WO2011033603A1 - 微粒子センサ及び排ガス浄化装置 - Google Patents

微粒子センサ及び排ガス浄化装置 Download PDF

Info

Publication number
WO2011033603A1
WO2011033603A1 PCT/JP2009/066063 JP2009066063W WO2011033603A1 WO 2011033603 A1 WO2011033603 A1 WO 2011033603A1 JP 2009066063 W JP2009066063 W JP 2009066063W WO 2011033603 A1 WO2011033603 A1 WO 2011033603A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
exhaust
detection filter
filter
valve
Prior art date
Application number
PCT/JP2009/066063
Other languages
English (en)
French (fr)
Inventor
文茂 宮田
貴史 春日
泰博 石井
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Priority to PCT/JP2009/066063 priority Critical patent/WO2011033603A1/ja
Priority to US12/763,223 priority patent/US20110061368A1/en
Publication of WO2011033603A1 publication Critical patent/WO2011033603A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N11/00Monitoring or diagnostic devices for exhaust-gas treatment apparatus, e.g. for catalytic activity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/05Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being a particulate sensor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a particulate sensor and an exhaust gas purification device, and more particularly, to a particulate sensor for detecting particulates (PM) contained in exhaust gas discharged from an internal combustion engine, and an exhaust gas purification device including the particulate sensor.
  • a particulate sensor for detecting particulates (PM) contained in exhaust gas discharged from an internal combustion engine
  • an exhaust gas purification device including the particulate sensor.
  • a particulate trap filter composed of porous ceramics is used to trap particulates (PM) mainly composed of C (carbon) contained in exhaust gas discharged from diesel engines.
  • PM particulates
  • an exhaust gas purifying apparatus see, for example, Patent Document 1.
  • PM gradually accumulates in the DPF as the diesel engine is continuously used. For this reason, it is possible to prevent the PM in the exhaust gas from being released to the atmosphere from the diesel engine side, and it is possible to purify the exhaust gas.
  • a branch path branched and connected to the exhaust line on the downstream side of the DPF is provided, and the PM concentration is measured on the branch path to the downstream side of the DPF. It is conceivable to provide a detection filter for detecting PM leakage. Further, in order to prevent excessive PM accumulation on the DPF, it is effective to oxidize and remove the PM deposited on the DPF at an appropriate timing.
  • a branch passage connected to the exhaust line upstream of the DPF and taking in a part of the exhaust gas discharged from the internal combustion engine as a sample gas is provided. It is conceivable to provide a detection filter capable of capturing the PM.
  • a particulate sensor that outputs a signal corresponding to the pressure difference before and after the detection filter in the branch path, the oxygen concentration in the exhaust line, and the like is disposed.
  • the output signal of the fine particle sensor is sent to a diagnosis device or a measurement device, and is used for diagnosis of PM leakage downstream of the DPF and measurement of the PM deposition amount on the DPF. Therefore, by using such a fine particle sensor, it is possible to diagnose PM leakage to the downstream side of the DPF or measure the amount of PM deposited on the DPF.
  • the present invention has been made in view of the above-described points, and provides a particulate sensor and an exhaust gas purification device that eliminates the need for a regeneration mechanism for regenerating the detection filter when the detection filter is operated over a long period of time. Objective.
  • the above object is a particulate sensor for detecting particulates in exhaust gas discharged from an internal combustion engine, the exhaust flow passage through which the exhaust gas flows, and the exhaust flow passage disposed on the exhaust flow passage and passing through the exhaust flow passage.
  • a detection filter capable of capturing particulates contained in the exhaust gas, differential pressure detection means for detecting a pressure difference between the upstream side and the downstream side of the detection filter, and an upstream side of the detection filter on the exhaust flow passage.
  • a fine particle sensor comprising an on-off valve that permits / inhibits the flow of the exhaust gas to the detection filter and valve control means for switching an on-off state of the on-off valve.
  • an on-off valve that permits / inhibits the flow of the exhaust gas to the detection filter is provided upstream of the detection filter capable of capturing particulates in the exhaust flow passage through which the exhaust gas discharged from the internal combustion engine flows. Is provided.
  • the on-off valve When the on-off valve is open, the exhaust gas is allowed to flow from the exhaust flow passage side to the detection filter side, so that the exhaust gas is guided to the detection filter, but when the on-off valve is closed, the exhaust flow passage side The flow of the exhaust gas from the gas to the detection filter is prohibited, so that the exhaust gas is not guided to the detection filter.
  • the timing at which the detection filter is exposed to the exhaust gas can be greatly limited by closing the on-off valve, so that the rate at which PM in the exhaust gas accumulates on the detection filter can be drastically reduced. it can. For this reason, when operating the detection filter over a long period of time, a regeneration mechanism for regenerating the detection filter can be eliminated.
  • valve control means may periodically switch the open / close state of the open / close valve.
  • the valve control means may switch the open / close state of the open / close valve based on the operating state of the internal combustion engine and the state of the exhaust gas.
  • the above-described particulate sensor is disposed on an exhaust pipe through which exhaust gas discharged from an internal combustion engine flows, and an exhaust gas purification apparatus including a particulate trap filter capable of capturing particulates contained in the exhaust gas flowing through the exhaust pipe.
  • An upstream side exhaust gas introducing means for introducing a part of the exhaust gas flowing through the exhaust pipe from the upstream side of the particulate trapping filter to the particulate sensor, and an amount of the particulates detected by the particulate sensor.
  • the present invention may be applied to an exhaust gas purifying apparatus including a particulate accumulation amount calculating means for calculating the amount of particulates deposited on the particulate trapping filter.
  • the above-described particulate sensor is disposed on an exhaust pipe through which exhaust gas discharged from the internal combustion engine flows, and an exhaust gas purification apparatus including a particulate capturing filter capable of capturing particulates contained in the exhaust gas flowing through the exhaust pipe
  • a downstream side exhaust gas introduction means for introducing a part of the exhaust gas flowing through the exhaust pipe from the downstream side of the particulate trapping filter to the particulate sensor, and an amount of the particulates detected by the particulate sensor.
  • the present invention may be applied to an exhaust gas purification device that includes a filter failure diagnosis unit that diagnoses a failure of the particulate trapping filter.
  • a regeneration mechanism for regenerating the detection filter when the detection filter is operated for a long period of time, a regeneration mechanism for regenerating the detection filter can be eliminated.
  • FIG. 1 is an overall configuration diagram of an exhaust gas purifying apparatus according to an embodiment of the present invention. It is a principal part block diagram of the exhaust gas purification apparatus of a present Example. It is a flowchart of an example of the control routine performed in order to drive-control an on-off valve in the exhaust gas purification apparatus of a present Example. It is a whole block diagram of the exhaust gas purification apparatus which is a modification of this invention.
  • FIG. 1 shows an overall configuration diagram of an exhaust gas purifying apparatus 10 according to an embodiment of the present invention.
  • FIG. 2 shows the principal part block diagram of the exhaust gas purification apparatus 10 of a present Example.
  • the exhaust gas purifying apparatus 10 of the present embodiment includes a diesel oxidation catalyst (DOC: Diesel Oxidation Catalyst) 16 and fine particles provided on an exhaust line 14 connected to an internal combustion engine (particularly a diesel engine) 12.
  • a capture filter (DPF: Diesel Particulate Filter) 18 is provided.
  • the DOC 16 is a catalyst for removing easily oxidized carbon monoxide and hydrocarbons contained in the exhaust gas discharged from the internal combustion engine 12.
  • the DPF 18 is a filter that can capture particulates (PM) contained in exhaust gas discharged from the internal combustion engine 12.
  • the exhaust gas purifying apparatus 10 of the present embodiment is an apparatus for purifying exhaust gas discharged from the internal combustion engine 12 to the atmosphere, and a failure such as breakage occurs in the DPF 18 so that an amount of PM equal to or greater than a threshold is exhausted from the exhaust line 14. When this leaks to the downstream side of the DPF 18, it is possible to detect this failure and perform an alarm, blinking, lighting, etc. of the lamp.
  • the exhaust gas purification apparatus 10 includes a particulate sensor 20 for detecting a failure of the DPF 18.
  • an exhaust gas collection line 22 provided separately from the main exhaust line communicating with the atmosphere is connected to the exhaust line 14 downstream of the DPF 18.
  • the exhaust gas collection line 22 is branched from the main exhaust line, and a part of the exhaust gas that has passed through the DPF 18 can flow in.
  • the exhaust gas collection line 22 has a channel cross-sectional area smaller than the channel cross-sectional area of the main exhaust line (for example, about 1/100 to 1/1000 of the channel cross-sectional area of the main exhaust line).
  • the particulate sensor 20 is disposed in the exhaust gas collection line 22, and determines PM leakage from the DPF 18 based on the concentration of PM in the exhaust gas flowing through the exhaust gas collection line 22.
  • the fine particle sensor 20 includes a detection filter 28 and a differential pressure gauge 30 provided in the exhaust gas collection line 22.
  • the fine particle sensor 20 may be configured to further include a flow meter and a temperature measurement unit.
  • the downstream end of the exhaust gas collection line 22 is connected to a portion (for example, a negative pressure tank or an air intake part) having a pressure lower than the pressure on the upstream side of the exhaust gas collection line 22. Therefore, a part of the exhaust gas in the exhaust line 14 that has passed through the DPF 18 is sucked to the exhaust gas collection line 22 side and passes through the detection filter 28.
  • the detection filter 28 is a filter for calculating the concentration of PM contained in the exhaust gas discharged from the internal combustion engine 12, and can capture PM.
  • the detection filter 28 is made of a material such as porous ceramic similar to the DPF 18 and is formed in a cylindrical shape.
  • the detection filter 28 has a soot storage capacity smaller than the soot storage capacity of the DPF 18.
  • the differential pressure gauge 30 is an apparatus that outputs an electrical signal corresponding to a differential pressure ⁇ P between the inlet and outlet of the detection filter 28 in the exhaust gas collection line 22 (that is, a pressure difference between the upstream side and the downstream side), for example, It is constituted by a known pressure gauge such as a diaphragm type, a gauge type, a bellows type, and a thermal type.
  • the differential pressure gauge 30 is electrically connected to a calculation unit 32 mainly composed of a microcomputer.
  • the output of the differential pressure gauge 30 is supplied to the calculation unit 32.
  • the calculation unit 32 Based on the output signal of the differential pressure gauge 30, the calculation unit 32 detects a pressure difference ⁇ P generated between the upstream side and the downstream side of the detection filter 28 in the exhaust gas collection line 22. Then, the PM concentration in the exhaust gas is measured based on the time change of the pressure difference ⁇ P.
  • an on-off valve 34 such as an electromagnetic valve is provided on the exhaust gas collection line 22 between the branch point with the exhaust line 14 and the detection filter 28, and permits the exhaust gas to flow from the main exhaust line 14 side to the detection filter 28 side. ON / OFF valve to be prohibited.
  • the on-off valve 34 is electrically connected to a calculation unit 32 mainly composed of a microcomputer, and opens and closes according to a command from the calculation unit 32. Specifically, the open / close valve 34 permits the flow of the exhaust gas from the exhaust line 14 side to the detection filter 28 side when the open command signal is supplied from the calculation unit 32, while the close command signal from the calculation unit 32. Operates to prohibit the flow of exhaust gas from the exhaust line 14 side to the detection filter 28 side.
  • FIG. 3 shows a flowchart of an example of a control routine executed by the arithmetic unit 32 to drive and control the on-off valve in the exhaust gas purifying apparatus of the present embodiment.
  • the exhaust gas discharged from the internal combustion engine 12 flows through the exhaust line 14 and passes through the DPF 18 and then is released to the atmosphere or flows into the exhaust gas collection line 22.
  • the on-off valve 34 is closed so as to prohibit the flow of the exhaust gas from the exhaust line 14 side to the detection filter 28 side, the exhaust gas flowing into the exhaust gas collection line 22 is downstream of the on-off valve 34 of the exhaust gas collection line 22. That is, distribution to the detection filter 28 side is prohibited.
  • the on-off valve 34 is open so as to allow the exhaust gas to flow from the exhaust line 14 side to the detection filter 28 side, the on-off valve 34 downstream of the exhaust gas collection line 22, that is, the flow to the detection filter 28 side. Will be allowed.
  • the exhaust gas is guided to the detection filter 28.
  • PM is contained in the exhaust gas
  • the PM is adsorbed by the detection filter 28 and deposited.
  • the pressure difference ⁇ P before and after the detection filter 28 on the exhaust gas collection line 22 changes with time.
  • the calculation unit 32 is based on the output signal of the differential pressure gauge 30 and the upstream and downstream sides of the detection filter 28 in the exhaust gas collection line 22. Is detected. Then, the amount of PM trapped by the detection filter 28 is calculated based on the time change of the pressure difference ⁇ P to calculate the concentration of PM in the exhaust gas flowing through the exhaust gas collection line 22, and the calculated PM concentration is equal to or greater than a threshold value. Whether or not PM leaks from the DPF 18 is determined based on whether or not. As a result of the determination, if it is determined that PM leakage from the DPF 18 has occurred, an alarm, lamp blinking, lighting, or the like is performed.
  • the PM concentration in the exhaust gas downstream of the DPF 18 is calculated using the differential pressure gauge 30 to determine the presence or absence of a failure of the DPF 18. It is possible to notify the driver of a vehicle or the like equipped with the exhaust gas purification device 10 when the failure is determined.
  • the calculation unit 32 may supply the opening command signal to the on-off valve 34 periodically, not always, or when the internal combustion engine 12 is operating at a high rotation of a predetermined value or more. Specifically, for each first predetermined period (for example, 5 to 20 minutes during operation of the internal combustion engine 12), only a second predetermined period (for example, 1 second to 30 seconds) shorter than the first predetermined period. (When an affirmative determination is made in step 100), an open command signal is supplied to the on-off valve 34 (step 102), and during another period (when a negative determination is made in step 100), a close command signal is supplied to the on-off valve 34 (step 100). 104).
  • step 102 when the internal combustion engine 12 is operating at 2000 rpm or more (when an affirmative determination is made in step 100), an open command signal is supplied to the on-off valve 34 (step 102), and the internal combustion engine 12 is operated at less than 2000 rpm. If it is determined (when a negative determination is made at step 100), a closing command signal is supplied to the on-off valve 34 (step 104). In this case, the flow of exhaust gas from the exhaust line 14 to the detection filter 28 via the exhaust gas collection line 22 is not always permitted, but is permitted only when the opening condition of the on-off valve 32 is satisfied. .
  • the calculation unit 32 flows to the exhaust gas collection line 22. What is necessary is just to set to the minimum time required to calculate the concentration of PM in the exhaust gas and determine the presence or absence of PM leakage from the DPF 18 based on the PM concentration.
  • the timing at which the detection filter 28 is exposed to the exhaust gas can be limited by closing the on-off valve 34 as compared with the case where the detection filter 28 is always exposed to the exhaust gas. It should be noted that the more the conditions for permitting the flow of the exhaust gas to the detection filter 28 are relaxed (the shorter the first predetermined period or the longer the second predetermined period), the less the period. Although it is not limited and PM leakage from the DPF 18 can be determined with high frequency, the more severe the conditions for permitting the flow of the exhaust gas to the detection filter 28 are (the longer the first predetermined period described above is). Alternatively, the shorter the second predetermined period described above), the time is greatly limited and becomes relatively short, so that the frequency of determining PM leakage from the DPF 18 can be suppressed.
  • the determination frequency of PM leakage from the DPF 18 may be suppressed
  • PM in the exhaust gas is detected in the detection filter 28 by strictly setting the opening condition of the on-off valve 32 described above.
  • the deposition rate can be drastically reduced. Therefore, in order to properly operate the detection filter 28 for a long period of time, it is not necessary to regenerate the detection filter 28 by removing the accumulated PM, and it is not necessary to provide a regeneration mechanism for regenerating the detection filter 28. Is possible.
  • the overall configuration of the exhaust gas purification apparatus 10 can be made compact, parts that need to be improved in heat resistance can be reduced, and PM leakage from the DPF 18 can be determined.
  • the exhaust gas purification device 10 can be configured inexpensively and simply.
  • the determination of PM leakage from the DPF 18 and the opening / closing command to the opening / closing valve 34 are performed using the same calculation unit 32, but each is performed using different calculation units. It is good as well.
  • the on-off valve 34 is opened periodically or when the internal combustion engine 12 is operating at a high rotation of a predetermined level or more.
  • the present invention is not limited to this.
  • the opening / closing valve 34 may be closed when the internal combustion engine 12 is started or idling, and the opening / closing valve 34 may be opened at other times, and a temperature sensor for detecting the temperature of the exhaust gas is provided.
  • the on-off valve 34 may be closed when the temperature is lower than a predetermined temperature, and the on-off valve 34 may be opened at other times. Further, it may be performed only when the internal combustion engine 12 is operated at a high rotation speed higher than a predetermined value while the opening / closing valve 34 is periodically opened.
  • the exhaust gas collection line 22 connected to the DPF 18 downstream side of the exhaust line 14 is provided, and the particulate sensor 20 is disposed in the exhaust gas collection line 22, and the PM captured by the particulate sensor 20.
  • the present invention is not limited to this, and the exhaust line 14 is connected to the upstream side of the DPF 18 as shown in FIG.
  • An exhaust gas collection line 102 is provided, and a particulate sensor 104 is disposed in the exhaust gas collection line 102, and the concentration of PM in the exhaust gas flowing in the exhaust line 14 is determined based on the amount of PM captured by the particulate sensor 104. It is good also as applying to the system of the exhaust gas purification apparatus 100 which measures or measures the quantity of PM deposited on DPF18.
  • the exhaust gas collection line 102 may be connected to the upstream side of the DPF 18 of the exhaust line 14 on the upstream side and to the downstream side of the DPF 18 of the exhaust line 14 on the downstream side.
  • an open / close valve 106 that permits / inhibits the flow of exhaust gas from the exhaust line 14 side to the detection filter side is provided on the exhaust gas collection line 102, and the opening / closing valve 106 is commanded to open and close at an appropriate timing. If the portion is provided, the timing at which the detection filter is exposed to the exhaust gas can be limited by closing the on-off valve 106, so that the same effect as in the above-described embodiment can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

 検出フィルタを長期間にわたって作動させるうえでその検出フィルタを再生させる再生機構を不要とする微粒子センサは、内燃機関から排出される排ガス中の微粒子を検出する微粒子センサであって、排ガスが流通する排気流通路と、排気流通路上に配置され、排気流通路を流通する排ガス中に含まれる微粒子を捕捉可能な検出フィルタと、検出フィルタの上流側と下流側との圧力差を検出する差圧検出手段と、排気流通路上の検出フィルタの上流側に配置され、検出フィルタへの排ガスの流通を許可・禁止する開閉弁と、開閉弁の開閉状態を切り替える弁制御手段と、を備える。

Description

微粒子センサ及び排ガス浄化装置
 本発明は、微粒子センサ及び排ガス浄化装置に係り、特に内燃機関から排出される排ガス中に含まれる微粒子(PM:Particulate Matter)を検出する微粒子センサ、及び、その微粒子センサを備える排ガス浄化装置に関する。
 従来、ディーゼルエンジンから排出される排ガス中に含まれるC(炭素)を主とする微粒子(PM)を捕捉するのに、多孔質セラミックより構成される微粒子捕捉フィルタ(DPF:diesel particulate filter)を用いた排ガス浄化装置が知られている(例えば、特許文献1参照)。この排ガス浄化装置において、DPFには、ディーゼルエンジンの継続的な使用に伴って徐々にPMが堆積する。このため、ディーゼルエンジン側から大気へ排ガス中のPMが放出されるのを防止することができ、排ガスを浄化することが可能である。
 尚、DPFにPMが過剰に堆積するなどの事態が生ずると、DPF下流側の排気ラインへPMが漏れ出すおそれがある。そこで、このDPF下流側へのPM漏れの有無を診断するうえでは、DPF下流側の排気ラインに分岐して接続する分岐路を設け、その分岐路上にPM濃度を測定してDPF下流側へのPM漏れを検出するための検出フィルタを設けることが考えられる。また、DPFへの過剰なPMの堆積を防止するうえでは、適切なタイミングでDPFに堆積したPMを燃焼させて酸化除去することが有効である。そこで、DPFへのPM堆積量を測定するために、DPF上流側の排気ラインに接続し、内燃機関から排出された排ガスの一部をサンプルガスとして取り入れる分岐路を設け、その分岐路上に排ガス中のPMを捕捉可能な検出フィルタを設けることが考えられる。
 このような検出フィルタの近傍には、分岐路内の検出フィルタ前後の圧力差や排気ライン中の酸素濃度などに応じた信号を出力する微粒子センサが配設されている。微粒子センサの出力信号は、診断装置又は測定装置に送られて、DPF下流側へのPM漏れの診断やDPFへのPM堆積量の測定に使用される。従って、かかる微粒子センサを用いれば、DPF下流側へのPM漏れを診断し或いはDPFへのPM堆積量を測定することが可能となる。
欧州特許第1916394号明細書
 ところで、DPF下流側へのPM漏れの有無を診断し或いはDPFに捕捉されるPM量を測定するためには、上記した検出フィルタへ排ガスを導く必要がある。分岐路上の検出フィルタがメインの排気ラインを流通する排ガスに常に晒される構造では、検出フィルタに堆積するPM量の増加する速度が比較的高いので、その結果として、検出フィルタを長期間にわたって作動させるため、検出フィルタに堆積するPMを燃焼除去して検出フィルタを再生する電熱ヒータなどの再生機構を検出フィルタ周辺に設けることが一般的である。
 しかし、このような再生機構を設けることとすると、排ガス浄化装置全体での構成が過大となり、また、高温に至る部位が多くなるので、各部品の耐熱性を高めることが必要になり或いは検出フィルタとの距離を大きくすることが必要になるなどの不都合が生じてしまう。
 本発明は、上述の点に鑑みてなされたものであり、検出フィルタを長期間にわたって作動させるうえで、その検出フィルタを再生させる再生機構を不要とした微粒子センサ及び排ガス浄化装置を提供することを目的とする。
 上記の目的は、内燃機関から排出される排ガス中の微粒子を検出する微粒子センサであって、前記排ガスが流通する排気流通路と、前記排気流通路上に配置され、前記排気流通路を流通する前記排ガス中に含まれる微粒子を捕捉可能な検出フィルタと、前記検出フィルタの上流側と下流側との圧力差を検出する差圧検出手段と、前記排気流通路上の前記検出フィルタの上流側に配置され、前記検出フィルタへの前記排ガスの流通を許可・禁止する開閉弁と、前記開閉弁の開閉状態を切り替える弁制御手段と、を備える微粒子センサにより達成される。
 この態様の発明において、内燃機関から排出される排ガスが流通する排気流通路の、微粒子を捕捉可能な検出フィルタの上流側には、その検出フィルタへの排ガスの流通を許可・禁止する開閉弁が設けられている。開閉弁が開放されている場合は、排気流通路側から検出フィルタ側への排ガスの流通が許可されることで、検出フィルタに排ガスが導かれるが、開閉弁が閉じている場合は、排気流通路側から検出フィルタ側への排ガスの流通が禁止されることで、検出フィルタには排ガスが導かれない。従って、本発明によれば、検出フィルタが排ガスに晒される時期を開閉弁の閉じにより大幅に制限することができるので、検出フィルタに排ガス中のPMが堆積する速度を飛躍的に低くすることができる。このため、検出フィルタを長期間にわたって作動させるうえで、その検出フィルタを再生させる再生機構を不要とすることができる。
 尚、上記した微粒子センサにおいて、前記弁制御手段は、定期的に前記開閉弁の開閉状態を切り替えることとしてもよい。
 また、上記した微粒子センサおいて、前記弁制御手段は、内燃機関の運転状態及び前記排ガスの状態に基づいて前記開閉弁の開閉状態を切り替えることとしてもよい。
 ところで、上記した微粒子センサは、内燃機関から排出される排ガスが流通する排気管上に配置され、前記排気管を流通する前記排ガス中に含まれる微粒子を捕捉可能な微粒子捕捉フィルタを備える排ガス浄化装置であって、前記微粒子捕捉フィルタの上流側から該微粒子センサへ、前記排気管を流通する前記排ガスの一部を導入する上流側排ガス導入手段と、前記微粒子センサにより検出される前記微粒子の量に基づいて、前記微粒子捕捉フィルタに堆積する微粒子の量を算出する微粒子堆積量算出手段と、を備える排ガス浄化装置に適用することとしてもよい。
 更に、上記した微粒子センサは、内燃機関から排出される排ガスが流通する排気管上に配置され、前記排気管を流通する前記排ガス中に含まれる微粒子を捕捉可能な微粒子捕捉フィルタを備える排ガス浄化装置であって、前記微粒子捕捉フィルタの下流側から該微粒子センサへ、前記排気管を流通する前記排ガスの一部を導入する下流側排ガス導入手段と、前記微粒子センサにより検出される前記微粒子の量に基づいて、前記微粒子捕捉フィルタの故障を診断するフィルタ故障診断手段と、を備える排ガス浄化装置に適用することとしてもよい。
 本発明によれば、検出フィルタを長期間にわたって作動させるうえで、その検出フィルタを再生させる再生機構を不要とすることができる。
本発明の一実施例である排ガス浄化装置の全体構成図である。 本実施例の排ガス浄化装置の要部構成図である。 本実施例の排ガス浄化装置において開閉弁を駆動制御すべく実行される制御ルーチンの一例のフローチャートである。 本発明の変形例である排ガス浄化装置の全体構成図である。
 以下、図面を用いて、本発明に係る排ガス浄化装置の具体的な実施の形態について説明する。
 図1は、本発明の一実施例である排ガス浄化装置10の全体構成図を示す。また、図2は、本実施例の排ガス浄化装置10の要部構成図を示す。
 本実施例の排ガス浄化装置10は、図1に示す如く、内燃機関(特にディーゼルエンジン)12に接続する排気ライン14上に設けられた、ディーゼル用酸化触媒(DOC:Diesel Oxidation Catalyst)16及び微粒子捕捉フィルタ(DPF:Diesel Particulate Filter)18を備えている。DOC16は、内燃機関12から排出される排ガス中に含まれる酸化され易い一酸化炭素や炭化水素などを除去するための触媒である。また、DPF18は、内燃機関12から排出される排ガス中に含まれる微粒子(PM:Particulate Matter)を捕捉可能なフィルタである。
 本実施例の排ガス浄化装置10は、内燃機関12から大気へ排出される排ガスを浄化するための装置であると共に、DPF18に破損などの故障が発生し、閾値以上の量のPMが排気ライン14上でDPF18下流側へ漏れ出した場合に、この故障を検出して、アラームやランプの点滅、点灯等を行うことができる装置である。排ガス浄化装置10は、DPF18の故障を検出するための微粒子センサ20を備えている。
 すなわち、排気ライン14のDPF18下流側には、大気に連通する主排気ラインとは別に設けられた排ガス採取ライン22が接続されている。排ガス採取ライン22は、主排気ラインから分岐されており、DPF18を通過した排ガスの一部が流入し得る。排ガス採取ライン22は、主排気ラインの流路断面積よりも小さな流路断面積(例えば、主排気ラインの流路断面積の1/100~1/1000程度)を有している。微粒子センサ20は、排ガス採取ライン22内に配設されており、排ガス採取ライン22に流れる排ガス中のPMの濃度に基づいてDPF18からのPM漏れを判定する。
 微粒子センサ20は、排ガス採取ライン22内に設けられた検出フィルタ28及び差圧計30により構成されている。尚、微粒子センサ20は、更に流量計や温度測定部を含むように構成されていてもよい。排ガス採取ライン22の下流端は、排ガス採取ライン22の上流側の圧力よりも低い圧力を有する部位(例えば負圧タンクやエアインテーク部など)に接続されている。このため、DPF18を通過した排気ライン14中の排ガスの一部は、排ガス採取ライン22側に吸引されて、検出フィルタ28を通過する。
 検出フィルタ28は、内燃機関12から排出される排ガス中に含まれるPMの濃度を算出するためのフィルタであって、PMを捕捉することが可能である。検出フィルタ28は、DPF18と同様の多孔質セラミックなどの材質により構成されており、円筒状に形成されている。検出フィルタ28は、DPF18のスートストレージ容量よりも小さなスートストレージ容量を有している。
 差圧計30は、排ガス採取ライン22内における検出フィルタ28の入口と出口との差圧(すなわち、上流側と下流側との圧力差)ΔPに応じた電気信号を出力する機器であって、例えばダイヤフラム式やゲージ式、ベローズ式、熱式などの公知の圧力計などにより構成されている。差圧計30には、マイクロコンピュータを主体に構成される演算部32が電気的に接続されている。差圧計30の出力はこの演算部32に供給される。演算部32は、差圧計30の出力信号に基づいて、排ガス採取ライン22内における検出フィルタ28の上流側と下流側との間に生じる圧力差ΔPを検出する。そして、その圧力差ΔPの時間変化に基づいて排ガス中のPM濃度を測定する。
 また、排ガス採取ライン22上には、電磁弁などからなる開閉弁34が設けられている。開閉弁34は、排ガス採取ライン22上において排気ライン14との分岐点から検出フィルタ28までの間に配置されており、メインの排気ライン14側から検出フィルタ28側への排ガスの流通を許可・禁止するON/OFF弁である。開閉弁34は、マイクロコンピュータを主体に構成された演算部32と電気的に接続されており、演算部32からの指令に従って開閉する。具体的には、開閉弁34は、演算部32から開指令信号が供給される場合に排気ライン14側から検出フィルタ28側への排ガスの流通を許可し、一方、演算部32から閉指令信号が供給される場合に排気ライン14側から検出フィルタ28側への排ガスの流通を禁止するように作動する。
 次に、図3を参照して、本実施例の排ガス浄化装置10の動作について説明する。図3は、本実施例の排ガス浄化装置において演算部32が開閉弁を駆動制御すべく実行する制御ルーチンの一例のフローチャートを示す。
 本実施例において、内燃機関12から排出された排ガスは、排気ライン14を流通してDPF18を通過した後、大気へ放出され、或いは、排ガス採取ライン22内へ流入する。排ガス採取ライン22内に流入した排ガスは、開閉弁34が排気ライン14側から検出フィルタ28側への排ガスの流通を禁止するように閉じている場合は、排ガス採取ライン22の開閉弁34下流側すなわち検出フィルタ28側への流通が禁止されることとなる。一方、開閉弁34が排気ライン14側から検出フィルタ28側への排ガスの流通を許可するように開いている場合は、排ガス採取ライン22の開閉弁34下流側すなわち検出フィルタ28側への流通が許可されることとなる。
 検出フィルタ28側への排ガスの流通が許可されると、その排ガスは、検出フィルタ28に導かれる。排ガス中にPMが含まれている場合は、そのPMは、検出フィルタ28に吸着されて堆積する。検出フィルタ28でのPMの堆積状態が時間変化すると、排ガス採取ライン22上での検出フィルタ28前後の圧力差ΔPが時間変化することとなる。
 演算部32は、開閉弁34により検出フィルタ28側への排ガスの流通を許可する状況において、差圧計30の出力信号に基づいて、排ガス採取ライン22内における検出フィルタ28の上流側と下流側との間に生じる圧力差ΔPを検出する。そして、その圧力差ΔPの時間変化に基づいて検出フィルタ28に捕捉されるPMの量を算出して排ガス採取ライン22に流れる排ガス中のPMの濃度を算出し、その算出したPM濃度が閾値以上であるか否かに基づいてDPF18からのPM漏れの有無を判定する。その判定の結果、DPF18からのPM漏れが生じていることを判定すると、アラームやランプの点滅、点灯等を行う。従って、開閉弁34により検出フィルタ28側への排ガスの流通が許可される状況において、差圧計30を用いてDPF18下流側の排ガス中のPM濃度を算出してDPF18の故障有無を判定するので、その故障有判定時に排ガス浄化装置10を搭載する車両等の運転者にその故障を知らせることが可能である。
 尚、演算部32は、開閉弁34への開指令信号の供給を、常時ではなく定期的に行い或いは内燃機関12が所定以上の高回転で運転している時に行うこととすればよい。具体的には、第1の所定期間(例えば内燃機関12の運転中の5分~20分)ごとにその第1の所定期間よりも短い第2の所定期間(例えば1秒間~30秒間)だけ(ステップ100の肯定判定時)、開閉弁34へ開指令信号の供給を行い(ステップ102)、他の期間(ステップ100の否定判定時)は開閉弁34へ閉指令信号の供給を行う(ステップ104)。また或いは、内燃機関12が2000rpm以上で運転している時(ステップ100の肯定判定時)は、開閉弁34へ開指令信号の供給を行い(ステップ102)、内燃機関12が2000rpm未満で運転している時(ステップ100の否定判定時)は開閉弁34へ閉指令信号の供給を行う(ステップ104)。この場合、排気ライン14から排ガス採取ライン22を介した検出フィルタ28への排ガスの流通は、常に許可される訳ではなく、開閉弁32の開条件が成立するときにのみ許可されることとなる。
 また尚、上記した開閉弁34への開指令信号の供給を開始してから終了するまでの継続期間(上記した第2の所定期間など)は、少なくとも、演算部32が排ガス採取ライン22に流れる排ガス中のPMの濃度を算出して、そのPM濃度に基づいてDPF18からのPM漏れの有無を判定するのに最低限必要な時間に設定されるものであればよい。
 このような排ガス浄化装置10においては、検出フィルタ28が排ガスに常に晒されるものに比べて、検出フィルタ28が排ガスに晒される時期を開閉弁34の閉じにより制限することができる。尚、検出フィルタ28への排ガスの流通を許可する条件が緩和されたものであるほど(上記した第1の所定期間が短いほど或いは上記した第2の所定期間が長いほど)、その時期はあまり制限されず、DPF18からのPM漏れの判定を高頻度で行うことができるが、検出フィルタ28への排ガスの流通を許可する条件が厳しいものであるほど(上記した第1の所定期間が長いほど或いは上記した第2の所定期間が短いほど)、その時期は大幅に制限されて相対的に短くなり、DPF18からのPM漏れの判定頻度を抑えることができる。
 この点、本実施例によれば、DPF18からのPM漏れの判定頻度を抑えてもよい場合は、上記した開閉弁32の開条件を厳しく設定することで、検出フィルタ28に排ガス中のPMが堆積する速度を飛躍的に低く抑えることができる。従って、検出フィルタ28を長期間にわたって適正に作動させるうえで、堆積PMを除去して検出フィルタ28を再生させる必要性は無くし、検出フィルタ28に再生を施す再生機構を設けることを不要とすることが可能となっている。
 このため、本実施例においては、排ガス浄化装置10の全体構成をコンパクトにすることができ、また、耐熱性を高める必要のある部品を削減することができ、DPF18からのPM漏れを判定可能な排ガス浄化装置10を低廉かつ簡易に構成することが可能となっている。
 以上、本発明の好ましい実施例について説明したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載した要旨内において様々な変形・変更が可能である。
 例えば、上記の実施例においては、DPF18からのPM漏れの判定と、開閉弁34への開閉指令と、を同じ演算部32を用いて行うこととしているが、それぞれ別の演算部を用いて行うこととしてもよい。
 また、上記の実施例においては、開閉弁34の開を定期的に或いは内燃機関12が所定以上の高回転で運転している時に行うものとしているが、本発明はこれに限定されるものではなく、例えば、内燃機関12の始動時やアイドル運転時には開閉弁34を閉じかつ他の時には開閉弁34を開とすることとしてもよいし、また、排ガスの温度を検出する温度センサを設け、排ガスの温度が所定以下に低い時には開閉弁34を閉じかつ他の時には開閉弁34を開とすることとしてもよい。更に、開閉弁34の開を定期的に行いつつ内燃機関12が所定以上の高回転で運転している時にのみ行うものとしてもよい。
 更に、上記の実施例は、排気ライン14のDPF18下流側に接続する排ガス採取ライン22を設け、その排ガス採取ライン22内に微粒子センサ20を配設して、その微粒子センサ20に捕捉されるPMの量に基づいてDPF18からのPM漏れを判定する排ガス浄化装置10のシステムであるが、本発明はこれに限定されるものではなく、図4に示す如く、排気ライン14のDPF18上流側に接続する排ガス採取ライン102を設け、その排ガス採取ライン102内に微粒子センサ104を配設して、その微粒子センサ104に捕捉されるPMの量に基づいて排気ライン14に流れる排ガス中のPMの濃度を測定し若しくはDPF18に堆積するPMの量を測定する排ガス浄化装置100のシステムに適用することとしてもよい。尚、この場合、排ガス採取ライン102は、上流側を排気ライン14のDPF18上流側に接続し、かつ、下流側を排気ライン14のDPF18下流側に接続するものとしてもよい。
 かかる変形例においても、排ガス採取ライン102上に排気ライン14側から検出フィルタ側への排ガスの流通を許可・禁止する開閉弁106を設け、その開閉弁106の開閉を適当なタイミングで指令する演算部を設けることとすれば、検出フィルタが排ガスに晒される時期を開閉弁106の閉じにより制限することができるため、上記した実施例と同様の効果を得ることが可能となる。
 10,100 排ガス浄化装置
 12 内燃機関
 14 排気ライン
 18 DPF
 20,104 微粒子センサ
 22,102 排ガス採取ライン
 28 検出フィルタ
 30 差圧計
 32 演算部
 34,106 開閉弁

Claims (5)

  1.  内燃機関から排出される排ガス中の微粒子を検出する微粒子センサであって、
     前記排ガスが流通する排気流通路と、
     前記排気流通路上に配置され、前記排気流通路を流通する前記排ガス中に含まれる微粒子を捕捉可能な検出フィルタと、
     前記検出フィルタの上流側と下流側との圧力差を検出する差圧検出手段と、
     前記排気流通路上の前記検出フィルタの上流側に配置され、前記検出フィルタへの前記排ガスの流通を許可・禁止する開閉弁と、
     前記開閉弁の開閉状態を切り替える弁制御手段と、
     を備えることを特徴とする微粒子センサ。
  2.  前記弁制御手段は、定期的に前記開閉弁の開閉状態を切り替えることを特徴とする請求項1に記載された微粒子センサ。
  3.  前記弁制御手段は、内燃機関の運転状態及び前記排ガスの状態に基づいて前記開閉弁の開閉状態を切り替えることを特徴とする請求項1に記載された微粒子センサ。
  4.  内燃機関から排出される排ガスが流通する排気管上に配置され、前記排気管を流通する前記排ガス中に含まれる微粒子を捕捉可能な微粒子捕捉フィルタを備える排ガス浄化装置であって、
     前記微粒子捕捉フィルタの上流側から請求項1乃至3の何れか一項に記載された微粒子センサへ、前記排気管を流通する前記排ガスの一部を導入する上流側排ガス導入手段と、
     前記微粒子センサにより検出される前記微粒子の量に基づいて、前記微粒子捕捉フィルタに堆積する微粒子の量を算出する微粒子堆積量算出手段と、
     を備えることを特徴とする排ガス浄化装置。
  5.  内燃機関から排出される排ガスが流通する排気管上に配置され、前記排気管を流通する前記排ガス中に含まれる微粒子を捕捉可能な微粒子捕捉フィルタを備える排ガス浄化装置であって、
     前記微粒子捕捉フィルタの下流側から請求項1乃至3の何れか一項に記載された微粒子センサへ、前記排気管を流通する前記排ガスの一部を導入する下流側排ガス導入手段と、
     前記微粒子センサにより検出される前記微粒子の量に基づいて、前記微粒子捕捉フィルタの故障を診断するフィルタ故障診断手段と、
     を備えることを特徴とする排ガス浄化装置。
PCT/JP2009/066063 2009-09-15 2009-09-15 微粒子センサ及び排ガス浄化装置 WO2011033603A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2009/066063 WO2011033603A1 (ja) 2009-09-15 2009-09-15 微粒子センサ及び排ガス浄化装置
US12/763,223 US20110061368A1 (en) 2009-09-15 2010-04-20 Particulate matter sensor and exhaust gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/066063 WO2011033603A1 (ja) 2009-09-15 2009-09-15 微粒子センサ及び排ガス浄化装置

Publications (1)

Publication Number Publication Date
WO2011033603A1 true WO2011033603A1 (ja) 2011-03-24

Family

ID=43729123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066063 WO2011033603A1 (ja) 2009-09-15 2009-09-15 微粒子センサ及び排ガス浄化装置

Country Status (2)

Country Link
US (1) US20110061368A1 (ja)
WO (1) WO2011033603A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249128A (ja) * 2009-03-25 2010-11-04 Ngk Insulators Ltd 粒子状物質の堆積量検出装置
JP2013234642A (ja) * 2012-05-11 2013-11-21 Denso Corp 内燃機関の排気浄化装置
CN104655533A (zh) * 2013-11-18 2015-05-27 中山欧麦克仪器设备有限公司 一种双通道颗粒物自动监测装置
CN108507916A (zh) * 2018-03-20 2018-09-07 重庆山楂树科技有限公司 粉尘检测装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113295A1 (ja) * 2009-03-31 2010-10-07 イビデン株式会社 微粒子濃度測定装置
WO2010113292A1 (ja) * 2009-03-31 2010-10-07 イビデン株式会社 微粒子濃度測定装置
FIU20100093U0 (fi) * 2010-02-25 2010-02-25 Pegasor Oy Hiukkasten mittauslaite
US8656772B2 (en) * 2010-03-22 2014-02-25 Honeywell International Inc. Flow sensor with pressure output signal
JP5545503B2 (ja) * 2012-05-11 2014-07-09 株式会社デンソー 検査方法
US9051866B2 (en) * 2012-05-22 2015-06-09 GM Global Technology Operations LLC Method and apparatus for monitoring a particulate filter
CN104977232A (zh) * 2015-07-10 2015-10-14 苏州华达仪器设备有限公司 一种激光粒子尘埃计数器的气体缓冲装置
CN106338587A (zh) * 2016-10-28 2017-01-18 厦门大学嘉庚学院 一种废气中的分子状态污染物监测装置及其控制方法
JP2019173716A (ja) * 2018-03-29 2019-10-10 日本特殊陶業株式会社 特性評価システム
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
US12017506B2 (en) 2020-08-20 2024-06-25 Denso International America, Inc. Passenger cabin air control systems and methods

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242341A (ja) * 1984-05-17 1985-12-02 Nippon Soken Inc 内燃機関排気ガス中の微粒子濃度の測定装置
JPH11230888A (ja) * 1998-02-16 1999-08-27 Tsukasa Sokken:Kk 気体中の粒状物質測定装置
JP2006226808A (ja) * 2005-02-17 2006-08-31 Bosch Corp パティキュレート量の測定装置、パティキュレート量の測定方法、及び排気浄化装置
JP2008101605A (ja) * 2006-10-17 2008-05-01 Ibiden Co Ltd 微粒子検出センサ
JP2008101606A (ja) * 2006-10-17 2008-05-01 Ibiden Co Ltd 微粒子検出センサ
JP2008190470A (ja) * 2007-02-06 2008-08-21 Nissan Motor Co Ltd 排気浄化フィルタの再生装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097240A (ja) * 1983-11-01 1985-05-31 Nippon Soken Inc 車輌用微粒子排出量測定装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60242341A (ja) * 1984-05-17 1985-12-02 Nippon Soken Inc 内燃機関排気ガス中の微粒子濃度の測定装置
JPH11230888A (ja) * 1998-02-16 1999-08-27 Tsukasa Sokken:Kk 気体中の粒状物質測定装置
JP2006226808A (ja) * 2005-02-17 2006-08-31 Bosch Corp パティキュレート量の測定装置、パティキュレート量の測定方法、及び排気浄化装置
JP2008101605A (ja) * 2006-10-17 2008-05-01 Ibiden Co Ltd 微粒子検出センサ
JP2008101606A (ja) * 2006-10-17 2008-05-01 Ibiden Co Ltd 微粒子検出センサ
JP2008190470A (ja) * 2007-02-06 2008-08-21 Nissan Motor Co Ltd 排気浄化フィルタの再生装置

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010249128A (ja) * 2009-03-25 2010-11-04 Ngk Insulators Ltd 粒子状物質の堆積量検出装置
JP2013234642A (ja) * 2012-05-11 2013-11-21 Denso Corp 内燃機関の排気浄化装置
CN104655533A (zh) * 2013-11-18 2015-05-27 中山欧麦克仪器设备有限公司 一种双通道颗粒物自动监测装置
CN108507916A (zh) * 2018-03-20 2018-09-07 重庆山楂树科技有限公司 粉尘检测装置
CN108507916B (zh) * 2018-03-20 2020-06-16 重庆山楂树科技有限公司 粉尘检测装置

Also Published As

Publication number Publication date
US20110061368A1 (en) 2011-03-17

Similar Documents

Publication Publication Date Title
WO2011033603A1 (ja) 微粒子センサ及び排ガス浄化装置
WO2011036772A1 (ja) 微粒子センサ及び排ガス浄化装置
JP5833864B2 (ja) 内燃機関の排ガス処理方法および排ガス処理制御システム
US8608835B2 (en) Exhaust gas purification system for an internal combustion engine
JP5142624B2 (ja) 排ガス浄化装置、排ガス浄化方法、および微粒子測定方法
WO2010073511A1 (ja) 排気浄化装置の再生不良診断方法
CN106481416B (zh) 用于排气微粒物质感测的方法和系统
JP2008157199A (ja) センサの異常検出装置
JP2008101606A (ja) 微粒子検出センサ
JP2008101604A (ja) 排ガス浄化装置
WO2011114444A1 (ja) 排気浄化用センサ
JP3598572B2 (ja) 排気微粒子浄化装置
CN107060970B (zh) 用于微粒过滤器泄漏检测的方法和系统
JP2011149414A (ja) 微粒子センサ及び排ガス浄化装置
JP2013160208A (ja) 排ガス浄化装置および排ガス浄化方法
JP3785691B2 (ja) 排気微粒子浄化装置
JP2011179491A (ja) 微粒子センサ及び排ガス浄化装置
JP2008121519A (ja) 排気絞り弁及びウェイストゲート弁の異常判定装置
JP4744529B2 (ja) 自動車の微粒子フィルタに存在する微粒子の量を推定する装置
JP2004245167A (ja) 排気浄化装置
KR100405437B1 (ko) 디젤 엔진의 배기 가스 후처리 장치
WO2021235368A1 (ja) 制御装置、内燃機関システムおよび診断方法
JPH0861043A (ja) パティキュレートフィルタ再生装置
JP3659067B2 (ja) 排気微粒子除去装置
JP2002188426A (ja) 排気浄化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09849462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09849462

Country of ref document: EP

Kind code of ref document: A1