically wasteful, so the B content is set to 0.0030% or less. Preferably it is 0.0025% or less.
  • the balance other than the above components consists of Fe and impurities.
  • the impurities are components that are mixed due to various factors in the manufacturing process, including raw materials such as ores and scraps, when industrially producing high-strength steel sheets, and according to the present embodiment. It means a component that is not a component intentionally added to a high-strength steel sheet.
  • martensite 95% or more
  • the present embodiment is characterized in that martensite is secured in an area ratio of 95% or more. Thereby, sufficient solid solution carbon can be secured, and as a result, bake hardenability can be improved. In order to further enhance such effects, it is recommended that martensite be secured in an area ratio of 97% or more, for example, 100%.
  • the area ratio of martensite is determined as follows. First, a sample was taken using the thickness cross section perpendicular to the rolling direction of the steel sheet as an observation surface, the observation surface was polished, and the structure at a quarter position of the thickness of the steel plate was subjected to SEM-EBSD (electron microscopy) at a magnification of 5000 times. Observation with a scanning electron microscope equipped with an X-ray backscattering diffractometer), image analysis of the image in a visual field of 100 ⁇ m ⁇ 100 ⁇ m and measurement of the area ratio of martensite. It is determined as the area ratio of martensite in the invention.
  • SEM-EBSD electron microscopy
  • the remaining structure other than martensite has an area ratio of 5% or less.
  • the content is preferably 3% or less, more preferably 0%.
  • the residual structure can include any structure and is not particularly limited.
  • the residual structure includes or consists of retained austenite. A trace amount of retained austenite may be unavoidable depending on the composition of the steel and the production method.
  • the remaining structure may include retained austenite in an area ratio of 5% or less.
  • the content of retained austenite is preferably 3% or less, more preferably 0%.
  • the area ratio of retained austenite is determined by X-ray diffraction measurement. Specifically, a portion from the surface of the steel sheet to a position 1/4 of the thickness of the steel sheet is removed by mechanical polishing and chemical polishing, and MoK ⁇ rays are used as characteristic X-rays to reduce the depth from the surface of the steel sheet to 1/4 depth.
  • the X-ray diffraction intensity at the position is measured. From the integrated intensity ratio of the diffraction peaks of (200) and (211) of the body-centered cubic lattice (bcc) phase and (200), (220) and (311) of the face-centered cubic lattice (fcc) phase, Is used to calculate the area ratio of retained austenite.
  • S ⁇ (I 200f + I 220f + I 311f ) / (I 200b + I 211b ) ⁇ 100
  • S ⁇ is the area ratio of retained austenite
  • I 200f , I 220f and I 311f are the diffraction peak intensities of (200), (220) and (311) of the fcc phase, respectively
  • I 200b and I 211b are The intensities of the diffraction peaks of (200) and (211) of the bcc phase are shown.
  • Si concentration ratio C1 / C2 is 1.25 or less
  • the ratio C1 / C2 of the upper limit C1 (% by mass) and the lower limit C2 (% by mass) of the Si concentration in the cross section in the thickness direction of the high-strength steel sheet is 1.25 or less. More preferably, C1 / C2 is 1.15 or less.
  • C1 / C2 is 1.25 or less, the segregation of Si can be controlled, the structure becomes uniform, and precipitates such as iron carbide shown below can be uniformly deposited. Curability can be increased.
  • the segregation degree of Si represented by C1 / C2 is measured as follows.
  • the steel sheet is adjusted so that the surface where the rolling direction is the normal direction (that is, the cross section in the thickness direction of the steel sheet) can be observed, mirror-polished, and the thickness direction of the steel sheet is measured by an EPMA (Electron Probe Microanalyzer) device.
  • the Si concentration at 200 points is measured at 0.5 ⁇ m intervals from one side to the other side along the thickness direction of the steel sheet.
  • the same measurement is performed on another four lines so as to cover almost the entire area within the same 100 ⁇ m ⁇ 100 ⁇ m range, and the highest value among the total of 1000 points of the Si concentration measured on all five lines is the highest value.
  • the ratio C1 / C2 is calculated with the upper limit value C1 (mass%) of the concentration and the lower limit value C2 (mass%) of the Si concentration.
  • the present embodiment has a great feature in that precipitates having a major axis of 0.05 ⁇ m or more and 1.00 ⁇ m or less and an aspect ratio of 1: 3 or more have a number density of 30 pieces / ⁇ m 2 or more.
  • the aspect ratio refers to the ratio between the longest diameter (major axis) of the precipitate and the longest diameter (minor axis) of the diameter of the precipitate orthogonal to the longest axis.
  • the precipitate is not particularly limited as long as it satisfies the above requirements for the major axis and the aspect ratio, and examples thereof include carbides.
  • the precipitate contains or consists of iron carbide.
  • the size of the dislocation cell generated in the martensite is about several tens nm to several hundreds nm. Therefore, in order to suppress the generation of dislocation cells, it is necessary to have the same size of the precipitate. If the major axis is less than 0.05 ⁇ m, the formation of dislocation cells can not be suppressed. Therefore, the major axis of the precipitate is 0.05 ⁇ m or more. It is more preferably at least 0.10 ⁇ m.
  • the major axis of the precipitate is 1.00 ⁇ m or less. More preferably, it is 0.80 ⁇ m or less.
  • the shape of the precipitate is preferably acicular rather than spherical, and the aspect ratio is preferably 1: 3 or more. If the aspect ratio is less than 1: 3, the shape of the precipitate is regarded as spherical, and the generation of dislocation cells cannot be suppressed. Therefore, the aspect ratio is set to 1: 3 or more. More preferably it is 1: 5 or more.
  • FIG. 1 gives an image diagram showing the precipitation state of precipitates in the high-strength steel sheet according to the present invention.
  • lath structure 3 (FIG. 1B) generated in former austenite grain boundary 2 during microsegregation of Si having uniform structure 1 (FIG. 1A)
  • FIG. 1 (c)
  • the number density of the precipitates is 30 / ⁇ m 2 or more.
  • the number density of precipitates is set to 30 pieces / ⁇ m 2 or more. More preferably, the number is 40 or more / ⁇ m 2 or more.
  • the morphology and the number density of the precipitates are determined by observation with an electron microscope, and are measured, for example, by TEM (transmission electron microscope) observation. Specifically, a thin film sample is cut out from a region from the surface of the steel plate to a position of / to 1 / of the thickness of the steel plate and observed in a bright field. 1 ⁇ m 2 is cut out at an appropriate magnification of 10,000 to 100,000 times, and the precipitates having a major axis of 0.05 ⁇ m or more and 1 ⁇ m or less and an aspect ratio of 1: 3 or more are counted and determined. This operation is performed in five or more consecutive visual fields, and the average is defined as the number density.
  • TEM transmission electron microscope
  • tensile strength 1300 MPa or more
  • high tensile strength specifically, tensile strength of 1300 MPa or more
  • the tensile strength is preferably at least 1400 MPa, more preferably at least 1500 MPa.
  • an excellent bake hardening amount can be achieved. More specifically, according to the high-strength steel sheet of the present invention, after applying a 2% prestrain, the stress when a test piece heat-treated at 170 ° C. for 20 minutes is re-tensioned is subjected to a stress when a 2% prestrain is applied. Can be attained such that the value obtained by subtracting the above is 180 MPa or more, preferably 200 MPa or more. If the value of BH is less than 180 MPa, it is difficult to mold and the strength after molding is low, so that it cannot be said that excellent bake hardenability is obtained.
  • the uniform bake hardenability can be evaluated, for example, from the viewpoint of whether the bake hardening amount difference when different prestrains are given can be controlled to a predetermined value or less.
  • the bake hardening amount difference ⁇ BH refers to the absolute value of the difference between BH when the prestrain is 2% and BH when the prestrain is 1%.
  • the bake hardening amount difference ⁇ BH can be controlled to 20 MPa or less, preferably 10 MPa or less, so that even if there is a difference in the amount of strain during press molding, bake hardening can be uniformly exhibited.
  • the following description is intended to exemplify a characteristic method for manufacturing the high-strength steel sheet of the present invention, and the high-strength steel sheet of the present invention is manufactured by a manufacturing method as described below. It is not intended to be limited to
  • a preferred method of manufacturing a high-strength steel sheet of the present invention is a step of forming a slab by casting molten steel having the chemical composition described above, A rough rolling step of roughly rolling the slab in a temperature range of 1050 ° C. or more and 1250 ° C. or less, wherein the rough rolling is reverse rolling with a rolling reduction of 30% or less per pass in two or more passes and an even number in 16 passes or less.
  • the rolling reduction between the two passes during one reciprocation is 20% or less, the even reduction in one reciprocation is 5% or more higher than the odd reduction, and Rough rolling process that is held for more than 5 seconds after
  • This is a finish rolling step of finish rolling the rough-rolled steel sheet in a temperature range of 850 ° C.
  • finish rolling is performed in four or more continuous rolling stands, and the rolling reduction of the first stand is 15%. % Or more, and a finish rolling step in which the finish-rolled steel sheet is wound in a temperature range of 400 ° C. or less,
  • a cold rolling step of cold rolling the obtained hot-rolled steel sheet at a rolling reduction of 15% or more and 45% or less The obtained cold-rolled steel sheet is heated at an average heating rate of 10 ° C./sec or more, held at a temperature range of Ac 3 to 1000 ° C. for 10 to 1000 seconds, and then cooled at an average cooling rate of 10 ° C./sec or more.
  • a molten steel having the chemical composition of the high-strength steel sheet according to the present invention described above is cast to form a slab to be subjected to rough rolling.
  • a normal casting method may be used, and a continuous casting method, an ingot casting method, or the like can be adopted.
  • the continuous casting method is preferable in terms of productivity.
  • the slab is preferably heated to a solution temperature range of 1000 ° C. or more and 1300 ° C. or less before rough rolling.
  • the heating holding time is not particularly limited, but it is preferable to hold the heating temperature for 30 minutes or more in order to reach a predetermined temperature up to the center of the slab.
  • the heating holding time is preferably 10 hours or less, more preferably 5 hours or less, in order to suppress excessive scale loss. If the temperature of the slab after casting is 1050 ° C. or more and 1250 ° C. or less, the slab may be directly subjected to rough rolling without being heated and held in the temperature range, and may be directly rolled or directly rolled.
  • the Si segregated portion in the slab formed at the time of solidification in the slab forming process is made a uniform structure without being a plate-shaped segregated portion extending in one direction. be able to.
  • the formation of the Si concentration distribution having such a uniform structure will be described in more detail.
  • the portion where the alloying element such as Si is concentrated is inward from both surfaces of the slab. , And a plurality of them are arranged substantially vertically in a comb shape.
  • the surface of the slab is extended in the rolling direction in each pass of the rolling.
  • the rolling direction is a direction in which the slab advances with respect to the rolling roll. Then, the surface of the slab is extended in the rolling direction in this way, so that the Si segregated portion growing from the surface of the slab toward the inside is inclined in the traveling direction of the slab for each rolling pass.
  • the Si segregation portion gradually keeps a nearly straight state and gradually moves in the same direction for each pass. The slope becomes stronger. Then, at the end of the rough rolling, the Si segregated portion is in a posture substantially parallel to the surface of the slab while maintaining a substantially straight state, and flat micro segregation is formed.
  • the rough rolling temperature range is preferably 1050 ° C. or higher. More preferably, the temperature is 1100 ° C. or higher.
  • the rough rolling temperature range is preferably 1250 ° C. or less.
  • the rolling reduction per pass in the rough rolling exceeds 30%, the shear stress at the time of rolling increases, and the Si segregated portion becomes non-uniform, so that a uniform structure cannot be obtained. Therefore, the rolling reduction per pass in the rough rolling is set to 30% or less.
  • the lower the rolling reduction the smaller the shear strain during rolling and the uniform structure, so the lower limit of the rolling reduction is not particularly defined, but is preferably 10% or more from the viewpoint of productivity.
  • the reverse rolling is preferably performed in two passes or more, more preferably four passes or more.
  • it is desirable that the passes in which the traveling directions are opposite to each other are performed the same number of times, that is, the total number of passes is an even number.
  • the entry side and the exit side of the rough rolling are located on opposite sides of the roll. Therefore, the number of passes (rolling) in the direction from the entry side to the exit side of the rough rolling increases once.
  • the last pass (rolling) the Si segregated portion has a flat shape, and it is difficult to form a uniform structure.
  • the last pass opens a space between rolls and omit rolling.
