WO2011037145A1 - 弾性表面波装置 - Google Patents

弾性表面波装置 Download PDF

Info

Publication number
WO2011037145A1
WO2011037145A1 PCT/JP2010/066426 JP2010066426W WO2011037145A1 WO 2011037145 A1 WO2011037145 A1 WO 2011037145A1 JP 2010066426 W JP2010066426 W JP 2010066426W WO 2011037145 A1 WO2011037145 A1 WO 2011037145A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface acoustic
acoustic wave
film
thickness
range
Prior art date
Application number
PCT/JP2010/066426
Other languages
English (en)
French (fr)
Inventor
道雄 門田
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011533008A priority Critical patent/JP5655787B2/ja
Priority to CN201080042556.7A priority patent/CN102549923B/zh
Priority to EP10818818.6A priority patent/EP2482451A4/en
Publication of WO2011037145A1 publication Critical patent/WO2011037145A1/ja
Priority to US13/424,462 priority patent/US8304959B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02574Characteristics of substrate, e.g. cutting angles of combined substrates, multilayered substrates, piezoelectrical layers on not-piezoelectrical substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02543Characteristics of substrate, e.g. cutting angles
    • H03H9/02559Characteristics of substrate, e.g. cutting angles of lithium niobate or lithium-tantalate substrates

