WO2011040214A1 - 水素の再利用方法 - Google Patents

水素の再利用方法 Download PDF

Info

Publication number
WO2011040214A1
WO2011040214A1 PCT/JP2010/065705 JP2010065705W WO2011040214A1 WO 2011040214 A1 WO2011040214 A1 WO 2011040214A1 JP 2010065705 W JP2010065705 W JP 2010065705W WO 2011040214 A1 WO2011040214 A1 WO 2011040214A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
hydrogen chloride
gas
exhaust gas
activated carbon
Prior art date
Application number
PCT/JP2010/065705
Other languages
English (en)
French (fr)
Inventor
彩生 秋吉
忠 相本
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to KR1020127005466A priority Critical patent/KR101811457B1/ko
Priority to JP2011534174A priority patent/JP5734861B2/ja
Priority to US13/390,018 priority patent/US8679228B2/en
Priority to EP10820333.2A priority patent/EP2484631B1/en
Priority to CN201080035687.2A priority patent/CN102471056B/zh
Publication of WO2011040214A1 publication Critical patent/WO2011040214A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/52Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/68Halogens or halogen compounds
    • B01D53/685Halogens or halogen compounds by treating the gases with solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/113Silicon oxides; Hydrates thereof
    • C01B33/12Silica; Hydrates thereof, e.g. lepidoic silicic acid
    • C01B33/18Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof
    • C01B33/181Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process
    • C01B33/183Preparation of finely divided silica neither in sol nor in gel form; After-treatment thereof by a dry process by oxidation or hydrolysis in the vapour phase of silicon compounds such as halides, trichlorosilane, monosilane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B7/00Halogens; Halogen acids
    • C01B7/01Chlorine; Hydrogen chloride
    • C01B7/07Purification ; Separation
    • C01B7/0706Purification ; Separation of hydrogen chloride
    • C01B7/0718Purification ; Separation of hydrogen chloride by adsorption
    • C01B7/0725Purification ; Separation of hydrogen chloride by adsorption by active carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0415Purification by absorption in liquids
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/0465Composition of the impurity