  • the difference in rolling reduction between two passes included in one round trip of reverse rolling is set to 20% or less. Preferably it is 10% or less.
  • multi-stage tandem rolling in finish rolling is effective, but flat micro-segregation is easily formed by tandem rolling.
  • the effect becomes remarkable when the rolling reduction of the even number of times (return) becomes higher than that of the odd number of times (forward) by 5% or more in one reciprocation of the reverse rolling. Therefore, in one reciprocation of the reverse rolling, it is preferable that the rolling reduction of the even number of times is higher than the rolling reduction of the odd number of times by 5% or more.
  • the rolling ratio of the tandem rolling in the finishing rolling is increased to thereby narrow the interval of the Si segregation zone caused by the secondary arm of the dendrite. It is preferably carried out on a rolling stand.
  • the finish rolling temperature is lower than 850 ° C., recrystallization does not sufficiently occur, and a structure stretched in the rolling direction is formed. In a later step, a plate-like structure caused by the stretched structure is generated.
  • the above is preferred. It is more preferably at least 900 ° C.
  • the finish rolling temperature is preferably 1050 ° C. or less. If necessary, the rough-rolled steel sheet may be heated after the rough rolling step and before the finish rolling step, if the temperature is appropriate. Furthermore, when the rolling reduction of the first stand in the finish rolling is set to 15% or more, a large amount of recrystallized grains are generated, and the subsequent movement of grain boundaries facilitates the uniform dispersion of Si. In this way, by limiting not only the rough rolling step but also the finish rolling step, flat Si microsegregation can be suppressed. Note that the finish rolling temperature refers to the surface temperature of the steel sheet from the start of finish rolling to the end of finish rolling.
  • the winding temperature exceeds 400 ° C., the surface properties are reduced due to internal oxidation, so the winding temperature is preferably 400 ° C. or lower. If the steel sheet structure is a homogeneous structure of martensite or bainite, the winding temperature is more preferably 300 ° C. or less because annealing and the formation of a homogeneous structure are easy.
  • the hot-rolled steel sheet obtained in the finish rolling step is pickled and then subjected to cold rolling to obtain a cold-rolled steel sheet.
  • the rolling reduction is preferably 15% or more and 45% or less. If the rolling reduction exceeds 45%, the uniform structure of Si segregation is disturbed, so that in the martensite lath structure, carbides precipitated between the laths increase, and needle-like precipitates precipitated in the laths decrease. As a result, precipitation of carbide having an aspect ratio of 1: 3 or more is undesirably prevented.
  • the pickling may be a normal pickling.
  • the steel sheet obtained through the cold rolling step is subjected to an annealing treatment.
  • the temperature is raised at an average heating rate of 10 ° C./sec or more, and the heating is performed for 10 to 1000 seconds in a temperature range of Ac 3 to 1000 ° C.
  • This temperature range and annealing time are for transforming the entire surface of the steel sheet to austenite transformation. If the holding temperature exceeds 1000 ° C. or the annealing time exceeds 1000 seconds, the austenite grain size becomes coarse, martensite having a large lath width is obtained, and the toughness is reduced. Therefore, the annealing temperature is set to 3 to 1000 ° C. and the annealing time is set to 10 to 1000 seconds.
  • cooling is performed at an average cooling rate of 10 ° C./sec or more.
  • the faster the cooling rate the better to freeze the tissue and effectively cause martensitic transformation.
  • the temperature is set to 10 ° C./second or more. If the above cooling rate can be maintained after the annealing, a plating step may be added during cooling.
  • Cooling stop temperature is 70 ° C or less. This is to produce martensite while being quenched on the entire surface by cooling. If the cooling is stopped at more than 70 ° C., there is a possibility that a structure other than martensite may appear. In addition, when martensite comes out, precipitates such as iron carbide spheroidized by self-tempering come out. As a result, precipitates such as needle-like iron carbides do not precipitate in the subsequent step, and the desired precipitates cannot be obtained, and the bake hardenability is deteriorated. Therefore, the cooling stop temperature is set to 70 ° C. or lower, preferably 60 ° C. or lower.
  • the high-strength steel sheet according to the present embodiment has a significant feature in the form of precipitation of precipitates such as iron carbide.
  • precipitates are precipitated by turning a slab containing an appropriate amount of Si into martensite and then maintaining the temperature in a temperature range of 200 ° C. or more and 350 ° C. or less by heating.
  • the holding temperature is less than 200 ° C.
  • the major axis of the precipitate is less than 0.05 ⁇ m, and dislocation cells cannot be suppressed.
  • the holding temperature is set to 250 ° C. or higher. If the holding temperature is higher than 350 ° C., the precipitates become coarse, the number density is small, and the major axis exceeds 1.00 ⁇ m.
  • the holding temperature is set to 350 ° C. or less.
  • the holding time is 100 seconds or more. If the holding time is less than 100 seconds, iron carbide cannot be stably precipitated. Thus, the holding time is set to 100 seconds or more. Thereafter, from the viewpoint of productivity, cooling is performed at an average cooling rate of 2 ° C./sec or more to 100 ° C. or less.
  • skin pass rolling After the heat treatment step, skin pass rolling (temper rolling) may be optionally performed.
  • the dislocation cells are suppressed by the precipitate, so that no matter how much skin pass rolling is performed, no dislocation cells are formed and the bake hardenability does not deteriorate.
  • the rolling reduction is 2.0% or less. More preferably, the rolling reduction is 1.0% or less.
  • the high-strength steel sheet according to the embodiment of the present invention can be manufactured.
  • the conditions in the examples are one condition examples adopted for confirming the operability and effects of the present invention, and the present invention is not limited to these one condition examples.
  • the present invention can employ various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.
  • the area ratio of martensite was determined as follows. First, a sample was taken using the thickness section perpendicular to the rolling direction of the steel sheet as an observation surface, the observation surface was polished, and the structure at a quarter position of the thickness of the steel plate was observed with a SEM-EBSD at a magnification of 5000 times. Then, it was image-analyzed in a visual field of 100 ⁇ m ⁇ 100 ⁇ m to measure the martensite area ratio, and the average of these measured values in any five visual fields was determined as the martensite area ratio.
  • the steel structure of the obtained cold-rolled steel sheet was observed by TEM, and the presence or absence of precipitates, their major diameter, aspect ratio, and number density were determined.
  • a thin film sample is cut out from the surface of the steel sheet in a region from the 3/8 position to the 1/4 position of the thickness of the steel plate, observed in a bright field, and subjected to an appropriate magnification of 10,000 to 100,000 times.
  • 1 ⁇ m 2 was cut out, and the number of precipitates having a major axis of 0.05 ⁇ m or more and 1 ⁇ m or less and an aspect ratio of 1: 3 or more was counted and determined. This operation was performed in five consecutive visual fields, and the average was defined as the number density. Table 3 shows the results.
  • the tensile strength TS, elongation at break EL, bake hardening amount BH, and bake hardening amount difference ⁇ BH of the obtained cold-rolled steel sheet were measured.
  • a JIS No. 5 tensile test piece having a longitudinal direction perpendicular to the rolling direction was sampled, and measured in accordance with JIS Z 2241. A tensile test was performed.
  • the bake hardening amount BH is a value obtained by subtracting the stress at the time of applying a 2% pre-strain from the stress at the time of re-tensioning a test piece heat-treated at 170 ° C. for 20 minutes after applying a 2% pre-strain.
  • the bake hardening difference ⁇ BH is the absolute value of the difference between BH when the prestrain is 2% and BH when the prestrain is 1%.
  • the tensile strength is 1300 MPa or more, preferably 1400 MPa or more, and more preferably 1500 MPa or more.
  • it is preferable that the elongation is 5% or more for easy molding.
  • BH is less than 180 MPa, it is difficult to mold, and the strength after molding is low. Therefore, in order to have excellent bake hardenability, 180 MPa or more is required. More preferably, it is 200 MPa or more. Regarding ⁇ BH, it is necessary to be 20 MPa or less in order to uniformly cause bake hardening even if there is a difference in the amount of strain entering during press molding. More preferably, it is 10 MPa or less.
  • the degree of segregation of Si represented by C1 / C2 was measured as follows. After adjusting the surface of the manufactured steel sheet so that the surface where the rolling direction is the normal direction (that is, the cross section in the thickness direction of the steel sheet) can be observed, mirror polishing is performed, and the steel sheet is cut in the cross section in the thickness direction of the steel sheet by an EPMA apparatus. In the central area of 100 ⁇ m ⁇ 100 ⁇ m, 200 Si concentrations were measured at 0.5 ⁇ m intervals from one side to the other side along the thickness direction of the steel sheet.
  • the same measurement is performed on another four lines so as to cover almost the entire area within the same 100 ⁇ m ⁇ 100 ⁇ m range, and the highest value among the total of 1000 points of the Si concentration measured on all five lines is the highest value.
  • the ratio C1 / C2 was calculated with the upper limit value C1 (% by mass) of the concentration and the lower limit value C2 (% by mass) of the Si concentration as the lowest value.
  • Comparative Example 2 the target iron carbide was not sufficiently precipitated because the holding time in the heat treatment step was short, and the BH was low and ⁇ BH was high.
  • Comparative Example 6 since the holding temperature in the heat treatment step was low, the target iron carbide was not sufficiently precipitated, and the BH was low and the ⁇ BH was high.
  • Comparative Example 8 since the annealing temperature was too low, a ferrite structure appeared and a sufficient martensite structure was not obtained, and as a result, TS and BH were low.
  • Comparative Example 9 since the annealing time was too short, the entire surface did not have a martensite structure, and similarly, TS and BH were low.
  • Comparative Example 11 since the average cooling rate in the annealing step was too slow, the entire surface did not have martensite structure, and TS and BH were low.
  • Comparative Example 12 since the holding temperature in the heat treatment step was too high, the iron carbide was coarsened, and TS and BH were low and ⁇ BH was high.
  • Comparative Example 13 since the C content was too small, the amount of dissolved carbon was reduced, and TS and BH were low.
  • Comparative Example 14 since the Si content was too small, the target iron carbide was not sufficiently generated, and the BH was low and the ⁇ BH was high.
  • Comparative Example 16 the difference in rolling reduction between two passes during one round trip in the rough rolling step was large, so that the Si concentration distribution was not uniform and ⁇ BH was high.
  • Comparative Example 17 since the rolling reduction in the even number of times in one round trip in the rough rolling step was smaller than the rolling reduction in the odd number of times, the Si concentration distribution did not have a uniform structure, and ⁇ BH was high.
  • Comparative Example 19 TS and BH were low because the Mn content was too low.
  • Comparative Example 21 since the rolling reduction in the reverse rolling in the rough rolling step was high, the Si concentration distribution did not have a uniform structure, and ⁇ BH was high.
  • Comparative Example 22 since the C content was too high, the area ratio of retained austenite ( ⁇ ) was high and a sufficient martensite structure was not obtained, and the BH was low. In Comparative Example 24, the time from rough rolling to finish rolling was too short, the Si concentration distribution was not uniform, and ⁇ BH was high. In Comparative Example 26, since the number of stands for the finish rolling was small, the Si concentration distribution became flat, and ⁇ BH was high. In Comparative Example 27, the rolling reduction of the first stand in the finish rolling was too small, the Si concentration distribution became flat, and ⁇ BH was high. In Comparative Example 29, the finish rolling temperature (the finish rolling start temperature in Table 2) was too high, the Si concentration portion distribution became flat, and ⁇ BH was high.
  • Comparative Example 30 a carbide having a desired aspect ratio could not be obtained because the cold rolling reduction was too high, and BH was low and ⁇ BH was high.
  • Comparative Example 32 since the number of passes of the reverse rolling in the rough rolling process was an odd number, the Si concentration distribution did not have a uniform structure, and ⁇ BH was high.
  • Comparative Example 33 since the cooling stop temperature in the annealing step was high, spheroidized coarse iron carbide was precipitated, TS and BH were low, and ⁇ BH was high.
  • the high-strength steel sheet with excellent bake hardenability of the present invention can be used as an original sheet of a structural material for an automobile in the field of the automobile industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本願発明に係る焼付硬化量が大きく、均一焼付硬化性の高い高強度鋼板は、質量%で、C:0.13~0.40%、Si:0.500~3.000%、Mn:2.50~5.00%、P:0.100%以下、S:0.010%以下、Al:0.001~2.000%、N:0.010%以下を含有し、残部がFe及び不純物からなり、面積率で95%以上のマルテンサイトを含有し、残部組織が面積率で5%以下であり、厚さ方向断面におけるSi濃度の上限値C1(質量%)と下限値C2(質量%)の比C1/C2が1.25以下であり、長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度で有し、引張強度が1300MPa以上の高強度鋼板である高強度鋼板が提供される。

Description

高強度鋼板
 本発明は、高強度鋼板、具体的には引張強度が1300MPa以上であって、主としてプレス加工されて使用される自動車等の構造部材に好適な、焼付硬化性に優れた高強度鋼板に関するものである。
 本願は、2018年7月27日に、日本に出願された特願2018-141244号に基づき優先権を主張し、その内容をここに援用する。
 近年、地球環境保護のため、自動車の燃費向上が求められており、自動車鋼板においては、車体の軽量化及び安全性確保のため、一層の高強度化が要求されている。鋼板を高強度化すると一般に延性が低下するため、冷間プレス成形が困難になる。そのため、成形加工時には比較的軟質で成形しやすく、成形加工後の強度が高い材料、つまり焼付硬化量が高い材料が求められている。
 前記焼付硬化は、プレス成形(以下、「予ひずみ」ともいう)によって入る転位に、150℃~200℃の塗装焼付時に侵入型元素(炭素や窒素)が拡散して当該転位を固着することで生ずるひずみ時効現象である。
 非特許文献1に示すように、焼付硬化量は固溶している侵入型元素の量、つまり固溶炭素量に依存する。そのため、固溶できる炭素量が少ないフェライトより固溶できる炭素量が多いマルテンサイトにおいて焼付硬化量が高くなる。これに関連して、例えば、特許文献1には、ベイナイト及びマルテンサイトを主体とする高強度鋼板が開示されている。当該特許文献1に開示される高強度鋼板においては、鋼材をAc点以上の温度領域まで加熱した後、所定の処理を施して転位密度を増加させることにより、焼付硬化性を向上させている。
 一方で、プレス成形によって導入されるひずみ量は、成形工程の具体的な条件や場所により一般に異なる。そのため、ひずみ量に違いがあっても確実に鋼板の焼付硬化性を向上させるためには、いずれのひずみ量においても均一に同じ量だけ焼付硬化を発現させる必要がある。そのためには、1つの予ひずみによる焼付硬化量による評価だけでなく、複数の予ひずみによる焼付硬化量による評価も行い、上記焼付硬化量の予ひずみ依存性が小さい材料を製造することが重要となる。
 しかしながら、特許文献1では、予ひずみ1%の場合の焼付硬化量しか実施例には開示されていないため、他の予ひずみ量の場合の焼付硬化量は不明である。また、焼付硬化量の制御因子として転位密度も重要であるが、非特許文献2及び3に示すように、転位密度を高めすぎると、転位単位長さあたりの炭素偏析量を減少させてしまったり、転位同士の相互作用により可動転位を減らしてしまったりする場合がある。そのため、特許文献1のように、単に転位密度を高めただけでは、焼付硬化量の予ひずみ依存性が大きくなり、結果として焼付硬化量を減少させてしまう場合がある。
 このように、焼付硬化性に優れる鋼板の中で、(1)焼付硬化量が大きいことと(2)焼付硬化量の予ひずみ依存性が小さい(以下、「均一焼付硬化性が高い」という)ことを両立させるのは困難である。
日本国特開2008-144233号公報
K.Nakaoka,et al.,「Strength,Ductility and Aging Properties of Continuously-Annealed Dual-Phase High-Strength Sheet Steels」,Formable HSLA and Dual-Phase Steels,Metall.Soc.of AIME,(1977)126-141 C.Kuang,et al.,「Effect of Temper Rolling on the Bake-Hardening Behavior of Low Carbon Steel」,International Journal of Minerals,Metallurgy and Materials,22(2015)32-36 熊谷一男,「軟鋼のひずみ時効における予ひずみの影響」,日本機械学会論文集,45(1979)983-989
 今後更なる高強度化の要求に応えるために優れた焼付硬化性を確保しなければならない。ここでいう優れた焼付硬化性とは、(1)焼付硬化量が大きいことかつ(2)均一焼付硬化性が高いことである。しかし、通常のマルテンサイトを主相とする組織においては、特許文献1のように、(1)と(2)の両立は困難である。
 したがって、本発明は、焼付硬化量が大きく、均一焼付硬化性の高い高強度鋼板を提供することを目的とする。
 本発明者らは、上記の目的を達成するためには、固溶炭素量や転位密度に着目すべきではないと考えた。なぜなら、マルテンサイトにおいて固溶炭素量が十分に存在するからであり、転位密度で制御すると特許文献1のように均一焼付硬化性が担保できないからである。そこで、本発明者らは、焼付硬化が生じやすい転位の形成挙動に着目することが重要であると考えた。
 転位とは一般に線状の結晶欠陥を言うものであるが、例えば、それらが絡み合って転位のセルを形成すると、それ単体で不動化してしまう。このような場合には、焼付硬化時に拡散する炭素等に起因して固着する転位の量が減少するため、その結果として焼付硬化量が減少してしまう。一般に、転位のセルの発生しやすさは予ひずみ量に依存するため、予ひずみ量によって焼付硬化量が大きく変動してしまう。そこで、本発明者らは、転位のセル化を抑制することによって焼付硬化性を向上させることができると考え、鋭意研究した。
 その結果、本発明者らは、形成するセルの大きさより細かく大量に析出物、例えば鉄炭化物を析出させることにより、転位のセル化を抑制することができることを見出した。本発明者らは、これにより焼付硬化性が向上すると考えたが、鉄炭化物等の析出物が析出することにより、組織に不均一な硬度差が発生してしまい、転位のセル化をむしろ促進するという問題が生じた。
 この不均一な硬度差は、析出物が不均一に析出してしまったことに起因する析出強化によって発生していた。本発明者らは、このような不均一な析出はミクロ偏析から発生し、より具体的には析出物を析出するために必要なSiのミクロ偏析から発生することを見出した。一般的にミクロ偏析は凝固時から発生する合金元素濃度が不均一に分布する現象であり、板厚方向に垂直な面が層状に連なっている。
 そこで、本発明者らは、熱延工程を制御して、Siのミクロ偏析を複雑形状化して均一な構造(以下、均一構造)にすることで抑制し、鉄炭化物等の析出物を微細大量にかつ均一に析出させることによって、焼付硬化性が大きく向上することを見出した。
 このようにして、上記目的を達成し得た本発明の焼付硬化性に優れる高強度鋼板は、以下のとおりである。
(1)質量%で、
 C:0.13~0.40%、
 Si:0.500~3.000%、
 Mn:2.50~5.00%、
 P:0.100%以下、
 S:0.010%以下、
 Al:0.001~2.000%、
 N:0.010%以下
を含有し、残部がFe及び不純物からなり、
 面積率で95%以上のマルテンサイトを含有し、残部組織が面積率で5%以下であり、
 厚さ方向断面におけるSi濃度の上限値C1(質量%)と下限値C2(質量%)の比C1/C2が1.25以下であり、
 長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度で有し、
 引張強度が1300MPa以上である、高強度鋼板。
(2)前記残部組織が存在する場合には、前記残部組織が残留オーステナイトからなる、(1)に記載の高強度鋼板。
(3)更に、質量%で、
 Ti:0.100%以下、
 Nb:0.100%以下、
 V:0.100%以下
の1種又は2種以上を合計で0.100%以下含有する、(1)又は(2)に記載の高強度鋼板。
(4)更に、質量%で、
 Cu:1.000%以下、
 Ni:1.000%以下、
 Mo:1.000%以下、
 Cr:1.000%以下
の1種又は2種以上を合計で0.100%以下含有する、(1)乃至(3)のいずれか一項に記載の高強度鋼板。
(5)更に、質量%で、
 W:0.005%以下、
 Ca:0.005%以下、
 Mg:0.005%以下
 希土類金属(REM):0.010%以下
の1種又は2種以上を合計で0.010%以下含有する、(1)乃至(4)のいずれか一項に記載の高強度鋼板。
(6)更に、質量%で、B:0.0030%以下を含有する、(1)乃至(5)のいずれか一項に記載の高強度鋼板。
 本発明によれば、Siのミクロ偏析を均一構造にし、ある温度での熱処理により特定の析出物をマルテンサイト中のラス内全面に現出させることで、転位のセル化を防ぎ、効率よく転位に炭素を拡散させて当該転位の固着を起こすことで、焼付硬化性に優れた高強度鋼板を提供することができる。この高強度鋼板は、プレス成形後の塗装時に焼付を受けることでさらに高強度化するので、自動車等の分野の構造分野として適している。
本発明に係る高強度鋼板における析出物の析出状態を示すイメージ図である。
<高強度鋼板>
 本発明の実施形態に係る高強度鋼板は、質量%で、
 C:0.13~0.40%、
 Si:0.500~3.000%、
 Mn:2.50~5.00%、
 P:0.100%以下、
 S:0.010%以下、
 Al:0.001~2.000%、
 N:0.010%以下
を含有し、残部がFe及び不純物からなり、
 面積率で95%以上のマルテンサイトを含有し、残部組織が面積率で5%以下であり、
 厚さ方向断面におけるSi濃度の上限値C1(質量%)と下限値C2(質量%)の比C1/C2が1.25以下であり、
 長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度で有し、
 引張強度が1300MPa以上であることを特徴としている。
 まず、本発明の実施形態に係る高強度鋼板及びその製造に用いるスラブの化学成分組成について説明する。以下の説明において、高強度鋼板及びスラブに含まれる各元素の含有量の単位である「%」は、特に断りがない限り「質量%」を意味する。
(C:0.13%~0.40%)
 Cは、固溶炭素量を高め、焼付硬化性を高める作用を有する。また、焼き入れ性を高め、マルテンサイト組織に含有させることにより強度を高める作用を有する。C含有量は0.13%未満であれば、鉄炭化物等の炭化物を析出させたときに十分な固溶炭素量が確保できず、焼付硬化量が減少する。よって、C含有量は0.13%以上とし、好ましくは0.16%以上、より好ましくは0.20%以上とする。一方、C含有量が0.40%超では、焼鈍後の冷却において不完全なマルテンサイト変態が起こり、残留オーステナイト分率が高くなってしまい、本発明の実施形態から外れる。また、強度が高すぎて成形性が担保できない。従って、C含有量は0.40%以下とし、好ましくは0.35%以下とする。
(Si:0.500%~3.000%)
 Siは転位セルを抑制するための鉄炭化物等の析出物を微細かつ大量に析出するために必要な元素である。Si含有量が0.500%未満では、偏析を均一構造にしたとしても、十分な作用効果が得られず、粗大な析出物が生成してしまい、転位セルの形成を抑制できない。よって、Si含有量は0.500%以上、より好ましくは1.000%以上とする。一方、Si含有量が3.000%超では、析出物を微細かつ大量に析出させる効果は飽和してしまい徒にコストを上昇させたり、表面性状が劣化したりしてしまう。従って、Si含有量は3.000%以下とし、好ましくは2.000%以下とする。
(Mn:2.50%~5.00%)
 Mnは焼き入れ性向上元素であり、冷却速度を限定せずマルテンサイト組織にするために必要な元素である。この作用を有効に発揮するには、Mn含有量は2.50%以上とし、好ましくは3.00%以上とする。しかし、過剰のMnの含有は、MnSの析出により低温靱性が低下するため、5.00%以下、好ましくは4.50%以下とする。
(P:0.100%以下)
 Pは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、P含有量は低ければ低いほどよい。特に、P含有量が0.100%超で、溶接性の低下が著しい。従って、P含有量は0.100%以下とし、好ましくは0.030%以下とする。P含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、P含有量は0.0001%以上としてもよい。また、Pは強度の向上に寄与するため、このような観点から、P含有量は0.0001%以上としてもよい。
(S:0.010%以下)
 Sは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、S含有量は低ければ低いほどよい。S含有量が高いほど、MnSの析出量が増加し、低温靭性が低下する。特に、S含有量が0.010%超で、溶接性の低下及び低温靱性の低下が著しい。従って、S含有量は0.010%以下とし、好ましくは0.003%以下とする。S含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、S含有量は0.0001%以上としてもよい。
(Al:0.001%~2.000%)
 Alは、脱酸に対して効果を有する。以上のような作用を有効に発揮させるため、Al含有量は0.001%以上とし、好ましくは0.010%以上とする。一方、Al含有量が2.000%超では、溶接性が低下したり、酸化物系介在物が増加して表面性状が劣化したりする。従って、Al含有量は2.000%以下、好ましくは1.000%以下とする。
(N:0.010%以下)
 Nは、必須元素ではなく、例えば鋼中に不純物として含有される。溶接性の観点から、N含有量は低ければ低いほどよい。特に、N含有量が0.010%超で、溶接性の低下が著しい。従って、N含有量は0.010%以下とし、好ましくは0.006%以下とする。N含有量の低減にはコストがかかり、0.0001%未満まで低減しようとすると、コストが著しく上昇する。このため、N含有量は0.0001%以上としてもよい。
 本発明の高強度鋼板及びその製造に用いるスラブの基本成分組成は上記の通りである。さらに本発明の高強度鋼板及びその製造に用いるスラブは、必要に応じて、以下の任意元素を含有していてもよい。
(Ti:0.100%以下、Nb:0.100%以下、V:0.100%以下)
 Ti、Nb及びVは強度の向上に寄与する。従って、Ti、Nb若しくはV又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Ti、Nb若しくはVの含有量、又はこれらの2種以上の任意の組み合わせの合計含有量は、好ましくは0.003%以上とする。一方、Ti、Nb若しくはVの含有量、又はこれらの2種以上の任意の組み合わせの合計含有量が0.100%超では、熱間圧延及び冷間圧延が困難になる。従って、Ti含有量、Nb含有量若しくはV含有量、又はこれらの2種以上の任意の組み合わせの合計含有量は0.100%以下とする。つまり、各成分単独の場合の制限範囲を、Ti:0.003%~0.100%、Nb:0.003%~0.100%、及びV:0.003%~0.100%とすると共に、これらを任意に組み合わせた場合の合計含有量においても、0.003~0.100%とすることが好ましい。
(Cu:1.000%以下、Ni:1.000%以下、Mo:1.000%以下、Cr:1.000%以下)
 Cu、Ni、Mo及びCrは強度の向上に寄与する。従って、Cu、Ni、Mo、若しくはCr又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、Cu、Ni、Mo及びCrの含有量は、各成分単独の場合、0.005~1.000%が好ましい範囲であり、これらの2種以上を任意に組み合わせた場合の合計含有量においても、0.005%以上1.000%以下が満たされることが好ましい。一方、Cu、Ni、Mo及びCrの含有量、又はこれらの2種以上を任意に組み合わせた場合の合計含有量が1.000%超では、上記作用による効果が飽和して、徒にコストが高くなる。従って、Cu、Ni、Mo及びCrの含有量、又はこれらの2種以上を任意に組み合わせた場合の合計含有量の上限は1.000%とする。つまり、Cu:0.005%~1.00%、Ni:0.005%~1.000%、Mo:0.005%~1.000%、及びCr:0.005%~1.000%とすると共に、これらを任意に組み合わせた場合の合計含有量においても、0.005~1.000%であることが好ましい。
(W:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.010%以下)
 W、Ca、Mg及びREMは介在物の微細分散化に寄与し、靭性を高める。従ってW、Ca、Mg若しくはREM又はこれらの任意の組み合わせが含有されていてもよい。この効果を十分に得るために、W、Ca、Mg及びREM、又はこれらの2種以上の任意の組み合わせの合計含有量は、好ましくは0.0003%以上とする。一方、W、Ca、Mg及びREMの合計含有量が0.010%超では、表面性状が劣化する。従って、W、Ca、Mg及びREMの合計含有量は0.010%以下とする。つまり、W:0.005%以下、Ca:0.005%以下、Mg:0.005%以下、REM:0.010%以下であって、これらの任意の2種以上の合計含有量が0.0003~0.010%であることが好ましい。
 REM(希土類金属)はSc、Y及びランタノイドの合計17種類の元素を指し、「REM含有量」はこれら17種類の元素の合計の含有量を意味する。ランタノイドは、工業的には、例えばミッシュメタルの形で添加される。
(B:0.0030%以下)
 Bは焼き入れ性向上元素であり、マルテンサイト組織形成に有用な元素である。Bは0.0001%(1ppm)以上含有させるとよい。しかし、Bを0.0030%(30ppm)を超えて含有すると上記効果が飽和してしまい、経済的に無駄であるため、B含有量は0.0030%以下とする。好ましくは0.0025%以下である。
 本実施形態に係る高強度鋼板において、上記成分以外の残部はFe及び不純物からなる。ここで、不純物とは、高強度鋼板を工業的に製造する際に、鉱石やスクラップ等のような原料を始めとして、製造工程の種々の要因によって混入する成分であって、本実施形態に係る高強度鋼板に対して意図的に添加した成分でないものを意味する。
 次に、本発明の実施形態に係る高強度鋼板の組織について説明する。以下、組織要件について説明するが、組織分率に係る%は「面積率」を意味する。
(マルテンサイト:95%以上)
 本実施形態では、マルテンサイトが面積率で95%以上確保されているところに特徴を有している。これにより、十分な固溶炭素を確保することができ、その結果として焼付硬化性を高めることができる。このような効果を一層高めるためには、マルテンサイトが面積率で97%以上確保されることが推奨され、例えば100%であってもよい。
 本発明において、マルテンサイトの面積率は以下のようにして決定される。まず、鋼板の圧延方向に垂直な板厚断面を観察面として試料を採取し、観察面を研磨し、当該鋼板の厚さの1/4位置の組織を5000倍の倍率でSEM-EBSD(電子線後方散乱回折装置付き走査型電子顕微鏡)で観察し、それを100μm×100μmの視野で画像解析してマルテンサイトの面積率を測定し、任意の5視野以上におけるこれらの測定値の平均が本発明におけるマルテンサイトの面積率として決定される。
(残部組織:5%以下)
 本発明によれば、マルテンサイト以外の残部組織は面積率で5%以下である。高強度鋼板の焼付硬化性を一層高めるためには、3%以下とするのが好ましく、より好ましくは0%である。残部組織が存在する場合、当該残部組織は、任意の組織を含むことができ特に限定されないが、例えば、残留オーステナイトを含むか又は残留オーステナイトからなることが好ましい。微量の残留オーステナイトは、鋼の成分と製造方法によっては生成を避けられない場合がある。しかしながら、このような微量の残留オーステナイトは、焼付硬化性に不利に影響を及ぼさないだけでなく、変形を受けた際のTRIP(変態誘起塑性:Transformation Induced Plasticity)効果で延性の向上に寄与することができる。そのため、残部組織は面積率で5%以下の範囲で残留オーステナイトを含んでいてもよい。しかし、焼付硬化性を一層高めるためには、残留オーステナイトの含有量は3%以下とするのが好ましく、より好ましくは0%である。
 本発明において、残留オーステナイトの面積率は、X線回折測定により決定される。具体的には、鋼板の表面から当該鋼板の厚さの1/4位置までの部分を機械研磨及び化学研磨により除去し、特性X線としてMoKα線を用いて鋼板の表面から深さ1/4位置におけるX線回折強度を測定する。そして、体心立方格子(bcc)相の(200)及び(211)、並びに面心立方格子(fcc)相の(200)、(220)及び(311)の回折ピークの積分強度比から、次の式を用いて残留オーステナイトの面積率を算出する。
 Sγ=(I200f+I220f+I311f)/(I200b+I211b)×100
 上記式において、Sγは残留オーステナイトの面積率、I200f、I220f及びI311fは、それぞれfcc相の(200)、(220)及び(311)の回折ピークの強度、I200b及びI211bは、それぞれbcc相の(200)及び(211)の回折ピークの強度を示す。
(Si濃度の比C1/C2が1.25以下)
 高強度鋼板の厚さ方向断面におけるSi濃度の上限値C1(質量%)と下限値C2(質量%)の比C1/C2は、1.25以下とする。より好ましくはC1/C2は1.15以下である。C1/C2が1.25以下である場合、Siの偏析を制御することができて、組織が均一になり、下記に示す鉄炭化物等の析出物を均一に析出させることができるため、均一焼付硬化性を高めることができる。
 C1/C2で示されるSiの偏析度合いは次のようにして測定する。鋼板についてその圧延方向が法線方向となる面(すなわち鋼板の厚さ方向断面)を観察できるように調整した後、鏡面研磨し、EPMA(電子プローブマイクロアナライザ)装置により、該鋼板の厚さ方向断面において鋼板の中央部100μm×100μmの範囲について、鋼板の厚さ方向に沿って片面側から他面側に向かって0.5μm間隔で200点のSi濃度を測定する。同じ100μm×100μmの範囲内のほぼ全領域をカバーするように別の4ライン上で同様な測定を行い、全5ライン上で測定された合計1000点のSi濃度の中で、最高値をSi濃度の上限値C1(質量%)とし、最低値をSi濃度の下限値C2(質量%)として、比C1/C2を算出する。
(長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度)
 本実施形態では、長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度有するところに大きな特徴を有している。本発明において、アスペクト比とは、析出物の最も長い径(長径)とそれに直交する当該析出物の径のうち最も長い径(短径)との比を言うものである。なお、析出物としては、上記の長径及びアスペクト比の要件を満たすものであればよく特に限定されないが、例えば、炭化物等が挙げられる。とりわけ、後で説明する熱処理工程を含む好ましい製造方法に従って本発明に係る高強度鋼板を製造した場合には、析出物は鉄炭化物を含むか又は鉄炭化物からなる。本発明によれば、このような析出物を組織中に比較的多く含むことにより、例えば転位同士が絡まることで生じる転位のセル化を抑制して、焼付硬化時に拡散する炭素等に起因して固着する転位の量を増加させることができ、その結果として焼付硬化量を顕著に高めることが可能となる。このような知見は従来知られておらず、今回、本発明者らによって初めて明らかにされたことであり、極めて意外であり、また驚くべきことである。なお、マルテンサイト内に生成される転位セルの大きさは約数十nm以上数百nm以下である。よって、転位セルの生成を抑制するためには、同じくらいの析出物の大きさが必要である。長径が0.05μm未満であると、転位のセル化の形成を抑制することができない。よって、析出物の長径は0.05μm以上とする。より好ましくは0.10μm以上である。また、長径が1.00μmより大きいと、析出物が粗大化し固溶炭素量を大きく減少させてしまい、焼付硬化量を減少させる。そのため、析出物の長径は1.00μm以下とする。より好ましくは、0.80μm以下である。
 析出物の形状は球状より、針状であるほうがよく、アスペクト比1:3以上であることが好ましい。アスペクト比が1:3未満であると、析出物の形状は球状とみなされ、転位セルの生成を抑制できない。よって、アスペクト比は1:3以上とする。より好ましくは1:5以上である。
 析出物の析出箇所はラス内が好ましい。これは転位セルが最も容易に形成される箇所がラス内であり、ラス間に転位セルはほとんど見られないためである。ここで、ラスとは、マルテンサイト変態により旧オーステナイト粒界内に生成される組織を言うものである。理解を容易にするため、図1に、本発明に係る高強度鋼板における析出物の析出状態を示すイメージ図を与える。図1を参照すると、均一構造1を有するSiのミクロ偏析(図1(a))中の旧オーステナイト粒界2内に生成されたラス組織3(図1(b))において、ラス4間ではなくラス4内の全面に均一に針状の析出物5が析出していることがわかる(図1(c))。
 析出物の個数密度は30個/μm以上とする。析出物の個数密度が30個/μm未満であると、予ひずみによって転位が導入され動く際、転位が析出物と出会う前に他の転位と相互作用し、転位セルが形成されてしまう。そのため、析出物の個数密度は30個/μm以上とする。より好ましくは40個/μm以上とする。
 本発明において、上記析出物の形態及び個数密度は、電子顕微鏡による観察によって決定され、例えばTEM(透過型電子顕微鏡)観察によって測定する。具体的には、鋼板の表面から当該鋼板の厚さの3/8位置から1/4位置までの領域から薄膜試料を切り出し明視野で観察する。1万倍から10万倍の適度な倍率によって、1μmを切り出し、長径が0.05μm以上1μm以下でアスペクト比1:3以上の析出物を数えて求める。この作業を連続した5視野以上で行い、その平均を個数密度とする。
 次に、本発明の機械特性について説明する。
(引張強度:1300MPa以上)
 上記の組成及び組織を有する本発明の高強度鋼板によれば、高い引張強度、具体的には1300MPa以上の引張強度を達成することができる。ここで、引張強度を1300MPa以上とするのは、自動車車体の軽量化の要求を満たすためである。引張強度は好ましくは1400MPa以上であり、より好ましくは1500MPa以上である。
 本発明の高強度鋼板によれば、優れた焼付硬化量を達成することが可能である。より具体的には、本発明の高強度鋼板によれば、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力から、2%予ひずみ付加時の応力を差し引いた値が180MPa以上、好ましくは200MPa以上となるような焼付硬化量BHを達成することができる。このBHの値が180MPa未満では、成形しにくく且つ成形後の強度が低いため、優れた焼付硬化性とは言えない。
 同様に、本発明の高強度鋼板によれば、優れた均一焼付硬化性を達成することが可能である。当該均一焼付硬化性は、例えば、異なる予ひずみを与えた場合の焼付硬化量差を所定の値以下に制御できるか否かという観点で評価することが可能である。本発明においては、特に断りのない限り、焼付硬化量差ΔBHは、予ひずみ2%の場合のBHと予ひずみ1%の場合のBHの差の絶対値を言うものとする。本発明によれば、この焼付硬化量差ΔBHを20MPa以下、好ましくは10MPa以下に制御することができるので、プレス成形時に入るひずみ量に違いがあっても、均一に焼付硬化を発現させることができ、すなわち焼付硬化量の予ひずみ依存性が小さい(均一焼付硬化性が高い)高強度鋼板を提供することができる。一方で、上記のΔBHが20MPaより大きい場合には、焼付硬化量の予ひずみ依存性が大きく、優れた均一焼付硬化性であるとは言えない。
<高強度鋼板の製造方法>
 次に、本実施形態に係る好ましい高強度鋼板の製造方法について説明する。
 以下の説明は、本発明の高強度鋼板を製造するための特徴的な方法の例示を意図するものであって、本発明の高強度鋼板を以下に説明するような製造方法によって製造されるものに限定することを意図するものではない。
 本発明の高強度鋼板の好ましい製造方法は、上で説明した化学成分組成を有する溶鋼を鋳造してスラブを形成する工程、
 前記スラブを1050℃以上1250℃以下の温度域で粗圧延する粗圧延工程であって、前記粗圧延が1パス当たりの圧下率が30%以下のリバース圧延を2パス以上、16パス以下で偶数回行うことを含み、1往復する際の2パス間の圧下率差が20%以下であり、1往復内の偶数回の圧下率が奇数回の圧下率より5%以上高く、前記粗圧延の後5秒以上保持される粗圧延工程、
 粗圧延された鋼板を850℃以上1050℃以下の温度域で仕上げ圧延する仕上げ圧延工程であって、前記仕上げ圧延が4つ以上の連続する圧延スタンドで行われ、第一スタンドの圧下率が15%以上であり、仕上げ圧延された鋼板が400℃以下の温度域で巻き取られる仕上げ圧延工程、
 得られた熱延鋼板を15%以上45%以下の圧下率で冷間圧延する冷間圧延工程、
 得られた冷延鋼板を10℃/秒以上の平均加熱速度で昇温してAc以上1000℃以下の温度域で10~1000秒間保持し、次いで10℃/秒以上の平均冷却速度で70℃以下まで冷却する焼鈍工程、及び
 得られた鋼板を200℃以上350℃以下の温度域で100秒以上保持し、次いで2℃/秒以上の平均冷却速度で100℃以下まで冷却する熱処理工程
を含むことを特徴としている。以下、各工程について説明する。
(スラブの形成工程)
 先ず、上で説明した本発明に係る高強度鋼板の化学成分組成を有する溶鋼を鋳造し、粗圧延に供するスラブを形成する。鋳造方法は、通常の鋳造方法でよく、連続鋳造法、造塊法などを採用できるが、生産性の点で、連続鋳造法が好ましい。
(粗圧延工程)
 スラブを、粗圧延の前に、1000℃以上1300℃以下の溶体化温度域に加熱するのが好ましい。加熱保持時間は特に規定しないが、スラブ中心部まで所定の温度にするために、加熱温度に30分間以上保持することが好ましい。加熱保持時間は、過度のスケールロスを抑制するため、10時間以下が好ましく、5時間以下がより好ましい。鋳造後のスラブの温度が1050℃以上1250℃以下であれば、該温度域に加熱保持せず、そのまま粗圧延に供し、直送圧延又は直接圧延を行ってもよい。
 次に、スラブにリバース圧延で粗圧延を施すことで、スラブの形成工程において凝固時に形成したスラブ中のSi偏析部を、一方向に伸びる板状の偏析部にすることなく、均一構造にすることができる。このような均一構造を有するSi濃度分布の形成についてより詳しく説明すると、まず、粗圧延を開始する前のスラブにおいては、Si等の合金元素が濃化した部分が、スラブの両方の表面から内部に向かって櫛状の形態でほぼ垂直に複数並んでいる状態になっている。
 一方、粗圧延では、圧延の1パスごとに、スラブの表面は圧延の進行方向に伸ばされることとなる。なお、圧延の進行方向とは、圧延ロールに対してスラブが進行していく方向である。そして、このようにスラブの表面が圧延の進行方向に伸ばされることにより、スラブの表面から内部に向かって成長しているSi偏析部は、圧延の1パスごとにスラブの進行方向に傾斜した状態にされる。
 ここで、粗圧延の各パスにおけるスラブの進行方向が常に同じ方向であるいわゆる一方向圧延の場合、Si偏析部は、ほほ真っ直ぐな状態を保ったまま、パスごとに同じ方向に向かって徐々に傾斜が強くなっていく。そして、粗圧延の終了時には、Si偏析部は、ほほ真っ直ぐな状態を保ったまま、スラブの表面に対してほぼ平行な姿勢となり、扁平なミクロ偏析が形成されてしまう。
 一方、粗圧延の各パスにおけるスラブの進行方向が交互に反対の方向となるリバース圧延の場合は、直前のパスで傾斜させられたSi偏析部が、次のパスでは逆の方向に傾斜させられることとなり、その結果、Si偏析部は折れ曲がった形状となる。このため、リバース圧延においては、交互に反対の方向となる各パスが繰り返し行われることにより、Si偏析部が交互に折れ曲がったジグザグ形状となる。
 このように交互に折れ曲がったジグザグ形状が複数並ぶと、板状のミクロ偏析は消失し、均一に入り組んだSi濃度分布となる。このような構造をとることにより、後工程での熱処理によってSiがさらに拡散しやすくなり、より均一なSi濃度を有する熱延鋼板を得ることができる。なお、上記のリバース圧延により、鋼板全体にわたって均一に入り組んだSi濃度分布となるため、このような均一構造は、圧延方向に平行な板厚断面だけでなく、圧延方向が法線となる板厚断面においても同様に形成される。
 粗圧延温度域が1050℃未満であると、粗圧延の最終パスにおいて、850℃以上で圧延を完了することが難しくなり、形状不良となるので、粗圧延温度域は1050℃以上が好ましい。より好ましくは1100℃以上である。粗圧延温度域が1250℃を超えると、スケールロスが増大する上、スラブ割れが発生する懸念が生じるので、粗圧延温度域は1250℃以下が好ましい。
 粗圧延における1パス当たりの圧下率が30%を超えると、圧延時の剪断応力が大きくなって、Si偏析部が不均一になり、均一構造にすることができない。したがって、粗圧延における1パス当たりの圧下率は30%以下とする。圧下率が小さいほど、圧延時の剪断歪みが小さくなり、均一構造にできるので、圧下率の下限は特に定めないが、生産性の観点から、10%以上が好ましい。
 Si濃度分布を均一構造にするためには、リバース圧延は2パス以上が好ましく、より好ましくは4パス以上である。ただし、16パスを超えて施すと十分な仕上げ圧延温度を確保することが難しくなるので、16パス以下とする。また、進行方向が互いに反対の方向となる各パスは、同じ回数ずつ行われること、すなわち合計のパス回数を偶数回とすることが望ましい。しかしながら、一般の粗圧延ラインでは、粗圧延の入側と出側はロールを挟んで反対側に位置する。このため、粗圧延の入側から出側に向かう方向のパス(圧延)が一回多くなる。そうすると、最後のパス(圧延)でSi偏析部が扁平な形状となり、均一構造が形成されにくくなる。このような、熱間圧延ラインで粗圧延をする場合には、最後のパスはロール間を開けて圧延を省略することが好ましい。
 リバース圧延において、1往復の圧延に含まれる2パス間の圧下率に差があると、形状不良が生じやすく、またSi偏析部が不均一になり、均一構造にすることができない。そのため、粗圧延時、リバース圧延の1往復に含まれる2パス間の圧下率差は20%以下とする。好ましくは10%以下である。
 後述するように、再結晶組織を微細化するためには、仕上げ圧延におけるタンデムの多段圧延が有効であるが、タンデム圧延によって、扁平なミクロ偏析が形成されやすくなる。タンデムの多段圧延を利用するためには、リバース圧延における偶数回の圧下率を奇数回の圧下率より大きくし、その後のタンデム圧延で形成されるミクロ偏析を制御しなければならない。その効果はリバース圧延の1往復において、偶数回(復路)の圧下率が奇数回(往路)の圧下率より5%以上高くなると顕著になる。そのため、リバース圧延の1往復において、偶数回の圧下率が奇数回の圧下率より5%以上高くすることが好ましい。
 粗圧延におけるリバース圧延によって生成したSiの複雑構造をオーステナイト粒界移動によって均一にするためには、粗圧延から仕上げ圧延までに5秒以上保持することが好ましい。
(仕上げ圧延工程)
 粗圧延におけるリバース圧延の後、仕上げ圧延におけるタンデム圧延の圧下率を大きくすることによって、デンドライト二次アームに起因するSi偏析帯の間隔を狭小化するために、仕上げ圧延は4つ以上の連続する圧延スタンドで行われることが好ましい。仕上げ圧延温度が850℃未満であると、再結晶が十分に起きず、圧延方向に延伸した組織となり、後工程で、延伸組織に起因した板状組織が生成するので、仕上げ圧延温度は850℃以上が好ましい。より好ましくは900℃以上である。一方、仕上げ圧延温度が1050℃を超えると、オーステナイトの微細な再結晶粒が生成しにくくなり、粒界のSi偏析が困難となり、Si偏析帯が扁平となりやすくなる。そのため、仕上げ圧延温度は1050℃以下が好ましい。なお、適正温度であれば、必要に応じて、粗圧延された鋼板を粗圧延工程の後でかつ仕上げ圧延工程の前に加熱してもよい。さらに、仕上げ圧延の第一スタンドの圧下率を15%以上にすると、再結晶粒が多量に生成し、その後の粒界移動によって、Siが均一に分散しやすくなる。このように、粗圧延工程だけでなく、仕上げ圧延工程を限定することによって、扁平なSiのミクロ偏析を抑制できる。なお、仕上げ圧延温度とは、仕上げ圧延開始から仕上げ圧延終了までの鋼板の表面温度を指す。
 巻取温度が400℃を超えると、内部酸化によって表面性状が低下するので、巻取温度は400℃以下が好ましい。鋼板組織を、マルテンサイト又はベイナイトの均質組織とすると、焼鈍で、均質な組織を形成し易いので、巻取温度は300℃以下がより好ましい。
(冷間圧延工程)
 仕上げ圧延工程において得られた熱延鋼板を、酸洗後、冷間圧延に供し、冷延鋼板とする。マルテンサイトのラスを維持するため、圧下率は15%以上45%以下が好ましい。圧下率が45%を超えるとSi偏析の均一構造が乱れるのでマルテンサイトのラス組織において、ラス間に析出する炭化物が多くなり、ラス内に析出する針状の析出物が減少する。その結果、アスペクト比1:3以上である炭化物の析出が阻害されるため好ましくない。なお、酸洗は、通常の酸洗でよい。
(焼鈍工程)
 上記冷間圧延工程を経て得られた鋼板に、焼鈍処理を施す。焼鈍温度での加熱は、10℃/秒以上の平均加熱速度で昇温し、Ac以上1000℃以下の温度域で、10~1000秒加熱保持とする。この温度範囲と焼鈍時間は、鋼板の全面をオーステナイト変態させるためのものである。保持温度が1000℃超又は焼鈍時間が1000秒超になると、オーステナイト粒径が粗大化し、ラス幅が大きいマルテンサイトになってしまい、靱性が低下する。従って、焼鈍温度はAc以上1000℃以下、焼鈍時間は10~1000秒とする。
 なお、Ac点は次の式により計算する。下記式における元素記号には当該元素の質量%を代入する。含有しない元素については0質量%を代入する。
 Ac=881-335×C+22×Si―24×Mn-17×Ni-1×Cr-27×Cu+41×Mo
 焼鈍温度保持後、冷却は10℃/秒以上の平均冷却速度で行う。組織を凍結し、マルテンサイト変態を効率的に引き起こすためには、冷却速度は速いほうがよい。ただし、10℃/秒未満ではマルテンサイトが十分に生成せず、所望の組織に制御できない。よって、10℃/秒以上とする。焼鈍保持後、上記冷却速度を保持できれば、冷却途中にめっき工程を付加してもよい。
 冷却停止温度は70℃以下とする。これは、冷却によって全面に焼き入れままマルテンサイトを生成させるためである。70℃超で冷却停止すると、マルテンサイト以外の組織が出てしまう可能性がある。また、マルテンサイトが出た場合、自己焼き戻しによって球状化した鉄炭化物等の析出物が出る。これにより後工程において針状の鉄炭化物等の析出物が析出せず、目的の析出物が得られず、焼付硬化性は劣化する。そのため、冷却停止温度は70℃以下とし、好ましくは60℃以下とする。
(熱処理工程)
 本実施形態に係る高強度鋼板は、鉄炭化物等の析出物の析出形態に大きな特徴を有している。このような析出物は、Siを適量含有するスラブをマルテンサイトにした後、加熱により200℃以上350℃以下の温度域で保持されることにより析出する。保持温度が200℃未満であった場合、析出物の長径は0.05μm未満となり、転位セルを抑制できない。これより、保持温度は250℃以上とする。保持温度が350℃超であった場合、析出物が粗大化してしまい、個数密度が小さく、長径が1.00μm超となってしまう。これにより、転位セルを抑制することができない。したがって、保持温度は350℃以下とする。保持時間は100秒以上とする。保持時間が100秒未満だと、安定的に鉄炭化物を析出させることができない。これより、保持時間は100秒以上とする。その後、生産性の観点から、2℃/秒以上の平均冷却速度で100℃以下まで冷却する。
(スキンパス圧延工程)
 熱処理工程の後、任意選択でスキンパス圧延(調質圧延)を施してもよい。本発明の実施形態に係る高強度鋼板においては、析出物によって転位セルを抑制するため、いくらスキンパス圧延を施しても転位セルが形成されることはなく、焼付硬化性が劣化することはない。ただし、板厚制御が困難になるため、圧下率を2.0%以下とすることが好ましい。更に好ましくは圧下率を1.0%以下とする。
 このようにして、本発明の実施形態に係る高強度鋼板を製造することができる。
 なお、上記実施形態は、何れも本発明を実施するにあたっての具体化の例を示したものに過ぎず、これらによって本発明の技術的範囲が限定的に解釈されてはならないものである。すなわち、本発明はその技術思想、又はその主要な特徴から逸脱することなく、様々な形で実施することができる。
 次に、本発明の実施例について説明する。実施例での条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 表1に示す化学組成を有するスラブを製造し、スラブを1300℃に1時間加熱した後、表2に示す条件にて粗圧延及び仕上げ圧延を行って熱延鋼板を得た。その後、熱延鋼板の酸洗を行い、表2に示す圧下率で冷間圧延を行って冷延鋼板を得た。続いて、表2に示す条件下で焼鈍及び熱処理を行った。なお、表2に示す各温度は鋼板の表面温度である。また、表2における、「1往復内パス間の圧下率差」は、全ての往復パスにおいて同一の圧下率差であったことを意味する。
 表2におけるAcは以下に示す式で計算した。下記式における元素記号には当該元素の質量%を代入した。含有しない元素については0質量%を代入した。
 Ac=881-335×C+22×Si―24×Mn-17×Ni-1×Cr-27×Cu+41×Mo
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 得られた冷延鋼板に対しSEM-EBSDとX線回折法を用いてマルテンサイト及び残留オーステナイトの面積率を求めた。
 特に、マルテンサイトの面積率は以下のようにして決定した。まず、鋼板の圧延方向に垂直な板厚断面を観察面として試料を採取し、観察面を研磨し、当該鋼板の厚さの1/4位置の組織を5000倍の倍率でSEM-EBSDで観察し、それを100μm×100μmの視野で画像解析してマルテンサイトの面積率を測定し、任意の5視野におけるこれらの測定値の平均をマルテンサイトの面積率として決定した。
 また、得られた冷延鋼板の鋼組織をTEM観察し、析出物の有無やその長径、アスペクト比、及び個数密度を求めた。具体的には、鋼板の表面から当該鋼板の厚さの3/8位置から1/4位置までの領域から薄膜試料を切り出し明視野で観察し、1万倍から10万倍の適度な倍率によって、1μmを切り出し、長径が0.05μm以上1μm以下でアスペクト比1:3以上の析出物を数えて求め、この作業を連続した5視野で行い、その平均を個数密度とした。これらの結果を表3に示す。
 更に、得られた冷延鋼板の引張強度TS、破断伸びEL、焼付硬化量BH、及び焼付硬化量差ΔBHを測定した。引張強度TS、破断伸びEL、焼付硬化量BH、及び焼付硬化量差ΔBHの測定では、圧延方向に直角な方向を長手方向とするJIS5号引張試験片を採取し、JIS Z 2241に準拠して引張試験を行った。焼付硬化量BHは、2%予ひずみを付加後、170℃で20分間熱処理した試験片を再引張したときの応力から、2%予ひずみ付加時の応力を差し引いた値である。焼付硬化量差ΔBHは、予ひずみ2%の場合のBHと予ひずみ1%の場合のBHの差の絶対値である。自動車車体の軽量化の要求を満たすためには引張強度は1300MPa以上、好ましくは1400MPa以上であり、より好ましくは1500MPa以上である。また、成形しやすいために、伸びは5%以上であることは好ましい。また、BHについては、180MPa未満では成形しにくく且つ成形後の強度が低くなるため、優れた焼付硬化性を有するためには、180MPa以上必要である。より好ましくは200MPa以上である。ΔBHについては、プレス成形時に入るひずみ量に違いがあっても、均一に焼付硬化を起こすためには20MPa以下である必要がある。より好ましくは10MPa以下である。
 また、C1/C2で示されるSiの偏析度合いは次のようにして測定した。製造された鋼板についてその圧延方向が法線方向となる面(すなわち鋼板の厚さ方向断面)を観察できるように調整した後、鏡面研磨し、EPMA装置により、該鋼板の厚さ方向断面において鋼板の中央部100μm×100μmの範囲について、鋼板の厚さ方向に沿って片面側から他面側に向かって0.5μm間隔で200点のSi濃度を測定した。同じ100μm×100μmの範囲内のほぼ全領域をカバーするように別の4ライン上で同様な測定を行い、全5ライン上で測定された合計1000点のSi濃度の中で、最高値をSi濃度の上限値C1(質量%)とし、最低値をSi濃度の下限値C2(質量%)として、比C1/C2を算出した。
Figure JPOXMLDOC01-appb-T000004
[評価結果]
 表3に示すように、実施例1、3~5、7、10、15、18、20、23、25、28、31及び34では、優れた引張強度、BH及びΔBHを得ることができた。いずれも引張強度が1300MPa以上、BHが180MPa以上、ΔBHが20MPa以下となり、高強度、且つ、焼付硬化性に優れることが示された。なお、これらの実施例に係る高強度鋼板では、析出物、特には鉄炭化物がマルテンサイト中のラス内全面に均一に析出していた。
 一方、比較例2では、熱処理工程における保持時間が短かったために、十分に目的の鉄炭化物が析出せず、BHが低く、ΔBHが高かった。比較例6では、熱処理工程における保持温度が低かったために、十分に目的の鉄炭化物が析出せず、BHが低く、ΔBHが高かった。比較例8では、焼鈍温度が低すぎたために、フェライト組織が現れて十分なマルテンサイト組織が得られず、その結果としてTS及びBHが低かった。比較例9では、焼鈍時間が短すぎたために、全面マルテンサイト組織にならず、同様にTS及びBHが低かった。比較例11では、焼鈍工程における平均冷却速度が遅すぎたために、全面マルテンサイト組織にならず、TS及びBHが低かった。比較例12では、熱処理工程における保持温度が高すぎたために、鉄炭化物が粗大化してしまい、TS及びBHが低く、ΔBHが高かった。比較例13では、C含有量が少なすぎたために、固溶炭素量が減少し、TS及びBHが低かった。比較例14では、Si含有量が少なすぎたために、十分に目的の鉄炭化物が生成せず、BHが低く、ΔBHが高かった。
 比較例16では、粗圧延工程における1往復する際の2パス間の圧下率差が大きかったために、Si濃度分布が均一構造にならず、ΔBHが高かった。比較例17では、粗圧延工程における1往復内の偶数回の圧下率が奇数回の圧下率よりも小さかったために、Si濃度分布が均一構造にならず、ΔBHが高かった。比較例19では、Mn含有量が少なすぎたために、TS及びBHが低かった。比較例21では、粗圧延工程におけるリバース圧延の圧下率が高かったために、Si濃度分布が均一構造にならず、ΔBHが高かった。比較例22では、C含有量が高すぎたために、残留オーステナイト(γ)の面積率が高く十分なマルテンサイト組織が得られず、BHが低かった。比較例24では、粗圧延後から仕上げ圧延までの時間が短すぎて、Si濃度分布が均一構造にならず、ΔBHが高かった。比較例26では、仕上げ圧延のスタンドが少なかったために、Si濃度分布が扁平状になってしまい、ΔBHが高かった。比較例27では、仕上げ圧延の第一スタンドの圧下率が小さすぎて、Si濃度分布が扁平状になってしまい、ΔBHが高かった。比較例29では、仕上げ圧延温度(表2中の仕上げ圧延開始温度)が高すぎて、Si濃度部分布が扁平状になってしまい、ΔBHが高かった。比較例30では、冷延率が高すぎたために、目的のアスペクト比を持つ炭化物を得ることができず、BHが低く、ΔBHが高かった。比較例32では、粗圧延工程におけるリバース圧延のパス回数が奇数回であったために、Si濃度分布が均一構造にならず、ΔBHが高かった。比較例33では、焼鈍工程における冷却停止温度が高かったために、球状化した粗大鉄炭化物が析出してしまい、TS及びBHが低く、ΔBHが高かった。
 本発明の焼付硬化性に優れた高強度鋼板は、特に、自動車産業分野において自動車の構造材の原板として利用することができる。
 1  均一構造
 2  旧オーステナイト粒界
 3  ラス組織
 4  ラス
 5  析出物

Claims (6)

  1.  質量%で、
     C:0.13~0.40%、
     Si:0.500~3.000%、
     Mn:2.50~5.00%、
     P:0.100%以下、
     S:0.010%以下、
     Al:0.001~2.000%、
     N:0.010%以下
    を含有し、残部がFe及び不純物からなり、
     面積率で95%以上のマルテンサイトを含有し、残部組織が面積率で5%以下であり、
     厚さ方向断面におけるSi濃度の上限値C1(質量%)と下限値C2(質量%)の比C1/C2が1.25以下であり、
     長径が0.05μm以上1.00μm以下でアスペクト比1:3以上の析出物を30個/μm以上の個数密度で有し、
     引張強度が1300MPa以上である、高強度鋼板。
  2.  前記残部組織が存在する場合には、前記残部組織が残留オーステナイトからなる、請求項1に記載の高強度鋼板。
  3.  更に、質量%で、
     Ti:0.100%以下、
     Nb:0.100%以下、
     V:0.100%以下
    の1種又は2種以上を合計で0.100%以下含有する、請求項1又は2に記載の高強度鋼板。
  4.  更に、質量%で、
     Cu:1.000%以下、
     Ni:1.000%以下、
     Mo:1.000%以下、
     Cr:1.000%以下
    の1種又は2種以上を合計で1.000%以下含有する、請求項1乃至3のいずれか一項に記載の高強度鋼板。
  5.  更に、質量%で、
     W:0.005%以下、
     Ca:0.005%以下、
     Mg:0.005%以下
     希土類金属(REM):0.010%以下
    の1種又は2種以上を合計で0.010%以下含有する、請求項1乃至4のいずれか一項に記載の高強度鋼板。
  6.  更に、質量%で、B:0.0030%以下を含有する、請求項1乃至5のいずれか一項に記載の高強度鋼板。
PCT/JP2019/029432 2018-07-27 2019-07-26 高強度鋼板 WO2020022481A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
MX2020012659A MX2020012659A (es) 2018-07-27 2019-07-26 Lamina de acero de alta resistencia.
CN201980036428.2A CN112204162B (zh) 2018-07-27 2019-07-26 高强度钢板
US17/054,467 US11486028B2 (en) 2018-07-27 2019-07-26 High-strength steel sheet
JP2019565584A JP6677364B1 (ja) 2018-07-27 2019-07-26 高強度鋼板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018141244 2018-07-27
JP2018-141244 2018-07-27

Publications (1)

Publication Number Publication Date
WO2020022481A1 true WO2020022481A1 (ja) 2020-01-30

Family

ID=69181768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/029432 WO2020022481A1 (ja) 2018-07-27 2019-07-26 高強度鋼板

Country Status (6)

Country Link
US (1) US11486028B2 (ja)
JP (1) JP6677364B1 (ja)
CN (1) CN112204162B (ja)
MX (1) MX2020012659A (ja)
TW (1) TW202012650A (ja)
WO (1) WO2020022481A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262653A1 (ja) 2019-06-28 2020-12-30 日本製鉄株式会社 衝撃吸収部材、衝撃吸収部材の製造方法、および、冷間塑性加工用鋼板の製造方法
WO2021149810A1 (ja) * 2020-01-24 2021-07-29 日本製鉄株式会社 パネル
WO2022075027A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 電縫鋼管およびその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981234B (zh) * 2021-01-21 2022-09-23 江阴兴澄特种钢铁有限公司 一种方坯连铸连轧微合金化汽车安全气囊管用钢及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
WO2015133550A1 (ja) * 2014-03-06 2015-09-11 株式会社神戸製鋼所 焼付け硬化性と曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
JP2017504720A (ja) * 2013-12-23 2017-02-09 ポスコPosco 強度及び延性に優れた熱処理硬化型鋼板及びその製造方法
WO2017033222A1 (ja) * 2015-08-21 2017-03-02 新日鐵住金株式会社 鋼板
WO2019093429A1 (ja) * 2017-11-08 2019-05-16 日本製鉄株式会社 鋼板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3927384B2 (ja) 2001-02-23 2007-06-06 新日本製鐵株式会社 切り欠き疲労強度に優れる自動車用薄鋼板およびその製造方法
JP3764411B2 (ja) 2002-08-20 2006-04-05 株式会社神戸製鋼所 焼付硬化性に優れた複合組織鋼板
JP6540162B2 (ja) 2015-03-31 2019-07-10 日本製鉄株式会社 延性および伸びフランジ性に優れた高強度冷延鋼板、高強度合金化溶融亜鉛めっき鋼板、およびそれらの製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008144233A (ja) * 2006-12-11 2008-06-26 Kobe Steel Ltd 焼付硬化用高強度鋼板およびその製造方法
JP2017504720A (ja) * 2013-12-23 2017-02-09 ポスコPosco 強度及び延性に優れた熱処理硬化型鋼板及びその製造方法
WO2015133550A1 (ja) * 2014-03-06 2015-09-11 株式会社神戸製鋼所 焼付け硬化性と曲げ性に優れた高強度合金化溶融亜鉛めっき鋼板
WO2017033222A1 (ja) * 2015-08-21 2017-03-02 新日鐵住金株式会社 鋼板
WO2019093429A1 (ja) * 2017-11-08 2019-05-16 日本製鉄株式会社 鋼板

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020262653A1 (ja) 2019-06-28 2020-12-30 日本製鉄株式会社 衝撃吸収部材、衝撃吸収部材の製造方法、および、冷間塑性加工用鋼板の製造方法
KR20220025866A (ko) 2019-06-28 2022-03-03 닛폰세이테츠 가부시키가이샤 충격 흡수 부재, 충격 흡수 부재의 제조 방법, 및, 냉간 소성 가공용 강판의 제조 방법
WO2021149810A1 (ja) * 2020-01-24 2021-07-29 日本製鉄株式会社 パネル
WO2022075027A1 (ja) * 2020-10-05 2022-04-14 Jfeスチール株式会社 電縫鋼管およびその製造方法
JP7081727B1 (ja) * 2020-10-05 2022-06-07 Jfeスチール株式会社 電縫鋼管およびその製造方法

Also Published As

Publication number Publication date
JPWO2020022481A1 (ja) 2020-08-06
US20210164082A1 (en) 2021-06-03
US11486028B2 (en) 2022-11-01
JP6677364B1 (ja) 2020-04-08
TW202012650A (zh) 2020-04-01
CN112204162A (zh) 2021-01-08
MX2020012659A (es) 2021-02-02
CN112204162B (zh) 2022-01-25

Similar Documents

Publication Publication Date Title
EP3128027B1 (en) High-strength cold rolled steel sheet having high yield ratio, and production method therefor
KR101632778B1 (ko) 냉연 강판 및 그 제조 방법
JP6677364B1 (ja) 高強度鋼板
KR102375340B1 (ko) 고강도 강판 및 그 제조 방법
JP6274360B2 (ja) 高強度亜鉛めっき鋼板、高強度部材及び高強度亜鉛めっき鋼板の製造方法
KR102518159B1 (ko) 용융 아연 도금 강판 및 그 제조 방법
JP5080215B2 (ja) 等方性と伸びおよび伸びフランジ性に優れた高強度冷延鋼板
CN116635543A (zh) 钢板、构件和它们的制造方法
JP6690804B1 (ja) 合金化溶融亜鉛めっき鋼板
KR102590522B1 (ko) 냉연 강판 및 그 제조 방법
CN112703265A (zh) 冷轧钢板
CN111315907B (zh) 钢板
KR20230049120A (ko) 핫 스탬프용 강판 및 그 제조 방법, 그리고, 핫 스탬프 부재 및 그 제조 방법
JP6652230B1 (ja) 高強度鋼板
JP7392904B1 (ja) 高強度鋼板およびその製造方法
EP4223900A1 (en) High-strength steel sheet

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019565584

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19841522

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19841522

Country of ref document: EP

Kind code of ref document: A1