Definitions

  • the present invention relates to a surface acoustic wave device used for a resonator, a bandpass filter, and the like, and more particularly to a surface acoustic wave device using a piezoelectric substrate in which an epitaxial LiNbO 3 film is laminated on a sapphire substrate.
  • the surface acoustic wave device is also required to have a higher frequency.
  • a wider band is also strongly demanded.
  • Patent Document 1 discloses a surface acoustic wave device 1001 shown in FIG. 32 in order to satisfy the above-described requirements.
  • the surface acoustic wave device 1001 uses a piezoelectric substrate 1004 in which a (100) LiNbO 3 film 1003 is laminated on a (012) sapphire substrate 1002. An input electrode 1005 and an output electrode 1006 are provided on the piezoelectric substrate 1004.
  • the c-axis projection line direction on the sapphire substrate 1002 and the c-axis direction of the LiNbO 3 film 1003 are parallel to each other. Therefore, by controlling the propagation direction of a surface acoustic wave is to be able to increase the speed of sound and the electromechanical coupling coefficient k 2 of the surface acoustic wave.
  • Patent Document 2 a piezoelectric substrate formed by laminating a (012) LiNbO 3 film on a (012) sapphire substrate, or a (100) LiNbO 3 film laminated on a (012) sapphire substrate.
  • a surface acoustic wave device using a piezoelectric substrate is disclosed.
  • a piezoelectric substrate formed by laminating a (100) LiNbO 3 film or a (012) LiNbO 3 film on a (012) sapphire substrate, that is, an R-plane sapphire substrate.
  • the speed of the surface acoustic wave and the electromechanical coupling coefficient have been improved.
  • more has been demanded further higher frequency and broadband increasing the speed of sound and the electromechanical coupling coefficient k 2 of the surface acoustic wave is more sought stronger.
  • the object of the present invention in view of the current state of the prior art described above, can further increase the speed of sound of a surface acoustic wave and increase the electromechanical coupling coefficient k 2 compared to a conventional surface acoustic wave device. It is another object of the present invention to provide a surface acoustic wave device that can increase the reflection coefficient.
  • the inventor of the present application has studied all the time to realize high-speed surface acoustic waves in a surface acoustic wave device, and as a result, a piezoelectric layer formed by laminating a LiNbO 3 film on an R-plane, a-plane or m-plane sapphire substrate.
  • a configuration using a substrate it has been found that when a sapphire substrate having a specific crystal orientation and a LiNbO 3 film having a specific crystal orientation are combined, the sound velocity of the surface acoustic wave is effectively increased, and the present invention has been achieved. .
  • the acoustic velocity of the surface acoustic wave can be increased.
  • the speed of sound of a surface acoustic wave can be effectively increased.
  • an R-plane, a-plane, or m-plane sapphire substrate and the sapphire substrate are formed, and the Euler angles ( ⁇ , ⁇ , ⁇ ) are (90 °, 90 °,
  • a surface acoustic wave device including a piezoelectric substrate having a LiNbO 3 film of ⁇ 15 ° to 15 °) and an electrode made of metal and formed on the piezoelectric substrate.
  • the first-order mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is the Euler angle.
  • is not less than ⁇ 5 ° and not more than + 5 °, that is, in the range of 0 ° ⁇ 5 °, it is in the range of 0.1 ⁇ to 1.6 ⁇ , preferably in the range of 0.15 ⁇ to 0.9 ⁇ .
  • is in the range of 0.18 ⁇ to 0.75 ⁇ when ⁇ is -15 ° or more, less than -5 ° or greater than + 5 ° and less than + 15 °.
  • the secondary mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is Euler.
  • the angle ⁇ is ⁇ 5 ° to 5 °, it is in the range of 0.4 ⁇ to 1.6 ⁇ , and preferably in the range of 0.6 ⁇ to 1.6 ⁇ .
  • the third-order mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is When Euler angle ⁇ is ⁇ 5 ° to 5 °, it is in the range of 0.6 ⁇ to 1.6 ⁇ .
  • Euler angle ⁇ is ⁇ 5 ° to 5 °, it is in the range of 0.6 ⁇ to 1.6 ⁇ .
  • the thickness of the electrode made of Al is 0.02 ⁇ to 0.00. It is in the range of 16 ⁇ .
  • the electromechanical coupling coefficient k 2 more can be further increased, and it is possible to increase the reflection coefficient.
  • the metallization ratio of the electrode is in the range of 0.2 to 0.7. Thereby the reflection coefficient more can be further enhanced, and it is possible to increase the electromechanical coupling coefficient k 2.
  • an R-plane, a-plane, or m-plane sapphire substrate and the sapphire substrate are formed, and the Euler angles ( ⁇ , ⁇ , ⁇ ) are (0 °, 90).
  • a surface acoustic wave device comprising: a piezoelectric substrate having a LiNbO 3 film having an angle of -15 ° to 15 °; and an electrode made of metal and formed on the piezoelectric substrate.
  • a first-order mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is equal to the Euler angle ⁇ .
  • the Euler angle
  • it is -5 ° or more and + 5 ° or less, it is in the range of 0.1 ⁇ to 1.6 ⁇ , preferably in the range of 0.12 ⁇ to 1.2 ⁇ , and ⁇ is -15 ° or more and less than -5 ° or
  • the range is 0.17 ⁇ to 0.8 ⁇ . In this case, it is possible to improve the sound velocity of a surface acoustic wave and an increase in electromechanical coupling coefficient k 2 further.
  • the secondary mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is When Euler angle ⁇ is ⁇ 5 ° to 5 °, it is in the range of 0.4 ⁇ to 1.6 ⁇ .
  • the third-order mode of the surface acoustic wave is used, and when the wavelength of the surface acoustic wave is ⁇ , the film thickness of LiNbO 3 is Euler.
  • the angle ⁇ is ⁇ 5 ° to 5 °, the angle is in the range of 0.6 ⁇ to 1.0 ⁇ .
  • the thickness of the electrode made of Al is 0.02 ⁇ to 0.16 ⁇ . Preferably, it is in the range of 0.04 ⁇ to 0.14 ⁇ . In this case, it is possible to enhance the reflection coefficient, and it is possible to increase the electromechanical coupling coefficient k 2 further.
  • the metallization ratio of the electrode is in the range of 0.2 to 0.7. In this case, it is possible to enhance the reflection coefficient, the electromechanical coupling coefficient k 2 can be further enhanced.
  • a first-order mode of surface acoustic wave is used, and the piezoelectric substrate includes the R-plane, a-plane, or m-plane sapphire substrate and the LiNbO 3.
  • a short-circuit electrode provided between the membrane and the membrane is further provided. Thereby, the speed of sound can be further increased.
  • the film thickness of LiNbO 3 is in the range of 0.15 ⁇ to 1.6 ⁇ , preferably 0.2 ⁇ . It is in the range of ⁇ 0.75 ⁇ . Thereby, the speed of sound can be further increased.
  • a secondary mode of surface acoustic waves is used, and the piezoelectric substrate includes the R-plane, a-plane, or m-plane sapphire substrate and the LiNbO 3.
  • a short-circuit electrode provided between the membrane and the membrane is further provided. Thereby, the speed of sound can be further increased.
  • the film thickness of LiNbO 3 is in the range of 0.4 ⁇ to 1.6 ⁇ , preferably 0.6 ⁇ . It is in the range of ⁇ 1.6 ⁇ . Thereby, the speed of sound can be further increased.
  • an Euler angle (90 °, 90 °, ⁇ 15 ° to 15 °) LiNbO 3 is formed on an R-plane, a-plane, or m-plane sapphire substrate. Because There is used a piezoelectric substrate being formed can be accelerated sound velocity of a surface acoustic wave being used can, and sufficiently large electromechanical coupling coefficient k 2. Therefore, it is possible to increase the frequency and bandwidth of the surface acoustic wave device.
  • the Euler angles are (0 °, 90 °, ⁇ 15 ° to 15 °) on the R-plane, a-plane, or m-plane sapphire substrate. Since the piezoelectric substrate on which LiNbO 3 is formed is used, the speed of sound of the surface acoustic wave used can be increased, and the electromechanical coupling coefficient k 2 can be sufficiently increased. Therefore, the surface acoustic wave device can be increased in frequency and bandwidth.
  • LiNbO 3 is abbreviated as LN in some cases.
  • FIG. 1 is a front sectional view of a surface acoustic wave device according to an embodiment of the present invention.
  • FIG. 2 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (90 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire and the acoustic velocity of the surface acoustic wave. It is a figure which shows a relationship.
  • FIG. 3 shows (90 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) piezoelectric substrate made of R-plane sapphire and (90 °, 90 °, 0 °) LN film / indicating a short circuit electrode / (0 °, 122 ° 23 ', 0 °) and the thickness of the LN film in the piezoelectric substrate of the R-plane sapphire (both structures of FIG. 1 and FIG. 33), the relationship between the electromechanical coupling coefficient k 2 FIG. FIG.
  • FIG. 4 shows the relationship between the thickness of the LN film on the piezoelectric substrate made of (90 °, 90 °, 5 °) LN film / (0 °, 122 ° 23 ′, 5 °) R-plane sapphire and the acoustic velocity of the surface acoustic wave. It is a figure which shows a relationship.
  • 5 shows the thickness of the LN film on the piezoelectric substrate (structure of FIG. 1) made of (90 °, 90 °, 5 °) LN film / (0 °, 122 ° 23 ′, 5 °) R-plane sapphire, is a diagram showing the relationship between the coupling coefficient k 2.
  • FIG. 6 shows the thickness, propagation direction ⁇ , and primary elasticity of a piezoelectric substrate made of (90 °, 90 °, ⁇ ) LN film / (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire. It is a figure which shows the relationship with the sound velocity of a surface wave.
  • FIG. 7 shows the thickness of the LN film in the piezoelectric substrate made of (90 °, 90 °, ⁇ ) LN film / (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire, propagation direction ⁇ , and primary elasticity. is a diagram showing the relationship between the electromechanical coefficient k 2 of the surface wave.
  • FIG. 8 shows the relationship between the thickness of the LN film on the piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire and the sound velocity of the surface acoustic wave. It is a figure which shows a relationship.
  • FIG. 9 shows the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, and the electromechanical coupling coefficient k 2 . It is a figure which shows the relationship.
  • FIG. 9 shows the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, and the electromechanical coupling coefficient k 2 .
  • FIG. 10 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 5 °) LN film / (0 °, 122 ° 23 ′, 5 °) R-plane sapphire and the sound velocity of the surface acoustic wave. It is a figure which shows a relationship.
  • FIG. 11 shows the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 5 °) LN film / (0 °, 122 ° 23 ′, 5 °) R-plane sapphire, and the electromechanical coupling coefficient k 2 . It is a figure which shows the relationship.
  • FIG. 11 shows the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 5 °) LN film / (0 °, 122 ° 23 ′, 5 °) R-plane sapphire, and the electromechanical coupling coefficient k 2 . It is a figure which
  • FIG. 12 shows the thickness, propagation direction ⁇ , and primary elasticity of a piezoelectric substrate made of (0 °, 90 °, ⁇ ) LN film / (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire. It is a figure which shows the relationship with the sound velocity of a surface wave.
  • FIG. 13 shows the thickness, propagation direction ⁇ , and primary elasticity of the piezoelectric substrate made of (0 °, 90 °, ⁇ ) LN film / (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire. is a diagram showing the relationship between the electromechanical coefficient k 2 of the surface wave.
  • FIG. 13 shows the thickness, propagation direction ⁇ , and primary elasticity of a piezoelectric substrate made of (0 °, 90 °, ⁇ ) LN film / (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire.
  • FIG. 14 shows that an interdigital electrode of an Al film is laminated on a piezoelectric substrate made of an LN film of (90 °, 90 °, 0 °) / R-plane sapphire of (0 °, 122 ° 23 ′, 0 °). It is a figure which shows the relationship between the thickness of the LN film
  • FIG. 15 shows an Al film interdigital electrode laminated on a piezoelectric substrate made of an LN film of (90 °, 90 °, 0 °) / R-plane sapphire of (0 °, 122 ° 23 ′, 0 °).
  • FIG. 16 shows the first order in which an Al film is laminated on a piezoelectric substrate made of an LN film of (0 °, 90 °, 0 °) / R-plane sapphire of (0 °, 122 ° 23 ′, 0 °).
  • FIG. 17 shows that an interdigital electrode of an Al film is laminated on a piezoelectric substrate made of an LN film of (0 °, 90 °, 0 °) / R-plane sapphire of (0 °, 122 ° 23 ′, 0 °).
  • FIG. 18 shows a piezoelectric substrate made of (90 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, the thickness of the LN film is 0.15 ⁇ , It is a figure which shows the relationship between the metallization ratio of an electrode and a reflection coefficient in the surface acoustic wave apparatus whose thickness of the interdigital electrode of the Al film formed on a piezoelectric substrate is 0.02 ⁇ .
  • FIG. 19 shows a piezoelectric substrate made of (90 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, the thickness of the LN film is 0.15 ⁇ , the thickness of the interdigital electrode of the Al film formed on the piezoelectric substrate is a diagram showing the relationship between the metallization ratio and the electromechanical coupling coefficient k 2 of the electrode in the surface acoustic wave device is 0.02 [lambda].
  • FIG. 20 shows a piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, and the thickness of the LN film is 0.14 ⁇ , It is a figure which shows the relationship between the metallization ratio of an electrode and a reflection coefficient in the surface acoustic wave apparatus whose thickness of the interdigital electrode of the Al film formed on a piezoelectric substrate is 0.019 ⁇ .
  • FIG. 21 shows a piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire, the thickness of the LN film is 0.14 ⁇ , the thickness of the Al film formed on the piezoelectric substrate is a diagram showing the relationship between the metallization ratio and the electromechanical coupling coefficient k 2 of the electrode in the surface acoustic wave device is 0.019Ramuda.
  • FIG. 22 shows the relationship between the thickness of the LN film on the (90 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire piezoelectric substrate and the frequency temperature coefficient TCF. It is a figure which shows a relationship.
  • FIG. 23 shows the relationship between the LN film thickness and the frequency temperature coefficient TCF in a piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire. It is a figure which shows a relationship.
  • FIG. 23 shows the relationship between the LN film thickness and the frequency temperature coefficient TCF in a piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire. It is a figure which shows a relationship.
  • FIG. 24 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (0 °, 90 °, 0 °) a-plane sapphire and the sound velocity of the surface acoustic wave.
  • FIG. Figure 25 is, (0 °, 90 °, 0 °) LN film / (0 °, 90 °, 0 °) and the thickness of the LN film in the piezoelectric substrate made of a-plane sapphire, the relationship between the electromechanical coupling coefficient k 2 FIG. FIG.
  • FIG. 26 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (90 °, 90 °, 0 °) LN film / (0 °, 90 °, 0 °) a-plane sapphire and the sound velocity of the surface acoustic wave.
  • FIG. 28 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (0 °, 90 °, 0 °) LN film / (90 °, 90 °, 0 °) m-plane sapphire and the acoustic velocity of the surface acoustic wave.
  • FIG. 29, (0 °, 90 °, 0 °) LN film / (90 °, 90 °, 0 °) and the thickness of the LN film of the piezoelectric substrate composed of m-plane sapphire, the relationship between the electromechanical coupling coefficient k 2 FIG. FIG.
  • FIG. 30 shows the relationship between the thickness of the LN film in the piezoelectric substrate made of (90 °, 90 °, 0 °) LN film / (90 °, 90 °, 0 °) m-plane sapphire and the sound velocity of the surface acoustic wave.
  • FIG. Figure 31 is, (90 °, 90 °, 0 °) LN film / (90 °, 90 °, 0 °) and the thickness of the LN film in the piezoelectric substrate composed of m-plane sapphire, the relationship between the electromechanical coupling coefficient k 2
  • FIG. FIG. 32 is a perspective view showing a conventional surface acoustic wave device.
  • FIG. 33 is a front sectional view of the interdigital electrode / LN film / short-circuit electrode / sapphire structure.
  • FIG. 1 is a front sectional view of a surface acoustic wave device according to an embodiment of the present invention.
  • the surface acoustic wave device 1 has a piezoelectric substrate 2.
  • the piezoelectric substrate 2 includes an R-plane, a-plane, or m-plane sapphire substrate 2a, and an LiNbO 3 film 2b stacked on the R-plane, a-plane, or m-plane sapphire substrate 2a.
  • LiNbO 3 film 2b is expressed by Euler angles ( ⁇ , ⁇ , ⁇ ), (90 °, 90 °, ⁇ 15 ° to 15 °) or (0 °, 90 °, ⁇ 15 ° to 15 °) It is a LiNbO 3 film.
  • An electrode 3 made of metal is formed on the LiNbO 3 film 2b.
  • the electrode 3 has at least one interdigital electrode for exciting the surface acoustic wave.
  • the structure of the electrode 3 is not particularly limited, and an appropriate electrode structure corresponding to the function of the surface acoustic wave device such as a surface acoustic wave resonator or a surface acoustic wave filter can be employed.
  • the material of the electrode 3 an appropriate metal can be used, but Al is preferably used. As will be described later, by setting the thickness of the electrode made of Al and the metallization ratio within a specific range, it is possible to improve the acoustic velocity of the surface wave and / or increase the reflection coefficient.
  • R-plane sapphire is Euler angle (0 °, 122 ° 23 ', ⁇ ) sapphire
  • m-plane sapphire is Euler angle (90 °, 90 °, ⁇ )
  • a-plane sapphire is Euler. The angle is (0 °, 90 °, ⁇ ).
  • a Miller index or the like is commonly used to represent crystal orientations such as a sapphire substrate and LiNbO 3 .
  • the relationship between Euler angle and Miller index is as follows.
  • FIG. 33 is a front sectional view showing a structure of a modification in which the short-circuit electrode 4 is inserted between the sapphire substrate 2a and the LiNbO 3 film 2b having the structure of FIG.
  • the electrode material is Al, but may be a metal other than Al as long as it can be electrically short-circuited.
  • FIGS. 2 and 3 show that an Euler angle (90 °, 90 °, 0 °) LiNbO 3 is formed in a laminated thickness on an R-plane sapphire substrate having an Euler angle (0 °, 122 ° 23 ′, 0 °).
  • the thickness of the LiNbO 3 film in the case of using a piezoelectric substrate which is formed by a drawing showing respective relationships between the electromechanical coefficient k 2 of the two structures shown in acoustic velocity and FIGS 33 of the surface acoustic wave. Structure of the electromechanical coupling coefficient k 2 Differences in Figures 1 and 33 is not so large.
  • LiNbO 3 is abbreviated as an LN film as appropriate.
  • the surface acoustic waves of the 0th order and the surface acoustic waves of the 1st, 2nd and 3rd modes which are surface acoustic waves of higher order modes are Excited.
  • FIG. 3 it can be seen that a larger electromechanical coupling coefficient can be obtained when the first-order surface acoustic wave and the second-order surface acoustic wave are used than when the zero-order surface acoustic wave is used. .
  • the sound velocity is about 4000 m / sec.
  • the LN film (90 °, 90 °, 0 °) / (0 °, 122 ° 23 ′, 0 °) R-plane sapphire is used, the thickness of the LN film is 1. If it is 6 ⁇ or less, it can be seen that the sound velocity of the first-order surface acoustic wave can be remarkably increased to about 4600 m / sec or more.
  • the secondary surface acoustic wave also has a very high sound speed of 5100 m / sec or more in the range of the film thickness of the LN film of 1.6 ⁇ or less, more specifically in the range of 0.4 ⁇ to 1.6 ⁇ . It turns out that it is the speed of sound. Further, in the third-order surface acoustic wave, the sound velocity of the surface acoustic wave is remarkably increased to 5300 m / second or more when the thickness of the LN film is in the range of 0.6 ⁇ to 1.6 ⁇ .
  • the first-order surface acoustic wave, the second-order surface acoustic wave, and the third-order surface acoustic wave are compared with the case where the 0th-order surface acoustic wave is used in such a high sound velocity range. when used, it can be seen that can enhance the electromechanical coupling factor k 2.
  • the electromechanical coupling coefficient can be increased over the entire range of the thickness of the LN film from 0 to 1.6 ⁇ compared to the case of the zero-order surface acoustic wave.
  • the electromechanical coupling coefficient k 2 can be increased to 0.1 or more, and more preferably, the film of the LN film with a range of 0.15 ⁇ ⁇ 0.9 ⁇ thick, the electromechanical coupling coefficient k 2 can be 0.15 or more.
  • the second-order surface acoustic wave may electromechanical coupling coefficient k 2 with 0.025 or more in the thickness range of 0.4 ⁇ ⁇ 1.6 ⁇ of LN film. More preferably, it can be seen that the electromechanical coupling coefficient k 2 can be set to 0.03 or more by setting the range from 0.6 ⁇ to 1.6 ⁇ .
  • the film thickness of the LN film and 0.1 ⁇ ⁇ 1.6 ⁇ , the electromechanical coefficient k 2 it can be increased to 0.03 or more.
  • FIG. 3 shows the electromechanical coupling coefficient k 2 of both the structure of FIG. 1 which is an embodiment of the present invention and the structure of FIG. 33 which is a modified example.
  • the difference between the structure of FIG. 33 which is a modification and the structure of FIG. 1 which is an embodiment is that a short-circuit electrode is provided between the sapphire substrate and the LN film.
  • the LN film is made substantially the same as the embodiment by making the film thickness almost the same as that of the embodiment. It can be seen that a large electromechanical coupling coefficient k 2 is obtained.
  • vff in FIG. 4 means the sound velocity of the surface acoustic wave in the open state on the piezoelectric substrate having the structure of FIG.
  • vff in FIGS. 6 and 7 and the like described later indicates the sound velocity in the open state of the piezoelectric substrate having the structure in FIG. 1
  • vmf indicates the sound velocity in the short-circuit state.
  • vfm in FIG. 3 means the sound velocity of the surface acoustic wave in the open state on the piezoelectric substrate having the structure of FIG.
  • vmm means a sound velocity in a short-circuited state in the piezoelectric substrate having the structure of FIG.
  • the acoustic velocity of the surface acoustic wave increases in the thickness of the LN film regardless of whether the propagation direction ⁇ is 0 °, 5 °, 10 °, 20 °, 40 °, or 70 °.
  • the sound velocity of the surface acoustic wave can be increased to 4000 m / second or more.
  • the acoustic velocity of the surface acoustic wave is 4300 m / second or more, preferably ⁇ is 10 ° or less in the range where the thickness of the LN film is 0.8 ⁇ or less, and 4400 m / second. You can see that it can be faster than 2 seconds.
  • a large electromechanical coupling coefficient k 2 can be obtained by making the propagation direction ⁇ smaller than 20 °.
  • the propagation direction ⁇ is desirably 15 ° or less, whereby the electromechanical coupling coefficient k 2 can be increased. From FIG. 7, it is more preferable that the propagation direction ⁇ is 5 ° or less. It can be seen that the electromechanical coupling coefficient k 2 can be obtained.
  • the propagation direction ⁇ is smaller than 20 °, preferably 15 ° or less, more preferably be in the range of 5 ° or less, increasing the acoustic velocity of the surface acoustic wave, and it can be seen that can enhance the electromechanical coupling coefficient k 2 effectively.
  • the range of 0.1 ⁇ to 1.6 ⁇ is set so that ⁇ is ⁇ 15. ° or more and less than -5 °, or + 5 ° greater than to or less than + 15 °, if the range of 0.18 ⁇ ⁇ 0.75 ⁇ , can increase the electromechanical coupling coefficient k 2 effectively .
  • the Euler angles of R-plane sapphire are (0 °, 122 ° 23 ′, 0 ° ⁇ 15 °), in other words. In other words, it is within the range of (0 °, 122 ° 23 ′, ⁇ 15 ° to 15 °), and preferably (0 °, 122 ° 23 ′, ⁇ 5 ° to 5 °).
  • FIG. 2 is a diagram showing the relationship between the thickness of the LiNbO 3 film, the acoustic velocity of the surface acoustic wave, and the electromechanical coupling coefficient k 2 in the case of the structure of FIG. 1 using a piezoelectric substrate.
  • the sound velocity is about 4000 m / sec.
  • the thickness of the LN film is 1.6 ⁇ or less. If it is within the range, it can be seen that the sound velocity of the primary surface acoustic wave can be remarkably increased to about 4400 m / sec or more.
  • the LN film thickness is 1.6 ⁇ or less, more specifically, in the range of 0.4 ⁇ to 1.6 ⁇ , the sound velocity is as high as 5300 m / sec or more. It turns out that it is the speed of sound. Further, in the third-order surface acoustic wave, the sound speed of the surface acoustic wave is remarkably increased to 4900 m / second or more in the range where the film thickness of the LN film is 0.65 ⁇ to 0.9 ⁇ .
  • the first-order surface acoustic wave, the second-order surface acoustic wave, and the third-order surface acoustic wave are compared with the case where the 0th-order surface acoustic wave is used in such a high sound velocity range. when used, it can be seen that can enhance the electromechanical coupling factor k 2.
  • the electromechanical coupling coefficient can be increased over the entire range of the thickness of the LN film from 0 to 1.6 ⁇ compared to the case of the zero-order surface acoustic wave.
  • the electromechanical coupling coefficient k 2 can be increased to 0.1 or more, and more preferably, the film of the LN film with a range of 0.14 ⁇ ⁇ 1.2 ⁇ thick, the electromechanical coupling coefficient k 2 can be more 0.15Ramuda.
  • the electromechanical coupling coefficient k 2 is set to 0.025 or more, more preferably 0 by setting the film thickness of the LN film in the range of 0.4 ⁇ to 1.6 ⁇ . It can be seen that the electromechanical coupling coefficient k 2 can be set to 0.03 or more by setting.
  • the film thickness of the LN film and 0.6 ⁇ ⁇ 1.6 ⁇ , the electromechanical coefficient k 2 it can be increased to 0.02 or more.
  • the Euler angles of the LN film are (0 °, 90 °, 0 °), and the Euler angles of the R-plane sapphire are (0 °, 122 ° 23 ′, 0 °). It was confirmed how it changes when the propagation direction ⁇ is changed.
  • 10 and 11 show the thickness of the LN film when the Euler angles of the LN film are (0 °, 90 °, 5 °) and the Euler angles of the R-plane sapphire are (0 °, 122 ° 23 ′, 5 °).
  • the acoustic velocity of the surface acoustic wave increases in the thickness of the LN film regardless of whether the propagation direction ⁇ is 0 °, 5 °, 10 °, 20 °, 40 °, or 70 °.
  • the acoustic velocity of the surface acoustic wave can be increased to 4000 m / sec or more in any case when the thickness of the LN film is 0.9 ⁇ or less.
  • the acoustic velocity of the surface acoustic wave is 4400 m / second or more, preferably ⁇ is 10 ° or less over the entire range where the thickness of the LN film is 0.9 ⁇ or less. It can be seen that it can be accelerated to more than / sec.
  • a large electromechanical coupling coefficient k 2 can be obtained by making the propagation direction ⁇ smaller than 20 °.
  • the propagation azimuth ⁇ is desirably 15 ° or less, whereby the electromechanical coupling coefficient k 2 can be increased. From FIG. 7, it is more preferable that the propagation azimuth ⁇ is 10 ° or less. It can be seen that the electromechanical coupling coefficient k 2 can be obtained.
  • propagation is performed in a laminated structure of LiNbO 3 with Euler angles (0 °, 90 °, ⁇ ) / Euler angles (0 °, 122 ° 23 ′, ⁇ ) R-plane sapphire. If the azimuth ⁇ is smaller than 20 °, preferably 15 ° or less, more preferably 10 ° or less, the sound velocity of the surface acoustic wave can be increased and the electromechanical coupling coefficient k 2 can be effectively increased. Recognize.
  • the Euler angles of R-plane sapphire are (0 °, 122 ° 23 ′, 0 ° ⁇ 15 °), in other words. In other words, it is within the range of (0 °, 122 ° 23 ′, ⁇ 15 ° to 15 °), and more preferably (0 °, 122 ° 23 ′, ⁇ 5 ° to 5 °).
  • the range of 0.1 ⁇ to 1.6 ⁇ is set so that ⁇ is ⁇ 15. ° or more and less than -5 °, or + 5 ° greater than to or less than + 15 °, if the range of 0.18 ⁇ ⁇ 0.75 ⁇ , can increase the electromechanical coupling coefficient k 2 effectively .
  • 14 and 15 show an Al film on a piezoelectric substrate made of LN film with Euler angles (90 °, 90 °, 0 °) / R-plane sapphire with Euler angles (0 °, 122 ° 23 ′, 0 °). shows respectively the thickness of the Al film, the thickness of LN film, FIG shows a relationship between the reflection coefficient and the Al film thickness and LN film and the relationship between the electromechanical coupling coefficient k 2 in the surface acoustic wave device formed by laminating a It is. 14 and 15 show the results for the first-order surface acoustic wave.
  • the metallization ratio of the electrode made of Al was set to 0.5.
  • the reflection coefficient increases as the thickness of the Al film increases even when the thickness of the LN film is 0.15 ⁇ , 0.2 ⁇ , 0.3 ⁇ , or 0.8 ⁇ . Recognize.
  • the thickness of the Al film is more than 0.02 [lambda], not more than 0.16Ramuda, the electromechanical coupling coefficient k 2 can be increased to about as high as 0.08 or more.
  • the thickness of the Al film should be in the range of 0.02 ⁇ to 0.16 ⁇ in order to obtain a large reflection coefficient of 0.1 or more and an electromechanical coupling coefficient k 2 of 0.08 or more. More preferably, the thickness of the Al film 0.04 or higher, by 0.14 or less, the reflection coefficient 0.15 or higher, an electromechanical coupling coefficient k 2 can be increased to 0.1 or more.
  • 16 and 17 show an Al film on a piezoelectric substrate made of an LN film with Euler angles (0 °, 90 °, 0 °) / R-plane sapphire with Euler angles (0 °, 122 ° 23 ′, 0 °). shows respectively the thickness of the Al film, the thickness of LN film, FIG shows a relationship between the reflection coefficient and the Al film thickness and LN film and the relationship between the electromechanical coupling coefficient k 2 in the surface acoustic wave device formed by laminating a It is. 16 and 17 show the results for the first-order surface acoustic wave.
  • the metallization ratio of the electrode made of Al was set to 0.5.
  • the reflection coefficient increases as the thickness of the Al film increases in any case where the thickness of the LN film is 0.14 ⁇ , 0.19 ⁇ , 0.3 ⁇ , or 0.8 ⁇ . Recognize.
  • the thickness of the Al film is more than 0.02 [lambda], not more than 0.16Ramuda, the electromechanical coupling coefficient k 2 can be increased to about as high as 0.1 or more.
  • the thickness of the Al film should be in the range of 0.02 ⁇ to 0.16 ⁇ in order to obtain a large reflection coefficient of 0.1 and an electromechanical coupling coefficient k 2 of 0.1 or more. More preferably, more than 0.04 ⁇ thickness of the Al film, by less 0.13Ramuda, the reflection coefficient 0.15 or higher, an electromechanical coupling coefficient k 2 can be increased to 0.15 or more.
  • the reflection coefficient tends to decrease as the metallization ratio increases.
  • the electromechanical coupling coefficient k 2 is set to 0 while increasing the reflection coefficient to 0.06 or more. It can be seen that it can be as high as 16 or more. That is, the metallization ratio by a range of 0.2 to 0.7, not only can enhance the reflection coefficient, it is understood that the electromechanical coefficient k 2 may be a sufficient size. More preferably, the metallization ratio is in the range of 0.2 to 0.65, in which case the reflection coefficient is 0.07 or more and the electromechanical coupling coefficient k 2 is 0.17 or more. I know you get.
  • the reflection coefficient tends to decrease as the metallization ratio increases.
  • the electromechanical coupling coefficient k 2 is set to 0 while increasing the reflection coefficient to 0.06 or more. It can be seen that it can be as high as .155 or more. That is, the metallization ratio by a range of 0.2 to 0.7, not only can enhance the reflection coefficient, it is understood that the electromechanical coefficient k 2 may be a sufficient size. More preferably, the metallization ratio is in the range of 0.2 to 0.62, in which case the reflection coefficient is 0.07 or more and the electromechanical coupling coefficient k 2 is 0.17 or more. I know you get.
  • FIG. 22 shows the thickness of an LN film of a piezoelectric substrate made of an LN film with Euler angles (90 °, 90 °, 0 °) / R-plane sapphire with Euler angles (0 °, 122 ° 23 ′, 0 °). It is a figure which shows the relationship with the frequency temperature coefficient TCF of the next surface acoustic wave.
  • FIG. 23 shows the thickness and elasticity of an LN film of a piezoelectric substrate made of an LN film with Euler angles (0 °, 90 °, 0 °) / R-plane sapphire with Euler angles (0 °, 122 ° 23 ′, 0 °). It is a figure which shows the relationship with the frequency temperature coefficient TCF of a surface wave.
  • the inventor of the present application also uses an a-plane sapphire instead of an R-plane sapphire, and if the crystal orientation of the LN film is a specific orientation, the acoustic velocity of the surface acoustic wave is improved and the electromechanical coupling coefficient k 2 is increased. We found that it could be increased.
  • the LN film thickness is 1.6 ⁇ or less in comparison with the zeroth order surface acoustic wave. Regardless of the film thickness, the sound velocity of the surface acoustic wave can be increased.
  • a sound speed of 4500 m / second or more is obtained in the entire range where the film thickness of the LN film is 1.6 ⁇ or less, and the sound speed of 4800 m / second or more is obtained in the secondary surface acoustic wave.
  • a third-order surface acoustic wave a high sound speed of 5100 m / second or more can be obtained.
  • the electromechanical coupling coefficient k 2 is 0.1. It can be seen that the above can be improved.
  • the thickness of LN film 0.5 ⁇ or more, by a thickness of less than 1.6Ramuda, the electromechanical coupling coefficient k 2 is about 0.025 or more it can, in the third order of the surface acoustic wave, the thickness of LN film 0.6 ⁇ or more, by less 1.6Ramuda, the electromechanical coupling coefficient k 2 it can be seen that may enhance the 0.02 or more.
  • the LN film thickness is 1.6 ⁇ or less in comparison with the zeroth order surface acoustic wave. Regardless of the film thickness, the sound velocity of the surface acoustic wave can be increased.
  • a sound speed of 4500 m / second or more is obtained in the entire range where the film thickness of the LN film is 1.6 ⁇ or less, and the sound speed of 4800 m / second or more is obtained in the secondary surface acoustic wave.
  • a third-order surface acoustic wave a high sound speed of 5100 m / second or more can be obtained.
  • the electromechanical coupling coefficient k 2 is 0.1. It can be seen that the above can be improved.
  • the thickness of LN film 0.05 ⁇ or more, by a thickness of less than 1.6Ramuda the electromechanical coupling coefficient k 2 is 0.02 or more it can, in the third order of the surface acoustic wave, the thickness of LN film 0.06 ⁇ or more, by less 1.6Ramuda, the electromechanical coupling coefficient k 2 it can be seen that may enhance the 0.02 or more.
  • the present inventor uses not only R-plane sapphire and a-plane sapphire, but also m-plane sapphire, that is, a piezoelectric substrate formed by laminating an LN film on an Euler angle (90 °, 90 °, 0 °) sapphire substrate. Even in such a case, it was found that a large electromechanical coupling coefficient and high sound speed can be obtained by setting the crystal orientation of the LN film to a specific orientation.
  • the LN film thickness is 1.6 ⁇ or less in comparison with the zeroth order surface acoustic wave. Regardless of the film thickness, the sound velocity of the surface acoustic wave can be increased.
  • a sound speed of 4500 m / second or more is obtained in the entire range where the film thickness of the LN film is 1.6 ⁇ or less, and the sound speed of 4800 m / second or more is obtained in the secondary surface acoustic wave.
  • a third-order surface acoustic wave a high sound speed of 5100 m / second or more can be obtained.
  • the electromechanical coupling coefficient k 2 is set to 0.1. It can be seen that the above can be improved. In the case of using second-order surface acoustic wave, the thickness of LN film 0.5 ⁇ or more, by a thickness of less than 1.6Ramuda, the electromechanical coupling coefficient k 2 is 0.02 or more it can, in the third order of the surface acoustic wave, the thickness of LN film 0.06 ⁇ or more, by less 1.6Ramuda, the electromechanical coupling coefficient k 2 it can be seen that may enhance the 0.015 or more.
  • [(90 °, 90 °, 0 °) LN film / m-plane sapphire] 30 and 31 show the thickness of an LN film on a piezoelectric substrate made of an LN film with Euler angles (90 °, 90 °, 0 °) / m-plane sapphire with Euler angles (90 °, 90 °, 0 °), it is a graph showing respective relationships between the acoustic velocity or the electromechanical coupling coefficient k 2 of the surface acoustic wave.
  • the LN film thickness is 1.6 ⁇ or less in comparison with the zeroth order surface acoustic wave. Regardless of the film thickness, the sound velocity of the surface acoustic wave can be increased.
  • a sound speed of 4500 m / second or more is obtained in the entire range where the film thickness of the LN film is 1.6 ⁇ or less, and the sound speed of 4800 m / second or more is obtained in the secondary surface acoustic wave.
  • a third-order surface acoustic wave a high sound speed of 5100 m / second or more can be obtained.
  • the electromechanical coupling coefficient k 2 is 0.1 when the first-order surface acoustic wave is used in the entire range where the film thickness of the LN film is 0.1 ⁇ or more and 1.6 ⁇ or less. It can be seen that the above can be improved.
  • the thickness of LN film 0.5 ⁇ or more, by a thickness of less than 1.6Ramuda
  • the electromechanical coupling coefficient k 2 is 0.04 or more it can, in the third order of the surface acoustic wave, the thickness of LN film 0.06 ⁇ or more, by less 1.6Ramuda
  • the electromechanical coupling coefficient k 2 it can be seen that can enhance least 0.03.
  • the surface acoustic wave device 2 ... piezoelectric substrate 2a ... sapphire substrate 2b ... LiNbO 3 film 3 ... electrode 4 ... short-circuit electrode

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

 弾性表面波の音速の高速化及び電気機械結合係数kの増大を図ることができ、さらに反射係数を高め得る、弾性表面波装置を提供する。 R面、a面またはm面のサファイア基板2aと、サファイア基板2a上に形成されており、オイラー角(φ,θ,ψ)で(90°,90°,-15°~15°)または(0°,90°,-15°~15°)のLiNbO膜2bとを有する圧電基板と、圧電基板上に形成されており、かつ金属からなる電極3とを備える、弾性表面波装置1。

Description

弾性表面波装置
 本発明は、共振子や帯域フィルタなどに用いられる弾性表面波装置に関し、より詳細には、サファイア基板上にエピタキシャルLiNbO膜が積層されている圧電基板を用いた弾性表面波装置に関する。
 近年、通信機器等における高周波化に伴って、弾性表面波装置においても、高周波化が求められている。また、弾性表面波フィルタなどにおいては、広帯域化も強く求められている。
 高周波化及び広帯域化を図るには、弾性表面波の音速及び電気機械結合係数kが大きいことが求められる。
 そこで、下記の特許文献1には、上記のような要求を満たすために、図32に示す弾性表面波装置1001が開示されている。
 弾性表面波装置1001では、(012)サファイア基板1002上に(100)LiNbO膜1003が積層されている圧電基板1004が用いられている。圧電基板1004上に、入力電極1005及び出力電極1006が設けられている。サファイア基板1002上のc軸の投影線方向と、LiNbO膜1003のc軸方向とは平行である。そのため、弾性表面波の伝搬方向を制御することにより、弾性表面波の音速及び電気機械結合係数kを高めることができるとされている。
 他方、下記の特許文献2には、(012)サファイア基板上に、(012)LiNbO膜を積層してなる圧電基板や、(012)サファイア基板上に、(100)LiNbO膜を積層してなる圧電基板を用いた弾性表面波装置が開示されている。
特開平10-322158号公報 WO98/56109
 特許文献1や特許文献2に記載の弾性表面波装置では、(012)サファイア基板すなわちR面サファイア基板上に、(100)LiNbO膜や(012)LiNbO膜を積層してなる圧電基板を用いることにより、弾性表面波の速度や電気機械結合係数の向上が図られていた。しかしながら、近年、より一層の高周波化や広帯域化が求められており、弾性表面波の音速及び電気機械結合係数kの増大がより一層強く求められている。
 また、弾性表面波装置の小型化を図るために、反射係数を高めることも強く求められている。
 本発明の目的は、上述した従来技術の現状に鑑み、従来の弾性表面波装置に比べて、より一層弾性表面波の音速の高速化及び電気機械結合係数kの増大を図ることができ、さらに反射係数を高め得る、弾性表面波装置を提供することにある。
 本願の発明者は、弾性表面波装置における弾性表面波の高速化を実現するために始終検討した結果、R面、a面またはm面のサファイア基板上に、LiNbO膜を積層してなる圧電基板を用いた構成において、特定の結晶方位のサファイア基板と、特定の結晶方位のLiNbO膜を組み合わせた場合に弾性表面波の音速を効果的に高めることを見出し、本発明を成すに至った。
 すなわち、上記特定のサファイア基板と、上記特定のLiNbO膜を用いることにより、弾性表面波の音速を高め得ることは本願出願時において当業者において予測し得るものではなく、本発明の特定の組み合わせを用いることで初めて弾性表面波の音速を効果的に高め得るものである。
 本発明のある広い局面によれば、R面、a面またはm面のサファイア基板と、前記サファイア基板上に形成されており、オイラー角(φ,θ,ψ)で(90°,90°,-15°~15°)のLiNbO膜とを有する圧電基板と、前記圧電基板上に形成されており、かつ金属からなる電極とを備える、弾性表面波装置が提供される。
 本発明に係る弾性表面波装置のある特定の局面では、弾性表面波の1次モードを利用しており、弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°以上、+5°以下である場合、すなわち、0°±5°の範囲内の場合に0.1λ~1.6λの範囲にあり、好ましくは0.15λ~0.9λの範囲にあり、ψが-15°以上、-5°未満あるいは+5°より大きく、+15°以下である場合に0.18λ~0.75λの範囲内である。それによって、弾性表面波の音速をより一層速くし、かつ電気機械結合係数kをより一層大きくすることができる。
 本発明に係る弾性表面波装置の他の特定の局面では、弾性表面波の2次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.4λ~1.6λの範囲にあり、好ましくは0.6λ~1.6λの範囲にある。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、弾性表面波の3次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.6λ~1.6λの範囲にある。この場合には、3次モードを利用することにより、より一層の高周波化を図ることができ、かつ弾性表面波の音速の向上及び電気機械結合係数kの増大をより一層図ることができる。
 本発明に係る弾性表面波装置の別の特定の局面では、前記電極がAlからなり、前記弾性表面波の波長をλとしたときに、Alからなる電極の厚みが、0.02λ~0.16λの範囲にある。この場合には、電気機械結合係数kをより一層大きくすることができ、かつ反射係数を高めることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、前記電極のメタライゼーション比が0.2~0.7の範囲にある。それによって、反射係数をより一層高めることができ、かつ電気機械結合係数kを高めることができる。
 本発明の別の広い局面によれば、R面、a面またはm面のサファイア基板と、前記サファイア基板上に形成されており、かつオイラー角(φ,θ,ψ)が(0°,90°,-15°~15°)であるLiNbO膜とを有する圧電基板と、前記圧電基板上に形成されており、金属からなる電極とを備える、弾性表面波装置が提供される。
 上記弾性表面波装置のある特定の局面では、弾性表面波の1次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°以上、+5°以下である場合に0.1λ~1.6λの範囲にあり、好ましくは0.12λ~1.2λの範囲にあり、ψが-15°以上、-5°未満あるいは+5°より大きく、+15°以下である場合に、0.17λ~0.8λの範囲である。この場合には、弾性表面波の音速の向上及び電気機械結合係数kの増大をより一層図ることができる。
 本発明に係る弾性表面波装置のさらに他の特定の局面では、弾性表面波の2次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.4λ~1.6λの範囲にある。
 本発明に係る弾性表面波装置の別の特定の局面では、弾性表面波の3次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.6λ~1.0λの範囲にある。
 本発明に係る弾性表面波装置の他の特定の局面では、電極がAlからなり、前記弾性表面波の波長をλとしたときに、Alからなる電極の厚みが、0.02λ~0.16λ、好ましくは0.04λ~0.14λの範囲にある。この場合には、反射係数を高めることができ、かつ電気機械結合係数kをより一層高めることができる。
 本発明の第2の局面により提供される弾性表面波装置の他の特定の局面では、前記電極のメタライゼーション比が0.2~0.7の範囲にある。この場合には、反射係数を高めることができ、電気機械結合係数kをより一層高めることができる。
 本発明に係る弾性表面波装置の別の特定の局面では、弾性表面波の1次モードを利用しており、前記圧電基板が、前記R面、a面またはm面のサファイア基板と前記LiNbO膜との間に設けられた短絡電極がさらに備えられている。それによって、音速をより高めることができる。
 本発明に係る弾性表面波装置の別の特定の局面では、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が0.15λ~1.6λの範囲、好ましくは0.2λ~0.75λの範囲にある。それによって、音速をより高めることができる。
 本発明に係る弾性表面波装置の別の特定の局面では、弾性表面波の2次モードを利用しており、前記圧電基板が、前記R面、a面またはm面のサファイア基板と前記LiNbO膜との間に設けられた短絡電極がさらに備えられている。それによって、音速をより高めることができる。
 本発明に係る弾性表面波装置の別の特定の局面では、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が0.4λ~1.6λの範囲、好ましくは0.6λ~1.6λの範囲にある。それによって、音速をより高めることができる。
 第1の広い局面により提供される弾性表面波装置によれば、R面、a面またはm面のサファイア基板上に、オイラー角(90°,90°,-15°~15°)のLiNbOが形成されている圧電基板を用いているため、使用している弾性表面波の音速を速めることができ、かつ電気機械結合係数kを充分に大きくすることができる。従って、弾性表面波装置の高周波化及び広帯域化を図ることができる。
 第2の広い局面により提供される弾性表面波装置によれば、R面、a面またはm面のサファイア基板上に、オイラー角が(0°,90°,-15°~15°)であるLiNbOが形成されている圧電基板を用いているため、使用している弾性表面波の音速を速めることができ、かつ電気機械結合係数kを充分大きくすることができる。従って、弾性表面波装置の高周波化及び広帯域化を図ることが可能となる。
 なお、以下においては、LiNbOを、場合によってはLNと略すこととする。
図1は、本発明の一実施形態に係る弾性表面波装置の正面断面図である。 図2は、(90°,90°,0°)LN膜/(0°,122°23′,0°)R面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図3は、(90°,90°,0°)LN膜/(0°,122°23′,0°)R面サファイアからなる圧電基板および(90°,90°,0°)LN膜/短絡電極/(0°,122°23′,0°)R面サファイアからなる圧電基板(図1と図33の両構造)におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図4は、(90°,90°,5°)LN膜/(0°,122°23′,5°)R面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図5は、(90°,90°,5°)LN膜/(0°,122°23′,5°)R面サファイアからなる圧電基板(図1の構造)におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図6は、(90°,90°,ψ)LN膜/(0°,122°23′,ψ)R面サファイアからなる圧電基板におけるLN膜の厚みと、伝搬方向ψと、1次の弾性表面波の音速との関係を示す図である。 図7は、(90°,90°,ψ)LN膜/(0°,122°23′,ψ)R面サファイアからなる圧電基板におけるLN膜の厚みと、伝搬方向ψと、1次の弾性表面波の電気機械結合係数kとの関係を示す図である。 図8は、(0°,90°,0°)LN膜/(0°,122°23′,0°)R面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図9は、(0°,90°,0°)LN膜/(0°,122°23′,0°)R面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図10は、(0°,90°,5°)LN膜/(0°,122°23′,5°)R面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図11は、(0°,90°,5°)LN膜/(0°,122°23′,5°)R面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図12は、(0°,90°,ψ)LN膜/(0°,122°23′,ψ)R面サファイアからなる圧電基板におけるLN膜の厚みと、伝搬方向ψと、1次の弾性表面波の音速との関係を示す図である。 図13は、(0°,90°,ψ)LN膜/(0°,122°23′,ψ)R面サファイアからなる圧電基板におけるLN膜の厚みと、伝搬方向ψと、1次の弾性表面波の電気機械結合係数kとの関係を示す図である。 図14は、(90°,90°,0°)のLN膜/(0°,122°23′,0°)のR面サファイアからなる圧電基板上にAl膜のすだれ状電極が積層されている1次の弾性表面波装置におけるLN膜の厚みと、Al膜のすだれ状電極の厚みと、反射係数との関係を示す図である。 図15は、(90°,90°,0°)のLN膜/(0°,122°23′,0°)のR面サファイアからなる圧電基板上にAl膜のすだれ状電極が積層されている1次の弾性表面波装置におけるLN膜の厚みと、Al膜のすだれ状電極の厚みと、電気機械結合係数kとの関係を示す図である。 図16は、(0°,90°,0°)のLN膜/(0°,122°23′,0°)のR面サファイアからなる圧電基板上にAl膜が積層されている1次の弾性表面波装置におけるLN膜の厚みと、Al膜のすだれ状電極の厚みと、反射係数との関係を示す図である。 図17は、(0°,90°,0°)のLN膜/(0°,122°23′,0°)のR面サファイアからなる圧電基板上にAl膜のすだれ状電極が積層されている1次の弾性表面波装置におけるLN膜の厚みと、Al膜のすだれ状電極の厚みと、電気機械結合係数kとの関係を示す図である。 図18は、(90°,90°,0°)のLN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板において、LN膜の厚みが0.15λ、圧電基板上に形成されるAl膜のすだれ状電極の厚みが0.02λである弾性表面波装置における電極のメタライゼーション比と反射係数との関係を示す図である。 図19は、(90°,90°,0°)のLN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板において、LN膜の厚みが0.15λ、圧電基板上に形成されるAl膜のすだれ状電極の厚みが0.02λである弾性表面波装置における電極のメタライゼーション比と電気機械結合係数kとの関係を示す図である。 図20は、(0°,90°,0°)のLN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板において、LN膜の厚みが0.14λ、圧電基板上に形成されるAl膜のすだれ状電極の厚みが0.019λである弾性表面波装置における電極のメタライゼーション比と反射係数との関係を示す図である。 図21は、(0°,90°,0°)のLN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板において、LN膜の厚みが0.14λ、圧電基板上に形成されるAl膜の厚みが0.019λである弾性表面波装置における電極のメタライゼーション比と電気機械結合係数kとの関係を示す図である。 図22は、(90°,90°,0°)LN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板におけるLN膜の厚みと周波数温度係数TCFとの関係を示す図である。 図23は、(0°,90°,0°)LN膜/(0°,122°23′,0°)のR面のサファイアからなる圧電基板におけるLN膜の厚みと周波数温度係数TCFとの関係を示す図である。 図24は、(0°,90°,0°)LN膜/(0°,90°,0°)a面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図25は、(0°,90°,0°)LN膜/(0°,90°,0°)a面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図26は、(90°,90°,0°)LN膜/(0°,90°,0°)a面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図27は、(90°,90°,0°)LN膜/(0°,90°,0°)a面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図28は、(0°,90°,0°)LN膜/(90°,90°,0°)m面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図29は、(0°,90°,0°)LN膜/(90°,90°,0°)m面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図30は、(90°,90°,0°)LN膜/(90°,90°,0°)m面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速との関係を示す図である。 図31は、(90°,90°,0°)LN膜/(90°,90°,0°)m面サファイアからなる圧電基板におけるLN膜の厚みと、電気機械結合係数kとの関係を示す図である。 図32は、従来の弾性表面波装置を示す斜視図である。 図33は、すだれ状電極/LN膜/短絡電極/サファイア構造の正面断面図である。
 以下、本発明の詳細を説明する。
 図1は、本発明の一実施形態に係る弾性表面波装置の正面断面図である。弾性表面波装置1は、圧電基板2を有する。圧電基板2は、R面、a面またはm面のサファイア基板2aと、R面、a面またはm面のサファイア基板2a上に積層されたLiNbO膜2bとを有する。上記LiNbO膜2bは、オイラー角(φ,θ,ψ)で表現すると、(90°,90°,-15°~15°)または(0°,90°,-15°~15°)のLiNbO膜である。
 LiNbO膜2b上には、金属からなる電極3が形成されている。電極3は、弾性表面波を励振するための少なくとも1つのすだれ状電極を有する。電極3の構造は特に限定されず、弾性表面波共振子や弾性表面波フィルタなどの弾性表面波装置の機能に応じた適宜の電極構造を採用することができる。
 また、電極3の材料については、適宜の金属を用いることができるが、好ましくはAlが用いられる。後述するように、Alからなる電極の厚みやメタライゼーション比を特定の範囲とすることにより、表面波の音速の向上及び/または反射係数の増大を図ることができる。
 以下、具体的な実験例に基づき、上記弾性表面波装置1の構成及び効果を明らかにする。
 なお、以下においては、サファイア基板及びLiNbOの結晶方位をオイラー角で示すこととする。R面サファイアは、オイラー角で(0°,122°23′,ψ)のサファイアであり、m面サファイアは、オイラー角で(90°,90°,ψ)であり、a面サファイアは、オイラー角で(0°,90°,ψ)である。
 なお、サファイア基板やLiNbOなどの結晶方位を表すのに、オイラー角の他、ミラー指数なども常用されている。オイラー角とミラー指数との関係は以下の通りである。
 R面サファイア:オイラー角(0°,122°23′,0°)=ミラー指数(012)、ミラー指数では(01-12)と表されることもある。
 また、オイラー角(90°,90°,0°)=ミラー指数(100)、オイラー角(0°,90°,0°)=ミラー指数(010)の関係がある。
 なお、図33は、図1の構造のサファイア基板2aとLiNbO膜2bとの間に短絡電極4を挿入した変形例の構造を示す正面断面図である。ここでは、電極材料は、Alであるが、電気的に短絡できる限り、Al以外の金属であってもよい。
 〔LiNbO/R面サファイア〕
 図2及び図3は、オイラー角(0°,122°23′,0°)のR面サファイア基板上に、オイラー角(90°,90°,0°)のLiNbOを積層の厚みで形成してなる圧電基板を用いた場合のLiNbO膜の厚みと、弾性表面波の音速及び図1および図33に示す両構造の電気機械結合係数kとの関係をそれぞれ示す図である。図1と図33の構造による電気機械結合係数kの違いはそれほど大きくない。
 なお、以下においては、LiNbOは、LN膜と適宜略すこととする。
 上記圧電基板上に電極を形成した構造では、図2に示すように、0次の弾性表面波と、高次モードの弾性表面波である1次、2次、3次モードの弾性表面波が励振される。図3から明らかなように、0次の弾性表面波を用いた場合に比べ、1次の弾性表面波及び2次の弾性表面波を用いた場合、大きな電気機械結合係数を得られることがわかる。
 通常、LiNbO基板を用いた弾性表面波装置では、音速が4000m/秒程度である。これに対して、図2より、(90°,90°,0°)のLN膜/(0°,122°23′,0°)R面サファイアを用いた場合、LN膜の厚みが1.6λ以下であれば、1次の弾性表面波の音速は約4600m/秒以上と著しく高め得ることがわかる。同様に、2次の弾性表面波についても、LN膜の膜厚が1.6λ以下、より具体的には、0.4λ~1.6λの範囲で、音速が5100m/秒以上と非常に高音速であることがわかる。さらに、3次の弾性表面波では、LN膜の膜厚が0.6λ~1.6λの範囲で、弾性表面波の音速が5300m/秒以上と著しく高められる。
 また、図3より、このような音速の速い範囲で、0次の弾性表面波を用いた場合に比べて、1次の弾性表面波、2次の弾性表面波及び3次の弾性表面波を用いた場合、電気機械結合係数kを高め得ることがわかる。
 特に1次の弾性表面波の場合、LN膜の膜厚が0~1.6λの全範囲で、0次の弾性表面波の場合に比べて、電気機械結合係数を高め得ることがわかる。好ましくは、図3から、LN膜の膜厚を0.1λ~1.6λとすることにより、電気機械結合係数kを0.1以上と高めることができ、より好ましくは、LN膜の膜厚を0.15λ~0.9λの範囲とすることにより、電気機械結合係数kを0.15以上とすることができる。
 2次の弾性表面波を用いた場合には、LN膜の膜厚を0.4λ~1.6λの範囲において電気機械結合係数kを0.025以上とし得る。より好ましくは、0.6λ~1.6λの範囲とすることにより、電気機械結合係数kを0.03以上とし得ることがわかる。
 また、3次の弾性表面波を用いた場合には、LN膜の膜厚を0.1λ~1.6λとすることにより、電気機械結合係数kを0.03以上とし得ることがわかる。
 図3では、本発明の一実施形態である図1の構造および変形例である図33の構造の両方の構造の電気機械結合係数kを示している。変形例である図33の構造と実施形態である図1の構造との相違点は、サファイア基板とLN膜の間に短絡電極を設けた点である。
 図3において、1次、2次および3次SAWと表示したものは図1の構造の電気機械結合係数kである。また、1次、2次および3次SAWvfm-vmmと表示したものは図33の構造の電気機械結合係数kである。
 図3から明らかなように、変形例の構造の1次、2次および3次の弾性表面波においても、LN膜の膜厚を実施形態とほぼ同じ膜厚とすることにより実施形態とほぼ同じ大きさの電気機械結合係数kが得られることがわかる。
 図2及び図3では、LN膜のオイラー角は(90°,90°,0°)であり、R面サファイアのオイラー角は(0°,122°23′,0°)であったが、伝搬方位ψを変化させた場合どのように変化するかを確かめた。図4及び図5は、LN膜のオイラー角が(90°,90°,5°)、R面サファイアのオイラー角が(0°,122°23′,5°)の場合のLN膜の厚みと、弾性表面波の音速及び電気機械結合係数kとの関係を示す図である。
 なお、図4におけるvffは図1の構造の圧電基板における開放状態の弾性表面波の音速であることを意味する。同様に、後述の図6及び図7等におけるvffは図1の構造の圧電基板における開放状態の音速を示し、vmfは短絡状態の音速であることを意味する。
 また、図3におけるvfmは図33の構造の圧電基板における開放状態の弾性表面波の音速であることを意味する。また、vmmは図33の構造の圧電基板における短絡状態の音速であることを意味する。
 図4及び図5から明らかなように、LN膜及びR面サファイアのオイラー角の伝搬方位ψを0°から5°に変更した場合においても、図2及び図3と同様の傾向があることがわかる。図4及び図5と同様に、LN膜の伝搬方位ψ及びR面サファイアの伝搬方位ψを0°、5°、10°、20°、40°または70°と変化させ、LN膜の厚みと、弾性表面波の音速と電気機械結合係数kとの関係を求めた。結果を図6及び図7に示す。図7に示すようにψ=15°は10°と20°の中間にある。
 図6から明らかなように、伝搬方位ψが0°、5°、10°、20°、40°または70°のいずれの場合においても、弾性表面波の音速は、LN膜の厚みが厚くなるにつれて低下するが、LN膜の厚みが0.8λ以下の範囲では、いずれの場合においても、弾性表面波の音速を4000m/秒以上と高め得ることがわかる。
 特に、ψが20°よりも小さければ、LN膜の厚みが0.8λ以下の範囲で、弾性表面波の音速を4300m/秒以上、好ましくは、ψを10°以下とすることにより、4400m/秒以上と速め得ることがわかる。
 また、図7から明らかなように、伝搬方位ψを20°よりも小さくすることにより、大きな電気機械結合係数kが得られることがわかる。好ましくは、伝搬方位ψは15°以下であることが望ましく、それによって電気機械結合係数kを高めることができ、図7より、より好ましくは、伝搬方位ψを5°以下とすれば、大きな電気機械結合係数kを得られることがわかる。
 従って、図4~図7から明らかなように、オイラー角(90°,90°,ψ)のLiNbO/オイラー角(0°,122°23′,ψ)サファイアの積層構造において、伝搬方位ψは、20°より小さく、好ましくは15°以下、より好ましくは5°以下の範囲であれば、弾性表面波の音速を高め、かつ電気機械結合係数kを効果的に高め得ることがわかる。
 より具体的には、LN膜の膜厚が、オイラー角のψが-5°以上、+5°以下である場合には、0.1λ~1.6λの範囲とすることにより、ψが-15°以上、-5°未満、または+5°より大きく、+15°以下である場合には、0.18λ~0.75λの範囲とすれば、電気機械結合係数kを効果的に高めることができる。
 なお、伝搬方位ψは負の値であっても、正の値と同様の結果が得られるため、R面サファイアのオイラー角は(0°,122°23′,0°±15°)、言い換えれば(0°,122°23′,-15°~15°)の範囲であり、好ましくは(0°,122°23′,-5°~5°)であればよいことがわかる。
 〔オイラー角(0°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイア〕
 図8及び図9は、オイラー角(0°,122°23′,0°)のR面サファイア基板上に、オイラー角(0°,90°,0°)のLiNbO膜を形成してなる圧電基板を用いた図1の構造の場合のLiNbO膜の厚みと、弾性表面波の音速及び電気機械結合係数kとの関係をそれぞれ示す図である。
 上記圧電基板上に電極を形成した構造では、図8に示すように、0次の弾性表面波と、1次及び2次、3次の弾性表面波が励振される。図から明らかなように、0次の弾性表面波を用いた場合に比べ、1次の弾性表面波及び2次、3次の弾性表面波を用いた場合、大きな電気機械結合係数を得られることがわかる。
 通常、LiNbO基板を用いた弾性表面波装置では、音速が4000m/秒程度である。これに対して、(0°,90°,0°)のLN膜/(0°,122°23′,0°)R面サファイアを用いた場合、LN膜の厚みが1.6λ以下の全範囲であれば、1次弾性表面波の音速は約4400m/秒以上と著しく高め得ることがわかる。同様に、2次の弾性表面波についても、LN膜の膜厚が1.6λ以下、より具体的には、0.4λ~1.6λの範囲で、音速が5300m/秒以上と非常に高音速であることがわかる。さらに、3次の弾性表面波では、LN膜の膜厚が0.65λ~0.9λの範囲で、弾性表面波の音速が4900m/秒以上と著しく高められる。
 また、図9より、このような音速の速い範囲で、0次の弾性表面波を用いた場合に比べて、1次の弾性表面波、2次の弾性表面波及び3次の弾性表面波を用いた場合、電気機械結合係数kを高め得ることがわかる。特に1次の弾性表面波の場合、LN膜の膜厚が0~1.6λの全範囲で、0次の弾性表面波の場合に比べて、電気機械結合係数を高め得ることがわかる。好ましくは、図9から、LN膜の膜厚を0.1λ~1.6λとすることにより、電気機械結合係数kを0.1以上と高めることができ、より好ましくは、LN膜の膜厚を0.14λ~1.2λの範囲とすることにより、電気機械結合係数kを0.15λ以上とすることができる。
 2次の弾性表面波を用いた場合には、LN膜の膜厚を0.4λ~1.6λの範囲とすることにより、電気機械結合係数kを0.025以上、より好ましくは、0.6λ~1.6λとすることにより、電気機械結合係数kを0.03以上とし得ることがわかる。
 また、3次の弾性表面波を用いた場合には、LN膜の膜厚を0.6λ~1.6λとすることにより、電気機械結合係数kを0.02以上とし得ることがわかる。
 図8及び図9では、LN膜のオイラー角は(0°,90°,0°)であり、R面サファイアのオイラー角は(0°,122°23′,0°)であったが、伝搬方位ψを変化させた場合どのように変化するかを確かめた。図10及び図11は、LN膜のオイラー角が(0°,90°,5°)、R面サファイアのオイラー角が(0°,122°23′,5°)の場合のLN膜の厚みと、弾性表面波の音速及び電気機械結合係数kとの関係を示す図である。
 図10及び図11から明らかなように、LN膜及びR面サファイアのオイラー角の伝搬方位ψを0°から5°に変更した場合においても、図8及び図9と同様の傾向があることがわかる。図10及び図11と同様に、LN膜の伝搬方位ψ及びR面サファイアの伝搬方位ψを0°、5°、10°、20°、40°または70°と変化させ、LN膜の厚みと、弾性表面波の音速と電気機械結合係数kとの関係を求めた。結果を図12及び図13に示す。
 図12から明らかなように、伝搬方位ψが0°、5°、10°、20°、40°または70°のいずれの場合においても、弾性表面波の音速は、LN膜の厚みが厚くなるにつれて低下するが、LN膜の厚みが0.9λ以下の範囲では、いずれの場合においても、弾性表面波の音速を4000m/秒以上と高め得ることがわかる。特に、ψが20°よりも小さければ、LN膜の厚みが0.9λ以下の全範囲で、弾性表面波の音速を4400m/秒以上、好ましくは、ψを10°以下とすることにより、4500m/秒以上と速め得ることがわかる。
 また、図13から明らかなように、伝搬方位ψを20°よりも小さくすることにより、大きな電気機械結合係数kが得られることがわかる。好ましくは、伝搬方位ψは15°以下であることが望ましく、それによって電気機械結合係数kを高めることができ、図7より、より好ましくは、伝搬方位ψを10°以下とすれば、大きな電気機械結合係数kを得られることがわかる。
 従って、図10~図13から明らかなように、オイラー角(0°,90°,ψ)のLiNbO/オイラー角(0°,122°23′,ψ)R面サファイアの積層構造において、伝搬方位ψは、20°より小さく、好ましくは15°以下、より好ましくは10°以下の範囲であれば、弾性表面波の音速を高め、かつ電気機械結合係数kを効果的に高め得ることがわかる。
 なお、伝搬方位ψは負の値であっても、正の値と同様の結果が得られるため、R面サファイアのオイラー角は(0°,122°23′,0°±15°)、言い換えれば(0°,122°23′,-15°~15°)の範囲であり、より好ましくは(0°,122°23′,-5°~5°)であればよいことがわかる。
 より具体的には、LN膜の膜厚が、オイラー角のψが-5°以上、+5°以下である場合には、0.1λ~1.6λの範囲とすることにより、ψが-15°以上、-5°未満、または+5°より大きく、+15°以下である場合には、0.18λ~0.75λの範囲とすれば、電気機械結合係数kを効果的に高めることができる。
 〔LN膜/(0°,122°23′,0°)のR面サファイアを用いた場合のAlからなる電極の厚み及びメタライゼーション比〕
 本願発明者は、上記のように、オイラー角(0°,122°39′,-15°~15°)のR面サファイア上に、オイラー角(90°,90°,0°)または(0°,90°,0°)のLN膜を積層した圧電基板を用いれば、弾性表面波の高音速化及び電気機械結合係数kの増大を図り得ることを見出した。さらに、電極として、Alを用いた場合、Al膜の厚みを特定の範囲とすれば、反射係数や電気機械結合係数kを高め得ることを見出した。
 図14及び図15は、オイラー角(90°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板上に、Al膜を積層した弾性表面波装置におけるAl膜の厚みと、LN膜の厚みと、反射係数との関係を示す図及びAl膜の厚みとLN膜と電気機械結合係数kとの関係をそれぞれ示す図である。図14及び図15は、1次の弾性表面波についての結果である。
 図14及び図15において、Alからなる電極のメタライゼーション比は0.5とした。
 図14から明らかなように、LN膜の厚みは0.15λ、0.2λ、0.3λまたは0.8λのいずれの場合においても、Al膜の厚みが厚くなるにつれて反射係数は高くなることがわかる。特に、図15より、Al膜の厚みが0.02λ以上、0.16λ以下であれば、電気機械結合係数kを0.08以上と高くし得ることがわかる。
 従って、0.1以上の大きな反射係数と、0.08以上の電気機械結合係数kを得るには、Al膜の厚みは0.02λ~0.16λの範囲とすればよいことがわかる。より好ましくは、Al膜の厚みを0.04以上、0.14以下とすることにより、反射係数を0.15以上、電気機械結合係数kを0.1以上とし得ることがわかる。
 図16及び図17は、オイラー角(0°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板上に、Al膜を積層した弾性表面波装置におけるAl膜の厚みと、LN膜の厚みと、反射係数との関係を示す図及びAl膜の厚みとLN膜と電気機械結合係数kとの関係をそれぞれ示す図である。図16及び図17は、1次の弾性表面波についての結果である。
 図16及び図17において、Alからなる電極のメタライゼーション比は0.5とした。
 図16から明らかなように、LN膜の厚みは0.14λ、0.19λ、0.3λまたは0.8λのいずれの場合においても、Al膜の厚みが厚くなるにつれて反射係数は高くなることがわかる。特に、図17より、Al膜の厚みが0.02λ以上、0.16λ以下であれば、電気機械結合係数kを0.1以上と高くし得ることがわかる。
 従って、0.1の大きな反射係数と、0.1以上の電気機械結合係数kを得るには、Al膜の厚みは0.02λ~0.16λの範囲とすればよいことがわかる。より好ましくは、Al膜の厚みを0.04λ以上、0.13λ以下とすることにより、反射係数を0.15以上、電気機械結合係数kを0.15以上とし得ることがわかる。
 図18及び図19は、オイラー角(90°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板において、Al膜を0.15λとし、圧電基板上に0.02λのAl膜からなる電極を形成した弾性表面波装置における電極のメタライゼーション比と反射係数及び電気機械結合係数kとの関係をそれぞれ示す図である。
 図18から明らかなように、メタライゼーション比が大きくなるにつれて、反射係数は低下する傾向がある。もっとも、メタライゼーション比が0.2~0.7の範囲であれば、図18より図19から明らかなように、反射係数を0.06以上と高くしつつ、電気機械結合係数kを0.16以上と高くし得ることがわかる。すなわち、メタライゼーション比を0.2~0.7の範囲内とすることにより、反射係数を高め得るだけでなく、電気機械結合係数kを充分な大きさとし得ることがわかる。より好ましくは、メタライゼーション比は、0.2~0.65の範囲であり、その場合には、反射係数を0.07以上、電気機械結合係数kを0.17以上とより一層高くし得ることがわかる。
 図20及び図21は、オイラー角(0°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板において、LN膜を0.14λとし、圧電基板上に0.019λのAl膜からなる電極を形成した弾性表面波装置における電極のメタライゼーション比と反射係数及び電気機械結合係数kとの関係をそれぞれ示す図である。
 図20から明らかなように、メタライゼーション比が大きくなるにつれて、反射係数は低下する傾向がある。もっとも、メタライゼーション比が0.2~0.7の範囲であれば、図20及び図21から明らかなように、反射係数を0.06以上と高くしつつ、電気機械結合係数kを0.155以上と高くし得ることがわかる。すなわち、メタライゼーション比を0.2~0.7の範囲内とすることにより、反射係数を高め得るだけでなく、電気機械結合係数kを充分な大きさとし得ることがわかる。より好ましくは、メタライゼーション比は、0.2~0.62の範囲であり、その場合には、反射係数を0.07以上、電気機械結合係数kを0.17以上とより一層高くし得ることがわかる。
 〔周波数温度係数TCF〕
 図22は、オイラー角(90°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板のLN膜の厚みと、1次の弾性表面波の周波数温度係数TCFとの関係を示す図である。
 図22から明らかなように、LN膜の膜厚を、前述した好ましい膜厚範囲0.13λ~0.8λの範囲で変化させたとしても、TCFがあまり変化しないことがわかる。従って、この特性については、LN膜の膜厚を変化させてもさほど変化しないことがわかる。
 図23は、オイラー角(0°,90°,0°)のLN膜/オイラー角(0°,122°23′,0°)のR面サファイアからなる圧電基板のLN膜の厚みと、弾性表面波の周波数温度係数TCFとの関係を示す図である。
 図23から明らかなように、LN膜の膜厚を、前述した好ましい膜厚範囲0.13λ~0.8λの範囲で変化させたとしても、TCFがあまり変化しないことがわかる。従って、この特性については、LN膜の膜厚を変化させてもさほど変化しないことがわかる。
 〔(0°,90°,0°)のLN膜/a面サファイア〕
 本願発明者は、R面サファイアに変えて、a面サファイアを用いた場合にも、LN膜の結晶方位を特定の方位とすれば、弾性表面波の音速の向上及び電気機械結合係数kの増大を図り得ることを見出した。
 図24及び図25は、オイラー角(0°,90°,0°)のLN膜/オイラー角(0°,90°,0°)のa面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速または電気機械結合係数kとの関係をそれぞれ示す図である。
 図24から明らかなように、0次の弾性表面波の場合に比べ、1次、2次及び3次の弾性表面波を用いた場合、LN膜の膜厚が1.6λ以下の範囲においてLN膜の膜厚の如何に係わらず、弾性表面波の音速を速め得ることができる。
 1次の弾性表面波の場合、LN膜の膜厚が1.6λ以下の全範囲において、4500m/秒以上の音速が得られ、2次の弾性表面波では、4800m/秒以上の音速が得られ、3次の弾性表面波では、5100m/秒以上の高音速が得られる。
 他方、図25から明らかなように、LN膜の膜厚が0.1λ以上、1.6λ以下の全範囲において、1次の弾性表面波を用いた場合電気機械結合係数kを0.1以上と高め得ることがわかる。
 また、2次の弾性表面波を用いた場合には、LN膜の膜厚を0.5λ以上、1.6λ以下の厚みとすることにより、電気機械結合係数kを0.025以上とすることができ、3次の弾性表面波では、LN膜の膜厚を0.6λ以上、1.6λ以下とすることにより、電気機械結合係数kを0.02以上と高め得ることがわかる。
 〔(90°,90°,0°)のLN膜/a面サファイア〕
 図26及び図27は、オイラー角(90°,90°,0°)のLN膜/オイラー角(0°,90°,0°)のa面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速または電気機械結合係数kとの関係をそれぞれ示す図である。
 図26から明らかなように、0次の弾性表面波の場合に比べ、1次、2次、3次の弾性表面波を用いた場合、LN膜の膜厚が1.6λ以下の範囲においてLN膜の膜厚の如何に係わらず、弾性表面波の音速を速め得ることができる。
 1次の弾性表面波の場合、LN膜の膜厚が1.6λ以下の全範囲において、4500m/秒以上の音速が得られ、2次の弾性表面波では、4800m/秒以上の音速が得られ、3次の弾性表面波では、5100m/秒以上の高音速が得られる。
 他方、図27から明らかなように、LN膜の膜厚が0.1λ以上、1.6λ以下の全範囲において、1次の弾性表面波を用いた場合電気機械結合係数kを0.1以上と高め得ることがわかる。また、2次の弾性表面波を用いた場合には、LN膜の膜厚を0.05λ以上、1.6λ以下の厚みとすることにより、電気機械結合係数kを0.02以上とすることができ、3次の弾性表面波では、LN膜の膜厚を0.06λ以上、1.6λ以下とすることにより、電気機械結合係数kを0.02以上と高め得ることがわかる。
 〔(0°,90°,0°)のLN膜/m面サファイア〕
 本願発明者は、R面サファイアやa面サファイアだけでなく、m面サファイア、すなわちオイラー角(90°,90°,0°)のサファイア基板上に、LN膜を積層してなる圧電基板を用いた場合においても、LN膜の結晶方位を特定の方位とすることにより、大きな電気機械結合係数及び高い音速の得ることを見出した。
 図28及び図29は、オイラー角(0°,90°,0°)のLN膜/オイラー角(90°,90°,0°)のm面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速または電気機械結合係数kとの関係をそれぞれ示す図である。
 図28から明らかなように、0次の弾性表面波の場合に比べ、1次、2次または3次の弾性表面波を用いた場合、LN膜の膜厚が1.6λ以下の範囲においてLN膜の膜厚の如何に係わらず、弾性表面波の音速を速め得ることができる。
 1次の弾性表面波の場合、LN膜の膜厚が1.6λ以下の全範囲において、4500m/秒以上の音速が得られ、2次の弾性表面波では、4800m/秒以上の音速が得られ、3次の弾性表面波では、5100m/秒以上の高音速が得られる。
 他方、図29から明らかなように、LN膜の膜厚が0.1λ以上、1.6λ以下の全範囲において、1次の弾性表面波を用いた場合電気機械結合係数kを0.1以上と高め得ることがわかる。また、2次の弾性表面波を用いた場合には、LN膜の膜厚を0.5λ以上、1.6λ以下の厚みとすることにより、電気機械結合係数kを0.02以上とすることができ、3次の弾性表面波では、LN膜の膜厚を0.06λ以上、1.6λ以下とすることにより、電気機械結合係数kを0.015以上と高め得ることがわかる。
 〔(90°,90°,0°)のLN膜/m面サファイア〕
 図30及び図31は、オイラー角(90°,90°,0°)のLN膜/オイラー角(90°,90°,0°)のm面サファイアからなる圧電基板におけるLN膜の厚みと、弾性表面波の音速または電気機械結合係数kとの関係をそれぞれ示す図である。
 図30から明らかなように、0次の弾性表面波の場合に比べ、1次、2次及び3次の弾性表面波を用いた場合、LN膜の膜厚が1.6λ以下の範囲においてLN膜の膜厚の如何に係わらず、弾性表面波の音速を速め得ることができる。
 1次の弾性表面波の場合、LN膜の膜厚が1.6λ以下の全範囲において、4500m/秒以上の音速が得られ、2次の弾性表面波では、4800m/秒以上の音速が得られ、3次の弾性表面波では、5100m/秒以上の高音速が得られる。
 他方、図31から明らかなように、LN膜の膜厚が0.1λ以上、1.6λ以下の全範囲において、1次の弾性表面波を用いた場合電気機械結合係数kを0.1以上と高め得ることがわかる。また、2次の弾性表面波を用いた場合には、LN膜の膜厚を0.5λ以上、1.6λ以下の厚みとすることにより、電気機械結合係数kを0.04以上とすることができ、3次の弾性表面波では、LN膜の膜厚を0.06λ以上、1.6λ以下とすることにより、電気機械結合係数kを0.03以上と高め得ることがわかる。
  1…弾性表面波装置
  2…圧電基板
  2a…サファイア基板
  2b…LiNbO
  3…電極
  4…短絡電極

Claims (16)

  1.  R面、a面またはm面のサファイア基板と、
     前記サファイア基板上に形成されており、オイラー角(φ,θ,ψ)で(90°,90°,-15°~15°)のLiNbO膜とを有する圧電基板と、
     前記圧電基板上に形成されており、かつ金属からなる電極とを備える、弾性表面波装置。
  2.  弾性表面波の1次モードを利用しており、弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°以上、+5°以下である場合に0.1λ~1.6λの範囲にあり、ψが-15°以上、-5°未満あるいは+5°より大きく、+15°以下である場合に、0.18λ~0.75λの範囲である、請求項1に記載の弾性表面波装置。
  3.  弾性表面波の2次モードを利用しており、弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.4λ~1.6λの範囲にある、請求項1に記載の弾性表面波装置。
  4.  弾性表面波の3次モードを利用しており、弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.6λ~1.6λの範囲にある、請求項1に記載の弾性表面波装置。
  5.  前記電極がAlからなり、弾性表面波の波長をλとしたときに、Alからなる電極の厚みが、0.02λ~0.16λの範囲にある、請求項1~4のいずれか1項に記載の弾性表面波装置。
  6.  前記電極のメタライゼーション比が0.2~0.7の範囲にある、請求項5に記載の弾性表面波装置。
  7.  R面、a面またはm面のサファイア基板と、
     前記サファイア基板上に形成されており、かつオイラー角(φ,θ,ψ)が(0°,90°,-15°~15°)であるLiNbO膜とを有する圧電基板と、
     前記圧電基板上に形成されており、金属からなる電極とを備える、弾性表面波装置。
  8.  弾性表面波の1次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°以上、+5°以下である場合に0.1λ~1.6λの範囲にあり、ψが-15°以上、-5°未満あるいは+5°より大きく、+15°以下である場合に、0.17λ~0.8λの範囲である、請求項7に記載の弾性表面波装置。
  9.  弾性表面波の2次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.4λ~1.6λの範囲にある、請求項7に記載の弾性表面波装置。
  10.  弾性表面波の3次モードを利用しており、前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が、オイラー角のψが-5°~5°の場合に0.6λ~1.0λの範囲にある、請求項7に記載の弾性表面波装置。
  11.  前記電極がAlからなり、弾性表面波の波長をλとしたときに、Alからなる電極の厚みが、0.02λ~0.16λの範囲にある、請求項7~10のいずれか1項に記載の弾性表面波装置。
  12.  前記電極のメタライゼーション比が0.2~0.7の範囲にある、請求項11に記載の弾性表面波装置。
  13.  弾性表面波の1次モードを利用しており、前記圧電基板が、前記R面、a面またはm面のサファイア基板と前記LiNbO膜との間に設けられた短絡電極をさらに備えている、請求項1に記載の弾性表面波装置。
  14.  前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が0.15λ~1.6λの範囲にある、請求項13に記載の弾性表面波装置。
  15.  弾性表面波の2次モードを利用しており、前記圧電基板が、前記R面、a面またはm面のサファイア基板と前記LiNbO膜との間に設けられた短絡電極をさらに備えている、請求項1に記載の弾性表面波装置。
  16.  前記弾性表面波の波長をλとしたときに、LiNbOの膜厚が0.4λ~1.6λの範囲、好ましくは0.6λ~1.6λの範囲にある、請求項15に記載の弾性表面波装置。
PCT/JP2010/066426 2009-09-25 2010-09-22 弾性表面波装置 WO2011037145A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011533008A JP5655787B2 (ja) 2009-09-25 2010-09-22 弾性表面波装置
CN201080042556.7A CN102549923B (zh) 2009-09-25 2010-09-22 弹性表面波装置
EP10818818.6A EP2482451A4 (en) 2009-09-25 2010-09-22 Surface acoustic wave device
US13/424,462 US8304959B2 (en) 2009-09-25 2012-03-20 Surface acoustic wave device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009220910 2009-09-25
JP2009-220910 2009-09-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/424,462 Continuation US8304959B2 (en) 2009-09-25 2012-03-20 Surface acoustic wave device

Publications (1)

Publication Number Publication Date
WO2011037145A1 true WO2011037145A1 (ja) 2011-03-31

Family

ID=43795891

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/066426 WO2011037145A1 (ja) 2009-09-25 2010-09-22 弾性表面波装置

Country Status (5)

Country Link
US (1) US8304959B2 (ja)
EP (1) EP2482451A4 (ja)
JP (1) JP5655787B2 (ja)
CN (1) CN102549923B (ja)
WO (1) WO2011037145A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141168A1 (ja) * 2012-03-23 2013-09-26 株式会社村田製作所 弾性波装置及びその製造方法
JP2017034363A (ja) * 2015-07-29 2017-02-09 太陽誘電株式会社 弾性波デバイスおよびモジュール
WO2018097016A1 (ja) * 2016-11-25 2018-05-31 国立大学法人東北大学 弾性波デバイス
JP2019503627A (ja) * 2016-01-28 2019-02-07 コーボ ユーエス,インコーポレイティド スプリアスモード除去をもたらす誘導表面弾性波デバイス
WO2019082806A1 (ja) * 2017-10-23 2019-05-02 京セラ株式会社 弾性波素子
WO2020121976A1 (ja) * 2018-12-13 2020-06-18 株式会社村田製作所 弾性波装置
JP2021044738A (ja) * 2019-09-12 2021-03-18 京セラ株式会社 弾性波素子
US11206007B2 (en) 2017-10-23 2021-12-21 Qorvo Us, Inc. Quartz orientation for guided SAW devices
US11451206B2 (en) 2015-07-28 2022-09-20 Qorvo Us, Inc. Methods for fabrication of bonded wafers and surface acoustic wave devices using same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6288760B2 (ja) * 2013-11-20 2018-03-07 日本電波工業株式会社 弾性表面波デバイス、共振子及び発振回路
JP2018182615A (ja) * 2017-04-18 2018-11-15 株式会社村田製作所 弾性波装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832398A (ja) * 1994-05-10 1996-02-02 Sumitomo Electric Ind Ltd 表面弾性波素子
JPH08316781A (ja) * 1995-05-17 1996-11-29 Yasutaka Shimizu 弾性表面波素子
JPH09208399A (ja) * 1996-01-31 1997-08-12 Kyocera Corp 圧電基体及び弾性表面波装置
JPH10322158A (ja) 1997-05-20 1998-12-04 Asahi Chem Ind Co Ltd 圧電体基板とその製法及びそれを用いた弾性表面波機能素子
WO1998056109A1 (fr) 1997-06-02 1998-12-10 Asahi Kasei Kogyo Kabushiki Kaisha Dispositif a ondes de surface elastiques
JP2000332314A (ja) * 1999-05-25 2000-11-30 Murata Mfg Co Ltd 圧電体基板の製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3435638B2 (ja) * 2000-10-27 2003-08-11 株式会社村田製作所 弾性表面波装置及びその製造方法
JP2004186868A (ja) * 2002-12-02 2004-07-02 Fujitsu Media Device Kk 弾性表面波素子、それを有する送信フィルタ及び受信フィルタ、並びにそれらを有するデュプレクサ
JP4345328B2 (ja) * 2003-03-13 2009-10-14 セイコーエプソン株式会社 弾性表面波デバイス及びその製造方法
JP2004297359A (ja) * 2003-03-26 2004-10-21 Seiko Epson Corp 表面弾性波素子、周波数フィルタ、発振器、電子回路、及び電子機器
JP2004336503A (ja) * 2003-05-09 2004-11-25 Fujitsu Media Device Kk 弾性表面波素子及びその製造方法
JP3774782B2 (ja) * 2003-05-14 2006-05-17 富士通メディアデバイス株式会社 弾性表面波素子の製造方法
JP4657002B2 (ja) * 2005-05-12 2011-03-23 信越化学工業株式会社 複合圧電基板
JP4735840B2 (ja) * 2005-12-06 2011-07-27 セイコーエプソン株式会社 圧電体積層体、表面弾性波素子、薄膜圧電共振子および圧電アクチュエータ

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0832398A (ja) * 1994-05-10 1996-02-02 Sumitomo Electric Ind Ltd 表面弾性波素子
JPH08316781A (ja) * 1995-05-17 1996-11-29 Yasutaka Shimizu 弾性表面波素子
JPH09208399A (ja) * 1996-01-31 1997-08-12 Kyocera Corp 圧電基体及び弾性表面波装置
JPH10322158A (ja) 1997-05-20 1998-12-04 Asahi Chem Ind Co Ltd 圧電体基板とその製法及びそれを用いた弾性表面波機能素子
WO1998056109A1 (fr) 1997-06-02 1998-12-10 Asahi Kasei Kogyo Kabushiki Kaisha Dispositif a ondes de surface elastiques
JP2000332314A (ja) * 1999-05-25 2000-11-30 Murata Mfg Co Ltd 圧電体基板の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2482451A4

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013141168A1 (ja) * 2012-03-23 2013-09-26 株式会社村田製作所 弾性波装置及びその製造方法
CN104205629A (zh) * 2012-03-23 2014-12-10 株式会社村田制作所 弹性波装置及其制造方法
JPWO2013141168A1 (ja) * 2012-03-23 2015-08-03 株式会社村田製作所 弾性波装置及びその製造方法
EP2830216A4 (en) * 2012-03-23 2016-04-27 Murata Manufacturing Co ELASTIC WAVING DEVICE AND MANUFACTURING METHOD THEREFOR
US9413334B2 (en) 2012-03-23 2016-08-09 Murata Manufacturing Co., Ltd. Elastic wave device using SH surface acoustic wave
CN104205629B (zh) * 2012-03-23 2016-12-28 株式会社村田制作所 弹性波装置及其制造方法
US11451206B2 (en) 2015-07-28 2022-09-20 Qorvo Us, Inc. Methods for fabrication of bonded wafers and surface acoustic wave devices using same
JP2017034363A (ja) * 2015-07-29 2017-02-09 太陽誘電株式会社 弾性波デバイスおよびモジュール
JP2019503627A (ja) * 2016-01-28 2019-02-07 コーボ ユーエス,インコーポレイティド スプリアスモード除去をもたらす誘導表面弾性波デバイス
US11309861B2 (en) 2016-01-28 2022-04-19 Qorvo Us, Inc. Guided surface acoustic wave device providing spurious mode rejection
JP7051690B2 (ja) 2016-01-28 2022-04-11 コーボ ユーエス,インコーポレイティド スプリアスモード除去をもたらす誘導表面弾性波デバイス
GB2572099B (en) * 2016-11-25 2022-03-23 Univ Tohoku Acoustic wave devices
JPWO2018097016A1 (ja) * 2016-11-25 2019-10-17 国立大学法人東北大学 弾性波デバイス
WO2018097016A1 (ja) * 2016-11-25 2018-05-31 国立大学法人東北大学 弾性波デバイス
US11258427B2 (en) 2016-11-25 2022-02-22 Tohoku University Acoustic wave devices
US11742826B2 (en) 2017-10-23 2023-08-29 Qorvo Us, Inc. Quartz orientation for guided SAW devices
WO2019082806A1 (ja) * 2017-10-23 2019-05-02 京セラ株式会社 弾性波素子
US11206007B2 (en) 2017-10-23 2021-12-21 Qorvo Us, Inc. Quartz orientation for guided SAW devices
JPWO2019082806A1 (ja) * 2017-10-23 2020-10-22 京セラ株式会社 弾性波素子
WO2020121976A1 (ja) * 2018-12-13 2020-06-18 株式会社村田製作所 弾性波装置
JPWO2020121976A1 (ja) * 2018-12-13 2021-10-14 株式会社村田製作所 弾性波装置
JP7088316B2 (ja) 2018-12-13 2022-06-21 株式会社村田製作所 弾性波装置
KR20210087537A (ko) * 2018-12-13 2021-07-12 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
KR102629355B1 (ko) * 2018-12-13 2024-01-25 가부시키가이샤 무라타 세이사쿠쇼 탄성파 장치
US11923820B2 (en) 2018-12-13 2024-03-05 Murata Manufacturing Co., Ltd. Acoustic wave device
JP2021044738A (ja) * 2019-09-12 2021-03-18 京セラ株式会社 弾性波素子
JP7401999B2 (ja) 2019-09-12 2023-12-20 京セラ株式会社 弾性波素子

Also Published As

Publication number Publication date
JPWO2011037145A1 (ja) 2013-02-21
EP2482451A1 (en) 2012-08-01
JP5655787B2 (ja) 2015-01-21
US8304959B2 (en) 2012-11-06
CN102549923A (zh) 2012-07-04
US20120176001A1 (en) 2012-07-12
EP2482451A4 (en) 2017-06-21
CN102549923B (zh) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5655787B2 (ja) 弾性表面波装置
JP7393443B2 (ja) 弾性波素子
WO2011046117A1 (ja) 弾性表面波装置
JP5747987B2 (ja) 弾性波装置
US7569972B2 (en) Surface acoustic wave device
WO2018163805A1 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
US7705515B2 (en) Surface acoustic wave device
JPWO2007097186A1 (ja) 弾性表面波装置
JP6658957B2 (ja) 弾性波装置、高周波フロントエンド回路及び通信装置
JP2023036845A (ja) 弾性波装置
WO2013081026A1 (ja) 弾性表面波装置
JP6624337B2 (ja) 弾性波装置、マルチプレクサ、高周波フロントエンド回路及び通信装置
WO2020184621A1 (ja) 弾性波装置
JP4967393B2 (ja) 弾性表面波装置
WO2009090714A1 (ja) 弾性表面波装置
WO2021125013A1 (ja) 弾性波装置
WO2020050402A1 (ja) 弾性波装置、弾性波フィルタ及び複合フィルタ装置
WO2022168798A1 (ja) 弾性波装置
WO2022168796A1 (ja) 弾性波装置
WO2021090775A1 (ja) 弾性波装置
WO2022075138A1 (ja) 弾性波装置
JP2003142984A (ja) 表面波装置
WO2009090713A1 (ja) 弾性表面波装置
JP2007143180A (ja) 表面波装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080042556.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10818818

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011533008

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010818818

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE