WO2011036705A1 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
WO2011036705A1
WO2011036705A1 PCT/JP2009/004819 JP2009004819W WO2011036705A1 WO 2011036705 A1 WO2011036705 A1 WO 2011036705A1 JP 2009004819 W JP2009004819 W JP 2009004819W WO 2011036705 A1 WO2011036705 A1 WO 2011036705A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
self
voltage
secondary batteries
discharge
Prior art date
Application number
PCT/JP2009/004819
Other languages
English (en)
French (fr)
Inventor
橘内真一郎
生田和雄
地久里紀博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to CN200980161605.6A priority Critical patent/CN102576895B/zh
Priority to KR1020127009845A priority patent/KR20120068919A/ko
Priority to US13/497,257 priority patent/US9157964B2/en
Priority to PCT/JP2009/004819 priority patent/WO2011036705A1/ja
Priority to JP2011532790A priority patent/JP5541288B2/ja
Publication of WO2011036705A1 publication Critical patent/WO2011036705A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • G01R31/3865Arrangements for measuring battery or accumulator variables related to manufacture, e.g. testing after manufacture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4207Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells for several batteries or cells simultaneously or sequentially
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a secondary battery, and more particularly to a technique for selecting a secondary battery having a defect due to a micro short circuit.
  • a secondary battery such as a lithium ion secondary battery or a nickel-hydrogen storage battery is formed by laminating a positive electrode and a negative electrode formed in a sheet shape via a separator, and storing a wound electrode group in a container for electrolysis. After the liquid is impregnated, it is manufactured through predetermined steps such as initial charging and aging.
  • an inspection for selecting a secondary battery (defective product) that may cause a micro short-circuit is performed (for example, see Patent Document 1).
  • an inspection step S100 which is a step for selecting defective products, is performed using a plurality of secondary batteries as inspection targets.
  • step S100 first, the terminal voltage V0 before aging and the terminal voltage V1 after aging are measured (step S101), and the voltage difference ⁇ V is calculated for each secondary battery (step S102). Next, an average value ⁇ VA of the voltage difference ⁇ V between the terminal voltage V0 before aging and the terminal voltage V1 after aging calculated for each secondary battery is calculated (step S103). Further, a reference value ⁇ VB assuming a defective product is set (step S104). Finally, the value obtained by subtracting the reference value ⁇ VB from the average value ⁇ VA and the voltage difference ⁇ V are compared for each secondary battery (step S105). If the voltage difference ⁇ V is smaller than the value, the target secondary battery Is determined to be defective (step S106). Otherwise, it is determined to be non-defective (step S107).
  • An object of the present invention is to provide a method of manufacturing a secondary battery that can select a secondary battery having a defect due to a micro short circuit with good accuracy.
  • the method for manufacturing a secondary battery of the present invention includes an inspection step of selecting a secondary battery having a defect due to a micro short circuit from a plurality of secondary batteries.
  • the inspection step includes a self-discharge inspection in which the plurality of secondary batteries are allowed to stand at room temperature for a predetermined time, and calculates a short circuit resistance of the plurality of secondary batteries based on a state before and after the self-discharge inspection. Based on the short-circuit resistance, the failure due to the minute short circuit of each secondary battery is determined.
  • the short-circuit resistance includes capacitance before the self-discharge inspection of the plurality of secondary batteries, time required for the self-discharge inspection, and self in the plurality of secondary batteries.
  • a first voltage that is an open circuit voltage before the self-discharge test selected from the above and a second voltage that is an open circuit voltage after the self-discharge test of the selected secondary battery are used as follows: It is preferable to determine that the short circuit resistance is a defect caused by a short circuit when the short circuit resistance is not more than a predetermined specified value.
  • the first reference voltage is an average value of open circuit voltages before the self-discharge test in the plurality of secondary batteries, and a smaller one of the median values
  • the second reference voltage is preferably a larger value of the average value and the median value of the open circuit voltages after the self-discharge test in the plurality of secondary batteries.
  • the first reference voltage and the second reference voltage are the open circuit voltage after the self-discharge test in the plurality of secondary batteries before the self-discharge test. It is preferable that the smaller value of the average value and the median value of the values divided by is constructed.
  • the present invention it becomes possible to select a secondary battery having a defect due to a micro short circuit with good accuracy. Therefore, it is possible to prevent the production of a secondary battery having a defect due to a minute short circuit.
  • the secondary battery 1 includes an electrode body 10 and a container 20 that houses the electrode body 10 therein.
  • the container 20 is filled with an electrolytic solution, and the electrolytic solution is supplied to the electrode body 10.
  • It is a secondary battery such as a lithium ion secondary battery or a nickel / hydrogen storage battery that can be charged and discharged by impregnation.
  • the electrode body 10 is a wound body obtained by laminating a positive electrode 11 and a negative electrode 12 with a separator 13 interposed therebetween and wound in a flat shape, and becomes an electric power generation element by impregnating an electrolytic solution.
  • the positive electrode 11 is coated with a paste-like positive electrode mixture containing a positive electrode active material on the surface of a positive electrode current collector made of a metal foil such as aluminum, titanium, stainless steel, etc. It is an electrode created through processing.
  • the negative electrode 12 is coated with a paste-like negative electrode mixture containing a negative electrode active material on the surface of a negative electrode current collector made of a metal foil such as copper, nickel, and stainless steel, and then dried. It is an electrode created through processing.
  • the separator 13 is an insulator made of a polyolefin resin such as polyethylene or polypropylene, and is interposed between the positive electrode 11 and the negative electrode 12.
  • the positive electrode 11 and the negative electrode 12 in the electrode body 10 are electrically connected to a positive electrode terminal 14 and a negative electrode terminal 15 which are connection paths for electrical energy exchange with the outside of the secondary battery 1, respectively.
  • the electrode body 10 is accommodated in the container 20 in a state in which the positive electrode terminal 14 and the negative electrode terminal 15 protrude from the container 20 upward and outward (upward in FIG. 1).
  • the container 20 is a rectangular metal can made of aluminum, stainless steel, or the like, and is a container that houses the electrode body 10 and the electrolyte therein and serves as an exterior of the secondary battery 1.
  • the container 20 includes a storage part 21 whose upper surface (one surface located on the upper side in FIG. 1) is opened, and a lid part 22 that closes the opening surface of the storage part 21.
  • the storage unit 21 is a box-shaped member having a substantially rectangular parallelepiped shape, and the upper surface is formed as an opening surface, and the electrode body 10 is stored therein from the opening surface side of the storage unit 21.
  • the lid portion 22 is a flat plate member having a shape corresponding to the opening surface of the storage portion 21.
  • An opening through which the positive electrode terminal 14 and the negative electrode terminal 15 can pass is formed in the lid portion 22, and the positive electrode terminal 14 and the negative electrode terminal 15 are inserted into and fixed to the opening.
  • the negative electrode terminal 15 is fixed in a state of penetrating so as to protrude to the outside of the container 20.
  • the secondary battery 1 is housed in the sealed container 20 in a state where the electrode body 10 formed by laminating and winding the positive electrode 11 and the negative electrode 12 through the separator 13 is immersed in the electrolytic solution.
  • the secondary battery is arranged such that the positive electrode terminal 14 and the negative electrode terminal 15 respectively connected to the positive electrode 11 and the negative electrode 12 in the electrode body 10 protrude from the lid portion 22 of the container 20 to the outside.
  • the manufacturing process S1 includes a storage process S10, a liquid injection process S20, a restraining process S30, an initial charging process S40, a main sealing process S50, a high temperature aging process S60, and an inspection process S70.
  • the storing step S ⁇ b> 10 is a step for storing the electrode body 10 in the container 20.
  • one end of the positive electrode terminal 14 and the negative electrode terminal 15 is connected to the positive electrode 11 and the negative electrode 12 in the electrode body 10 respectively, and the other end of the positive electrode terminal 14 and the negative electrode terminal 15 is the lid portion. Pass through 22 and fix.
  • the electrode body 10 is accommodated in the inside of the accommodating part 21 from the opening surface of the accommodating part 21 in the state which integrated them.
  • the housing portion 21 and the lid portion 22 are joined by welding in a state where the opening surface of the housing portion 21 is covered with the lid portion 22.
  • the electrode body 10 is created before the storing step S10, and the electrode body 10 is a well-known one used for a general secondary battery. The detailed description of is omitted.
  • the liquid injection step S20 is a step of injecting an electrolyte into the container 20 in which the electrode body 10 is stored in the storage step S10. As shown in FIG. 4, in the liquid injection step S ⁇ b> 20, from a liquid injection port 23 formed so as to open in the center of the lid portion 22 of the container 20 in the thickness direction of the lid portion 22 (vertical direction in FIG. 4). An electrolytic solution is injected into the container 20. Thereafter, the liquid inlet 23 of the lid portion 22 is temporarily sealed with a rubber plug 24.
  • the liquid injection step S20 is performed in an environment with a dew point of ⁇ 30 ° C.
  • ethylene-propylene copolymer EPDM
  • chloroprene rubber butyl rubber, silicon rubber, fluorine rubber, etc.
  • the electrolytic solution include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), and vinylene carbonate (VC), dimethyl carbonate (DMC), diethyl carbonate (DEC), and ethyl methyl carbonate (EMC).
  • a supporting electrolyte such as LiPF 6, LiClO 4, LiBF 4, etc. is dissolved in a mixed organic solvent with a chain carbonate such as the above can be used.
  • the restraining step S30 is a step of restraining the secondary battery 1 into which the electrolytic solution has been poured in the pouring step S20 with a predetermined pressure.
  • the secondary battery 1 is restrained at a restraining pressure of 0.8 MPa using a restraining device 30 that restrains the wide surface of the container 20 of the secondary battery 1 from both sides.
  • the restraining device 30 restrains the secondary battery 1 by pressing so as to sandwich the container 20.
  • the restraining device 30 is a device configured to restrain the secondary battery 1 with a desired restraining pressure and to be able to measure the actual restraining pressure.
  • the restraining pressure by the restraining device 30 is 0.2 MPa or more. Further, when the restraining pressure by the restraining device 30 is too high, a problem may occur in the joint portion between the storage portion 21 and the lid portion 22 in the container 20. Furthermore, if the strength of the separator 13 having ion permeability and electronic conductivity is restricted and restrained, the open circuit voltage holding capability may be lost. Therefore, it is preferable to set the upper limit of the restraining pressure by the restraining device 30 in consideration of the bonding strength between the storage portion 21 and the lid portion 22 in the container 20, the strength of the separator 13, and the like.
  • the initial charging step S40 is a step of performing initial charging on the secondary battery 1 that is restrained in the restraining step S30.
  • an appropriate power supply circuit is connected to the positive terminal 14 and the negative terminal 15 of the secondary battery 1 that is restrained by the restraining device 30, and the secondary battery 1 is initially charged.
  • the electrode body 10 expands and the restraint pressure rises, and the voltage of the secondary battery 1 rises.
  • the condition for ending the initial charging of the secondary battery 1 is determined.
  • the condition for ending the initial charging of the secondary battery 1 may be determined based on the voltage. Specifically, it is within the voltage at which the electrolytic solution is decomposed, and it ends at around the voltage (for example, 4.10 ⁇ 0.02 V) that becomes the final chemical reaction peak between the positive electrode 11 and the negative electrode 12. preferable.
  • the main sealing step S50 is a step in which the gas generated in the secondary battery 1 when the initial charging is performed in the initial charging step S40 is removed and the liquid injection port 23 is fully sealed.
  • the rubber plug 24 is removed from the liquid injection port 23 temporarily sealed with the rubber plug 24 and the liquid injection port 23 is opened.
  • the gas generated inside the secondary battery 1 is released.
  • the metal sealing material 25 is covered so as to cover the liquid injection port 23 (see FIG. 4), the liquid injection port 23 is completely closed, and the sealing material 25 and the lid portion 22 are welded to form a lid.
  • the liquid injection port 23 of the part 22 is finally sealed.
  • This sealing step S50 is performed in an environment with a dew point of ⁇ 30 ° C.
  • the restraint of the secondary battery 1 by the restraining device 30 is once released, the leakage check of the secondary battery 1 is performed, and the secondary battery 1 is again tested by the restraining device 30.
  • the process proceeds to the next step in a state in which is constrained.
  • the high temperature aging step S60 is a step of aging the secondary battery 1 that is finally sealed in the main sealing step S50 at a high temperature.
  • the secondary battery 1 is aged for a predetermined time (for example, 15 hours) in a high temperature (for example, 50 ° C.) environment.
  • the inspection step S70 is a step of selecting defective products for the plurality of secondary batteries 1 that have been subjected to high temperature aging in the high temperature aging step S60.
  • a self-discharge inspection is performed in which a plurality of secondary batteries 1 to be inspected through the storage step S10 to the high temperature aging step S60 are left at room temperature (for example, 25 ° C.) for a predetermined time (for example, 10 days). Then, based on the states before and after that, the secondary battery 1 (defective product) that may have caused a short circuit is selected and the normal secondary battery 1 (good product).
  • the capacitance C of all the secondary batteries 1 is calculated (step S71).
  • the capacitance C is calculated from the following formula 1 based on the time required to pass the voltage range during self-discharge and the current result from the charge curve during initial charge.
  • the pre-discharge voltage V0 which is an open circuit voltage before the self-discharge test, is measured for all the secondary batteries 1, and after performing the self-discharge test,
  • the post-discharge voltage V1 which is an open circuit voltage, is measured (step S72).
  • the pre-discharge voltage V0 and the post-discharge voltage V1 are respectively compared with a predetermined lower limit value. If the pre-discharge voltage V0 and the post-discharge voltage V1 are smaller than the predetermined lower limit value, the secondary battery 1 May be regarded as defective and excluded from inspection.
  • the predetermined lower limit value is a value set in advance as a voltage value to such an extent that the secondary battery 1 to be inspected is determined to be defective.
  • the first reference voltage Vi0 and the second reference voltage Vi1 are set based on the pre-discharge voltage V0 and the post-discharge voltage V1 in all the secondary batteries 1. Calculate (step S73).
  • the first reference voltage Vi0 is the smaller of the average value and the median value of the pre-discharge voltage V0 in all the secondary batteries 1
  • the second reference voltage Vi1 is the value after discharge in all the secondary batteries 1. The larger one of the average value and the median value of the voltage V1.
  • the first reference voltage Vi0 and the second reference voltage Vi1 may be calculated as follows. A median value and an average value of the pre-discharge voltage V0 / post-discharge voltage V1 are obtained, and the pre-discharge voltage V0 and the post-discharge voltage V1 constituting the smaller one of these values are set as the first reference voltage Vi0 and The second reference voltage Vi1.
  • the short circuit resistances Rs of all the secondary batteries 1 are calculated (step S74).
  • the short-circuit resistance Rs is obtained by regarding the short-circuit resistance as a resistance when a minute short-circuit occurs in the secondary battery 1.
  • the following formulas 2 and 3 are established by simulating a short circuit occurring in the secondary battery 1 by equivalent resistance, that is, constant-resistance discharge of a capacitor component with a resistor.
  • equivalent resistance that is, constant-resistance discharge of a capacitor component with a resistor.
  • the numerical value in FIG. 8 is an example to the last.
  • Equation 4 which is an expression for calculating the short-circuit resistance Rs, is obtained as follows.
  • the pre-discharge voltage V0 and the post-discharge voltage V1 of the secondary battery 1 for which the short-circuit resistance Rs is to be calculated are respectively set to the first voltage Vs0 and the second voltage Vs0.
  • the voltage Vs1 is used, and the time required for the self-discharge test is set as the test time t.
  • the short circuit resistance Rs is calculated for each secondary battery 1 by substituting the capacitance C, the first reference voltage Vi0, and the second reference voltage Vi1 calculated as described above into Equation 4.
  • each electrostatic capacity C may be used in consideration of the variation of the electrostatic capacity C in each secondary battery 1, or the electrostatic capacity C in each secondary battery 1.
  • a constant value (for example, an average value of the capacitance C of all the secondary batteries 1) may be used for all the secondary batteries 1, ignoring the variation of the above.
  • the secondary batteries 1 having the short-circuit resistance Rs of these secondary batteries 1 are excluded from inspection targets (step S75). If the short-circuit resistance Rs is relatively small, it is considered that the short-circuit is relatively large. Therefore, the secondary battery 1 having the short-circuit resistance Rs is regarded as a defective product and excluded from the subsequent inspection targets.
  • the first reference voltage Vi0 and the second reference voltage based on the pre-discharge voltage V0 and the post-discharge voltage V1 in all the remaining secondary batteries 1 Vi1 is recalculated, and the recalculated first reference voltage Vi0 and second reference voltage Vi1 are set as a first reference voltage Vi0_re and a second reference voltage Vi1_re, respectively (step S76).
  • the method for recalculating the first reference voltage Vi0 and the second reference voltage Vi1 is the same as the method described above, and the details thereof are omitted.
  • the short circuit resistance Rs_re is compared with a predetermined standard value (step S78).
  • the predetermined standard value is a value set in advance as a resistance value to the extent that it is determined that a minute short circuit has occurred in the secondary battery 1.
  • the secondary battery 1 with the short-circuit resistance Rs_re is regarded as a defective product, excluded from the subsequent inspection target (step S79), and the same processing is repeated by returning to step S75.
  • the short-circuit resistance Rs_re is larger than a predetermined standard value, the remaining secondary batteries 1 including the secondary battery 1 having the short-circuit resistance Rs_re are regarded as non-defective products, and the inspection step S70 is ended.
  • the secondary process is performed.
  • Battery 1 is manufactured.
  • the inspection step S70 the short-circuit resistance Rs of the secondary battery 1 to be inspected is calculated using Equation 4, and defective products are selected by comparing the short-circuit resistance Rs with a predetermined standard value. For example, it is not limited to this embodiment.
  • Example 1 60 cells of the same secondary battery that had undergone the storage step S10 to the high temperature aging step S60 were prepared. Ten cells of them were connected with a resistance of 430 (k ⁇ ) as a micro short-circuit resistance, and a defective product was simulated. That is, a non-defective product of 50 cells and a defective simulated product of 10 cells were prepared.
  • the 60-cell secondary battery was left at 25 ° C. for 10 days, and a self-discharge test was performed. Then, a pre-discharge voltage V0, which is an open circuit voltage before the self-discharge test, and a post-discharge voltage V1, which is an open circuit voltage after the self-discharge test, were measured for each secondary battery.
  • the capacitance C was calculated as shown below.
  • the voltage subjected to the self-discharge test is in the range of 4.070 to 4.060 (V), and based on the time required to pass the range from the charge curve at the initial charge and the result of the current,
  • the electrostatic capacity C of each good product of 50 cells was calculated from the above formula 1.
  • the capacitance C was set to 15870 (F) because there was almost no variation in all 50 cells.
  • the median value and average value of (pre-discharge voltage V0 / post-discharge voltage V1) are obtained from the non-defective products of 50 cells, and the pre-discharge voltage V0 and the post-discharge voltage V1 constituting the smaller one of these values are obtained.
  • the short-circuit resistance Rs of each of the 10-cell defective simulation products was calculated from the above equation 4. Note that the pre-discharge voltage V0 of the defective simulated product for which the short-circuit resistance Rs is calculated is the first voltage Vs0, and the post-discharge voltage V1 is the second voltage Vs1.
  • the short circuit resistance Rs of the defective simulated product was calculated, and an error (%) between the short circuit resistance Rs and the resistance value of the resistor connected to the defective simulated product 430 (k ⁇ ) was obtained.
  • Example 2 when calculating the first reference voltage Vi0 and the second reference voltage Vi1, the smaller value of the average value and the median value of the pre-discharge voltage V0 in the non-defective product of 50 cells is the first reference voltage.
  • the short-circuit resistance Rs of the simulated defective product is calculated in the same manner as in Example 1 except that Vi0 is set and the average value of the post-discharge voltage V1 in the non-defective product of 50 cells is set to the second reference voltage Vi1. Then, an error (%) between the short-circuit resistance Rs and 430 (k ⁇ ) which is the resistance value of the resistance connected to the defective simulated product was obtained.
  • Example 3 when calculating the capacitance C, the capacitance C of each of the 10-cell failure simulation products is obtained, and when calculating the short-circuit resistance Rs of the failure simulation product, the respective capacitance C As in Example 1, the error (%) between the short circuit resistance Rs of the defective simulation product and 430 (k ⁇ ) that is the resistance value of the resistor connected to the defective simulation product was obtained.
  • the error (%) in Comparative Example 1 is about 5%, whereas the errors (%) in Examples 1 to 3 are all about 3%. That is, by applying the present invention, the error (%) can be improved by about 2% over the conventional method. Therefore, according to this invention, it became clear that the secondary battery which has the defect resulting from a micro short circuit can be selected with a sufficient precision.
  • the present invention can be used in a process of manufacturing a secondary battery, and in particular, can be used in a process of manufacturing a secondary battery including a self-discharge test.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明は、微小短絡に起因する不良を有する二次電池を良好な精度で選別可能な二次電池の製造方法を提供する。二次電池の製造方法(S1)は、複数の二次電池(1)の中から微小短絡に起因する不良を有する二次電池(1)を選別する検査工程(S70)を具備する。検査工程(S70)は、複数の二次電池(1)を常温で所定の時間放置する自己放電検査を含み、複数の二次電池(1)の自己放電検査前の静電容量(C)と、前記自己放電検査に要する時間(t)と、複数の二次電池(1)における自己放電検査前後の開回路電圧から算出される第一基準電圧(Vi0)、及び第二基準電圧(Vi1)と、複数の二次電池(1)のうちから選択される一つの自己放電検査前後の開回路電圧である第一電圧(Vs0)、及び第二電圧(Vs1)と、から前記選択された二次電池(1)の短絡抵抗(Rs)を算出し、当該短絡抵抗(Rs)が所定の規定値以下の場合に、微小短絡に起因する不良と判定する。

Description

二次電池の製造方法
 本発明は、二次電池の製造方法に関し、特に微小短絡に起因する不良を有する二次電池を選別する技術に関する。
 従来、リチウムイオン二次電池やニッケル・水素蓄電池等の二次電池は、シート状に形成された正極及び負極をセパレータを介して積層し、捲回してなる電極群を容器内に収納して電解液を含浸させた後、初期充電、及びエージング等の所定の工程を経て製造されている。
 上記のような二次電池の製造工程においては、微小短絡を起こしている可能性のある二次電池(不良品)を選別するための検査が行われている(例えば、特許文献1参照)。
 具体的には、図9に示すように、複数の二次電池を検査対象として、不良品を選別するための工程である検査工程S100が行われる。
 検査工程S100においては、まず、エージング前の端子電圧V0、及びエージング後の端子電圧V1を測定し(ステップS101)、これらの電圧差ΔVを二次電池ごとに算出する(ステップS102)。
 次に、二次電池ごとに算出したエージング前の端子電圧V0とエージング後の端子電圧V1との電圧差ΔVの平均値ΔVAを算出する(ステップS103)。更に、不良品を想定した基準値ΔVBを設定する(ステップS104)。
 最後に、平均値ΔVAから基準値ΔVBを減じた値と、電圧差ΔVとを二次電池ごとに比較し(ステップS105)、電圧差ΔVが当該値よりも小さい場合は、対象の二次電池が不良品と判定され(ステップS106)、そうでない場合は、良品と判定される(ステップS107)。
 しかしながら、特許文献1に記載の技術では、二次電池における微小短絡を物理的、つまり等価回路的解釈で判定しておらず、微小短絡を自己放電による電圧の降下量として捉えて不良品を選別しているため、検査の精度が低く、誤判定を招く恐れがあった。
特開2004-132776号公報
 本発明は、微小短絡に起因する不良を有する二次電池を良好な精度で選別可能な二次電池の製造方法を提供することを課題とする。
 本発明の二次電池の製造方法は、複数の二次電池の中から微小短絡に起因する不良を有する二次電池を選別する検査工程を具備する。前記検査工程は、前記複数の二次電池を常温で所定の時間放置する自己放電検査を含み、前記複数の二次電池の短絡抵抗を自己放電検査前後の状態に基づいて算出し、前記算出された短絡抵抗に基づいて、各二次電池の微小短絡に起因する不良を判定する。
 本発明の二次電池の製造方法において、前記短絡抵抗は、前記複数の二次電池の自己放電検査前の静電容量と、前記自己放電検査に要する時間と、前記複数の二次電池における自己放電検査前の開回路電圧から算出される第一基準電圧と、前記複数の二次電池における自己放電検査後の開回路電圧から算出される第二基準電圧と、前記複数の二次電池のうちから選択される一つの自己放電検査前の開回路電圧である第一電圧と、前記選択された二次電池の自己放電検査後の開回路電圧である第二電圧と、を用いて、下記の数4から算出し、前記短絡抵抗が所定の規定値以下の場合に、微小短絡に起因する不良と判定することが好ましい。
Figure JPOXMLDOC01-appb-M000001
 本発明の二次電池の製造方法において、前記第一基準電圧は、前記複数の二次電池における自己放電検査前の開回路電圧の平均値、及び中央値のうちの小さい方の値とし、前記第二基準電圧は、前記複数の二次電池における自己放電検査後の開回路電圧の平均値、及び中央値のうちの大きい方の値とすることが好ましい。
 本発明の二次電池の製造方法において、前記第一基準電圧、及び前記第二基準電圧は、前記複数の二次電池における、自己放電検査前の開回路電圧を自己放電検査後の開回路電圧で除算した値の平均値、及び中央値のうちの小さい方の値を構成するものとすることが好ましい。
 本発明によれば、微小短絡に起因する不良を有する二次電池を良好な精度で選別することが可能となる。したがって、微小短絡に起因する不良を有する二次電池の製造を防止することができる。
二次電池を示す斜視図である。 二次電池の製造方法を示すフローチャートである。 電極体の容器への収納を示す図である。 二次電池の仮封止を示す図である。 二次電池の拘束を示す図である。 二次電池の本封止を示す図である。 検査工程を示すフローチャートである。 微小短絡を生じた二次電池を模擬した回路図である。 従来の不良品を選別する検査を示すフローチャートである。
 1  二次電池
 10 電極体
 11 正極
 12 負極
 13 セパレータ
 20 容器
 30 拘束装置
 以下では、図1を参照して、二次電池1について説明する。
 図1に示すように、二次電池1は、電極体10、及び電極体10を内部に収納する容器20を具備し、容器20に電解液を充填して、この電解液を電極体10に含浸させることで充放電可能に構成されるリチウムイオン二次電池やニッケル・水素蓄電池等の二次電池である。
 電極体10は、正極11と負極12とをセパレータ13を介して積層し、扁平状に捲回してなる捲回体であり、電解液を含浸させることで発電要素となる。
 正極11は、アルミニウム、チタン、ステンレス鋼等の金属箔からなる正極集電体の表面に、正極活物質を含むペースト状の正極合剤を塗布し、乾燥させた後、ロールプレス等の所定の処理を経て作成された電極である。
 負極12は、銅、ニッケル、ステンレス鋼等の金属箔からなる負極集電体の表面に、負極活物質を含むペースト状の負極合剤を塗布し、乾燥させた後、ロールプレス等の所定の処理を経て作成された電極である。
 セパレータ13は、ポリエチレン、ポリプロピレンといったポリオレフィン樹脂等からなる絶縁体であり、正極11と負極12との間に介装されている。
 電極体10における正極11及び負極12には、二次電池1の外部との電気的なエネルギー交換のための接続経路である正極端子14及び負極端子15がそれぞれ電気的に接続されている。電極体10は、正極端子14及び負極端子15が容器20から外側上方(図1における上方向)へ向けて突出された状態で容器20に収納されている。
 容器20は、アルミニウムや、ステンレス鋼等からなる角型の金属缶であって、内部に電極体10と電解液とを収納し二次電池1の外装となる容器である。容器20は、上面(図1における上側に位置する一面)が開口された収納部21と、収納部21の開口面を塞ぐ蓋部22とからなる。
 収納部21は、略直方体形状を有する箱状部材であり、上面が開口面として形成されて、収納部21の開口面側から内部に電極体10が収納される。
 蓋部22は、収納部21の開口面に応じた形状を有する平板状部材である。蓋部22には、正極端子14及び負極端子15が貫通可能な開口部が形成されており、係る開口部に正極端子14及び負極端子15を貫装し、固定することによって、正極端子14及び負極端子15が容器20の外部に突出するように貫通した状態で固定される。
 以上のように、二次電池1は、正極11と負極12とをセパレータ13を介して積層・捲回されてなる電極体10が電解液に浸漬された状態で密閉された容器20に収納され、電極体10における正極11及び負極12にそれぞれ接続された正極端子14及び負極端子15が容器20の蓋部22から外部に突出するように配置された二次電池である。
 以下では、図2~図8を参照して、二次電池1を製造する製造工程S1について説明する。
 図2に示すように、製造工程S1は、収納工程S10、注液工程S20、拘束工程S30、初期充電工程S40、本封止工程S50、高温エージング工程S60、及び検査工程S70を具備する。
 収納工程S10は、電極体10を容器20の内部に収納する工程である。
 図3に示すように、収納工程S10においては、正極端子14及び負極端子15の一端を電極体10における正極11及び負極12とそれぞれ接続し、正極端子14及び負極端子15の他端を蓋部22に貫通させて固定する。そして、それらを一体化した状態で、電極体10を収納部21の開口面から収納部21の内部に収納する。電極体10を収納部21の内部に収納した後は、収納部21の開口面を蓋部22で覆った状態で溶接することにより、収納部21と蓋部22とを接合する。
 なお、本実施形態では、収納工程S10の前に、電極体10が作成されているものとし、電極体10は一般的な二次電池に用いられる公知のものであるため、その作成の方法についての詳細な説明は省略する。
 注液工程S20は、収納工程S10で電極体10が収納された容器20の内部に電解液を注液する工程である。
 図4に示すように、注液工程S20においては、容器20の蓋部22の中央部に蓋部22の厚み方向(図4における上下方向)に開口するように形成された注液口23から容器20の内部に電解液を注液する。その後、蓋部22の注液口23をゴム栓24にて仮封止する。注液工程S20は露点-30℃の環境下にて行われる。
 なお、ゴム栓24としては、エチレン-プロピレン共重合体(EPDM)、クロロプレンゴム、ブチルゴム、シリコンゴム、フッ素系ゴム等、耐電解液性・耐ガス性で蓋部22に密着する性質を有するものを使用することができる。
 また、前記電解液としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ビニレンカーボネート(VC)等の環状カーボネート類と、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)等の鎖状カーボネート類との混合有機溶媒中に、LiPF6、LiClO4、LiBF4等の支持電解質を溶解させた溶液を使用することができる。
 拘束工程S30は、注液工程S20で前記電解液を注液した二次電池1を所定の圧力で拘束する工程である。
 図5に示すように、拘束工程S30においては、二次電池1の容器20の幅広面を両面側から拘束する拘束装置30を用いて、拘束圧0.8MPaで二次電池1を拘束する。この場合、拘束装置30は、容器20を挟持するように押圧することで、二次電池1を拘束する。
 拘束装置30は、所望の拘束圧で二次電池1を拘束できると共に、実際の拘束圧を測定可能に構成された装置である。
 なお、拘束装置30による拘束圧が低すぎる場合、電極体10に十分に拘束力が行き渡らず、電極体10で電圧のばらつきが生じる。そのため、拘束装置30による拘束圧は0.2MPa以上であることが好ましい。また、拘束装置30による拘束圧が高すぎる場合、容器20における収納部21と蓋部22との接合部分に不具合が生じ得る。更に、イオン透過性と電子伝導の絶縁性を有するセパレータ13の強度を超えて拘束した場合、開回路状態の電圧保持性が失われる恐れがある。そのため、拘束装置30による拘束圧の上限として、容器20における収納部21と蓋部22との接合強度、及びセパレータ13の強度等を考慮して設定することが好ましい。
 初期充電工程S40は、拘束工程S30で拘束された状態の二次電池1に初期充電を施す工程である。
 初期充電工程S40においては、拘束装置30で拘束した状態の二次電池1の正極端子14及び負極端子15に適宜の電源回路を接続して、二次電池1の初期充電を行う。この時、負極12にリチウムイオンのような電荷担体となるイオンが挿入されるにつれて、電極体10が膨張し拘束圧が上昇すると共に、二次電池1の電圧が上昇するため、拘束圧を基準として二次電池1の初期充電の終了条件が決定される。具体的には、拘束圧が0.5MPa以上(例えば、1.1MPa)となる電圧で二次電池1の初期充電を終了することが好ましい。なお、電圧を基準として二次電池1の初期充電の終了条件を決定してもよい。具体的には、前記電解液が分解する電圧以内であり、正極11と負極12との間の最終の化学反応ピークとなる電圧付近(例えば、4.10±0.02V)で終了することが好ましい。
 本封止工程S50は、初期充電工程S40で初期充電した際に二次電池1の内部に発生したガスを抜き、注液口23を本封止する工程である。
 図6に示すように、本封止工程S50においては、ゴム栓24によって仮封止した注液口23からゴム栓24を抜き取って注液口23を開封することにより、初期充電の際に二次電池1の内部に発生したガスを放出する。そして、金属製の封止材25を注液口23(図4参照)に覆うように被せて注液口23を完全に塞ぎ、封止材25と蓋部22とを溶接することにより、蓋部22の注液口23を本封止する。本封止工程S50は露点-30℃の環境下にて行われる。
 封止材25による注液口23の本封止後、二次電池1の拘束装置30による拘束を一旦解除して、二次電池1の漏れ検査を行い、再度拘束装置30により二次電池1を拘束した状態で次の工程に移行する。
 高温エージング工程S60は、本封止工程S50で本封止された二次電池1を高温下でエージングする工程である。
 高温エージング工程S60においては、二次電池1を高温(例えば、50℃)の環境下で所定の時間(例えば、15時間)エージングを行う。
 検査工程S70は、高温エージング工程S60にて高温エージングが施された複数の二次電池1に対して、不良品の選別を行う工程である。
 検査工程S70においては、収納工程S10~高温エージング工程S60を経た検査対象としての複数の二次電池1を常温(例えば、25℃)で所定の時間(例えば、10日間)放置する自己放電検査を行い、その前後の状態に基づいて微小短絡を起こしている可能性のある二次電池1(不良品)と、正常な二次電池1(良品)とに選別する。
 図7に示すように、まず、すべての二次電池1の静電容量Cを算出する(ステップS71)。
 静電容量Cは、初期充電時の充電曲線から自己放電時における電圧の範囲を通過するために要した時間、及び電流の結果を元に、以下の数1から算出する。
Figure JPOXMLDOC01-appb-M000002
 静電容量Cを算出した後は、すべての二次電池1に対して、自己放電検査前の開回路電圧である放電前電圧V0を測定し、自己放電検査を行った後、当該検査後の開回路電圧である放電後電圧V1を測定する(ステップS72)。
 この時、放電前電圧V0、及び放電後電圧V1をそれぞれ所定の下限値と比較し、放電前電圧V0、及び放電後電圧V1がそれぞれ所定の下限値よりも小さい場合は、当該二次電池1を不良品とみなして検査対象から除外してもよい。なお、所定の下限値とは、検査対象となる二次電池1が不良品であると判断される程度の電圧値として予め設定された値である。
 放電前電圧V0、及び放電後電圧V1を測定した後は、すべての二次電池1における放電前電圧V0、及び放電後電圧V1に基づいて、第一基準電圧Vi0、及び第二基準電圧Vi1を算出する(ステップS73)。
 第一基準電圧Vi0は、すべての二次電池1における放電前電圧V0の平均値、及び中央値のうちの小さい方の値とし、第二基準電圧Vi1は、すべての二次電池1における放電後電圧V1の平均値、及び中央値のうちの大きい方の値とする。
 第一基準電圧Vi0、及び第二基準電圧Vi1は、以下のように算出してもよい。
 放電前電圧V0/放電後電圧V1の中央値と平均値とを求め、これらのうちの小さい方の値を構成する放電前電圧V0、及び放電後電圧V1を、それぞれ第一基準電圧Vi0、及び第二基準電圧Vi1とする。
 第一基準電圧Vi0、及び第二基準電圧Vi1を算出した後は、すべての二次電池1の短絡抵抗Rsを算出する(ステップS74)。
 ここで、短絡抵抗Rsは、二次電池1に微小短絡が生じている場合に、当該短絡分を抵抗とみなしたものである。
 図8に示すように、二次電池1に生じる微小短絡を等価回路、つまり抵抗でコンデンサ成分を定抵抗放電することを模擬すると、以下の数2及び数3が成立する。
 なお、図8における数値はあくまで一例である。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 数2及び数3から、以下のように、短絡抵抗Rsを算出するための式である数4が求められる。
Figure JPOXMLDOC01-appb-M000005
 数4を用いて、短絡抵抗Rsを算出する際には、短絡抵抗Rsを算出する対象とする二次電池1の放電前電圧V0、及び放電後電圧V1をそれぞれ第一電圧Vs0、及び第二電圧Vs1とし、上記の自己放電検査に要した時間を検査時間tとする。
 そして、これらと共に、前述のように算出された静電容量C、第一基準電圧Vi0、及び第二基準電圧Vi1を数4に代入することで短絡抵抗Rsを二次電池1ごとに算出する。
 なお、静電容量Cについては、各二次電池1における静電容量Cのばらつきを考慮して、各自の静電容量Cを使用してもよいし、各二次電池1における静電容量Cのばらつきを無視して、すべての二次電池1に対して一定の値(例えば、すべての二次電池1の静電容量Cの平均値等)を使用してもよい。
 すべての二次電池1の短絡抵抗Rsを算出した後は、これらの二次電池1のうち、短絡抵抗Rsが最小の二次電池1を検査対象から除外する(ステップS75)。
 短絡抵抗Rsが比較的小さいことは、短絡が比較的大きいこととみなされるので、短絡抵抗Rsが最小の二次電池1を不良品とみなし、以後の検査対象から除外する。
 不良品とみなされた二次電池1を除外した後は、残りのすべての二次電池1における放電前電圧V0、及び放電後電圧V1に基づいて、第一基準電圧Vi0、及び第二基準電圧Vi1を再算出し、再算出した第一基準電圧Vi0、及び第二基準電圧Vi1をそれぞれ第一基準電圧Vi0_re、及び第二基準電圧Vi1_reとする(ステップS76)。
 第一基準電圧Vi0、及び第二基準電圧Vi1を再算出する方法は、前述の方法と同様であるため、その詳細については省略する。
 第一基準電圧Vi0_re、及び第二基準電圧Vi1_reを算出した後は、これらの値を適用して、短絡抵抗Rsが最大の二次電池1の短絡抵抗Rsを再算出し、再算出した短絡抵抗Rsを短絡抵抗Rs_reとする(ステップS77)。
 短絡抵抗Rsの再算出にあたっては、数4が用いられる。
 短絡抵抗Rs_reを算出した後は、短絡抵抗Rs_reと所定の規格値とを比較する(ステップS78)。
 ここで、所定の規格値とは、二次電池1に微小短絡が生じていると判断される程度の抵抗値として予め設定された値である。
 短絡抵抗Rs_reが所定の規格値以下の場合は、短絡抵抗Rs_reの二次電池1を不良品とみなして、以後の検査対象から除外し(ステップS79)、ステップS75に戻り同様の処理を繰り返す。
 短絡抵抗Rs_reが所定の規格値よりも大きい場合は、短絡抵抗Rs_reの二次電池1を含めた残りの二次電池1を良品とみなして検査工程S70を終了する。
 以上のように、収納工程S10、注液工程S20、拘束工程S30、初期充電工程S40、本封止工程S50、高温エージング工程S60、及び検査工程S70を順番に行う製造工程S1を経て、二次電池1が製造される。
 なお、検査工程S70においては、数4を用いて検査対象の二次電池1の短絡抵抗Rsを算出し、当該短絡抵抗Rsと所定の規格値とを比較することによって不良品を選別するのであれば、本実施形態に限定しない。
 以下では、本発明に係る実施例1~3、並びに比較例1に基づいて、製造工程S1により二次電池1を製造することによる効果について説明する。
 [実施例1]
 収納工程S10~高温エージング工程S60を経た同一の二次電池を60セル用意した。そのうちの10セルには、微小短絡抵抗として430(kΩ)の抵抗を接続し、模擬的に不良品を再現した。つまり、50セルの良品と、10セルの不良模擬品とを作成した。
 まず、60セルの二次電池を25℃で10日間放置して、自己放電検査を行った。
 そして、自己放電検査前の開回路電圧である放電前電圧V0、及び自己放電検査後の開回路電圧である放電後電圧V1をそれぞれ二次電池ごとに測定した。
 次に、以下に示すように、静電容量Cを算出した。
 自己放電検査を行った電圧は、4.070~4.060(V)の範囲であり、初期充電時の充電曲線から当該範囲を通過するために要した時間、及び電流の結果を元に、50セルの良品それぞれの静電容量Cを前記の数1から算出した。なお、静電容量Cは、50セルともほとんどばらつきがなかったため、15870(F)とした。
 更に、50セルの良品から、(放電前電圧V0/放電後電圧V1)の中央値と平均値とを求め、これらのうちの小さい方の値を構成する放電前電圧V0、及び放電後電圧V1を、それぞれ第一基準電圧Vi0、及び第二基準電圧Vi1とした。
 最後に、10セルの不良模擬品それぞれの短絡抵抗Rsを前記の数4から算出した。なお、短絡抵抗Rsを算出する対象の不良模擬品の放電前電圧V0を第一電圧Vs0、及び放電後電圧V1を第二電圧Vs1とした。
 以上のように、不良模擬品の短絡抵抗Rsを算出し、当該短絡抵抗Rsと不良模擬品に接続した抵抗の抵抗値である430(kΩ)との誤差(%)を求めた。
 [実施例2]
 本実施例においては、第一基準電圧Vi0、及び第二基準電圧Vi1を算出する際に、50セルの良品における放電前電圧V0の平均値、及び中央値のうちの小さい値を第一基準電圧Vi0とし、50セルの良品における放電後電圧V1の平均値、及び中央値のうちの大きい値を第二基準電圧Vi1とした以外は、実施例1と同様に不良模擬品の短絡抵抗Rsを算出し、当該短絡抵抗Rsと不良模擬品に接続した抵抗の抵抗値である430(kΩ)との誤差(%)を求めた。
 [実施例3]
 本実施例においては、静電容量Cを算出する際に、10セルの不良模擬品それぞれの静電容量Cを求め、不良模擬品の短絡抵抗Rsを算出する際に、各自の静電容量Cを用いた以外は、実施例1と同様に、不良模擬品の短絡抵抗Rsと不良模擬品に接続した抵抗の抵抗値である430(kΩ)との誤差(%)を求めた。
 [比較例1]
 本比較例においては、図9に示す従来の技術を本発明で再現し、不良模擬品の短絡抵抗Rsと不良模擬品に接続した抵抗の抵抗値である430(kΩ)との誤差(%)を求めた。
 詳細には、図9に示すΔVA-ΔVBに対応する値として、(Vi1-Vi0)-(Vs1-Vs0)を適用した。ここで、図9に示す従来の技術においては、自己放電(エージング)前の電圧から自己放電(エージング)後の電圧を減じた値が不良品の選別に用いられている。そこで、従来の技術のような自己放電(エージング)前後の電圧の減算による不良品の選別を本発明で再現するために、前記の数4に示すVi0、及びVs0を無いものとみなして、不良模擬品の短絡抵抗Rsを算出した。
 以上のように、実施例1~3、並びに比較例1に示す如く算出された不良模擬品の短絡抵抗Rsと、不良模擬品に接続した抵抗の抵抗値である430(kΩ)との誤差(%)を以下の表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、比較例1における誤差(%)は約5%なのに対して、実施例1~3における誤差(%)はすべて約3%である。つまり、本発明を適用することによって、従来の手法よりも誤差(%)を約2%改善させることができた。したがって、本発明によれば、微小短絡に起因する不良を有する二次電池を良好な精度で選別できることが明らかになった。
 本発明は、二次電池を製造する工程に利用でき、特に自己放電検査が含まれる二次電池の製造工程に利用できる。

Claims (4)

  1.  複数の二次電池の中から微小短絡に起因する不良を有する二次電池を選別する検査工程を具備する二次電池の製造方法であって、
     前記検査工程は、
     前記複数の二次電池を常温で所定の時間放置する自己放電検査を含み、
     前記複数の二次電池の短絡抵抗を自己放電検査前後の状態に基づいて算出し、
     前記算出された短絡抵抗に基づいて、各二次電池の微小短絡に起因する不良を判定する二次電池の製造方法。
  2.  前記短絡抵抗は、
     前記複数の二次電池の自己放電検査前の静電容量と、
     前記自己放電検査に要する時間と、
     前記複数の二次電池における自己放電検査前の開回路電圧から算出される第一基準電圧と、
     前記複数の二次電池における自己放電検査後の開回路電圧から算出される第二基準電圧と、
     前記複数の二次電池のうちから選択される一つの自己放電検査前の開回路電圧である第一電圧と、
     前記選択された二次電池の自己放電検査後の開回路電圧である第二電圧と、
     を用いて、下記の数4から算出し、
     前記短絡抵抗が所定の規定値以下の場合に、微小短絡に起因する不良と判定する請求項1に記載の二次電池の製造方法。
    Figure JPOXMLDOC01-appb-M000006
  3.  前記第一基準電圧は、前記複数の二次電池における自己放電検査前の開回路電圧の平均値、及び中央値のうちの小さい方の値とし、
     前記第二基準電圧は、前記複数の二次電池における自己放電検査後の開回路電圧の平均値、及び中央値のうちの大きい方の値とする請求項2に記載の二次電池の製造方法。
  4.  前記第一基準電圧、及び前記第二基準電圧は、前記複数の二次電池における、自己放電検査前の開回路電圧を自己放電検査後の開回路電圧で除算した値の平均値、及び中央値のうちの小さい方の値を構成するものとする請求項2に記載の二次電池の製造方法。
PCT/JP2009/004819 2009-09-24 2009-09-24 二次電池の製造方法 WO2011036705A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN200980161605.6A CN102576895B (zh) 2009-09-24 2009-09-24 二次电池的制造方法
KR1020127009845A KR20120068919A (ko) 2009-09-24 2009-09-24 2차 전지의 제조 방법
US13/497,257 US9157964B2 (en) 2009-09-24 2009-09-24 Method for producing secondary battery
PCT/JP2009/004819 WO2011036705A1 (ja) 2009-09-24 2009-09-24 二次電池の製造方法
JP2011532790A JP5541288B2 (ja) 2009-09-24 2009-09-24 二次電池の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/004819 WO2011036705A1 (ja) 2009-09-24 2009-09-24 二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2011036705A1 true WO2011036705A1 (ja) 2011-03-31

Family

ID=43795480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004819 WO2011036705A1 (ja) 2009-09-24 2009-09-24 二次電池の製造方法

Country Status (5)

Country Link
US (1) US9157964B2 (ja)
JP (1) JP5541288B2 (ja)
KR (1) KR20120068919A (ja)
CN (1) CN102576895B (ja)
WO (1) WO2011036705A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103138017A (zh) * 2011-12-02 2013-06-05 日产自动车株式会社 电池组的控制装置
JP2013114986A (ja) * 2011-11-30 2013-06-10 Toyota Motor Corp 二次電池の製造方法
JP2013118048A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 二次電池の製造方法
JP2014017191A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2014026732A (ja) * 2012-07-24 2014-02-06 Nissan Motor Co Ltd 二次電池の製造方法
JP2014082063A (ja) * 2012-10-15 2014-05-08 Toyota Motor Corp 二次電池の製造方法
JP2014192015A (ja) * 2013-03-27 2014-10-06 Toyota Motor Corp リチウムイオン二次電池の検査方法およびリチウムイオン二次電池の製造方法
US20220245579A1 (en) * 2021-01-29 2022-08-04 Quadient Technologies France Method and apparatus for predicting the daily available capacity of a parcel pick-up station and computerized locker banks

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2972857B1 (fr) * 2011-03-18 2013-04-19 Commissariat Energie Atomique Procede de determination d'etat de fin de charge d'un accumulateur li-ion a electrode negative en alliage, accumulateur et assemblage d'accumulateurs associes
JP5985280B2 (ja) * 2012-07-05 2016-09-06 日産自動車株式会社 リチウムイオン二次電池の検査方法
JP5929865B2 (ja) * 2013-10-02 2016-06-08 トヨタ自動車株式会社 二次電池の製造方法
JP6256761B2 (ja) * 2014-04-11 2018-01-10 トヨタ自動車株式会社 二次電池の検査方法および製造方法
CN108241102A (zh) * 2016-12-23 2018-07-03 华为技术有限公司 一种电池微短路的检测方法及装置
KR102204699B1 (ko) * 2018-01-31 2021-01-18 주식회사 엘지화학 이차전지 안전성 평가 방법 및 장치
CN110336346B (zh) * 2019-06-26 2021-07-09 南京中感微电子有限公司 带微短路检测的电池保护电路
CN112652823A (zh) * 2021-01-18 2021-04-13 江苏德立信电子科技有限公司 一种柱状锂电池及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917458A (ja) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd 充電式リチウム電池の微小短絡検出法および充電器
JP2000030747A (ja) * 1998-07-10 2000-01-28 Mitsubishi Chemicals Corp 積層型二次電池の製造方法
JP2002352864A (ja) * 2001-05-23 2002-12-06 Denso Corp 二次電池の検査方法
JP2003317810A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP2008097857A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712795A (en) * 1995-10-02 1998-01-27 Alaris Medical Systems, Inc. Power management system
TW535308B (en) * 2000-05-23 2003-06-01 Canon Kk Detecting method for detecting internal state of a rechargeable battery, detecting device for practicing said detecting method, and instrument provided with said
JP4048905B2 (ja) 2002-10-09 2008-02-20 松下電器産業株式会社 電池の検査方法
JP4529364B2 (ja) 2003-03-24 2010-08-25 パナソニック株式会社 円筒形電池の検査方法
CN1925204B (zh) * 2005-08-31 2010-10-13 深圳市比克电池有限公司 一种锂离子电池电芯优选方法
JP5172579B2 (ja) 2008-10-02 2013-03-27 パナソニック株式会社 円筒形電池の検査方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0917458A (ja) * 1995-06-30 1997-01-17 Matsushita Electric Ind Co Ltd 充電式リチウム電池の微小短絡検出法および充電器
JP2000030747A (ja) * 1998-07-10 2000-01-28 Mitsubishi Chemicals Corp 積層型二次電池の製造方法
JP2002352864A (ja) * 2001-05-23 2002-12-06 Denso Corp 二次電池の検査方法
JP2003317810A (ja) * 2002-04-18 2003-11-07 Toyota Motor Corp 電池の特性評価方法
JP2008097857A (ja) * 2006-10-06 2008-04-24 Matsushita Electric Ind Co Ltd 非水電解液二次電池の製造方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013114986A (ja) * 2011-11-30 2013-06-10 Toyota Motor Corp 二次電池の製造方法
JP2013118048A (ja) * 2011-12-01 2013-06-13 Toyota Motor Corp 二次電池の製造方法
CN103138017A (zh) * 2011-12-02 2013-06-05 日产自动车株式会社 电池组的控制装置
JP2014017191A (ja) * 2012-07-11 2014-01-30 Toyota Motor Corp リチウムイオン二次電池の製造方法
JP2014026732A (ja) * 2012-07-24 2014-02-06 Nissan Motor Co Ltd 二次電池の製造方法
JP2014082063A (ja) * 2012-10-15 2014-05-08 Toyota Motor Corp 二次電池の製造方法
JP2014192015A (ja) * 2013-03-27 2014-10-06 Toyota Motor Corp リチウムイオン二次電池の検査方法およびリチウムイオン二次電池の製造方法
US20220245579A1 (en) * 2021-01-29 2022-08-04 Quadient Technologies France Method and apparatus for predicting the daily available capacity of a parcel pick-up station and computerized locker banks

Also Published As

Publication number Publication date
CN102576895B (zh) 2014-08-27
JP5541288B2 (ja) 2014-07-09
JPWO2011036705A1 (ja) 2013-02-14
CN102576895A (zh) 2012-07-11
KR20120068919A (ko) 2012-06-27
US9157964B2 (en) 2015-10-13
US20120176140A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5541288B2 (ja) 二次電池の製造方法
JP5172579B2 (ja) 円筒形電池の検査方法
CN108780127B (zh) 用于检测二次电池的低电压缺陷的方法和设备
EP3553544B1 (en) Rechargeable battery defect inspection device and defect inspection method
JP4529364B2 (ja) 円筒形電池の検査方法
US11372052B2 (en) Jig pressing-type pressing short-circuiting inspection method
JP4048905B2 (ja) 電池の検査方法
JP2010262867A (ja) 二次電池の製造方法
JP4887581B2 (ja) 電池の検査方法および検査装置
JP2013134843A (ja) 二次電池の検査方法
JP2013254653A (ja) 二次電池の検査方法
EP4060788A1 (en) Secondary battery activation method
JP5299434B2 (ja) 組電池の製造方法
JP7011782B2 (ja) 二次電池の検査方法
KR20200144269A (ko) 전극 테스트 장치 및 이를 이용한 전극 특성 테스트 방법
KR20170065923A (ko) 이차전지용 분리막의 성능 평가 방법과, 이를 위한 평가 장치
JP2964745B2 (ja) 密閉形鉛蓄電池の検査法
JP7260576B2 (ja) 二次電池の内部抵抗検査方法及び二次電池の製造方法
US20230061221A1 (en) Activation protocol generating method, and activation method and device using same
US20220393252A1 (en) Nonaqueous electrolyte secondary battery, and method for fabricating nonaqueous electrolyte secondary battery
EP3943962B1 (en) Apparatus and method for inspecting defect of secondary battery
JP2023096944A (ja) 非水電解液二次電池の検査方法
KR20220104906A (ko) 활성화 공정에서의 이차전지 셀 검사 방법
CN116224100A (zh) 非水电解液二次电池的检查方法
JP2024025160A (ja) 二次電池の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980161605.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849737

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011532790

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13497257

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20127009845

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 09849737

Country of ref document: EP

Kind code of ref document: A1