WO2011030905A1 - Taが添加されたNi3(Si,Ti)系金属間化合物 - Google Patents

Taが添加されたNi3(Si,Ti)系金属間化合物 Download PDF

Info

Publication number
WO2011030905A1
WO2011030905A1 PCT/JP2010/065839 JP2010065839W WO2011030905A1 WO 2011030905 A1 WO2011030905 A1 WO 2011030905A1 JP 2010065839 W JP2010065839 W JP 2010065839W WO 2011030905 A1 WO2011030905 A1 WO 2011030905A1
Authority
WO
WIPO (PCT)
Prior art keywords
intermetallic compound
atomic
sample
phase
weight
Prior art date
Application number
PCT/JP2010/065839
Other languages
English (en)
French (fr)
Inventor
泰幸 金野
隆幸 高杉
Original Assignee
公立大学法人大阪府立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪府立大学 filed Critical 公立大学法人大阪府立大学
Priority to KR1020127009281A priority Critical patent/KR101715149B1/ko
Priority to US13/395,778 priority patent/US9447485B2/en
Priority to CN201080040548.9A priority patent/CN102575321B/zh
Priority to EP10815495.6A priority patent/EP2487272A4/en
Priority to JP2011530912A priority patent/JP5565777B2/ja
Publication of WO2011030905A1 publication Critical patent/WO2011030905A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/023Alloys based on nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/007Alloys based on nickel or cobalt with a light metal (alkali metal Li, Na, K, Rb, Cs; earth alkali metal Be, Mg, Ca, Sr, Ba, Al Ga, Ge, Ti) or B, Si, Zr, Hf, Sc, Y, lanthanides, actinides, as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/10Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of nickel or cobalt or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/70Current collectors characterised by their structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to a nickel-based intermetallic compound to which Ta is added, and in particular, an intermetallic compound having a basic composition of Ni 3 (Si, Ti) (hereinafter referred to as “Ni 3 (Si, Ti) -based intermetallic compound”) Call).
  • Ni 3 Si intermetallic compounds which are nickel-based intermetallic compounds, have excellent properties such as high-temperature strength, corrosion resistance, and oxidation resistance.
  • Ni 3 Si intermetallic compounds are liable to cause intergranular cracking, there is a need for intermetallic compounds that are easier to plastically process at room temperature. Therefore, research and development for improving this Ni 3 Si intermetallic compound is underway.
  • a Ni 3 (Si, Ti) -based intermetallic compound that is a nickel-based intermetallic compound is known as an intermetallic compound having workability, particularly room temperature ductility (see, for example, Non-Patent Documents 1 and 2). .
  • Such Ni 3 (Si, Ti) -based intermetallic compound contains, for example, Ni, Si, Ti, C as a nickel-based intermetallic compound for casting, and further contains either or both of Hf and Zr. It is known that an intermetallic compound is included, and this intermetallic compound exhibits good castability as a timepiece-side member or the like (suitable for a die-cast method or a lost wax method) (for example, Patent Document 1). reference).
  • an intermetallic compound containing Ni, Si, Ti, Cu, Ta, and B as a Ni 3 (Si, Ti) -based alloy material that has excellent corrosion resistance and has sufficient ductility and workability sufficient as a structural material Is known (see, for example, Patent Document 2). This intermetallic compound is combined with Ta and Cu to ensure good ductility and is useful as a structural material for a sulfuric acid purification apparatus.
  • nickel-based intermetallic compounds when used as structural materials, it is desired to further improve mechanical and chemical characteristics.
  • a structure formed of a nickel-based intermetallic compound is manufactured by, for example, plastic working in addition to the precision casting method, improvement in workability such as ductility is desired.
  • the nickel-based intermetallic compound when used in an apparatus that handles acid, it is desirable to maintain chemical characteristics. Therefore, a nickel-based intermetallic compound having sufficient chemical properties and mechanical properties (for example, ductility) is desired.
  • the present invention has been made in view of such circumstances, and provides a nickel-based intermetallic compound having sufficient chemical characteristics and mechanical characteristics. Moreover, this invention provides the structural material provided with the outstanding hardness (strength) characteristic, and also provides the structural material provided with the outstanding abrasion resistance.
  • Ni 3 (Si, Ti) -based intermetallic compound characterized by having a structure composed of a second phase dispersion.
  • the inventors of the present invention have invented adding a refractory metal element instead of Ti in consideration of the fact that Ti in Ni 3 (Si, Ti) is a factor that degrades oxidation resistance. And we conducted intensive research on this idea.
  • the Ni 3 (Si, Ti) -based intermetallic compound further containing Ta has a hardness (strength) superior to the intermetallic compound composed of Ni, Si, and Ti.
  • the present invention has been completed. Since the Ni 3 (Si, Ti) -based intermetallic compound of the present invention has excellent hardness (strength), it can be suitably used for structural materials such as machine elements.
  • An embodiment of the present invention will be described below. The configuration shown in the following description is an exemplification, and the scope of the present invention is not limited to that shown in the following description. In this specification, “ ⁇ ” includes an end point.
  • Example Sample 2 3 is a SEM photograph of Example Sample 2.
  • 3 is an X-ray diffraction profile of Example Sample 2.
  • the upper row is an X-ray diffraction profile of an Hf-added sample (reference sample) which is an example of a comparative sample, and the lower row is an X-ray diffraction profile of Example Sample 2.
  • 4 is an EPMA element mapping diagram of Example Sample 2.
  • FIG. It is the result of the Vickers test in the demonstration experiment 1, and is a graph showing the relationship between the Vickers hardness and the content of Ta.
  • It is a SEM photograph of a comparative example sample and an example sample.
  • 7 is an X-ray diffraction profile of a comparative sample and example samples 1 to 7.
  • FIG. 6 is an EPMA element mapping diagram of Example Sample 7.
  • FIG. It is a graph which shows the result of the Vickers hardness test of the demonstration experiment 2, and is a graph which showed the relationship between Vickers hardness and content of Ta. It is the graph which showed the relationship between content of Ta, Vickers hardness, and a lattice constant. It is a graph which shows the change of the Vickers hardness in the high temperature of a comparative example sample and Example samples 2, 4 and 7. It is a graph which shows the relationship between Ta content of a sample, tensile strength (Tensile Strength), 0.2% yield strength (0.2% Proof Stress), and elongation (Elongation).
  • FIG. It is a photograph which shows the fracture surface of the comparative example sample after an tensile test, and the Example samples 5 and 7.
  • FIG. It is a graph which shows the relationship between the amount of mass increase and time by the oxidation resistance test of a comparative example sample and Example samples 2, 4 and 7.
  • the Ni 3 (Si, Ti) -based intermetallic compound of the present invention includes Ni as a main component, 7.5 to 12.5 atomic% Si, and 1.5 to 10.5 atomic%. It is characterized by containing 25 to 500 ppm by weight of B with respect to the weight of the intermetallic compound having a composition of 100 atomic% in total including Ti and 1.0 to 10.0 atomic% Ta.
  • Ni 3 (Si, Ti) -based intermetallic compound having excellent hardness (strength) is provided.
  • the Vickers hardness in the temperature range from room temperature to 800 ° C. may be 410 to 520.
  • the Vickers hardness is measured at a load of 300 g, 500 g, or 1 kg.
  • the main components are Ni, 10.0-12.0 atomic% Si, 1.5-9.5 atomic% Ti, and 1.0-9.0 atomic% Ta.
  • a total of 100 atomic% containing Ni as the main component, 10.0-12.0 atomic% Si, 2.5-8.5 atomic% Ti and 1.0-7.0 atomic% Ta may be a Ni 3 (Si, Ti) intermetallic compound containing 25 to 100 ppm by weight of B with respect to the weight of the intermetallic compound having the composition.
  • the main components are Ni, 10.0-12.0 atomic% Si, 2.5-6.5 atomic% Ti, and 3.0-7.0 atomic% Ta.
  • the composition of Ni as the main component, 10.0 to 12.0 at% Si, and Ti and Ta including 9.0 to 11.5 at% in total includes 100 at% in total.
  • the Ni 3 (Si, Ti) -based intermetallic compound of the present invention is 10.0 to 12.0 atomic% Si, 1.5 to 7.5 atomic% Ti, Containing 25 to 500 ppm by weight of B with respect to the weight of the intermetallic compound having a total composition of 100 atomic%, more than 2.0 and not more than 8.0 atomic% Ta, with the balance being made of Ni excluding impurities, L1 2 phase composed of tissue, or L1 2 and phase, characterized by having a structure composed of a second phase dispersion containing Ni and Ta.
  • an Ni 3 (Si, Ti) intermetallic compound having excellent hardness (strength) and wear resistance is provided.
  • Ni and Ta sliding parts for Ni 3 having a tissue and a second phase dispersion may be based intermetallic compound, the Ni 3 (Si, Ti) based intermetallic compound having the composition and tissue It may be used as a sliding part material (or wear-resistant metal material).
  • Ni 3 (Si, Ti) based cast intermetallic compounds cast Ni 3 (Si, A method of forming a sliding component with a Ti) -based intermetallic compound may be used.
  • the sliding part is formed by cutting a cast Ni 3 (Si, Ti) intermetallic compound.
  • a Ni 3 (Si, Ti) -based intermetallic compound containing 25 to 100 ppm by weight of B with respect to the weight of the intermetallic compound having a total composition of 100 atomic% made of Ni excluding impurities may be used.
  • a Ni 3 (Si, Ti) -based intermetallic compound containing 25 to 100 ppm by weight of B with respect to the weight of the intermetallic compound having a composition of 100 atomic% may be used.
  • Ni 3 (Si, Ti) -based intermetallic compound that is superior in hardness and resistant to wear is provided.
  • an intermetallic compound having a composition of a total of 100 atomic% which is composed of 10.0 to 12.0 atomic% of Si, a total of 9.0 to 11.5 atomic% of Ti and Ta, and the balance is Ni except impurities Ni 3 (Si, Ti) -based intermetallic compound containing 25 to 100 ppm by weight of B with respect to the weight of the material, and has a Vickers hardness of 410 measured at a load of 300 g, 500 g, or 1 kg. ⁇ 520.
  • the Vickers hardness may be measured at room temperature (about 25 ° C.).
  • Ni 3 (Si, Ti) -based intermetallic compound that is superior in hardness is provided.
  • the Ni 3 (Si, Ti) -based intermetallic compound of the present invention is 10.0 or more and 12.0 or less atomic percent Si, and 1.5 or more and less than 7.5 atomic percent Ti. , More than 2.0 and not more than 8.0 atomic% Ta, the balance being 25 to 500 ppm by weight of B with respect to the weight of the intermetallic compound having a total composition of 100 atomic% made of Ni excluding impurities. , L1 2 phase composed of tissue, or the L1 2 phase, a Ni 3 (Si, Ti) based intermetallic compound having a structure composed of a second phase dispersion containing Ni and Ta, Ta the maximum content It is characterized by 6.0 atomic%.
  • Ni 3 (Si, Ti) -based intermetallic compound having excellent ductility or oxidation resistance is provided.
  • Ni 3 (Si, Ti) -based intermetallic compounds of these inventions a total of 19.0 to 21.5 atomic% of Si, Ti and Ta, with the balance being Ni excluding impurities, a total of 100 atomic% It may be in a form containing 25 to 500 ppm by weight of B with respect to the weight of the intermetallic compound having the composition.
  • the Ni content is approximately 78.5 to 81.0 atomic%, so that the structure consisting essentially of only the L1 2 phase, or substantially the L1 2 phase, Ni and A structure consisting only of the second phase dispersion containing Ta is formed. For this reason, while being excellent in hardness, it is excellent in abrasion resistance, ductility, or oxidation resistance.
  • each element of these embodiments will be described in detail. In this specification, the description of “to” includes both ends of the numerical range unless otherwise specified.
  • the content of Ni is, for example, 78.5 to 81.0 atomic%, and preferably 78.5 to 80.5 atomic%.
  • the specific content of Ni is, for example, 78.5, 79.0, 79.5, 80.0, 80.5, or 81.0 atomic%.
  • the range of the Ni content may be between any two of the numerical values exemplified here.
  • the content of Si is 7.5 to 12.5 atomic%, preferably 10.0 to 12.0 atomic%. Specific contents of Si are, for example, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 10.5, 11.0, 11.5, 12.0. Or 12.5 atomic%.
  • the range of the Si content may be between any two of the numerical values exemplified here.
  • the content of Ti is 1.5 to 10.5 atomic%, preferably 1.5 to 9.5 atomic%. More preferably, it is 2.5 to 6.5 atomic%.
  • the specific content of Ti is, for example, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0. 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 or 10.5 atomic%.
  • the range of the Ti content may be between any two of the numerical values exemplified here. From the viewpoint of hardness and wear resistance, it is preferably 1.5 or more and less than 7.5 atom%, more preferably 1.5 to 5.5 atom%, still more preferably 2.5 to 5.5 atomic percent. If it is these ranges, it is excellent in hardness and abrasion resistance.
  • the content of Ta is 1.0 to 10.0 atomic%, preferably 1.0 to 9.0 atomic%. More preferably, it is 3.0 to 7.0 atomic%.
  • the specific content of Ta is, for example, 1.0, 1.5, 2.0, 2.5, 3.0, 1.5, 2.0, 2.5, 3.0, 3.5. , 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5 or 10 0.0 atomic percent.
  • the range of the content of Ta may be between any two of the numerical values exemplified here. From the viewpoint of hardness and wear resistance, it is preferably more than 2.0 and not more than 8.0 atomic%, more preferably 4.0 to 8.0 atomic%, and still more preferably 4.0. -7.0 atomic percent. If it is these ranges, it is excellent in hardness and abrasion resistance.
  • the content of Ti and Ta may be 9.0 to 11.5 atomic% in total for Ti and Ta.
  • the total content of Ti and Ta is 9.0, 9.5, 10.0, 10.5, 11.0, or 11.5 atomic%.
  • the range of the content of Ti and Ta may be between any two of the numerical values exemplified here.
  • Si, Ti, and Ta are 19.0 to 21.5 atomic% in total, and preferably 19.5 to 21.5 atomic%.
  • the content of each element is appropriately adjusted so that the total content of Ni, Si, Ti, and Ta is 100 atomic%.
  • the content of B is 25 to 500 ppm by weight, preferably 25 to 100 ppm by weight.
  • the specific content of B is, for example, 25, 40, 50, 60, 75, 100, 150, 200, 300, 400, or 500 ppm by weight.
  • the range of the B content may be between any two of the numerical values exemplified here.
  • the specific composition of the intermetallic compound according to the embodiment of the present invention is, for example, one obtained by adding the above-mentioned content of B to the compositions shown in Tables 1 to 3.
  • the Ni 3 (Si, Ti) -based intermetallic compound according to this embodiment may be substantially composed of Ni, Si, Ti, B, and Ta elements, or may contain other impurity elements.
  • the impurity element is an unavoidable impurity, and may be a Ni 3 (Si, Ti) -based intermetallic compound substantially composed of only elements of Ni, Si, Ti, B, and Ta.
  • the Ni 3 (Si, Ti) -based intermetallic compound according to one embodiment of the present invention is melted by heating the Ni, Si, Ti, and Ta metals in the proportions shown in the above embodiment, and this molten metal It is obtained by solidifying by cooling.
  • the Ni 3 (Si, Ti) intermetallic compound obtained by solidification may be subjected to a homogenization heat treatment. By this treatment, element segregation can be eliminated and the structure can be made uniform.
  • the Ni 3 (Si, Ti) -based intermetallic compound according to this embodiment may have a Vickers hardness of 410 to 520 measured with a load of 300 g. According to the embodiment of the present invention, a Ni 3 (Si, Ti) intermetallic compound having such Vickers hardness can be obtained.
  • each metal (each purity is 99.9% by weight or more) and B were weighed so as to have eight kinds of compositions shown in Table 4.
  • these weighed metals and B were melted and cast in an arc melting furnace to produce an ingot having a weight of about 130 g.
  • the atmosphere of the arc melting furnace was evacuated in the melting chamber and then replaced with an inert gas (argon gas).
  • the electrode used was a non-consumable tungsten electrode, and a water-cooled copper hearth was used as the mold.
  • a sample containing Ta is an example of the present invention.
  • the Ta content is 2 at.
  • “Example Sample 2” is hereinafter referred to with a number indicating the content of “Example Sample” Ta.
  • a sample containing no Ta is referred to as a “comparative sample”.
  • FIG. 1 is an SEM photograph of Example Sample 2.
  • Example Sample 2 exhibits a single-phase structure composed of crystal grains having a grain size of several hundred microns.
  • the sample sample 2 had a Vickers hardness of 434 Hv.
  • FIG. 2 is an X-ray diffraction profile of Example Sample 2.
  • Ni 77.5 Si 11.0 Ti 9.5 Hf 2.0 +50 wt As a reference, Ni 77.5 Si 11.0 Ti 9.5 Hf 2.0 +50 wt.
  • the X-ray diffraction profile of ppm (at% other than B. Hereinafter referred to as “Hf-added sample”) is also shown.
  • the upper row is the X-ray diffraction profile of the Hf-added sample, and the lower row is the X-ray diffraction profile of Example Sample 2.
  • Ni 3 (Si, Ti) Comparative Sample
  • Ni 3 Hf the peak position of the profile of Ni 5 Hf.
  • the (circle shape) point is the peak position of the profile with Ni 3 (Si, Ti)
  • the triangle (triangle) point is Ni 3 Hf
  • the square (square) point is Ni 5 Hf.
  • the Hf-added sample shown here is produced by the same method as the example sample.
  • Example Sample 2 matches the peak position of the Ni 3 (Si, Ti) profile.
  • Example Sample 2 when because it is single-phase structure, from the results, the constituent phases of the example sample 2 can be identified as a L1 2 phase.
  • the peak positions of the profiles of Ni 3 Hf and Ni 5 Hf matched the profile.
  • the Hf-added sample had Ni 3 Hf and Ni 5 Hf phases dispersed therein.
  • FIG. 3 is an EPMA element mapping diagram of Example Sample 2.
  • the upper left figure of FIG. 3 is an SEM photograph, the upper right figure is a Ni mapping figure, the middle left figure is a Si mapping figure, the middle right figure is a Ti mapping figure, the lower left figure is a Ta mapping figure, and the lower right figure Is a B mapping diagram.
  • any element mapping including Ni mapping has a uniform composition throughout the entire structure.
  • point analysis was performed by this EPMA measurement, as shown in Table 5, the composition was almost as weighed.
  • FIG. 4 shows the result.
  • FIG. 4 is a graph showing the relationship between Vickers hardness and Ta content. The horizontal axis represents the Ta content, with the leftmost measurement point corresponding to the comparative sample and the other measurement points corresponding to the example sample.
  • FIG. 5 is an SEM photograph of the comparative example sample and the example sample.
  • FIG. 5 (1) is the comparative example sample
  • (2) is the example sample 5
  • (3) is the example sample 6,
  • (4) is the example.
  • 5 is a SEM photograph of Example Sample 7.
  • (5) of FIG. 5 is the SEM photograph which expanded the 2nd phase of the Example sample 7.
  • the comparative sample and the example sample 5 have a single-phase structure. From the observation of these samples and other examples, the Ta content was 5.0 at. Up to%, Ta was found to form a single phase structure by solid solution.
  • Example Samples 6 and 7 are composed of a first phase and a second phase, and the second phase is dispersed in the first phase.
  • the Ta content is 6.0 at. % (Example Sample 6)
  • a small amount of plate-like second phase was observed (see FIG. 5 (5) for the shape)
  • the Ta content was 7.0 at. % (Example Sample 7)
  • a phenomenon was observed in which the volume fraction of the second phase (the proportion of the second phase in the structure) increased. It was also observed that when the second phase appeared, the crystal grain size of the L12 phase was slightly reduced due to the influence of the second phase.
  • FIG. 6 shows X-ray diffraction profiles of the comparative sample and the example samples 1 to 7.
  • the point of ⁇ is a point indicating the peak position of the profile of Ni 3 (Si, Ti) (this material is composed of L1 2 phase) which is a known material, The numerical value is the plane index of the diffraction crystal plane.
  • FIG. 7 is an enlarged view of the X-ray diffraction profile of Example Sample 7, and is measured separately from FIG. 6 in order to identify the phase of Example Sample 7.
  • the points marked with ⁇ (inverted triangle shape) are points indicating the peak positions of the Ni 3 (Si, Ti) profile.
  • the ⁇ (circular shape) points indicate the peak positions of the Ni 3 Ta profile.
  • the X-ray diffraction profile of each sample matches the peak position of the Ni 3 (Si, Ti) profile, and it can be seen that these samples are composed of the L1 2 phase.
  • the single-phase structure of the comparative sample and the example samples 2 to 5 is the L1 2 phase, and the parent phase (second phase) of the example samples 6 and 7 is used.
  • first phase occupying between phases it can be seen that a L1 2 phase.
  • Example Sample 7 coincides with the peak position of the Ni 3 Ta profile in addition to Ni 3 (Si, Ti).
  • Example Sample 7 L1 2 phase (first phase) and Ni 3 second phase of Ta (phase containing Ni and Ta) and de seen to be composed. From this result, it was identified that the second phase observed in FIG. 5 was Ni 3 Ta.
  • Ni 3 (Si, Ti) and Ni 3 at a position other than the peak position in Ta profile a clear peak was not observed, the sample of Example 7 substantially L1 2 phase and Ni 3 Ta It was found to consist only of the second phase.
  • FIG. 8 shows the result.
  • FIG. 8 is an EPMA element mapping diagram of Example Sample 7.
  • (1) in FIG. 8 is an SEM photograph (upper left figure), (2) is a mapping chart of Ni (upper center figure), (3) is a mapping chart of Si (upper right figure), and (4) is Ti.
  • Mapping diagrams (lower center diagram) and (5) are Ta mapping diagrams (lower right diagram).
  • the measurement region of this EPMA includes the first phase and the second phase. However, referring to the respective drawings in FIG. 8, they are contained in the respective phases. It can be seen that the amount of elements is different. For example, it can be seen that the contents of Ni, Si, and Ta differ between the two phases, and there is not much difference in the Ti content.
  • Example Sample 7 In addition to Example Sample 7, each sample was also subjected to EPMA measurement, and a point analysis was performed on its parent phase (first phase). The results are shown in Table 6.
  • the Ta content of the parent phase (first phase) in Example Samples 6 and 7 is 5.6 to 5.7 at. %
  • the upper limit of the Ta content of the parent phase (first phase) is 5 to 6 at. %It can be seen that it is.
  • the solid solubility limit of Ta in the Ni 3 (Si, Ti) alloy is 5 to 6 at. %It can be seen that it is.
  • FIG. 9 shows the result.
  • FIG. 9 is a graph showing the results of the Vickers hardness test of Demonstration Experiment 2, and is a graph showing the relationship between the Vickers hardness and the Ta content. Each axis is the same as in Experiment 1.
  • the Ta content is 6.0 at. %
  • the value of Vickers hardness increases with increasing Ta content, and the Ta content is 6.0 at. If it exceeds%, the value of Vickers hardness does not increase so much, and it is understood that it is almost constant. From the point analysis results of EPMA measurement in Table 6, it was found that the content of Ta in the matrix phase became almost constant when the solid solubility limit was exceeded. The results of this Vickers hardness test showed that the Ta content in the matrix phase It is considered that the content is almost constant and solid solution strengthening does not progress any further.
  • FIG. 7 is a table showing the lattice constant of each sample
  • FIG. 10 is a graph showing the relationship between the Ta content, Vickers hardness, and lattice constant.
  • Lattice constants shown in Table 7 and FIG. 10 is a lattice constant of the crystal lattice of the L1 2 phase was calculated from the X-ray measurement results of FIG. 6 (Comparative Sample and X-ray diffraction profile of the example sample).
  • the lattice constant tends to increase as the Vickers hardness increases. That is, the lattice distortion when Ta is dissolved in the L1 2 phase occurs, hardness by solid solution strengthening of the Ta is considered to have increased.
  • FIG. 11 shows the results together with the results of the room temperature Vickers hardness test.
  • FIG. 11 is a graph showing the change in Vickers hardness of each sample at a high temperature, and shows the change in Vickers hardness for the comparative sample and the example samples 2, 4 and 7.
  • (1) is the comparative sample
  • (2) is the example sample 2
  • (3) is the example sample 4
  • (4) is the Vickers hardness of the example sample 7.
  • the example samples 2, 4 and 7 are harder than the comparative sample in all temperature ranges. From this result, it is understood that the hardness of the alloy can be improved in all temperature ranges by including Ta in the Ni 3 (Si, Ti) alloy.
  • the Vickers hardness of these samples is approximately 410 Hv at 800 ° C. for Example Sample 2 and approximately 520 Hv at 300 ° C. for Example Sample 7. These samples are approximately at room temperature and the above high temperature range.
  • the Vickers hardness was 410 Hv to about 520 Hv.
  • Example Sample 7 is larger than that of Example Samples 2 and 4. From this result, it can be seen that the L1 2 single-phase structure is superior in high-temperature hardness characteristics than the structure having the second phase (two-phase structure).
  • FIG. 12 is a graph showing the relationship between Ta content, tensile strength (Tensile Strength), 0.2% proof stress (0.2% Proof Stress), and elongation (Elongation) of a sample.
  • the horizontal axis indicates the Ta content (at.%) Of each sample, the left vertical axis indicates the tensile strength or 0.2% yield strength (MPa), and the right vertical axis indicates the elongation (%).
  • Example Samples 1 to 7 are superior in tensile strength and 0.2% proof stress to Comparative Example samples. From this result, it is understood that the tensile strength and 0.2% proof stress of the alloy can be improved by adding Ta to the Ni 3 (Si, Ti) alloy. By including Ta in this alloy, the maximum tensile strength and 0.2% proof stress were improved by about 200 MPa.
  • both the comparative sample and the example samples 1 to 6 maintain the elongation of about 30%.
  • the Ni 3 (Si, Ti) alloy described in Patent Document 2 Japanese Patent Laid-Open No. 5-320794
  • Patent Document 2 Japanese Patent Laid-Open No. 5-320794
  • Example Sample 7 has a 0.2% yield strength improvement as compared with Example Samples 1 to 6, but has a reduced tensile strength and elongation.
  • FIG. 13 shows the result.
  • FIG. 13 is a photograph showing a fracture surface of the comparative example sample and the example samples 5 and 7 after the tensile test, in which (1) in FIG. 13 is the comparative example sample, (2) is the example sample 5, (3). Shows the fracture surface of Example Sample 7.
  • the comparative sample exhibits a dimple-like ductile fracture surface
  • the example sample 5 also has a dimple-like fracture mode, but the unevenness thereof exhibits a shallow fracture surface.
  • Example Sample 7 there are many regions exhibiting a brittle fracture surface that breaks at a specific crystal plane. From this observation, it was found that when Ta is contained in the Ni 3 (Si, Ti) alloy, the tensile strength is improved while the elongation is maintained, although the fracture mode is changed. The Ta content is 7 at. %, It was found that the fracture morphology further changed and the tensile strength decreased. This is considered to be the influence of the second phase.
  • FIG. 14 shows the result.
  • FIG. 14 is a graph showing the relationship between the amount of increase in mass by the oxidation resistance test of the comparative example sample and the example samples 2, 4 and 7 and time, and the comparative example sample, the example sample 2, the example sample 4 and The oxidation resistance test result of the example sample 7 is shown.
  • Example Samples 2 and 4 have a single-phase structure, it can be seen that oxidation resistance is improved when a single-phase structure is formed by adding Ta to the Ni 3 (Si, Ti) alloy.
  • FIG. 15 is a conceptual diagram for explaining the pin-on-disk wear test.
  • the pin 2 to be evaluated is placed on the disk 2, and a load is applied from one end of the pin 2, and the other end of the pin 2 is made to slide on the disk 2.
  • the wear resistance of the pin is evaluated by contacting the surface (the upper surface in FIG. 15) and rotating the disk 2.
  • Carbide (G5) was used for the disk, and the pin 2 was formed in a columnar shape in each sample. Specifically, a cylindrical pin 2 having a height of 15 mm (H shown in FIG. 15) and a diameter of 5 mm (D shown in FIG. 15) is arranged at a distance of 15 mm (X shown in FIG. 15) from the center of the disk. And tested.
  • the pin-on-disk wear test was performed in a room temperature (about 25 ° C.) and in an air atmosphere under conditions of a load of 100 N, a rotation speed of 300 rpm, a test time of 30 minutes, and a total sliding distance of 1413.7 m.
  • the test was a dry wear test in which no lubricating oil was used. Abrasion resistance was evaluated by the amount of reduction in the mass and volume of the pin after the total sliding distance. Table 8 shows the results.
  • Table 8 is a table showing the wear amount, wear volume reduction rate, and wear resistance ratio due to wear of each sample.
  • the amount of wear (Wear mass loss) indicates the amount of mass reduction of the pin by the friction test
  • the wear volume reduction rate (Wear volume loss rate) is the amount of pin volume reduction (unit distance) relative to the sliding distance. The volume reduction of the pin per contact).
  • the wear resistance ratio is a ratio (index) indicating the quality of wear resistance of each sample when the comparative sample is 1.
  • FIG. 16 is a graph showing the wear resistance ratio of each sample.
  • the wear resistance ratio is the reciprocal of the value obtained by dividing the wear volume reduction amount of each sample in Table 8 by that of the comparative sample, and the larger this value, the better the wear resistance.
  • the wear resistance of the alloy at room temperature is improved.
  • the Ta content is 4 at. % Or more, the wear resistance of the alloy is remarkably improved.
  • the wear resistance of the alloy at room temperature largely depends on the hardness, the Ta content is 2 at. % More than 4 at. It can be seen that the wear resistance varies greatly within the range of% or less.
  • the example sample has hardness (strength) characteristics superior to those of the comparative example sample.
  • this demonstration experiment 2 proved that the example samples had hardness (strength) characteristics superior to those of the comparative example samples even at high temperatures, and particularly excellent tensile strength and oxidation resistance characteristics in the case of a single phase structure.
  • the Ta content is 2 at. It has also been demonstrated that the wear resistance is excellent when the content is more than%.
  • Ni 3 (Si, Ti) -based intermetallic compound exhibits excellent hardness at room temperature and excellent wear resistance
  • Ni 3 (Si, Ti) suitable for friction parts is used.
  • ) -Based intermetallic compounds can be provided.
  • the Ni 3 (Si, Ti) intermetallic compound of the present invention maintains a ductility equal to or higher than that of the conventional Ni 3 (Si, Ti) intermetallic compound.
  • a Ni 3 (Si, Ti) -based intermetallic compound having excellent characteristics as a structure can be provided.
  • this Ni 3 (Si, Ti) intermetallic compound maintains excellent hardness not only at normal temperature but also at high temperature, so it is very useful as a material for machine elements for high temperature, and is also resistant to oxidation. Since it is excellent in properties, it is more useful in a high-temperature environment that is easily oxidized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

優れた硬さ(強度)特性を備える構造材料を提供する。本発明によれば、10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有し、L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有することを特徴とするNi3(Si,Ti)系金属間化合物が提供される。

Description

Taが添加されたNi3(Si,Ti)系金属間化合物
 この発明は、Taが添加されたニッケル系金属間化合物に関し、特に、Ni3(Si,Ti)を基本組成とする金属間化合物(以下,「Ni3(Si,Ti)系金属間化合物」と呼ぶ。)に関する。
 ニッケル系金属間化合物であるNi3Si金属間化合物は、高温強度、耐食性、耐酸化性などに優れた特性を有している。しかし、Ni3Si金属間化合物は、粒界割れを起こしやすいため、常温で、より塑性加工が容易な金属間化合物が求められている。そこで、このNi3Si金属間化合物を改良する研究開発が進められている。例えば、加工性、特に、常温延性を有する金属間化合物として、ニッケル系金属間化合物であるNi3(Si,Ti)系金属間化合物が知られている(例えば、非特許文献1及び2参照)。
 このようなNi3(Si,Ti)系金属間化合物には、例えば、鋳造用ニッケル系金属間化合物として、Ni、Si、Ti、Cを含有し、さらに、Hf及びZrの何れか又は双方を含む金属間化合物が知られており、この金属間化合物が、時計側部材等として良好な鋳造性を示す(ダイキャスト法やロストワックス法に適する)ことが知られている(例えば、特許文献1参照)。
 また、耐食性に優れるとともに構造材として十分に満足できる延性、加工性をも兼備したNi3(Si,Ti)基合金材料として、Ni、Si、Ti、Cu、Ta及びBを含有する金属間化合物が知られている(例えば、特許文献2参照)。この金属間化合物は、TaとCuを複合添加されることにより、良好な延性が確保され、硫酸精製装置等の構造材料として有用とされている。
特開平5-320793号公報 特開平5-320794号公報 特開平4-268037号公報 特開平6-33174号公報 特開平4-246144号公報
T. Takasugi et al., Journal of Materials Science 26, pp.1173-1178 (1991) T. Nakamura et al., Materials Science and Engineering A 383(2004)259-270
 しかし、これらのニッケル系金属間化合物が構造材料として用いられる場合、さらに機械的、化学的特性を向上することが望まれる。例えば、ニッケル系金属間化合物で形成される構造物が精密鋳造法のほか、例えば塑性加工で製造される場合、延性等の加工性の向上が望まれる。また、ニッケル系金属間化合物が酸を扱う装置に用いられる場合、化学的特性も維持することが望まれる。このため、十分な化学的特性や機械的特性(例えば、延性)を備えるニッケル系金属間化合物が望まれている。また、高温で用いられる機械要素の構造材料の場合、前述のNi3(Si,Ti)系金属間化合物と同様の延性を維持しつつ、さらに優れた硬さ(強度)特性を備える材料が求められている。さらに、摺動部品の構造材料の場合、優れた耐摩耗性を備える材料が求められている。
 この発明はこのような事情に鑑みてなされたものであり、十分な化学的特性や機械的特性を備えるニッケル系金属間化合物を提供するものである。また、この発明は優れた硬さ(強度)特性を備える構造材料を提供し、さらに、優れた耐摩耗性を備える構造材料を提供するものである。
 この発明によれば、10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有し、L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有することを特徴とするNi3(Si,Ti)系金属間化合物が提供される。
 この発明の発明者らは、Ni3(Si,Ti)中のTiが耐酸化性を劣化させる要因となっていることを勘案して、Tiに代えて高融点金属元素を添加することを発案し、この案について鋭意研究を行った。その結果、Ni,Si,Ti及びBに加え、さらにTaを含むNi3(Si,Ti)系金属間化合物が、Ni,Si及びTiからなる金属間化合物よりも優れた硬さ(強度)を備えることを見出し、この発明の完成に到った。この発明のNi3(Si,Ti)系金属間化合物は、優れた硬さ(強度)を備えるので、機械要素などの構造材料に好適に用いることができる。
 以下、この発明の一実施形態を説明する。以下の記述中で示す構成は、例示であって、この発明の範囲は、以下の記述中で示すものに限定されない。なお、この明細書において、「~」は、端の点を含む。
実施例試料2のSEM写真である。 実施例試料2のX線回折プロファイルである。上段が比較例試料の一例であるHf添加試料(参考試料)のX線回折プロファイルであり、下段が実施例試料2のX線回折プロファイルである。 実施例試料2のEPMA元素マッピング図である。 実証実験1におけるビッカース試験の結果であり、ビッカース硬さとTaの含有量との関係を示したグラフである。 比較例試料及び実施例試料のSEM写真である。 比較例試料及び実施例試料1~7のX線回折プロファイルである。 実施例試料7のX線回折プロファイルを拡大した図である。 実施例試料7のEPMA元素マッピング図である。 実証実験2のビッカース硬さ試験の結果を示すグラフであり、ビッカース硬さとTaの含有量との関係を示したグラフである。 Taの含有量とビッカース硬さ及び格子定数との関係を示したグラフである。 比較例試料並びに実施例試料2,4及び7の高温におけるビッカース硬さの変化を示すグラフである。 試料のTa含有量と引張強度(Tensile Strength)、0.2%耐力(0.2% Proof Stress)及び伸び(Elongation)の関係を示すグラフである。 引張試験後の比較例試料並びに実施例試料5及び7の破断面を示す写真である。 比較例試料並びに実施例試料2,4及び7の耐酸化性試験による質量増加量と時間との関係を示すグラフである。 ピンオンディスク式摩耗試験を説明するための概念図である。 比較例試料を1としたときの、比較例試料並びに実施例試料2,4及び7の耐摩耗比を示すグラフである。
 この発明のNi3(Si,Ti)系金属間化合物は、1つの観点に従うと、主成分であるNi、7.5~12.5原子%のSi、1.5~10.5原子%のTi及び1.0~10.0原子%のTaを含む合計100原子%の組成を有する金属間化合物の重量に対して25~500重量ppmのBを含有することを特徴とする。
 この発明によれば、優れた硬さ(強度)を備えるNi3(Si,Ti)系金属間化合物が提供される。
 また、この発明の実施形態において、上記発明の構成に加え、室温から800℃の温度範囲におけるビッカース硬さが410~520であってもよい。ここで、前記ビッカース硬さは、荷重300g,500g又は1kgで測定される。
 また、この発明の実施形態において、主成分であるNi、10.0~12.0原子%のSi、1.5~9.5原子%のTi及び1.0~9.0原子%のTaを含む合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。または、主成分であるNi、10.0~12.0原子%のSi、2.5~8.5原子%のTi及び1.0~7.0原子%のTaを含む合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。
 また、この発明の実施形態において、主成分であるNi、10.0~12.0原子%のSi、2.5~6.5原子%のTi及び3.0~7.0原子%のTaを含む合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。
 さらに、この発明の実施形態において、主成分であるNi、10.0~12.0原子%のSi並びにTi及びTaが合計で9.0~11.5原子%を含む合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。
 また、この発明のNi3(Si,Ti)系金属間化合物は、別の観点に従うと、10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有し、L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有することを特徴とする。
 この発明によれば、硬さ(強度)に優れ、耐摩耗性を備えるNi3(Si,Ti)系金属間化合物が提供される。
 なお、この発明は、10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有し、L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有する摺動部品用Ni3(Si,Ti)系金属間化合物であってもよく、前記組成及び組織を有するNi3(Si,Ti)系金属間化合物の摺動部品材料(又は、耐摩耗性金属材料)としての使用であってもよい。また、前記組成の材料を溶解し、鋳造して摺動部品を形成する方法であってもよいし、Ni3(Si,Ti)系金属間化合物を鋳造し、鋳造されたNi3(Si,Ti)系金属間化合物で摺動部品を形成する方法であってもよい。例えば、摺動部品は、鋳造されたNi3(Si,Ti)系金属間化合物を切削して形成する。
 また、この発明の実施形態において、10.0以上12.0以下原子%のSi、1.5以上5.5以下原子%のTi、4.0以上8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。また、10.0以上12.0以下原子%のSi、2.5以上5.5以下原子%のTi、4.0以上7.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよい。
 これらの実施形態によれば、より硬さに優れ、より摩耗に強いNi3(Si,Ti)系金属間化合物が提供される。
 また、この発明の実施形態において、10.0以上12.0以下原子%のSi、2.5以上6.5以下原子%のTi、3.0以上7.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有し、L12相からなる組織、又はL12相とNi及びTaを含む第2相分散物とからなる組織を有するNi3(Si,Ti)系金属間化合物であってもよい。また、10.0~12.0原子%のSi、並びに合計で9.0~11.5原子%のTi及びTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有するNi3(Si,Ti)系金属間化合物であってもよいし、また、荷重300g,500g又は1kgで測定したビッカース硬さが410~520であってもよい。ここで、このビッカース硬さは、室温(約25℃)で測定されてもよい。
 これらの実施形態によれば、より硬さに優れるNi3(Si,Ti)系金属間化合物が提供される。
 また、この発明のNi3(Si,Ti)系金属間化合物は、さらに別の観点に従うと、10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有し、L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有するNi3(Si,Ti)系金属間化合物であって、Ta最大含有量が6.0原子%であることを特徴とする。
 この発明によれば、延性又は耐酸化特性に優れるNi3(Si,Ti)系金属間化合物が提供される。
 また、これらの発明のNi3(Si,Ti)系金属間化合物において、合計で19.0~21.5原子%のSi、Ti及びTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有する形態であってもよい。
 このような形態であれば、Niの含有量がほぼ78.5~81.0原子%となるので、実質的にL12相のみからなる組織、又は、実質的にL12相と、Ni及びTaを含む第2相分散物とのみからなる組織が形成される。このため、硬さに優れるとともに、耐摩耗性、延性又は耐酸化特性に優れる。
 以下、これらの実施形態の各元素について詳述する。なお、この明細書において「~」の記載は、特に記載がない限り、数値範囲の両端を含む。
 Niの含有量は、例えば,78.5~81.0原子%であり、好ましくは,78.5~80.5原子%である。Niの具体的な含有量は、例えば,78.5,79.0,79.5,80.0,80.5又は81.0原子%である。Niの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 Siの含有量は、7.5~12.5原子%であり、好ましくは、10.0~12.0原子%である。Siの具体的な含有量は、例えば,7.5,8.0,8.5,9.0,9.5,10.0,10.5,11.0,11.5,12.0又は12.5原子%である。Siの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 Tiの含有量は、1.5~10.5原子%であり、好ましくは、1.5~9.5原子%である。より好ましくは、2.5~6.5原子%である。Tiの具体的な含有量は、例えば,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5,10.0又は10.5原子%である。Tiの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 また、硬さ及び耐摩耗性の観点から、好ましくは、1.5以上7.5未満原子%、より好ましくは、1.5~5.5原子%であり、さらに好ましくは、2.5~5.5原子%である。これらの範囲であれば、硬さ及び耐摩耗性に優れる。
 Taの含有量は、1.0~10.0原子%であり、好ましくは、1.0~9.0原子%である。より好ましくは、3.0~7.0原子%である。Taの具体的な含有量は、例えば,1.0,1.5,2.0,2.5,3.0,1.5,2.0,2.5,3.0,3.5,4.0,4.5,5.0,5.5,6.0,6.5,7.0,7.5,8.0,8.5,9.0,9.5又は10.0原子%である。Taの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 また、硬さ及び耐摩耗性の観点から、好ましくは、2.0より多く8.0以下原子%、より好ましくは、4.0~8.0原子%であり、さらに好ましくは、4.0~7.0原子%である。これらの範囲であれば、硬さ及び耐摩耗性に優れる。
 また、Ti及びTaの含有量は、Ti及びTaが合計で9.0~11.5原子%であってもよい。例えば、Ti及びTaの含有量の合計は、9.0,9.5,10.0,10.5,11.0又は11.5原子%である。Ti及びTaの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 また、Si,Ti及びTaは、合計で19.0~21.5原子%であり、好ましくは,19.5~21.5原子%である。
 上記各元素の含有量は、Ni,Si,Ti及びTaの含有量の合計が100原子%になるように適宜調整される。
 Bの含有量は、25~500重量ppm,好ましくは,25~100重量ppmである。Bの具体的な含有量は、例えば,25,40,50,60,75,100,150,200,300,400又は500重量ppmである。Bの含有量の範囲は、ここで例示した数値の何れか2つの間であってもよい。
 この発明の実施形態に係る金属間化合物の具体的な組成は、例えば、表1~3に示す組成に上記含有量のBを添加したものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 なお、この実施形態に係るNi3(Si,Ti)系金属間化合物は、実質的にNi、Si、Ti、B及びTaの元素からなってもよく、これ以外の不純物元素を含んでいてもよい。例えば、上記不純物元素は不可避的不純物であり、実質的にNi、Si、Ti、B及びTaの元素のみからなるNi3(Si,Ti)系金属間化合物であってもよい。
 この発明の一実施形態に係るNi3(Si,Ti)系金属間化合物は,上記実施形態で示した割合の、Ni,Si,Ti及びTaの金属を、加熱することにより溶解し、この溶湯を冷却することにより凝固することで得られる。なお、凝固により得られたNi3(Si,Ti)系金属間化合物に均質化熱処理を行ってもよい。この処理により、元素の偏析をなくし、組織を均一にすることができる。
 また、この実施形態に係るNi3(Si,Ti)系金属間化合物は、荷重300gで測定したビッカース硬さが410~520であってもよい。この発明の実施形態によれば、このようなビッカース硬さのNi3(Si,Ti)系金属間化合物を得ることができる。
 次に、効果実証実験について説明する。
  〔実証実験1〕
  (金属間化合物の作製)
(1)鋳塊試料作製工程
 表4は、実証実験1で作製した7種類の金属間化合物の組成、および比較のために作製した金属間化合物の組成を示した表である。表4に記載しているように、この実証実験1では、Ti及びTaの合計含有量が一定となるように、これらの金属間化合物の組成を定めた。ここで、比較のために作製した金属間化合物は、特許文献1に開示されている金属間化合物である。
Figure JPOXMLDOC01-appb-T000004
 まず、表4に示した8種類の組成になるようにそれぞれの金属(それぞれの純度は99.9重量%以上)及びBを秤量した。次いで、これらの秤量された金属及びBをアーク溶解炉で溶解、鋳造して、約130gの重さの鋳塊を作製した。アーク溶解炉の雰囲気は、溶解室内を真空排気し、その後不活性ガス(アルゴンガス)に置換した。電極は、非消耗タングステン電極を用い、鋳型には水冷式銅ハースを使用した。
(2)均質化熱処理工程
 次いで、上記鋳塊を均質化するために、真空中で48時間、1050℃で保持する均質化熱処理工程を行った。以上により、試料を作製した。
 なお、Taを含む試料が本発明の実施例であり、例えば、Taの含有量が2at.%の場合、「実施例試料2」というように、以下、「実施例試料」Taの含有量を示す数字を付して呼ぶ。また、Taを含んでいない試料を「比較例試料」と呼ぶ。
 次に、評価方法及び評価結果について説明する。
(1)組織観察
 まず、上記のようにして作製した実施例試料について、組織のSEM写真の撮影を行った。図1にその写真を示す。図1は実施例試料2のSEM写真である。
 図1を参照すると、実施例試料2は、粒径が数百ミクロンの結晶粒で構成される単相組織を呈していることがわかる。なお、この実施例試料2のビッカース硬さは、434Hvであった。
 次に、実施例試料について、組織中の構成相を同定するためX線測定を行った。図2にその結果を示す。図2は、実施例試料2のX線回折プロファイルである。参考として,Ni77.5Si11.0Ti9.5Hf2.0+50wt.ppm(B以外はat.%である。以下「Hf添加試料」と呼ぶ。)のX線回折プロファイルも同時に示す。上段がHf添加試料のX線回折プロファイルであり、下段が実施例試料2のX線回折プロファイルである。なお、図の中の点は、既知の材料であるNi3(Si,Ti)(比較例試料)、Ni3Hf、Ni5Hfのプロファイルのピーク位置である。●(円形状)の点がNi3(Si,Ti)の、△(三角形状)の点がNi3Hfの、□(四角形状)の点がNi5Hfの、プロファイルのピーク位置である。また、ここに示したHf添加試料は、実施例試料と同じ方法で作製している。
 図2を参照すると、実施例試料2のX線回折プロファイルは、Ni3(Si,Ti)のプロファイルのピーク位置と一致していることがわかる。実施例試料2は、単相組織であることからすると、この結果から、実施例試料2の構成相は、L12相であると同定できる。
 なお、Hf添加試料は、Ni3(Si,Ti)のほか、Ni3Hf、Ni5Hfのプロファイルのピーク位置とそのプロファイルが一致していた。Hf添加試料は、実施例試料2と異なり、Ni3Hf、Ni5Hfの相が分散していた。
 さらに、実施例試料について、組織分析のためにEPMA測定も行った。図3にその結果を示す。図3は、実施例試料2のEPMA元素マッピング図である。図3の左上の図がSEM写真、右上の図がNiのマッピング図、中央左の図がSiのマッピング図、中央右の図がTiのマッピング図、左下の図がTaのマッピング図、右下の図がBマッピング図である。
 図3に示されるように、Niのマッピングをはじめ、どの元素のマッピングでも組織全体にわたり均一な組成となっていることがわかる。なお、このEPMA測定で点分析を行ったところ、表5に示すように、ほぼ秤量されたとおりの組成であった。
Figure JPOXMLDOC01-appb-T000005
(2)ビッカース硬さ試験
 次に、各試料についてビッカース硬さ試験を行った。ビッカース硬さ試験は、室温で、各試料に正4角錐のダイヤモンド製圧子を押し込むことによって行った。この試験では、荷重は300gを主として用い、保持時間は20秒とした。図4にその結果を示す。図4は、ビッカース硬さとTaの含有量との関係を示したグラフである。横軸はTaの含有量であり、最も左の測定点が比較例試料、その他の測定点が実施例試料に対応している。
 図4を参照すると、実施例試料はいずれも比較例試料以上のビッカース硬さを有していることがわかる。比較例試料のNi3(Si,Ti)にTaを含有させると、試料の硬さが増し、Taの含有量が増すに従いビッカース硬さの値も増していることがわかる。
 以上の実証実験1から、実施例試料が比較例試料よりも優れた硬さ(強度)特性を備えることが実証された。
〔実証実験2〕
 さらに、実証実験1と同じ組成(上記表4と同じ組成)の試料を実証実験と同じ方法で作製し、(1)組織観察、(2)室温ビッカース硬さ試験、(3)高温ビッカース硬さ試験、(4)室温引張試験、(5)耐酸化性試験、(6)摩耗試験を行った。
(1)組織観察
 まず、作製された実施例試料について、組織のSEM写真の撮影を行った。図5にその写真を示す。図5は比較例試料及び実施例試料のSEM写真であり、図5の(1)が比較例試料、(2)が実施例試料5、(3)が実施例試料6、(4)が実施例試料7のSEM写真である。また、図5の(5)は実施例試料7の第2相を拡大したSEM写真である。
 図5を参照すると、実証実験1の図1と同様に、比較例試料及び実施例試料5が単相組織であることがわかる。これらの試料と他の実施例試料の観察から、Taの含有量が5.0at.%まではTaが固溶して単相組織を形成することがわかった。
 また、図5を参照すると、実施例試料6及び7は、母相(マトリックス)である第1相の組織中に第2相が分散していることがわかる。すなわち、実施例試料6及び7は、第1相と第2相で構成され、第1相に第2相が分散していることがわかる。Taの含有量が6.0at.%になると(実施例試料6)、微量の板状の第2相が観察され(その形状は図5(5)参照)、さらにTaの含有量が7.0at.%になると(実施例試料7)、第2相の体積率(組織中で第2相が占める割合)が増加する現象が観察された。また、第2相が出現すると第2相の影響で、L12相の結晶粒径がやや小さくなることも観察された。
 次に、これら実施例試料について、組織中の構成相を同定するためX線測定を行った。図6及び図7にその結果を示す。図6は、比較例試料及び実施例試料1~7のX線回折プロファイルである。図6において、▼(逆三角形状)の点が、既知の材料であるNi3(Si,Ti)(この材料はL12相からなる)のプロファイルのピーク位置を示す点であり、その上の数値は、その回折結晶面の面指数である。また、図7は、実施例試料7のX線回折プロファイルを拡大した図であり、実施例試料7の相を同定するために図6とは別に測定したものである。図7において、図6と同様に▼(逆三角形状)の点が、Ni3(Si,Ti)のプロファイルのピーク位置を示す点である。また●(円形状)の点がNi3Taのプロファイルのピーク位置を示す点である。
 図6を参照すると、各試料のX線回折プロファイルがNi3(Si,Ti)のプロファイルのピーク位置と一致しており、これらの試料がL12相で構成されていることがわかる。この結果に上記SEM観察結果(図5)もあわせて考慮すると、比較例試料及び実施例試料2~5の単相組織がL12相であり、実施例試料6及び7の母相(第2相の間を占める第1相)もL12相であることがわかる。
 また、図7を参照すると、実施例試料7のX線回折プロファイルがNi3(Si,Ti)のほか、Ni3Taのプロファイルのピーク位置と一致していることがわかる。この結果から、実施例試料7が、L12相(第1相)とNi3Taの第2相(Ni及びTaを含む相)とで構成されていることがわかる。この結果から、図5で観察された第2相がNi3Taであることが同定された。
 なお、この測定において、Ni3(Si,Ti)及びNi3Taのプロファイルにおけるピーク位置以外の位置で、明確なピークは観察されず、実施例試料7は実質的にL12相とNi3Taの第2相とのみからなることがわかった。
 次に、比較例試料及び各実施例試料についてEPMA測定を行った。図8にその結果を示す。図8は、実施例試料7のEPMA元素マッピング図である。図8の(1)がSEM写真(左上の図)、(2)がNiのマッピング図(中央上の図)、(3)がSiのマッピング図(右上の図)、(4)がTiのマッピング図(中央下の図)、(5)がTaのマッピング図(右下の図)である。
 図8の(1)から明らかなように、このEPMAの測定領域には第1相と第2相が含まれているが、図8の各図を参照すると、それぞれの相に含有されている元素の量が異なることがわかる。例えば、Ni,Si及びTaの含有量は2つの相の間でその含有量が異なり、Tiの含有量であまり違いがないことがわかる。
 また、実施例試料7のほか、各試料についてもEPMA測定を行い、その母相(第1相)について点分析を行った。その結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6を参照すると、実施例試料6及び7における母相(第1相)のTa含有量は5.6~5.7at.%であり、母相(第1相)のTa含有量の上限は、5~6at.%であることがわかる。この結果及び図5から、Ni3(Si,Ti)合金のTaの固溶限は5~6at.%であることがわかる。
 (2)室温ビッカース硬さ試験
 次に、実証試験1と同様に各試料についてビッカース硬さ試験を行った。ビッカース硬さ試験の条件は、荷重1kgで、保持時間20秒とした(室温約25℃)。図9にその結果を示す。図9は、実証実験2のビッカース硬さ試験の結果を示すグラフであり、ビッカース硬さとTaの含有量との関係を示したグラフである。各軸は、実証実験1と同じである。
 図9を参照すると、Taの含有量が6.0at.%を超えるまで、ほぼTaの含有量の増加とともにビッカース硬さの値が増加し、Taの含有量が6.0at.%を超えると、ビッカース硬さの値は、あまり上昇せず、ほぼ一定となることがわかる。表6のEPMA測定の点分析結果から、固溶限を超えると母相中のTaの含有量がほぼ一定となることがわかったが、このビッカース硬さ試験の結果は母相中のTaの含有量がほぼ一定となり、固溶強化がこれ以上進まないことによるものと考えられる。
 また、ビッカース硬さと格子定数との相関関係も調べた。表7及び図10にその結果を示す。表7は、各試料の格子定数を示す表であり、図10は、Taの含有量とビッカース硬さ及び格子定数との関係を示したグラフである。表7及び図10に示す格子定数は、L12相の結晶格子の格子定数であり、図6のX線測定結果(比較例試料及び各実施例試料のX線回折プロファイル)から算出した。
Figure JPOXMLDOC01-appb-T000007
 表7及び図10を参照すると、ビッカース硬さの上昇に応じて格子定数が大きくなる傾向にあることがわかる。すなわち、L12相にTaが固溶すると格子ひずみが生じ、このTaの固溶強化によって硬さが上昇したものと考えられる。
 (3)高温ビッカース硬さ試験
 次に、各試料について、高温(300℃、500℃、600℃及び800℃)でビッカース硬さ試験を行った。ビッカース硬さ試験は、荷重1kg、保持時間20秒で行い、還元雰囲気中(Ar+約10%H2)にて毎分10℃で昇温させて測定した。図11に、上記室温ビッカース硬さ試験の結果とともにその結果を示す。図11は、各試料の高温におけるビッカース硬さの変化を示すグラフであり、比較例試料並びに実施例試料2,4及び7について、そのビッカース硬さの変化を示している。図11において(1)が比較例試料、(2)が実施例試料2、(3)が実施例試料4、(4)が実施例試料7のビッカース硬さを示している。
 図11を参照すると、すべての温度領域で比較例試料よりも実施例試料2,4及び7のほうが硬いことがわかる。この結果から、Ni3(Si,Ti)合金にTaを含有させることにより、すべての温度領域で合金の硬さを向上させることができることがわかる。
 なお、これらの試料のビッカース硬さは、実施例試料2が800℃で約410Hv、実施例試料7が300℃で約520Hvであり、これらの試料は、室温及び上記高温の温度範囲で、約410Hv~約520Hvのビッカース硬さであった。
 また、図11を参照すると、すべての合金が硬さの逆温度依存性を示すことがわかる。すなわち、これらの合金は、温度が上昇するとその硬さが逆に上昇する性質を備えていることがわかる。通常の合金は、温度が上昇するとともにビッカース硬さの値が小さくなるが、実施例試料は、比較例試料同様に、特異的な性質を示している。
 さらに、800℃での軟化量を比較すると、実施例試料2及び4よりも実施例試料7のほうがその軟化量が大きいことがわかる。この結果から、L12単相組織のほうが、第2相をもつ組織(2相組織)よりも高温硬さ特性が優れることがわかる。
 (4)室温引張試験
 次に、各試料について、引張試験を行った。引張試験は、ゲージ部が10×2×1mm3の試験片を用いて、室温、真空中、歪み速度1.66×10-4-1の条件で行った。その結果を図12に示す。図12は、試料のTa含有量と引張強度(Tensile Strength)、0.2%耐力(0.2% Proof Stress)及び伸び(Elongation)の関係を示すグラフである。図12において、横軸が各試料のTa含有量(at.%)を示し、縦軸左が引張強度又は0.2%耐力(MPa)、縦軸右が伸び(%)を示している。
 図12を参照すると、比較例試料よりも実施例試料1~7のほうが引張強度及び0.2%耐力ともに優れていることがわかる。この結果から、Ni3(Si,Ti)合金にTaを含有させることにより、合金の引張強度及び0.2%耐力を向上させることができることがわかる。この合金にTaを含有させることにより、最大で約200MPa、引張強度及び0.2%耐力が向上した。
 また、図12を参照すると、比較例試料及び実施例試料1~6は、ともに約30%の伸びを維持していることがわかる。例えば、特許文献2(特開平5-320794)に記載のNi3(Si,Ti)合金は、その伸びが1~6%又は12~24%であり、このような従来の金属間化合物と比較しても、これらの合金が機械要素の構造材料として十分な延性を備えることがわかる。一方、実施例試料7は、実施例試料1~6と比べて0.2%耐力が向上するものの、引張強度及び伸びが低下していることがわかる。
 この結果から、(1)Ni3(Si,Ti)合金にTaを含有させることにより、合金の伸びはやや減少するものの、約30%の伸びを維持すること、及び(2)Ta含有量が7at.%に達すると、引張強度及び伸びが低下すること、が明らかとなった。
 次に、上記引張試験後、各試料について、その破断面を観察した。図13にその結果を示す。図13は、引張試験後の比較例試料並びに実施例試料5及び7の破断面を示す写真であり、図13の(1)が比較例試料、(2)が実施例試料5、(3)が実施例試料7、の破断面を示している。
 図13を参照すると、比較例試料がディンプル状の延性破面を呈し、実施例試料5でもディンプル状の破壊形態であるものの、それらの凹凸は浅い破面を呈していることがわかる。また、実施例試料7では特有な結晶面で破断する脆性的な破面を呈する領域が多いことがわかる。この観察から、Ni3(Si,Ti)合金にTaを含有させると、破壊形態が変化するものの、伸びが維持された状態で引張強度が向上することがわかった。また、Ta含有量が7at.%に達すると、さらに破壊形態が変化し、引張強度が低下することがわかった。これは第2相の影響と考えられる。
 (5)耐酸化性試験
 次に、各試料について耐酸化性試験を行った。耐酸化性試験は、TG-DTA(Thermogravimetry‐Differential Thermal Analysis)によって行った。具体的には、900℃で大気暴露したときの、試料の単位表面積当たりの質量増加量を測定することによって行った。図14にその結果を示す。
 図14は、比較例試料並びに実施例試料2,4及び7の耐酸化性試験による質量増加量と時間との関係を示すグラフであり、比較例試料、実施例試料2、実施例試料4及び実施例試料7の耐酸化性試験結果を示している。
 図14を参照すると、比較例試料よりも実施例試料2及び4のほうが、酸化による質量増加量が小さいことがわかる。例えば、1000分を越えると、実施例試料4、実施例試料2、比較例試料、実施例試料7、の順で質量増加量が小さくなっている。実施例試料2及び4が単相組織である事実から、Ni3(Si,Ti)合金にTaを含有させて単相組織を形成させると、耐酸化性が向上することがわかる。
 (6)摩耗試験
 次に、各試料について摩耗試験を行った。この実証実験2で行った摩耗試験は、ピンオンディスク式摩耗試験であり、その試験方法を図15に示す。
 図15は、ピンオンディスク式摩耗試験を説明するための概念図である。
 図15に示すように、ピンオンディスク式摩耗試験は、ディスク2上に評価対象のピン2を配置し、ピン2の一端から荷重を加えた状態で、ピン2の他端をディスク2のすべり面(図15の上面)に接触させるとともに、ディスク2を回転させて、ピンの耐摩耗性を評価する試験である。ディスクには、超硬(G5)を用い、ピン2は各試料で円柱状に形成した。具体的には、高さが15mm(図15に示すH)、直径が5mm(図15に示すD)の円柱状のピン2をディスクの中心から15mmの距離(図15に示すX)に配置して試験を行った。ピンオンディスク式摩耗試験は、室温(約25℃)、大気雰囲気中で、荷重100N、回転数300rpm、試験時間30分、総すべり距離1413.7mの条件で行った。試験は潤滑油を採用しない乾燥摩耗試験とした。耐摩耗性は、上記総すべり距離後のピンの質量及び体積の減少量で評価した。表8にその結果を示す。
 表8は、各試料の摩耗による、摩耗量、摩耗体積減少率及び耐摩耗比を示す表である。ここで、表8において、摩耗量(Wear mass loss)は、摩擦試験によるピンの質量減少量を示し、摩耗体積減少率(Wear volume loss rate)は、すべり距離に対するピンの体積減少量(単位距離当たりのピンの体積減少量)を示している。また、耐摩耗比は、比較例試料を1としたときの各試料の耐摩耗性の良否を示す比(指標)である。
Figure JPOXMLDOC01-appb-T000008
  また、表8の耐摩耗比の結果を図16に示す。図16は、各試料の耐摩耗比を示すグラフである。ここで、耐摩耗比は、表8の各試料の摩耗体積減少量を比較例試料のそれで割って得た値の逆数であり、この値が大きいほど耐摩耗性に優れることを意味する。
 図16を参照すると、Ni3(Si,Ti)合金にTaを含有させることにより、室温における合金の耐摩耗性が向上することがわかる。特にTa含有量が4at.%以上で合金の耐摩耗性が顕著に向上している。室温における合金の耐摩耗性は、硬さに大きく依存しているものと考えられるが、図16の結果から、Ta含有量が2at.%より多く4at.%以下の範囲で、耐摩耗性が大きく変化することがわかる。
 以上の実証実験2から、実証実験1と同様に、実施例試料が比較例試料よりも優れた硬さ(強度)特性を備えることが実証された。また、この実証実験2により、実施例試料が高温においても比較例試料より優れた硬さ(強度)特性を備え、特に単相組織の場合、引張強度や耐酸化特性に優れることが実証された。さらに、Ta含有量が2at.%より多い場合に耐摩耗性に優れることも実証された。
 このNi3(Si,Ti)系金属間化合物は、常温において、優れた硬さを示すとともに、耐摩耗性に優れるので、この発明によれば、擦動部品に適したNi3(Si,Ti)系金属間化合物が提供できる。また、この発明のNi3(Si,Ti)系金属間化合物は、従来のNi3(Si,Ti)系金属間化合物と同等又はそれ以上の延性を維持するので、この発明によれば、機械構造物としての特性に優れるNi3(Si,Ti)系金属間化合物を提供することができる。
 また、このNi3(Si,Ti)系金属間化合物は、常温のみならず、高温においても優れた硬さを維持するので、高温用の機械要素の材料にとても有用であり、また、耐酸化特性にも優れるので、酸化しやすい高温環境でより有用である。

Claims (9)

  1. 10.0以上12.0以下原子%のSi、1.5以上7.5未満原子%のTi、2.0より多く8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有し、
    L12相からなる組織、又はL12相と、Ni及びTaを含む第2相分散物とからなる組織を有することを特徴とするNi3(Si,Ti)系金属間化合物。
  2. 室温から800℃の温度範囲におけるビッカース硬さが410~520である請求項1に記載のNi3(Si,Ti)系金属間化合物。
  3. 10.0以上12.0以下原子%のSi、1.5以上5.5以下原子%のTi、4.0以上8.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有する請求項1又は2に記載のNi3(Si,Ti)系金属間化合物。
  4. 10.0以上12.0以下原子%のSi、2.5以上5.5以下原子%のTi、4.0以上7.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有する請求項1~3のいずれか1つに記載のNi3(Si,Ti)系金属間化合物。
  5. 10.0以上12.0以下原子%のSi、2.5以上6.5以下原子%のTi、3.0以上7.0以下原子%のTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有し、
    L12相からなる組織、又はL12相とNi及びTaを含む第2相分散物とからなる組織を有することを特徴とするNi3(Si,Ti)系金属間化合物。
  6. 10.0~12.0原子%のSi、並びに合計で9.0~11.5原子%のTi及びTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上100以下重量ppmのBを含有する請求項5に記載のNi3(Si,Ti)系金属間化合物。
  7. 荷重300gで測定したビッカース硬さが410~520である請求項5又は6に記載のNi3(Si,Ti)系金属間化合物。
  8. 前記Ni3(Si,Ti)系金属間化合物のTa最大含有量が6.0原子%である請求項1~7のいずれか1つに記載のNi3(Si,Ti)系金属間化合物。
  9. 合計で19.0~21.5原子%のSi、Ti及びTa、残部が不純物を除きNiからなる合計100原子%の組成を有する金属間化合物の重量に対して25以上500以下重量ppmのBを含有する請求項1~8のいずれか1つに記載のNi3(Si,Ti)系金属間化合物。
PCT/JP2010/065839 2009-09-14 2010-09-14 Taが添加されたNi3(Si,Ti)系金属間化合物 WO2011030905A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020127009281A KR101715149B1 (ko) 2009-09-14 2010-09-14 Ta가 첨가된 Ni3(Si,Ti)계 금속간 화합물
US13/395,778 US9447485B2 (en) 2009-09-14 2010-09-14 Ni3(Si, Ti)-based intermetallic compound to which Ta is added
CN201080040548.9A CN102575321B (zh) 2009-09-14 2010-09-14 添加Ta的Ni3(Si,Ti)基金属间化合物
EP10815495.6A EP2487272A4 (en) 2009-09-14 2010-09-14 Ni3(si, ti) intermetallic compound to which ta is added
JP2011530912A JP5565777B2 (ja) 2009-09-14 2010-09-14 Taが添加されたNi3(Si,Ti)系金属間化合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-212090 2009-09-14
JP2009212090 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011030905A1 true WO2011030905A1 (ja) 2011-03-17

Family

ID=43732567

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065839 WO2011030905A1 (ja) 2009-09-14 2010-09-14 Taが添加されたNi3(Si,Ti)系金属間化合物

Country Status (6)

Country Link
US (1) US9447485B2 (ja)
EP (1) EP2487272A4 (ja)
JP (1) JP5565777B2 (ja)
KR (1) KR101715149B1 (ja)
CN (1) CN102575321B (ja)
WO (1) WO2011030905A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102386A1 (ja) * 2011-01-27 2012-08-02 公立大学法人大阪府立大学 Ta及びAlが添加されたNi3(Si,Ti)系金属間化合物合金で形成された耐熱軸受及びその製造方法
JP2015063752A (ja) * 2013-08-27 2015-04-09 公立大学法人大阪府立大学 Ni基金属間化合物合金の溶射皮膜、溶射皮膜被覆部材および溶射皮膜の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246144A (ja) 1991-01-31 1992-09-02 Nippon Stainless Steel Co Ltd 耐食性および延性に優れたニッケル−ケイ素系金属間化合物材料
JPH04268037A (ja) 1991-02-23 1992-09-24 Nippon Stainless Steel Co Ltd 耐クリ−プ性の優れたNi3(Si,Ti)基耐熱合金
JPH05320793A (ja) 1992-03-26 1993-12-03 Sumitomo Metal Ind Ltd 鋳造用の高硬度金属間化合物基合金
JPH05320794A (ja) 1992-03-26 1993-12-03 Sumitomo Metal Ind Ltd 耐食性及び延性に優れたNiの金属間化合物を基とする材料
JPH0633174A (ja) 1992-07-18 1994-02-08 Sumitomo Metal Ind Ltd クリ−プ特性の優れた金属間化合物系耐熱合金
JPH0860278A (ja) * 1994-08-11 1996-03-05 Japan Steel Works Ltd:The 耐キャビテーションエロージョン性に優れた耐食耐摩耗性材料
JP2010031323A (ja) * 2008-07-29 2010-02-12 Osaka Prefecture Univ ニッケル系金属間化合物、当該金属間化合物圧延箔および当該金属間化合物圧延板または箔の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001131665A (ja) * 1999-11-11 2001-05-15 Fuji Dies Kk Ni3(Si,Ti)基の高温構造材料及びそれを用いた耐摩耗工具、耐熱用部材又は工具
SE521471C2 (sv) * 2001-03-27 2003-11-04 Koncentra Holding Ab Kolvring och beläggning på en kolvring innefattande ett kompositmaterial av en keram och en intermetallisk förening
JP5445750B2 (ja) * 2009-07-28 2014-03-19 公立大学法人大阪府立大学 Ni3(Si,Ti)系金属間化合物合金で形成された高温用軸受及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04246144A (ja) 1991-01-31 1992-09-02 Nippon Stainless Steel Co Ltd 耐食性および延性に優れたニッケル−ケイ素系金属間化合物材料
JPH04268037A (ja) 1991-02-23 1992-09-24 Nippon Stainless Steel Co Ltd 耐クリ−プ性の優れたNi3(Si,Ti)基耐熱合金
JPH05320793A (ja) 1992-03-26 1993-12-03 Sumitomo Metal Ind Ltd 鋳造用の高硬度金属間化合物基合金
JPH05320794A (ja) 1992-03-26 1993-12-03 Sumitomo Metal Ind Ltd 耐食性及び延性に優れたNiの金属間化合物を基とする材料
JPH0633174A (ja) 1992-07-18 1994-02-08 Sumitomo Metal Ind Ltd クリ−プ特性の優れた金属間化合物系耐熱合金
JPH0860278A (ja) * 1994-08-11 1996-03-05 Japan Steel Works Ltd:The 耐キャビテーションエロージョン性に優れた耐食耐摩耗性材料
JP2010031323A (ja) * 2008-07-29 2010-02-12 Osaka Prefecture Univ ニッケル系金属間化合物、当該金属間化合物圧延箔および当該金属間化合物圧延板または箔の製造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
See also references of EP2487272A4
T. NAKAMURA ET AL., MATERIALS SCIENCE AND ENGINEERING A, vol. 383, 2004, pages 259 - 270
T. TAKASUGI ET AL., JOURNAL OF MATERIALS SCIENCE, vol. 26, 1991, pages 1173 - 1178

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012102386A1 (ja) * 2011-01-27 2012-08-02 公立大学法人大阪府立大学 Ta及びAlが添加されたNi3(Si,Ti)系金属間化合物合金で形成された耐熱軸受及びその製造方法
US20130308884A1 (en) * 2011-01-27 2013-11-21 Osaka Prefecture University Public Corporation HEAT-RESISTANT BEARING FORMED OF Ta OR A1-ADDED Ni3(Si, Ti)-BASED INTERMETALLIC COMPOUND ALLOY AND METHOD FOR PRODUCING THE SAME
US9273374B2 (en) 2011-01-27 2016-03-01 Osaka Prefecture University Public Corporation Heat-resistant bearing formed of Ta or a1-added Ni3(Si, Ti)-based intermetallic compound alloy and method for producing the same
JP2015063752A (ja) * 2013-08-27 2015-04-09 公立大学法人大阪府立大学 Ni基金属間化合物合金の溶射皮膜、溶射皮膜被覆部材および溶射皮膜の製造方法

Also Published As

Publication number Publication date
EP2487272A1 (en) 2012-08-15
KR101715149B1 (ko) 2017-03-10
JP5565777B2 (ja) 2014-08-06
CN102575321A (zh) 2012-07-11
EP2487272A4 (en) 2017-01-04
US9447485B2 (en) 2016-09-20
US20120171071A1 (en) 2012-07-05
CN102575321B (zh) 2014-10-15
KR20120051772A (ko) 2012-05-22
JPWO2011030905A1 (ja) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5237801B2 (ja) 改善された高温特性を有するドープされたイリジウム
JP6346799B2 (ja) Cuを添加したNi−Cr−Fe基合金ろう材
JPH0730420B2 (ja) クロムとタンタルで改変されたγ‐チタン‐アルミニウム合金およびその製造方法
JPS6339651B2 (ja)
JP2018518594A (ja) 高温用途のためのβチタン合金シート
JP5010841B2 (ja) Ni3Si−Ni3Ti−Ni3Nb系複相金属間化合物,その製造方法,高温構造材料
WO2000020652A1 (en) Creep resistant gamma titanium aluminide alloy
JP4264411B2 (ja) 高強度α+β型チタン合金
JP5565777B2 (ja) Taが添加されたNi3(Si,Ti)系金属間化合物
US9249488B2 (en) Ni-base dual multi-phase intermetallic compound alloy containing Nb and C, and manufacturing method for same
JPH05255781A (ja) クロム、ホウ素およびニオブで改良されている加工されたガンマ‐アルミニウム化チタン合金
JP2019094530A (ja) 鋳造用モールド材、及び、銅合金素材
JP5162492B2 (ja) 高い硬度を有するNi基金属間化合物合金
JP5228708B2 (ja) 耐クリープ性および高温疲労強度に優れた耐熱部材用チタン合金
JP5852039B2 (ja) 耐熱マグネシウム合金
JP5733728B2 (ja) Ti及びCを含むNi基2重複相金属間化合物合金及びその製造方法
JP5757507B2 (ja) Reが添加されたNi基2重複相金属間化合物合金及びその製造方法
JP6213014B2 (ja) β型チタン合金及びその製造方法
JPH05345943A (ja) ホウ素、クロムおよびタンタルで改良されている鋳造・鍛造されたガンマ‐チタン・アルミニウム合金
JP7252621B2 (ja) 高強度Ir合金
JP6810939B2 (ja) Cu−Sn−Si系超弾性合金及びその製造方法
WO2022211062A1 (ja) アルミニウム合金材、その製造方法及び機械部品
JP2022045612A (ja) チタン合金、その製造方法およびそれを用いたエンジン部品
JP2012201892A (ja) Reが添加されたNi3(Si,Ti)金属間化合物合金及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040548.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815495

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011530912

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13395778

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010815495

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127009281

Country of ref document: KR

Kind code of ref document: A