Definitions

  • the present invention relates to a method for reusing hydrogen used in the process of producing polysilicon by reacting hydrogen with trichlorosilane.
  • each gas component contained in the exhaust gas is separated and recycled for producing polysilicon.
  • Patent Document 1 by-product hydrogen chloride-containing exhaust gas discharged from the production process of polysilicon is cooled to ⁇ 10 ° C. or lower to condense and remove a part of silanes.
  • the exhaust gas after passing through the bed adsorbing and removing silanes in the exhaust gas, and passing through the activated carbon layer having a specific average pore radius through the exhaust gas that has passed through the adsorption removal process
  • a method for manufacturing polysilicon is disclosed in which the hydrogen is purified and the hydrogen is circulated in the polysilicon manufacturing process.
  • the activated carbon layer in which hydrogen chloride is adsorbed and retained in the above-described hydrogen chloride adsorption step is used to desorb the adsorbed hydrogen chloride using hydrogen as a purge gas, and then purge exhaust gas containing hydrogen and the desorbed hydrogen chloride.
  • a method has been proposed in which hydrogen chloride in purge exhaust gas is absorbed in acidic water by contacting the water with acidic water such as hydrochloric acid in a washing tower, and then hydrogen chloride is recovered from the acidic water.
  • the exhaust gas discharged after bringing the purge exhaust gas into contact with the acidic water in the washing tower is a gas containing hydrogen as a main component, but is not easily absorbed by acidic water such as hydrochloric acid, such as methane. It contains impurities such as (CH 4 ) and phosphine (PH 3 ), as well as trace amounts of hydrogen chloride contained in the water entrained from the washing tower, so that the exhaust gas is used as a hydrogen source in other reactions. It has been considered difficult and has been disposed of after appropriate processing. On the other hand, as the production amount of polysilicon by the Siemens method increases, exhaust gas discharged from the polysilicon production process increases.
  • the activated carbon layer Since there is a limit to the ability of the activated carbon layer to adsorb and remove hydrogen chloride, a plurality of the activated carbon layers are used in parallel as a countermeasure against the increase in the exhaust gas. However, as the number of activated carbon layers is increased, the number of times of regeneration treatment of the activated carbon layer on which hydrogen chloride is adsorbed and retained, that is, desorption of hydrogen chloride from the activated carbon layer using hydrogen as a purge gas, is increased. The amount of purge exhaust gas discharged at the time of desorption is increased, and it has been desired to establish an effective method for reusing this exhaust gas. Since the activated carbon from which hydrogen chloride has been desorbed is used again for removing hydrogen chloride from the exhaust gas discharged from the polysilicon manufacturing process, hydrogen, which is also a component gas in the exhaust gas, is used as the purge gas. .
  • an object of the present invention is to purge hydrogen gas and hydrogen purge gas containing hydrogen discharged when hydrogen chloride adsorbed using hydrogen gas as a purge gas is desorbed from an activated carbon layer on which hydrogen chloride is adsorbed and held. It is to provide a method for recovering and reusing hydrogen from wastewater.
  • the present inventors have conducted intensive studies.
  • the inventors paid attention to the fact that the hydrogen used as the purge gas has high purity. That is, in order to manufacture polysilicon with extremely high purity such as semiconductor grade in the manufacturing process of polysilicon, it is necessary that various gases distributed in the manufacturing process have high purity.
  • the purge gas hydrogen used when desorbing hydrogen chloride from the activated carbon layer is also polysilicon. High purity as high as hydrogen gas flowing through the manufacturing process is required.
  • a hydrogen chloride adsorption process for adsorbing hydrogen chloride by passing the exhaust gas discharged from the process of producing polysilicon by reacting hydrogen with trichlorosilane through an activated carbon layer; (2) a hydrogen chloride desorption step of desorbing the adsorbed hydrogen chloride through hydrogen gas as a purge gas through the activated carbon layer on which hydrogen chloride is adsorbed and held; (3) A hydrogen recovery step for obtaining hydrogen gas from which hydrogen chloride has been removed by bringing the purge exhaust gas containing hydrogen chloride and hydrogen desorbed in the hydrogen chloride desorption step into contact with a hydrogen chloride absorbent, and (4) the hydrogen recovery A hydrogen supply process for compressing the hydrogen gas recovered in the process and supplying the compressed hydrogen gas as a hydrogen source in another process; A method for reusing hydrogen in purge exhaust gas is provided.
  • the silane scavenger is an organic solvent or oil; (D) providing a dehumidification step for removing moisture after compression in the hydrogen supply step; Is preferred.
  • the present invention adsorbs hydrogen chloride in a by-product hydrogen chloride-containing exhaust gas discharged from a process of producing polysilicon by reacting hydrogen with trichlorosilane, and then hydrogen gas from an activated carbon layer on which hydrogen chloride is adsorbed and held. And hydrogen chloride is desorbed, and hydrogen is recovered from the purge exhaust gas containing hydrogen chloride and hydrogen discharged at that time and reused as a hydrogen source in other manufacturing processes.
  • the hydrogen recycling method of the present invention will be described below.
  • the step of producing polysilicon is a method of depositing polysilicon by reacting hydrogen with trichlorosilane
  • the structure and reaction conditions of the reactor are not particularly limited, and known reactors and reactions are known. Conditions can be adopted.
  • a typical method is the Siemens method. In the Siemens method, a silicon filament was used as a heating substrate, and this was heated by energization to 900 to 1250 ° C., and trichlorosilane was supplied together with hydrogen to grow silicon by depositing on the filament. This is a method for obtaining a polysilicon rod.
  • the exhaust gas discharged in the process of producing this polysilicon is a by-product of reaction, such as silane compounds such as monosilane, monochlorosilane, dichlorosilane, silicon tetrachloride, and hydrogen chloride. Etc. are mixed gases.
  • the method for removing silanes from the exhaust gas is not particularly limited, and a known method can be appropriately employed.
  • Specific methods for removing silanes include a condensation removal method in which exhaust gas is cooled to condense silanes and remove from the exhaust gas; an adsorption removal method using activated carbon; a method in which the condensation removal method and the adsorption removal method are combined.
  • a method combining the condensation removal method and the adsorption removal method is preferable because it has a high effect of removing silanes from the exhaust gas.
  • the cooling temperature of the exhaust gas at the time of condensation removal is not higher than the temperature at which silanes are condensed, and may be appropriately determined in consideration of the cooling capacity of the cooling device.
  • the cooling temperature for removing silanes in the exhaust gas is ⁇ 10 ° C. or lower, preferably ⁇ 30 ° C. or lower.
  • the pressure in the condensation removal is not particularly limited as long as silanes can be sufficiently removed, and may be appropriately determined in consideration of the ability of the condensation removal apparatus.
  • 300 kPaG or more, preferably 500 kPaG or more is sufficient.
  • the method for adsorbing and removing silanes in the exhaust gas using activated carbon can be performed, for example, by passing the exhaust gas through an adsorption tower filled with activated carbon.
  • the gas discharged from the packed tower is a gas mainly containing hydrogen and hydrogen chloride.
  • the activated carbon used for silane adsorption removal is not particularly limited as long as silanes can be adsorbed and removed, and known activated carbon can be used.
  • the average pore radius (R) is 1 ⁇ 10 ⁇ 9 m. Activated carbon in the range of ⁇ 3 ⁇ 10 ⁇ 9 m is sufficient.
  • the average pore radius (R) in the present invention indicates a pore radius showing a maximum peak in a pore distribution curve obtained by a water vapor adsorption method.
  • the adsorption temperature and adsorption pressure in the adsorption removal of silanes by activated carbon are not particularly limited as long as the silanes can be sufficiently adsorbed and removed, taking into account the ability of the packed tower to adsorb and remove silanes. What is necessary is just to determine suitably.
  • the adsorption temperature is ⁇ 30 to 50 ° C., preferably ⁇ 10 to 30 ° C.
  • the adsorption pressure is 300 kPaG or more, preferably 500 kPaG or more.
  • the condensed silanes or the silanes recovered by desorption from the adsorbed activated carbon layer are usually purified by distillation, and may be reused as a deposition raw material in the process of producing polysilicon as required. Is possible.
  • the exhaust gas discharged from the polysilicon manufacturing process is passed through an activated carbon layer to adsorb hydrogen chloride in the exhaust gas to the activated carbon to remove the hydrogen chloride.
  • the activated carbon adsorption method is used as a method for removing silanes in the exhaust gas
  • silanes having high adsorption power with the activated carbon are preferentially adsorbed, and hydrogen chloride contained in the exhaust gas is discharged together with hydrogen. Therefore, by passing the exhaust gas from which the silanes have been removed through the activated carbon layer again, it is possible to adsorb the hydrogen chloride in the exhaust gas to the activated carbon and remove the hydrogen chloride from the exhaust gas.
  • the silane in the exhaust gas is almost removed by the removal of the silane from the exhaust gas in the previous step, a trace amount of silane may remain in the exhaust gas. In this case, silane is also adsorbed together with hydrogen chloride in this step.
  • the activated carbon used for adsorbing and removing hydrogen chloride in the exhaust gas is not particularly limited as long as hydrogen chloride can be adsorbed and removed, and known activated carbon can be used.
  • Activated carbons having various average pore radii (R) are commercially available, but as the activated carbon used for adsorbing and removing hydrogen chloride, the average pore radius (R) is 5 ⁇ 10 ⁇ .
  • An activated carbon in the range of 10 m to 1 ⁇ 10 ⁇ 9 m is sufficient, and an activated carbon having an average pore radius (R) in the range of 5 ⁇ 10 ⁇ 10 m to 8 ⁇ 10 ⁇ 10 m is used. Is preferable in that it has a high ability to adsorb and remove hydrogen chloride.
  • the shape of the activated carbon used for adsorption removal of hydrogen chloride is not particularly limited, and it is possible to use activated carbon having an industrially available shape such as granular, honeycomb, or fibrous.
  • a granular material is preferable in that it can increase the amount of packing per unit volume when packed in a packed tower.
  • the adsorption temperature and adsorption pressure in hydrogen chloride adsorption and removal are not particularly limited as long as hydrogen chloride can be sufficiently adsorbed and removed, and are determined appropriately in consideration of the ability of the packed tower to perform adsorption and removal of hydrogen chloride. Just do it.
  • the adsorption temperature is in the range of 50 ° C., preferably 30 ° C. or less, and the adsorption pressure is 300 kPaG or more, preferably 500 kPaG or more.
  • the speed at which the exhaust gas passes through the activated carbon layer is not particularly limited as long as hydrogen chloride in the exhaust gas can be sufficiently adsorbed and removed, and can be determined as appropriate in consideration of the ability of the packed tower to adsorb and remove hydrogen chloride.
  • the space velocity (SV) 50 ⁇ 500Hr -1 , preferably sufficient if the speed of 50 ⁇ 150Hr -1.
  • the amount of hydrogen chloride contained in the exhaust gas discharged from the activated carbon layer is 0.01 volume% or less, and 0.005 volume% or less under more preferable operating conditions. It is possible to
  • a plurality of packed towers filled with activated carbon are provided, and the activated carbon layer in the packed tower is filled with the hydrogen chloride in the exhaust gas in the activated carbon layer in the packed tower. It is necessary to operate so that the adsorption process is continued by alternately performing an adsorption process for adsorbing on the activated carbon and a hydrogen chloride desorption process for desorbing hydrogen chloride adsorbed on the activated carbon layer. For example, two towers are installed and an adsorption process is performed in one tower, while a hydrogen chloride desorption process is performed in another tower.
  • three or more towers may be installed, and one tower may be an adsorption process, and two towers may be a hydrogen chloride desorption process. Furthermore, it is possible to install four or more towers. Further, when the production capacity of polysilicon is large, it is possible to use a tower with a large capacity per tower, or it is possible to use a plurality of towers in parallel.
  • Times for the adsorption process and the hydrogen chloride desorption process are set in advance, and the process may be switched from the adsorption process to the hydrogen chloride desorption process or from the hydrogen chloride desorption process to the adsorption process when a predetermined time has elapsed.
  • the exhaust gas discharged from the activated carbon layer is high-purity hydrogen gas, and the exhaust gas can be circulated as it is as hydrogen in the polysilicon manufacturing process. Further, as will be described later, this exhaust gas can be used as a purge gas for desorbing hydrogen chloride from the activated carbon layer in which hydrogen chloride in the by-product hydrogen chloride-containing exhaust gas is adsorbed and held, and further from silicon tetrachloride to trichlorosilane. It can also be used as a hydrogen source in the production of silica using silicon tetrachloride as a raw material as hydrogen used in the reduction reaction.
  • ⁇ Hydrogen chloride desorption process The hydrogen chloride removed from the exhaust gas is adsorbed and held in a highly concentrated state in the activated carbon layer.
  • hydrogen chloride desorption step hydrogen chloride is desorbed from the activated carbon layer, Played.
  • This regenerated activated carbon layer can be reused for removing hydrogen chloride from the by-product hydrogen chloride-containing exhaust gas.
  • the hydrogen chloride desorption process is performed by circulating hydrogen gas as a purge gas through the activated carbon layer on which hydrogen chloride is adsorbed and held. As a result, the purge exhaust gas discharged from the activated carbon layer contains hydrogen chloride and hydrogen.
  • trace amount of silane remains in the exhaust gas before removing hydrogen chloride, trace amount of silane is adsorbed on activated carbon along with hydrogen chloride in the hydrogen chloride removal step.
  • Silane is contained in the purge exhaust gas.
  • the conditions for desorption of hydrogen chloride are not particularly limited as long as hydrogen chloride can be desorbed from the activated carbon layer, and may be appropriately determined in consideration of the capacity of the packed tower and the like.
  • the desorption of hydrogen chloride from the activated carbon layer is usually performed while flowing hydrogen under operating conditions of 10 to 300 ° C. and 200 kPaG or less. In particular, in order to increase the desorption efficiency of hydrogen chloride, it is preferable to circulate hydrogen under operating conditions of 150 ° C. to 250 ° C.
  • the rate at which hydrogen is circulated through the activated carbon layer as a purge gas is not particularly limited as long as hydrogen chloride adsorbed and held on the activated carbon layer can be sufficiently desorbed, and may be appropriately determined in consideration of the capacity of the packed tower and the like. It ’s fine.
  • the space velocity (SV) may be appropriately determined in the range of 1 to 50 Hr ⁇ 1 , preferably 1 to 20 Hr ⁇ 1 .
  • the purity of hydrogen used as the purge gas is not particularly limited, and industrially available hydrogen can be used as it is.
  • the impurities may be adsorbed on the activated carbon during the hydrogen chloride desorption process.
  • sucked this impurity is reused for the removal of hydrogen chloride from the said byproduct hydrogen chloride containing exhaust gas, there exists a possibility that the exhaust gas discharged
  • hydrogen used in the process for producing the polysilicon, or exhaust gas from which hydrogen chloride is removed by passing the by-product hydrogen chloride-containing exhaust gas through the activated carbon layer can be suitably used.
  • the purge exhaust gas discharged in the hydrogen chloride desorption process can measure the content of hydrogen chloride in the exhaust gas by an analysis means such as gas chromatography.
  • Hydrogen chloride including silane in some cases
  • the purge exhaust gas discharged from the hydrogen chloride desorption process contains hydrogen chloride and hydrogen.
  • this purge exhaust gas is brought into contact with a hydrogen chloride absorbing liquid to absorb hydrogen chloride in the absorbing liquid, thereby removing hydrogen chloride and recovering hydrogen.
  • the hydrogen chloride absorbing solution is not particularly limited as long as it absorbs hydrogen chloride in the purge exhaust gas, and a known hydrogen chloride absorbing solution can be used.
  • Specific examples of the hydrogen chloride absorbing liquid include acidic aqueous solutions such as aqueous hydrochloric acid; alkaline aqueous solutions in which alkalis such as sodium hydroxide, potassium hydroxide and calcium hydroxide are dissolved; water and the like.
  • an alkaline aqueous solution is preferably used from the viewpoint that hydrogen chloride can be efficiently removed from the purge exhaust gas by a neutralization reaction.
  • an aqueous hydrochloric acid solution is used as the hydrogen chloride absorbing liquid, hydrogen chloride in the purge exhaust gas is contained in the absorbing liquid in the form of hydrochloric acid, so the liquid that has absorbed hydrogen chloride can be diffused and dried. For example, it can be reused as hydrogen chloride in the production of trichlorosilane.
  • the contact method between the purge exhaust gas and the hydrogen chloride absorbing liquid is not particularly limited as long as the purge exhaust gas and the hydrogen chloride absorbing liquid are in sufficient contact and can remove hydrogen chloride in the exhaust gas. It is possible to adopt a contact method.
  • a gas-liquid contact method specifically, a method of forcibly forming a gas-liquid mixed flow of a purge exhaust gas such as an ejector and a hydrogen chloride absorption liquid; a method of spraying a hydrogen chloride absorption liquid on a purge exhaust gas flow such as a scrubber A method in which purge exhaust gas is directly blown into a liquid phase composed of a hydrogen chloride absorbing solution.
  • the method of spraying the hydrogen chloride absorbing liquid on the purge exhaust gas stream such as a scrubber facilitates the discharge of the purge exhaust gas in contact with the hydrogen chloride absorbing liquid and the point that the apparatus is simple.
  • the temperature at which the purge exhaust gas is brought into contact with the hydrogen chloride absorbing liquid is not particularly limited, and may be appropriately determined in consideration of the ability of the gas-liquid contact device to be used. However, if the temperature is too high, hydrogen chloride, acid, alkali and the like from the absorbing solution are easily diffused and tend to be accompanied by the purge exhaust gas. Accordingly, the temperature at which the purge exhaust gas is brought into contact with the hydrogen chloride absorbing liquid is preferably in the range of 10 to 60 ° C.
  • the means for compressing hydrogen is not particularly limited, and a known compressing means can be employed.
  • compression means include centrifugal compressors, turbo compressors such as axial flow compressors, reciprocating compressors, diaphragm compressors, screw compressors, volumetric compressors such as rotary compressors, and the like. It is done. Also, any of an oil-cooled compressor that operates while jetting lubricating oil to the compressor of the compressor or an oil-free compressor that does not use lubricating oil can be suitably used.
  • the screw compressor is particularly suitable in that it can efficiently compress hydrogen gas.
  • the lubricating oil used in the oil-cooled compressor include paraffinic oil, naphthenic oil, halogenated hydrocarbon oil, and silicone oil.
  • the lubricating oil is separated from the hydrogen gas after being compressed and supplied as a hydrogen source in other manufacturing processes.
  • the method for separating the lubricating oil from the compressed hydrogen gas is not particularly limited as long as it is a means capable of separating the lubricating oil, and a known separating means can be employed. Specifically, separation means such as a demister, an oil mist filter, activated carbon or the like is employed as the separation means.
  • the compression pressure of the hydrogen gas is not particularly limited as long as it is compressed to a level that can be used as a hydrogen source in other processes, and may be appropriately determined in consideration of the hydrogen supply capability to a manufacturing apparatus or the like in other processes. Usually, it is sufficient to compress the hydrogen gas until the pressure of the compressed hydrogen gas reaches 200 to 600 kPaG.
  • the hydrogen gas is compressed by a series of compression means, and can be supplied as a hydrogen source in another manufacturing process.
  • the hydrogen gas recovered from the purge exhaust gas is a high-purity hydrogen gas sufficient to be reused as a hydrogen source in other processes.
  • the water from the hydrogen chloride absorbing liquid is removed by contact with the hydrogen chloride absorbing liquid. It may be accompanied or contain a trace amount of components (acid, alkali, etc.) in the hydrogen chloride absorbing solution. If these components cause problems in other production processes, the purpose is to remove these hydrogen chloride-absorbing liquid-derived components before compressing the hydrogen gas discharged after contact with the chloride water-absorbing liquid. It is preferable to provide a water washing step for washing hydrogen gas.
  • the method of contacting hydrogen gas with water to be washed is not particularly limited as long as the hydrogen gas and water are in sufficient contact with each other and components in the hydrogen chloride absorbing liquid can be removed. Is possible.
  • a gas-liquid contact method specifically, a method of forcibly forming a gas-liquid mixed flow of hydrogen gas such as an ejector and water; a method of spraying water on hydrogen gas such as a scrubber; The method of blowing is mentioned.
  • these gas-liquid contact methods a method of spraying water on hydrogen gas such as a scrubber is preferable from the viewpoint of easy discharge of hydrogen gas in contact with water and a simple apparatus.
  • these liquid contact methods can be used alone, gas-liquid contact methods can be connected in series, or a plurality of gas-liquid contact methods can be used in combination.
  • silanes Trace amounts of silanes may be present in the purge exhaust gas.
  • silanes contained most of the silanes become by-products such as silica by reaction with water in the hydrogen chloride absorbing solution or water in the water washing step, and are separated from hydrogen gas. However, some of them are entrained in hydrogen gas without reacting with water, and during the subsequent steps, they react with moisture in the hydrogen gas to produce silica or other by-products, or the produced by-products are scattered. Doing so may cause blockage of the compressor and piping.
  • the hydrogen gas washed in the water washing step is brought into contact with the silane scavenger before the hydrogen supply step or during compression in the hydrogen supply step, and then the silane scavenger entrained in the hydrogen gas is separated from the hydrogen gas.
  • the silane scavenger dissolves or dissolves the silanes such as monosilane, monochlorosilane, dichlorosilane, silicon tetrachloride, trichlorosilane and the like, as well as by-products derived from these silanes. It becomes turbid and can be separated from hydrogen gas.
  • the silane scavenger may be any one that is inert to hydrogen and that can dissolve or suspend silanes and decomposition products thereof, as well as by-products derived therefrom, What is necessary is just to determine suitably considering the kind, material, etc. of a compressor of a back
  • an organic solvent and oil are mentioned.
  • organic solvents such as hexane, heptane, alcohol, and acetone are preferably used as the organic solvent.
  • the oil include lubricating oil used in the oil-cooled compressor, such as paraffinic oil, naphthenic oil, halogenated hydrocarbon oil, and silicone oil.
  • This silane scavenger can be used alone or in combination with a plurality of organic solvents and oils. As described above, when an oil age type compression means is used at the time of compression in the hydrogen supply process, residual silanes and the like can be separated by the lubricating oil used, and the contact process with the silane scavenger and hydrogen This is a preferred embodiment in which the compression process can be combined into one.
  • the contact between the silane scavenger and the hydrogen gas washed in the water washing step may be either before the hydrogen supply step or during compression in the hydrogen supply step.
  • a method for contacting the hydrogen gas with the silane scavenger silanes remaining in the hydrogen gas may be dissolved or suspended in the silane scavenger, and a known contact method is adopted. Is possible. Specifically, as a contact method, a method in which a silane scavenger is sprayed onto and contacted with hydrogen gas; a method in which hydrogen gas is supplied into the silane scavenger and brought into contact; a hydrogen gas is sprayed into a liquid flow of the silane scavenger and contacted And the like.
  • hydrogen gas and lubricating oil can be brought into contact with each other in an oil-cooled compressor.
  • a compressor of a type that does not use lubricating oil it is necessary to remove the silane scavenger in advance and then supply it to the compressor.
  • the silane scavenger is usually entrained in the hydrogen gas in contact with the silane scavenger, the entrained silane scavenger can be separated from the hydrogen gas and supplied as a hydrogen source in other production processes.
  • a known separation method can be employed as Specifically, separation means such as a demister, an oil mist filter, activated carbon and the like are employed.
  • the hydrogen gas recovered from the purge exhaust gas is a gas that has undergone a hydrogen chloride absorption liquid and further a water washing step, it contains a trace amount of moisture. Accordingly, when the moisture contained in the hydrogen gas becomes a problem when used as a hydrogen source in other production processes, it is preferable to provide a dehumidifying process for removing the moisture in the hydrogen gas.
  • a dehumidifying process for removing the moisture in the hydrogen gas.
  • a known removal means can be employed. Specifically, means for condensing and removing moisture by cooling the hydrogen gas, means for removing moisture by passing the hydrogen gas through a packed bed of a desiccant such as molecular sieves, and the like.
  • these water removal means can be used independently, can be performed by connecting similar water removal means in series, or can be used in combination with a plurality of water removal means.
  • the water content in the hydrogen gas can be reduced to about 100 to 500 ppm.
  • the hydrogen gas recovered from the purge exhaust gas by the method of the present invention is sufficiently high-purity hydrogen gas, and can be reused as a hydrogen source in other processes.
  • it is used as a hydrogen source in the production of so-called fumed silica in which silicon tetrachloride and hydrogen are reacted on a flame, or as a hydrogen source in other processes such as a hydrogen source in producing hydrogen chloride by reacting with chlorine. It is possible.
  • Example 1 Preparation of purge exhaust gas> Polysilicon was produced using a known Siemens bell jar. At this time, the deposition temperature is 1150 ° C., the average surface area is about 1200 cm 2, and a mixed gas of 30 Nm 3 / Hr of hydrogen and 18 kg / Hr of trichlorosilane is supplied for 4 hours at a pressure of 50 kPaG. went. The exhaust gas discharged from the bell jar is cooled by a heat exchanger, pressurized to 700 kPaG by a compressor, further cooled to ⁇ 50 ° C.
  • a gas containing by-product hydrogen chloride from which the silanes were adsorbed and removed was supplied to the column at a space velocity (SV) of 50 Hr ⁇ 1 . After the exhaust gas was supplied to the packed tower for 4 hours, the supply to the packed tower was switched. Hydrogen gas from which by-product hydrogen chloride has been removed is passed through a packed column of activated carbon on which hydrogen chloride is adsorbed and held at 200 ° C., 3 kPaG, and space velocity (SV) 3 Hr ⁇ 1 for 4 hours to desorb hydrogen chloride. Went.
  • the average composition of the purge exhaust gas discharged from the activated carbon packed tower was as follows.
  • the compressed hydrogen gas was passed through a demister, an oil mist filter, and activated carbon to remove the contained oil.
  • the hydrogen gas from which the oil was removed was dehydrated using molecular sieves.
  • the purity of the recovered hydrogen was 99.99% by volume or more.
  • the silane content was less than 1 ppm.
  • adhesion of solid substance was confirmed on the said demister and an oil mist filter.
  • Example 2 The purge exhaust gas obtained in Example 1 was supplied to a scrubber, and a pH 13 NaOH aqueous solution was brought into contact at a liquid gas ratio of 50 L / Nm 3 .
  • the hydrogen gas discharged from the scrubber was washed with water and then contacted by spraying paraffinic oil “KB-310-46” (manufactured by Kobe Steel).
  • Hydrogen gas in contact with the paraffinic oil was compressed to 450 kPaG with an oil-cooled compressor after separating the accompanying paraffinic oil with a demister and an oil mist filter.
  • the compressed hydrogen gas was again passed through a demister, an oil mist filter, and activated carbon, and then water was removed using a molecular sieve.
  • the purity of the recovered hydrogen was 99.99% by volume or more.
  • the silane content was less than 1 ppm. Solid matter was confirmed on the demister and oil mist filter before passing through the oil-cooled compressor, but almost no solid matter was found on the demister and oil mist filter downstream from the oil-cooled screw compressor. There wasn't.
  • Example 3 Silicon tetrachloride, hydrogen recovered in Example 1 above, and air are premixed at a volume ratio of 2: 5: 14, and then continuously supplied from the upper end of the cylindrical reactor using a multi-tube burner for combustion. Reaction was performed.
  • the premixed gas was supplied from the inner tube of a multi-tube burner.
  • As the sealing gas air was supplied from the outer tube, and a mixed gas of hydrogen and air was supplied from the inside.
  • the obtained fumed silica had the following BET specific surface area and bulk density.
  • the BET specific surface area was measured by a gas adsorption BET single point method.
  • the bulk density was calculated by weighing about 1 L of fumed silica after standing for 30 minutes and then measuring the weight.
  • the iron concentration and aluminum concentration were measured by ICP emission spectroscopic analysis after appropriately pretreating 2 g of fumed silica.
  • BET specific surface area 220 m 2 / g
  • Bulk density 25 g / L
  • Example 4 Preparation of purge exhaust gas> A purge exhaust gas was prepared in the same manner as in Example 1 except that the same apparatus as in Example 1 was used and the temperature for condensing and removing silanes was ⁇ 30 ° C.
  • the time-dependent change of the purge exhaust gas discharged from the packed column of activated carbon and the average composition for 4 hours were as follows.
  • Example 5 Fumed silica was produced in the same manner as in Example 3, except that silicon tetrachloride and hydrogen recovered in Example 4 were used. The obtained fumed silica had the following BET specific surface area and bulk density. BET specific surface area: 220 m 2 / g Bulk density: 25 g / L
  • fumed silica was produced under exactly the same conditions as in Example 3 except that virgin hydrogen gas (purity 99.99% by volume or more) was used instead of exhaust gas.
  • Various physical properties of the obtained fumed silica were as follows. BET specific surface area: 220 m 2 / g Bulk density: 25 g / L From the comparison of the results of Example 3 and Reference Example 1, according to the present invention, by using hydrogen recovered from the purge exhaust gas, the average particle size and specific surface area equivalent to the case of using virgin hydrogen gas were obtained. It can be seen that fumed silica having high purity is obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Treating Waste Gases (AREA)
  • Silicon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

【課題】ポリシリコンの製造工程から排出される排ガス中の副生塩化水素は既に有効利用が図られている。一方、当該排ガス中の水素も一部利用されているが、当該工程に付随して吸着された塩化水素を脱着するために使用されるパージ水素は未利用のまま廃棄されていた。パージ排ガスから高純度の水素を回収してこれを他の製造工程における水素源として再利用して、廃棄処分にかかるコストの大幅削減並びにポリシリコンの製造コスト削減に寄与する。 【解決手段】トリクロロシランを用いたポリシリコンの析出製造工程から排出される排ガス中に含まれる塩化水素を活性炭に吸着させたのち、この活性炭層を水素ガスでパージして吸着された塩化水素を脱着させ、次いでこのパージ排ガスを水酸化ナトリウム水溶液などの塩化水素吸収液と接触せしめてパージ排ガスより塩化水素を除去して高純度の水素ガスを分離回収し、この回収された水素ガスを圧縮して、例えばヒュームドシリカ製造などの他工程の水素源として供給する。

Description

水素の再利用方法
 本発明は、水素とトリクロロシランとを反応させてポリシリコンを製造する過程で使用される水素の再利用方法に関する。
 従来から、半導体あるいは太陽光発電用ウェハーの原料として使用されるシリコンを製造する方法は種々知られており、そのうちのいくつかは既に工業的に実施されている。例えばその一つはシーメンス法と呼ばれる方法であり、通電加熱されたフィラメントに水素とトリクロロシランの混合ガスを供給し、化学気相析出法によりフィラメント上にシリコンを析出させてポリシリコンを得る方法である。シーメンス法によるポリシリコンの製造工程から排出される排ガスには、水素及び未反応のトリクロロシランの他に、反応の副生物である、モノシラン、モノクロロシラン、ジクロロシラン、四塩化ケイ素等のシラン化合物、および塩化水素等が含有されている。以下、本発明においては、トリクロロシランおよび当該シラン化合物を総称してシラン類という。
 上記シーメンス法によるポリシリコンの製造方法では、排ガスに含有される各ガス成分を分離してポリシリコンの製造に再循環させることが行われている。例えば、特許文献1では、ポリシリコンの製造工程から排出される副生塩化水素含有排ガスを、-10℃以下に冷却してシラン類の一部を凝縮除去する工程、該工程を経た排ガスを活性炭層に通過させ、排ガス中のシラン類を吸着除去する工程、及び吸着除去工程を経た排ガスを特定の平均細孔半径をもつ活性炭層に通過させて塩化水素を吸着除去する工程を経て、排ガス中の水素を精製し、当該水素をポリシリコンの製造工程に循環させるポリシリコンの製造方法が開示されている。
 上記塩化水素を吸着除去する工程における塩化水素が吸着保持された活性炭層は、これにパージガスとして水素を使用して吸着された塩化水素を脱着させ、次いで水素及び脱着された塩化水素を含むパージ排ガスを洗浄塔で塩酸等の酸性水に接触させてパージ排ガス中の塩化水素を酸性水に吸収させ、その後、この酸性水より塩化水素を回収する方法が提案されている。
特開2006-131491号公報
 前記特許文献1において、パージ排ガスを洗浄塔にて酸性水と接触させた後に排出される排ガスは主成分として水素を含有するガスであるが、塩酸等の酸性水に吸収されにくい不純物、例えばメタン(CH)やホスフィン(PH)等、更には洗浄塔から同伴される水分に含有される微量の塩化水素等の不純物を含有するため、該排ガスを他の反応における水素源として用いることは困難であると考えられており、これまで適切な処理を経て廃棄されてきた。
 一方で、シーメンス法によるポリシリコンの製造量が増大するにつれて、ポリシリコン製造工程より排出される排ガスが増加している。活性炭層による塩化水素の吸着除去能力には限界があるため、該排ガスの増加に対する対応として、上記活性炭層を複数並列に使用することが行われている。しかしながら、活性炭層が多数使用されるにつれて、塩化水素が吸着保持された活性炭層の再生処理、すなわち、パージガスとして水素を用いる活性炭層からの塩化水素の脱着の回数も増加しているため、塩化水素の脱着時に排出されるパージ排ガスの排出量も増加し、この排ガスの有効な再利用方法の確立が望まれてきた。なお、塩化水素が脱着された活性炭は、ポリシリコン製造工程より排出される排ガスからの塩化水素の除去に再度使用されるため、上記パージガスとしては、排ガス中の成分ガスでもある水素が使用される。
 本発明は、上記の状況に鑑みてなされたものである。すなわち、本発明の目的は、塩化水素が吸着保持された活性炭層から、パージガスとして水素ガスを使用して吸着された塩化水素を脱着させた際に、排出される塩化水素及び水素を含むパージ排ガスから水素を回収して再利用する方法を提供することにある。
 本発明者らは、前記課題に鑑み、鋭意検討を行った。まず本発明者らは、前記パージガスとして用いる水素が高純度である点に着目した。すなわち、ポリシリコンの製造工程において、半導体級等の極めて高純度のポリシリコンを製造させるためには、製造工程において流通する種々のガスは高純度であることが必要である。例えば、ポリシリコン製造工程からの排ガスを精製するための活性炭層から排ガスへの不純物等の混入を防止するという観点から、活性炭層から塩化水素を脱着する際に使用するパージガスの水素も、ポリシリコン製造工程に流通する水素ガスと同程度の高純度を要求される。
 そこで、塩化水素が吸着保持された活性炭層から、パージガスとして水素ガスを使用して吸着塩化水素を脱着させた際に排出される塩化水素及び水素を含むパージ排ガスを塩化水素吸収液と接触せしめて、塩化水素を該吸収液に吸収させて塩化水素を除去したパージ排ガスを回収したところ、かかる回収ガスは、極めて高純度の水素を含有するガスであることが判明した。さらに、この回収ガスを圧縮して、他の製造工程における水素源としての使用を検討した結果、例えば四塩化ケイ素と水素を火炎上で反応させる、所謂ヒュームドシリカの製造における水素源として使用できることを見出し、本発明を完成させるに至った。
 本発明によって、
(1)水素とトリクロロシランとを反応させてポリシリコンを製造する工程から排出された排ガスを活性炭層に通すことにより塩化水素を吸着する塩化水素吸着工程、
(2)塩化水素が吸着保持された活性炭層にパージガスとしての水素ガスを通して、吸着された塩化水素を脱着する塩化水素脱着工程、
(3)前記塩化水素脱着工程において脱着された塩化水素及び水素を含むパージ排ガスを塩化水素吸収液と接触せしめて、塩化水素を除去した水素ガスを得る水素回収工程、及び
(4)前記水素回収工程において回収された水素ガスを圧縮して他工程の水素源として供給する水素供給工程、
を含むことを特徴とするパージ排ガス中の水素の再利用方法が提供される。
 上記水素の再利用方法の発明において、
(A)水素供給工程の前に、水素回収工程において回収された水素ガスを水洗する水洗工程を設けること、
(B)水洗工程において水洗された水素ガスを、水素供給工程の前、或いは水素供給工程の圧縮時にシラン捕捉剤と接触せしめ、次いで該水素ガスから水素ガスに同伴されたシラン捕捉剤を分離する工程を設けること、
(C)シラン捕捉剤が、有機溶媒またはオイルであること、
(D)水素供給工程において、圧縮後に水分を除去する脱湿工程を設けること、
が好適である。
 従来、ポリシリコンの製造工程から排出される排ガス中の副生塩化水素は、塩化水素の吸着、水素による塩化水素の脱着、塩化水素の吸収及び回収工程を経て、有効利用が図られていた。一方、当該排ガス中の水素も、塩化水素を吸着除去することにより循環利用されていたが、吸着された塩化水素の脱着の際に排出されるパージ排ガス中の水素は未利用のまま廃棄されていた。
 本発明により、パージ排ガスから高純度の水素を回収して、これを他の製造工程における水素源として再利用することが可能となり、廃棄処分にかかるコストの大幅削減並びに製造コスト削減に寄与しうる。
本発明の工程を示すフロー図である。
 本発明は、水素とトリクロロシランとを反応させてポリシリコンを製造する工程から排出される副生塩化水素含有排ガス中の塩化水素を吸着し、次いで塩化水素が吸着保持された活性炭層から水素ガスでパージして塩化水素を脱着し、その際に排出される塩化水素及び水素を含むパージ排ガスから水素を回収して他の製造工程における水素源として再利用することに特徴がある。以下、本発明の水素の再利用方法について説明する。
<ポリシリコンの製造>
 本発明において、ポリシリコンを製造する工程とは、水素とトリクロロシランを反応させてポリシリコンを析出させる方法であり、その反応装置の構造や反応条件は特に制限されず、公知の反応装置及び反応条件を採用することができる。代表的な方法として、シーメンス法が挙げられる。シーメンス法とは、加熱基材としてシリコンフィラメントを用い、これを900~1250℃となるように通電加熱し、ここにトリクロロシランを水素と共に供給することにより、フィラメント上にシリコンを析出させて成長したポリシリコンロッドを得る方法である。このポリシリコンを製造する工程で排出される排ガスは、水素及び未反応のトリクロロシランの他に、反応の副生物である、モノシラン、モノクロロシラン、ジクロロシラン、四塩化ケイ素等のシラン化合物および塩化水素等を含む混合ガスである。
<排ガスからのシラン類の除去>
 上記製造工程から生じる排ガスを活性炭層に通すことにより排ガス中の塩化水素を活性炭に吸着せしめて、排ガスから塩化水素を除去することが可能となる。しかしながら、シラン類は一般的に塩化水素よりも活性炭に対する吸着力が高い傾向にあり、排ガスを直接活性炭層に通すことにより排ガス中の塩化水素の除去を行うことは、活性炭による塩化水素の除去効果が低く工業的に効率的とは言えない。従って、排ガス中の塩化水素の除去を効率良く行うという観点から、排ガスを活性炭層に通じる前にあらかじめシラン類を除去することが好ましい。
 排ガスからのシラン類の除去方法としては、特に制限されず公知の方法を適宜採用することができる。具体的なシラン類の除去方法としては、排ガスを冷却させてシラン類を凝縮させ排ガスより除去する凝縮除去法;活性炭による吸着除去法;凝縮除去法と吸着除去法を組み合わせる方法等が挙げられる。特に、凝縮除去法と吸着除去法とを組み合わせる方法は、排ガス中からのシラン類の除去効果が高いため好適である。
 凝縮除去を行う際の排ガスの冷却温度はシラン類が凝縮する温度以下であれば良く、冷却装置の冷却能力等を勘案して適宜決定すれば良い。通常、排ガス中のシラン類を除去するための冷却温度としては、-10℃以下、好ましくは-30℃以下であれば十分である。また凝縮除去における圧力についても、シラン類が十分に除去可能であれば特に制限されず、凝縮除去装置の能力等を勘案して適宜決定すれば良い。通常、300kPaG以上、好ましくは500kPaG以上であれば十分である。
 活性炭による排ガス中のシラン類の吸着除去法は、例えば活性炭が充填された吸着塔に排ガスを通過させることによって行うことができる。この場合、活性炭との吸着力が高いシラン類が優先的に吸着されるため、当該充填塔より排出されるガスは主として水素及び塩化水素を含有するガスである。
 シラン類吸着除去に用いる活性炭としては、シラン類が吸着除去することが可能であれば特に制限なく、公知の活性炭を用いることができる。活性炭は、種々の平均細孔半径を有するものが工業的に入手可能であるが、上記シラン類を吸着除去するために用いる活性炭としては、平均細孔半径(R)が1×10-9m~3×10-9mの範囲にある活性炭であれば十分である。なお、本発明における平均細孔半径(R)とは、水蒸気吸着法によって得られる細孔分布曲線において最大ピークを示す細孔半径を示す。
 活性炭によるシラン類の吸着除去における吸着温度及び吸着圧力としては、シラン類が十分に吸着除去できる温度及び圧力であれば特に制限されず、シラン類の吸着除去を行う充填塔の能力を勘案して適宜決定すれば良い。一般的には、吸着温度としては、-30~50℃、好ましくは-10~30℃、吸着圧力としては、300kPaG以上、好ましくは500kPaG以上であれば十分である。
 凝縮除去されたシラン類、或いは吸着された活性炭層より脱着せしめて回収されたシラン類は、通常、蒸留によって精製され、必要に応じてポリシリコンを製造する工程における析出原料として再利用することも可能である。
<排ガスからの塩化水素の除去>
 ポリシリコンの製造工程から排出される排ガスは、活性炭層に通すことにより排ガス中の塩化水素を活性炭に吸着せしめ塩化水素を除去する。排ガス中のシラン類の除去方法として活性炭吸着法を用いた場合、活性炭との吸着力が高いシラン類が優先的に吸着され、排ガス中に含有する塩化水素は水素と共に排出される。従って、シラン類が除去された排ガスを、再度活性炭層に通すことにより、該排ガス中の塩化水素を活性炭に吸着せしめて排ガスから塩化水素を除去することが可能となる。
 前工程の排ガスからのシランの除去により、排ガス中のシランはほぼ除去されるが、極微量のシランが排ガス中に残存する場合もある。この場合は、本工程において、塩化水素とともにシランも吸着される。
 排ガス中の塩化水素を吸着除去するために用いる活性炭としては、塩化水素を吸着除去することが可能であれば特に制限なく、公知の活性炭を用いることが可能である。活性炭は、種々の平均細孔半径(R)を有するものが工業的に入手可能であるが、塩化水素を吸着除去するために用いる活性炭としては、平均細孔半径(R)が5×10-10m~1×10-9mの範囲にある活性炭であれば十分であり、特に平均細孔半径(R)が5×10-10m~8×10-10mの範囲にある活性炭を用いるのが、塩化水素の吸着除去能力が高いと言う点で好ましい。また、塩化水素の吸着除去に用いる活性炭の形状についても特に制限されず、粒状、ハニカム状、繊維状等の工業的に入手可能な形状の活性炭を用いることが可能である。特に粒状のものは、充填塔に充填させる際に、単位体積当りの充填量を多くすることが可能であるという点で好適である。
 塩化水素の吸着除去における吸着温度及び吸着圧力としては、塩化水素が十分に吸着除去できる温度及び圧力であれば特に制限されず、塩化水素の吸着除去を行う充填塔の能力を勘案して適宜決定すれば良い。一般的には、吸着温度は、50℃、好ましくは30℃以下の範囲、吸着圧力は、300kPaG以上、好ましくは500kPaG以上である。排ガスを活性炭層に通過させる際の速度は、排ガス中の塩化水素が十分に吸着除去できる速度であれば特に制限されず、塩化水素の吸着除去を行う充填塔の能力を勘案して適宜決定すれば良い。一般的には、空間速度(SV)としては、50~500Hr-1、好ましくは50~150Hr-1の速度であれば十分である。
 活性炭層による塩化水素の吸着除去を行うことで、活性炭層から排出される排ガス中に含まれる塩化水素の量を0.01体積%以下に、より好適な操作条件下では0.005体積%以下にすることが可能である。
 上記活性炭層による塩化水素の吸着除去を工業的に連続操業する場合には、活性炭を充填した充填塔を複数設けて、充填塔内の活性炭層に排ガス中の塩化水素を充填塔内の活性炭層に吸着させる吸着工程と、活性炭層に吸着された塩化水素の脱着を行う、塩化水素脱着工程とを交互に実施して、吸着工程が連続するように運用する必要がある。例えば、2塔設置して1塔で吸着工程を行い、その間に他塔で塩化水素脱着工程を実施する。或いは、3塔以上を設置して1塔を吸着工程、2塔を塩化水素脱着工程としてもよい。さらに、4塔以上設置することも可能である。また、ポリシリコンの生産能カが大きい場合には、1塔当りの容量が大きい塔とすることも可能であるし、複数の塔を並列に使用することも可能である。
 複数の充填塔を設置して、吸着工程と脱着再生工程を交互に切り替えて吸着工程が連続するように運用する際の、各充填塔の吸着工程と塩化水素脱着工程とを切り替えるタイミングについては、予め吸着工程、塩化水素脱着工程の時間を設定し、所定時間経過した段階で吸着工程から塩化水素脱着工程へ、或いは塩化水素脱着工程から吸着工程へと切り替えればよい。或いは、充填塔内の活性炭層から排出される排ガスを、ガスクロマトグラフィーなどを用いて塩化水素の含有量を常時分析・監視し、所定の含有量となった段階で各工程を切り替えることも可能である。
<活性炭層から排出された排ガス>
 上記活性炭層から排出された排ガスは高純度の水素ガスであり、かかる排ガスは、前記ポリシリコンの製造工程の水素としてそのまま循環利用することが可能である。また、この排ガスは、後述するように、前記副生塩化水素含有排ガス中の塩化水素を吸着保持させた活性炭層から、塩化水素を脱着させる際のパージガスとしても、更に、四塩化ケイ素からトリクロロシランへの還元反応において使用する水素としても、或いは四塩化ケイ素を原料とするシリカの製造における水素源として使用することも可能である。
<塩化水素脱着工程>
 前記排ガスから除去された塩化水素は、活性炭層において高濃度に凝縮された状態で吸着保持されており、塩化水素脱着工程を実施することで、該活性炭層から塩化水素が脱着し、活性炭層が再生される。この再生活性炭層は、副生塩化水素含有排ガスからの塩化水素の除去に再利用することが可能となる。塩化水素脱着工程は、塩化水素が吸着保持された活性炭層に、パージガスとして水素ガスを流通させることで行う。この結果、活性炭層から排出されるパージ排ガス中には、塩化水素及び水素が含有される。
 なお、塩化水素の除去を行う前の排ガス中に極微量のシランが残存していた場合は、塩化水素の除去工程で塩化水素とともに極微量のシランが活性炭に吸着されるので、本脱着工程後のパージ排ガス中にシランが含有されてくる。
 塩化水素脱着の条件は、塩化水素が活性炭層から脱着できる条件であれば特に制限なく、充填塔の能力等を勘案して適宜決定すれば良い。活性炭層からの塩化水素の脱着は、通常、10~300℃、200kPaG以下の操作条件下で水素を流通しながら行う。特に、塩化水素の脱着効率を高めるためには、150℃~250℃、100kPaG以下の操作条件下で水素を流通させることが好適である。活性炭層にパージガスとして水素を流通させる際の速度は、該活性炭層に吸着保持された塩化水素が十分に脱着できる速度であれば特に制限されず、充填塔の能力等を勘案して適宜決定すれば良い。一般的には、空間速度(SV)としては、1~50Hr-1、好ましくは1~20Hr-1の範囲で適宜決定すればよい。
 パージガスとして用いる水素の純度は特に制限されず、工業的に入手可能な水素をそのまま用いることが可能である。しかしながら、パージガスとして用いる水素中に不純物が含有している場合、該不純物が、塩化水素脱着工程時に活性炭に吸着される虞がある。そして、かかる不純物が吸着した再生活性炭層を、前記副生塩化水素含有排ガスからの塩化水素の除去に再利用した場合、上記不純物によって、活性炭層から排出された排ガスが汚染される虞がある。従って、排活性炭層から排出されたガスが活性炭層によって汚染されることを抑制するために、高純度の水素を用いることが好ましい。かかる水素としては、前記ポリシリコンを製造する工程に用いる水素、或いは副生塩化水素含有排ガスを活性炭層に通じて塩化水素を除去した排ガス等を好適に用いることができる。
 塩化水素脱着工程において排出されるパージ排ガスは、ガスクロマトグラフィー等の分析手段により、該排ガス中の塩化水素の含有量を測定することが可能である。
 塩化水素(場合によってはシランも含む)は、脱着開始とともに排出され始め、やがて減少していき脱着が完了する。従って、上記分析手段により、パージ排ガス中の塩化水素の含有量を常時分析・監視し、排ガス中に塩化水素が検出されなくなるまでパージガスの流通を行い、塩化水素脱着を行えば良い。
<水素の回収>
 上記塩化水素脱着工程より排出されるパージ排ガスは、塩化水素及び水素を含有している。本発明においては、このパージ排ガスを塩化水素吸収液と接触せしめて塩化水素を該吸収液に吸収させることにより塩化水素を除去し、水素を回収する。塩化水素吸収液としては、パージ排ガス中の塩化水素を吸収する吸収液であれば、特に制限されず公知の塩化水素吸収液を用いることができる。
 かかる塩化水素吸収液として具体的には、塩酸水溶液等の酸性水溶液;水酸化ナトリウム、水酸化カリウム、水酸化カルシウム等のアルカリを溶解させたアルカリ性水溶液等;水などが挙げられる。これらの塩化水素吸収液のうち、中和反応により効率良くパージ排ガスからの塩化水素の除去が行えるという観点から、アルカリ水溶液が好適に用いられる。また、塩化水素吸収液として塩酸水溶液を用いた場合には、パージ排ガス中の塩化水素は、吸収液中に塩酸の形で含有されるため、塩化水素を吸収した液を放散・乾燥することで、例えば、トリクロロシラン製造における塩化水素として再利用することも可能である。
 パージ排ガスと塩化水素吸収液との接触方法は、パージ排ガスと塩化水素吸収液が十分に接触し、該排ガス中の塩化水素を除去することが可能であれば特に制限されず、公知の気液接触方法を採用することが可能である。気液接触方法として、具体的には、エジェクター等のパージ排ガスと塩化水素吸収液との気液混合流を強制的に形成せしめる方法;スクラバ等のパージ排ガス流に塩化水素吸収液を散布する方法;塩化水素吸収液よりなる液相にパージ排ガスを直接吹き込む方法などが挙げられる。上記の気液接触方法のうち、スクラバ等のパージ排ガス流に塩化水素吸収液を散布する方法は、塩化水素吸収液と接触したパージ排ガスの排出が容易である点及び装置が簡便であるという点から好適である。
 パージ排ガスを塩化水素吸収液と接触させる際の温度には特に制限されず、使用する気液接触装置の能力等を勘案して適宜決定すれば良い。しかしながら、あまり温度が高すぎると、吸収液からの塩化水素や、酸、アルカリ等が放散しやすく、パージ排ガスに同伴される傾向にある。従って、パージ排ガスを塩化水素吸収液と接触させる際の温度は、10~60℃の範囲が好適である。
<水素の供給工程>
 上記パージ排ガスからの塩化水素の除去を行うことにより、排ガス中の塩化水素をほぼ完全に除去することができる。この結果、該パージ排ガスは、後述する他工程の水素源として再利用するのに十分な高純度の水素ガスとなる。ただし、塩化水素吸収液と接触することにより、パージ排ガスの圧力はほぼ大気圧と同等の圧力となるため、得られる塩化水素が除去された水素ガスを他工程の水素源として供給する際には、水素を圧縮する手段により圧縮する必要がある。
 水素を圧縮する手段としては、特に制限されず、公知の圧縮手段を採用することが可能である。かかる圧縮手段として具体的には、遠心圧縮機、軸流圧縮機等のターボ圧縮機、レシプロ圧縮機、ダイヤフラム式圧縮機、スクリュー圧縮機、ロータリー圧縮機等の容積圧縮機などの圧縮手段が挙げられる。また、圧縮機の圧縮部に潤滑油を噴射させながら運転する油冷式、或いは潤滑油を使用しない無給油式のいずれの圧縮機も好適に用いることが可能である。これらの圧縮手段の内、スクリュー圧縮機は、効率良く水素ガスの圧縮を行えるという点で、特に好適である。油冷式の圧縮機に用いられる潤滑油として、具体的には、パラフィン系オイル、ナフテン系オイル、ハロゲン化炭化水素系オイル、シリコーン系オイル等が挙げられる。
 尚、油冷式の圧縮手段を採用した際には、水素ガスの圧縮後該水素ガスから潤滑油を分離して、他の製造工程における水素源として供給する。圧縮後の水素ガスからの潤滑油の分離方法としては潤滑油が分離できる手段であれば特に制限されず、公知の分離手段を採用することが可能である。かかる分離手段として、具体的には、デミスターやオイルミストフィルター、活性炭等の分離手段が採用される。
 水素ガスの圧縮圧力は、他工程の水素源として使用可能な程度まで圧縮させれば特に制限なく、他工程における製造装置等への水素供給能力等を勘案して適宜決定すれば良い。通常、圧縮後の水素ガスの圧力が200~600kPaGとなるまで水素ガスの圧縮を行えば十分である。一連の圧縮手段によって水素ガスは圧縮され、他の製造工程における水素源として供給することが可能となる。
<水洗工程>
 上記パージ排ガスから回収された水素ガスは、他工程の水素源として再利用するのに十分な高純度の水素ガスであるが、塩化水素吸収液との接触により、塩化水素吸収液からの水分が同伴されたり、塩化水素吸収液中の成分(酸、アルカリ等)を極微量含有することがある。これらの成分が他の製造工程において問題となる場合は、塩化水吸収液との接触後に排出される水素ガスを圧縮する前に、これらの塩化水素吸収液由来の成分を除去することを目的に、水素ガスを水洗する水洗工程を設けることが好ましい。
 水素ガスと水洗する水との接触方法は、水素ガスと水が十分に接触し塩化水素吸収液中の成分を除去することが可能であれば、特に制限されず公知の気液接触方法を採用することが可能である。気液接触方法として、具体的には、エジェクター等の水素ガスと水との気液混合流を強制的に形成せしめる方法;スクラバ等の水素ガスに水を散布する方法;水に水素ガスを直接吹き込む方法などが挙げられる。これらの気液接触方法のうち、スクラバ等の水素ガスに水を散布する方法は、水と接触した水素ガスの排出が容易である点及び装置が簡便であるという観点から好適である。また、これら液接触方法は単独で用いることも、気液接触方法を直列に接続して行うことも、更には、複数の気液接触方法を組み合わせて使用することも可能である。
<残存シラン類の分離工程>
 前記パージ排ガスには極微量のシラン類が存在することがある。含有するシラン類の内、大部分のシラン類は、前記塩化水素吸収液中の水、或いは水洗工程における水との反応によりシリカ等の副生物となり、水素ガスから分離される。しかしながら、一部は水と反応せずに水素ガスに同伴され、以後の工程に至る間に、水素ガス中の水分と反応してシリカ等の副生物が生成したり、生成した副生物が飛散したりすることにより、圧縮機や配管等の閉塞の要因となることがある。
 従って、前記水洗工程にて水洗された水素ガスを、水素供給工程の前、或いは水素供給工程における圧縮時にシラン捕捉剤と接触せしめ、次いで該水素ガスより水素ガスに同伴されるシラン捕捉剤を分離することにより、シラン類或いはシラン類由来の副生物をシラン捕捉剤中に溶解或いは懸濁せしめて水素からシラン類などを分離除去することは好適な操作である。本発明において、シラン捕捉剤とは、前記モノシラン、モノクロロシラン、ジクロロシラン、四塩化ケイ素、トリクロロシランなどのシラン類、及びその分解物、更にはこれらのシラン類由来の副生成物を溶解或いは縣濁して、水素ガス中より分離を可能とするものである。
 当該シラン捕捉剤としては、水素に対し不活性であり、且つ、シラン類、及びその分解物、更にはこれら由来の副生物などが溶解或いは懸濁せしめられるものであれば良く、配管の材質、後段の圧縮機の種類や材質等を勘案して適宜決定すれば良い。例えば有機溶媒やオイルが挙げられる。有機溶媒として、具体的には、ヘキサン、へプタン、アルコール、アセトン等の有機溶媒が好適に用いられる。オイルとして、パラフィン系オイル、ナフテン系オイル、ハロゲン化炭化水素系オイル、シリコーン系オイルなどの、前記油冷式の圧縮機で用いられる潤滑油等が挙げられる。具体的には「KB-310-46」(株式会社神戸製鋼所製)や「ダフニー アルファスクリュー32」(出光興産株式会社製)などがある。
 このシラン捕捉剤は、単独で用いることも、或いは複数の有機溶媒及びオイルを混合して用いることも可能である。前述のとおり、水素供給工程における圧縮時に油令式の圧縮手段を用いる場合には、使用される潤滑油により残存シラン類などを分離することも可能であり、シラン捕捉剤との接触工程と水素圧縮の工程とを一つにまとめることができる好適な態様である。
 本発明において、シラン捕捉剤と水洗工程にて水洗された水素ガスとの接触は、水素供給工程の前或いは水素供給工程における圧縮時のいずれでもよい。また、当該水素ガスとシラン捕捉剤との接触方法としては、水素ガス中に残存されるシラン類などが、シラン捕捉剤中に溶解或いは懸濁せしめられれば良く、公知の接触方法を採用することが可能である。
 接触方法として具体的には、水素ガスにシラン捕捉剤を噴霧して接触させる方法;シラン捕捉剤中に水素ガスを供給して接触させる方法;シラン捕捉剤の液流に水素ガスを吹き付けて接触させる方法等が挙げられる。前述の通り、油冷式の圧縮機中で水素ガスと潤滑油とを接触させることも可能である。潤滑油を使用しない形式の圧縮機を使用する場合は、あらかじめシラン捕捉剤を除去してから圧縮機に供給する必要がある。
 シラン捕捉剤と接触した水素ガス中には通常シラン捕捉剤が同伴されるので、同伴されたシラン捕捉剤を水素ガスより分離することで、他の製造工程における水素源として供給することができる。同伴されたシラン捕捉剤を分離する方法としては、公知の分離方法を採用することが可能である。具体的には、デミスターやオイルミストフィルター、活性炭等の分離手段が採用される。
<脱湿工程>
 パージ排ガスから回収された水素ガスは、塩化水素吸収液、更には水洗工程を経たガスであるため、水分を微量含有している。従って、水素ガスに含有される水分が、他の製造工程における水素源として使用する際に問題となる場合には、水素ガスの中の水分を除去する脱湿工程を設けることが好ましい。
 水素ガス中の水分を除去する手段としては、公知の除去手段を採用することが可能である。具体的には、水素ガスを冷却することにより水分を凝縮させて除去する手段、水素ガスをモレキュラーシーブスなどの乾燥剤の充填層を通過させることによって水分を除去する手段等が挙げられる。また、これらの水分除去手段は、単独で用いることも、同様の水分除去手段を直列に接続して行うことも、更には、複数の水分除去手段を組み合わせて使用することも可能である。この脱湿工程を設けることにより、水素ガス中の水分の含有量を100~500ppm程度までにすることができる。
<他工程の水素源としての利用>
 本発明の方法によりパージ排ガスから回収された水素ガスは十分な高純度の水素ガスであり、他工程の水素源として再利用することができる。例えば、四塩化ケイ素と水素を火炎上で反応させる、所謂ヒュームドシリカの製造における水素源として、或いは塩素と反応させて塩化水素を製造する際の水素源等、他工程における水素源として使用することが可能である。
 以下、本発明を実施例によりさらに説明するが、本発明はこれらの実施例に何ら限定されるものではない。また、実施例の中で説明されている特徴の組み合わせすべてが本発明の解決手段に必須のものとは限らない。
 実施例1
 <パージ排ガスの準備>
 公知のシーメンス法のベルジャーを用いてポリシリコンの製造を行った。このとき、ポリシリコンの析出温度は1150℃、析出表面積が平均で約1200cmとなるよう、水素30Nm/Hr、トリクロロシラン18kg/Hrの混合ガスを圧力50kPaGで4時間供給することによって析出を行った。ベルジャーより排出された排ガスは、熱交換器で冷却したのち、圧縮機で700kPaGまで加圧し、さらに-50℃に冷却してシラン類の一部を凝縮除去し、次いで、熱交換機にてガス温度を10℃とした後、平均細孔半径が1.2×10-9m、直径3~5mmの粒状活性炭を15L充填した充填塔に、空間速度(SV)10Hr-1で供給し、該ガスに残存するシラン類を吸着除去した。
 シラン類を吸着除去した排ガスからの塩化水素の吸着除去は、平均細孔半径が8×10-10m、直径3~5mmの粒状活性炭を15L充填した充填塔を2塔用意し、そのうちの1塔に、上記シラン類を吸着除去した副生塩化水素を含有するガスを空間速度(SV)50Hr-1で供給することで行った。
 上記充填塔への排ガスの供給を4時間行った後、充填塔への供給を切り替えた。塩化水素が吸着保持された活性炭の充填塔に、副生塩化水素を除去した水素ガスを、200℃、3kPaG、空間速度(SV)3Hr-1の速度で4時間流通させて、塩化水素の脱着を行った。活性炭の充填塔より排出されたパージ排ガスの平均組成は、以下の通りであった。
  パージ排ガスの平均組成;
    水素:99.8体積%
    塩化水素:0.2体積%(最大30体積%)
    シラン類:<400ppm
    注)シラン類の量は、前記シラン類の総計である。
 <パージ排ガスからの水素の回収>
 上記パージ排ガスをスクラバに供給し、pH13のNaOH水溶液を液ガス比50L/Nmで接触させた。スクラバより排出された水素ガスは、次いで水洗を行い、パラフィン系オイル「KB-310-46」(株式会社神戸製鋼所製)を用いる油冷式スクリュー圧縮機にて450kPaGまで圧縮した。圧縮した水素ガスは、デミスター、オイルミストフィルター、及び活性炭を通して、含有されるオイルを除去した。オイルが除去された水素ガスは、モルキュラーシーブスを用いて水分を除去した。回収した水素の純度は99.99体積%以上であった。シラン含有量は1ppm未満であった。なお、上記デミスター、オイルミストフィルター上には、固形物の付着が確認された。
 実施例2
 上記実施例1で得られたパージ排ガスを、スクラバに供給し、pH13のNaOH水溶液を液ガス比50L/Nmで接触させた。スクラバより排出された水素ガスは、水洗を行った後、パラフィン系オイル「KB-310-46」(株式会社神戸製鋼所製)を噴霧させて接触させた。パラフィン系オイルと接触した水素ガスは、デミスター及びオイルミストフィルターにより、同伴されるパラフィン系オイルを分離した後、油冷式圧縮機にて450kPaGまで圧縮した。圧縮した水素ガスは再度デミスター、オイルミストフィルター、及び活性炭に通した後、モルキュラーシーブスを用いて水分を除去した。回収した水素の純度は99.99体積%以上であった。シラン含有量は1ppm未満であった。油冷式圧縮機に通じる前のデミスター及びオイルミストフィルター上には、固形物が確認されたが、油冷式スクリュー圧縮機より後段のデミスター及びオイルミストフィルター上に固形物の付着は殆ど確認されなかった。
 実施例3
 四塩化ケイ素、上記実施例1で回収された水素、及び空気を体積比2:5:14で予混合した後、多重管バーナーを用いて円筒状反応器の上端より連続的に供給して燃焼反応を行った。尚、予混合したガスは多重管バーナーの内管から供給した。シールガスとして、外管から空気を、その内側から水素と空気の混合ガスを供給した。得られたヒュームドシリカのBET比表面積、嵩密度は、以下の通りであった。尚、BET比表面積はガス吸着BET一点法により測定した。嵩密度は、約1Lのヒュームドシリカを30分静置した後、重量測定を行い算出した。鉄濃度、アルミニウム濃度は、ヒュームドシリカ2gに適切な前処理をした後、ICP発光分光分析法により測定した。
   BET比表面積:220m/g
   嵩密度:25g/L
実施例4
 <パージ排ガスの準備>
 実施例1と同様の装置を用い、シラン類を凝縮除去する温度を-30℃とした以外は、実施例1と同様の方法でパージ排ガスを準備した。活性炭の充填塔より排出されたパージ排ガスの経時変化と4時間の平均組成は、以下の通りであった。
パージ排ガスの経時変化;
             塩化水素[体積%]  シラン類[ppm]
     開始30分後   36.0         50
     開始1時間後    8.8        420
     開始2時間後    2.7        400
     開始3時間後    0.1         20
     開始4時間後    0.0          0
  パージ排ガスの4時間の平均組成;
    水素:95.0体積%
    塩化水素:5.0体積%
    シラン類:210ppm
    注)シラン類の量は、前記シラン類の総計である。
 <パージ排ガスからの水素の回収>
 実施例1と同様の方法で水素を回収したところ、回収した水素の純度は99.99体積%以上であった。シラン含有量は1ppm未満であった。なお、上記デミスター、オイルミストフィルター上には、固形物の付着が確認された。
実施例5
 四塩化ケイ素、上記実施例4で回収された水素を用いた以外は、実施例3と同様の方法でヒュームドシリカを製造した。得られたヒュームドシリカのBET比表面積、嵩密度は、以下の通りであった。
   BET比表面積:220m/g
   嵩密度:25g/L
 参考例1
 ヒュームドシリカを製造するに当り、排ガスの代わりにバージンの水素ガス(純度99.99体積%以上)を使用した以外は、実施例3と全く同様の条件でヒュームドシリカを製造した。得られたヒュームドシリカの各種物性等は以下の通りであった。
   BET比表面積:220m/g
   嵩密度:25g/L
 実施例3と参考例1の結果の比較から、本発明によれば、パージ排ガスから回収された水素を使用することにより、バージンの水素ガスを用いた場合と同等の平均粒径及び比表面積を有し、且つ高純度のヒュームドシリカが得られることが判る。

Claims (5)

  1. (1)水素とトリクロロシランとを反応させてポリシリコンを製造する工程から排出された排ガスを活性炭層に通すことにより塩化水素を吸着する塩化水素吸着工程、
    (2)塩化水素が吸着保持された活性炭層にパージガスとしての水素ガスを通して、吸着された塩化水素を脱着する塩化水素脱着工程、
    (3)前記塩化水素脱着工程において脱着された塩化水素及び水素を含むパージ排ガスを塩化水素吸収液と接触せしめて、塩化水素を除去した水素ガスを得る水素回収工程、及び
    (4)前記水素回収工程において回収された水素ガスを圧縮して他工程の水素源として供給する水素供給工程、
    を含むことを特徴とするパージ排ガス中の水素の再利用方法。
  2.  水素供給工程の前に、水素回収工程において回収された水素ガスを水洗する水洗工程を設けることを特徴とする請求項1に記載の水素の再利用方法。
  3.  水洗工程において水洗された水素ガスを、水素供給工程の前、或いは水素供給工程の圧縮時にシラン捕捉剤と接触せしめ、次いで該水素ガスから水素ガスに同伴されたシラン捕捉剤を分離する工程を設けることを特徴とする請求項2に記載の水素の再利用方法。
  4.  シラン捕捉剤が、有機溶媒またはオイルであることを特徴とする請求項3に記載の水素の再利用方法。
  5.  水素供給工程において、圧縮後に水分を除去する脱湿工程を設けることを特徴とする請求項1~4のいずれかに記載の水素の再利用方法。
PCT/JP2010/065705 2009-09-30 2010-09-13 水素の再利用方法 WO2011040214A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127005466A KR101811457B1 (ko) 2009-09-30 2010-09-13 수소의 재이용 방법
JP2011534174A JP5734861B2 (ja) 2009-09-30 2010-09-13 水素の再利用方法
US13/390,018 US8679228B2 (en) 2009-09-30 2010-09-13 Method of reusing hydrogen
EP10820333.2A EP2484631B1 (en) 2009-09-30 2010-09-13 Method for reusing hydrogen
CN201080035687.2A CN102471056B (zh) 2009-09-30 2010-09-13 氢气的再利用方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-226629 2009-09-30
JP2009226629 2009-09-30
JP2009275687 2009-12-03
JP2009-275687 2009-12-03

Publications (1)

Publication Number Publication Date
WO2011040214A1 true WO2011040214A1 (ja) 2011-04-07

Family

ID=43826040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065705 WO2011040214A1 (ja) 2009-09-30 2010-09-13 水素の再利用方法

Country Status (7)

Country Link
US (1) US8679228B2 (ja)
EP (1) EP2484631B1 (ja)
JP (1) JP5734861B2 (ja)
KR (1) KR101811457B1 (ja)
CN (1) CN102471056B (ja)
TW (1) TWI486305B (ja)
WO (1) WO2011040214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070341A1 (ja) * 2016-10-12 2018-04-19 株式会社トクヤマ 多結晶シリコンの製造方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103901120A (zh) * 2012-12-26 2014-07-02 上海巴斯夫聚氨酯有限公司 一种测定氯化氢气体中痕量氯苯的方法
CN103055658B (zh) * 2012-12-29 2014-12-31 中国科学院沈阳科学仪器股份有限公司 一种光伏尾气处理系统
CN104291271B (zh) * 2014-09-28 2016-08-24 昆明冶研新材料股份有限公司 处理多晶硅尾气的方法和系统
CN110542725A (zh) * 2018-05-29 2019-12-06 新疆新特新能材料检测中心有限公司 检测氢气中的氮气的工艺
CN109847470B (zh) * 2019-01-31 2023-08-01 内蒙古通威高纯晶硅有限公司 冷氢化硅粉加料系统放空氢气回收系统和方法
CN111537293A (zh) * 2020-05-13 2020-08-14 西安热工研究院有限公司 一种HCl和/或HBr的采样及测量的系统及方法
CN112316713B (zh) * 2020-10-08 2022-07-19 中船(邯郸)派瑞特种气体股份有限公司 一种三氟化氮制备过程中的阴极尾气提氢系统及方法
CN112758935B (zh) * 2021-03-02 2022-09-30 中国恩菲工程技术有限公司 一种用于多晶硅生产的氢气循环系统
CN114226066B (zh) * 2021-12-20 2024-04-12 中国建筑材料科学研究总院有限公司 一种从尾气中回收再利用SiO2粉末的方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131491A (ja) 2004-10-05 2006-05-25 Tokuyama Corp シリコンの製造方法
JP2008143776A (ja) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素精製回収方法および水素精製回収設備

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3533577A1 (de) * 1985-09-20 1987-03-26 Wacker Chemitronic Verfahren zur aufarbeitung von chlorsilan- und chlorwasserstoffhaltigen abgasen
CN1045077C (zh) * 1995-09-29 1999-09-15 中国科学院山西煤炭化学研究所 碳化硅纤维生产中的尾气回收方法及装置
CN101327912B (zh) * 2007-06-18 2011-11-30 中国恩菲工程技术有限公司 从生产多晶硅所产生的尾气中回收氢气的方法
CN101357292B (zh) * 2007-07-31 2012-07-04 中国恩菲工程技术有限公司 利用四氯化硅对生产多晶硅所产生的尾气进行回收的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006131491A (ja) 2004-10-05 2006-05-25 Tokuyama Corp シリコンの製造方法
JP2008143776A (ja) * 2006-11-14 2008-06-26 Mitsubishi Materials Corp 水素精製回収方法および水素精製回収設備

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2484631A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018070341A1 (ja) * 2016-10-12 2018-04-19 株式会社トクヤマ 多結晶シリコンの製造方法
JPWO2018070341A1 (ja) * 2016-10-12 2018-11-08 株式会社トクヤマ 多結晶シリコンの製造方法
US10995006B2 (en) 2016-10-12 2021-05-04 Tokuyama Corporation Method for producing polycrystalline silicon

Also Published As

Publication number Publication date
US8679228B2 (en) 2014-03-25
EP2484631A1 (en) 2012-08-08
JP5734861B2 (ja) 2015-06-17
EP2484631B1 (en) 2015-03-11
US20120137881A1 (en) 2012-06-07
KR101811457B1 (ko) 2017-12-21
TW201113218A (en) 2011-04-16
TWI486305B (zh) 2015-06-01
CN102471056A (zh) 2012-05-23
EP2484631A4 (en) 2013-10-30
CN102471056B (zh) 2016-08-10
KR20120090954A (ko) 2012-08-17
JPWO2011040214A1 (ja) 2013-02-28

Similar Documents

Publication Publication Date Title
JP5734861B2 (ja) 水素の再利用方法
JP2011139987A (ja) パージ排ガスの処理方法及び水素源としての使用
JP6433867B2 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
US7794523B2 (en) Method for the recovery and re-use of process gases
US8398747B2 (en) Processes for purification of acetylene
US9480944B2 (en) Process for removal of siloxanes and related compounds from gas streams
WO2011045880A1 (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
KR101395275B1 (ko) 폐가스의 정제방법 및 정제장치
JP2008537720A (ja) 三フッ化窒素の精製
CN1158213C (zh) 从气体混合物中选择性分离和回收氯气的方法
JP5344114B2 (ja) 水素精製回収方法および水素精製回収設備
JP2018203617A (ja) 水素ガス回収システムおよび水素ガスの分離回収方法
JP6446163B2 (ja) 多結晶シリコンの製造方法
CN1704336A (zh) 氨纯化处理方法及装置
JP2023081436A (ja) 水素の回収方法及び再利用方法
WO2008059887A1 (fr) Procédé de séparation/collecte d'hydrogène et dispositif de séparation/collecte d'hydrogène
WO2008059883A1 (fr) Procédé de purification/collecte d'hydrogène et appareil de purification/collecte d'hydrogène
WO2010016116A1 (ja) ハロゲン化水素、水素およびハロゲン化ケイ素を含む混合ガスから水素ガスを生産する方法、その水素ガスを用いたケイ素化合物の生産方法、およびその方法のためのプラント
US20070154376A1 (en) Purification of sulfuryl fluoride
JP5170040B2 (ja) Hf含有ガスの乾式処理装置及び処理方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080035687.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10820333

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011534174

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13390018

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127005466

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010820333

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE