WO2011030503A1 - スパークプラグ - Google Patents

スパークプラグ Download PDF

Info

Publication number
WO2011030503A1
WO2011030503A1 PCT/JP2010/004900 JP2010004900W WO2011030503A1 WO 2011030503 A1 WO2011030503 A1 WO 2011030503A1 JP 2010004900 W JP2010004900 W JP 2010004900W WO 2011030503 A1 WO2011030503 A1 WO 2011030503A1
Authority
WO
WIPO (PCT)
Prior art keywords
base material
ground electrode
spark plug
tip
center electrode
Prior art date
Application number
PCT/JP2010/004900
Other languages
English (en)
French (fr)
Inventor
鈴木 彰
無笹 守
Original Assignee
日本特殊陶業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本特殊陶業株式会社 filed Critical 日本特殊陶業株式会社
Priority to IN2114DEN2012 priority Critical patent/IN2012DN02114A/en
Priority to EP10815104.4A priority patent/EP2477287B1/en
Priority to US13/395,257 priority patent/US8736154B2/en
Priority to CN2010800406763A priority patent/CN102576986B/zh
Priority to KR1020127006327A priority patent/KR101392032B1/ko
Publication of WO2011030503A1 publication Critical patent/WO2011030503A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/39Selection of materials for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/20Sparking plugs characterised by features of the electrodes or insulation
    • H01T13/32Sparking plugs characterised by features of the electrodes or insulation characterised by features of the earthed electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T21/00Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs
    • H01T21/02Apparatus or processes specially adapted for the manufacture or maintenance of spark gaps or sparking plugs of sparking plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines

Definitions

  • the present invention relates to a spark plug (ignition plug) for igniting fuel by electrically generating a spark in an internal combustion engine, and more particularly to a ground electrode of the spark plug.
  • Spark plugs are desired to have good ignitability.
  • a technique for improving the flame spread and improving the ignitability has been proposed.
  • a technique for improving ignitability by forming a protruding portion by resistance welding of a noble metal to a ground electrode is disclosed.
  • a technique has been proposed in which a protruding portion is formed by resistance welding of an inexpensive alloy (for example, nickel) similar to an inexpensive alloy that forms the base material of the ground electrode.
  • an inexpensive alloy for example, nickel
  • the base material of the ground electrode and the protruding part are the same type of metal, there is no difference in the melting point of each material, so the temperature of the base material with a large volume is increased compared to the temperature increase rate of the protruding part with a small volume. The speed is slow. As a result, the melting of the base material becomes slower than the protruding portion, and there arises a problem that sufficient welding strength is not obtained.
  • This invention is made
  • Application Example 1 A center electrode extending in the axial direction, an insulator formed on the outer periphery of the center electrode while exposing a tip of the center electrode, a metal shell formed on the outer periphery of the insulator, and the main body A ground electrode joined to a metal fitting, the ground electrode being provided at the tip portion and a base material disposed so that a tip portion thereof faces the end face of the center electrode, and projecting toward the center electrode side.
  • the base material and the protruding portion are formed so that the relationship of R> S is established, where R ( ⁇ cm) is the specific resistance of the base material and S ( ⁇ cm) is the specific resistance of the protruding portion.
  • R ( ⁇ cm) is the specific resistance of the base material
  • S ( ⁇ cm) is the specific resistance of the protruding portion.
  • the base material and the protruding portion are formed of a material whose main component is nickel.
  • the area of the welded portion between the tip portion and the protruding portion is 1.1 mm 2 or more.
  • the weldability deteriorates at the center portion of the material, and the welding strength decreases.
  • Application Example 7 A center electrode extending in the axial direction, an insulator formed on an outer periphery of the center electrode while exposing a tip of the center electrode, and a ground electrode joined to the metal shell, the tip portion Is provided with a ground electrode provided with a base material disposed so as to face the end face of the center electrode, and a projecting portion provided on the tip portion and projecting on the center electrode side, and a spark plug
  • the method includes: forming a member using a material whose main component is the same metal as the base material so as to have a specific resistance smaller than a specific resistance of the base material; Resistance welding is performed on the central electrode side.
  • the base material and the projecting portion of the ground electrode formed of the same metal-based material have the following: (specific resistance R of the base material)> (specific resistance of the projecting portion) S). Therefore, it is possible to promote the melting of the base material having a larger volume than that of the protruding portion, and to improve the welding strength.
  • the welding strength is improved by satisfying RS ⁇ 20. be able to.
  • the noble metal alloy is welded to the tip of the protruding portion. Therefore, the durability can be improved at a lower cost compared to the case where the entire protrusion is formed of a noble metal.
  • the base material and the projecting portion are resistance-welded, and laser welding is performed on the outer peripheral boundary portion. Therefore, the welding strength between the base material and the protruding portion can be further improved.
  • the member formed using a material whose main component is the same metal as the base material so as to have a specific resistance smaller than the specific resistance of the base material is the tip portion. Resistance welding is performed on the center electrode side. Therefore, melting of the base material having a larger volume than that of the member can be promoted, and the welding strength can be improved.
  • the spark plug manufacturing method of the application example 8 it is possible to manufacture a spark plug with improved durability at a lower cost than when the entire protrusion is formed of a noble metal.
  • Explanatory drawing which mainly shows the partial cross section of the spark plug 100 in 1st Example.
  • Explanatory drawing which mainly shows the detailed structure of the ground electrode 30 in 1st Example.
  • Sectional drawing showing the AA cross section in FIG. The schematic diagram which shows the welding part of the protrusion part 36 and the opposing surface 32 in 1st Example.
  • the flowchart which shows the process of welding the protrusion part 36 to the ground electrode base material 35 in 1st Example.
  • the schematic diagram which shows the welding surface 350a of the protrusion part 36 and the opposing surface 32 in a modification (2).
  • FIG. 1 is an explanatory view mainly showing a partial cross section of the spark plug 100.
  • the spark plug 100 includes an insulator 10, a center electrode 20, a ground electrode 30, a terminal fitting 40, and a metal shell 50.
  • the rod-shaped center electrode 20 protruding from one end of the insulator 10 is electrically connected to a terminal fitting 40 provided at the other end of the insulator 10 through the inside of the insulator 10.
  • the outer circumference of the center electrode 20 is insulated by the insulator 10, and the outer circumference of the insulator 10 is held by the metal shell 50 at a position away from the terminal fitting 40.
  • the ground electrode 30 electrically connected to the metal shell 50 forms a spark gap, which is a gap for generating a spark, between the tip of the center electrode 20.
  • the spark plug 100 is attached to a mounting screw hole 201 provided in an engine head 200 of an internal combustion engine (not shown) via a metallic shell 50, and a high voltage of 20,000 to 30,000 volts is applied to the terminal fitting 40. Then, a spark is generated in a spark gap formed between the center electrode 20 and the ground electrode 30.
  • the insulator 10 of the spark plug 100 is an insulator formed by firing a ceramic material such as alumina.
  • the insulator 10 is a cylindrical body in which the shaft hole 12 that accommodates the center electrode 20 and the terminal fitting 40 is formed at the center.
  • a flange portion 19 having an increased outer diameter is formed at the center of the insulator 10 in the axial direction.
  • a rear end side body portion 18 that insulates between the terminal metal fitting 40 and the metal shell 50 is formed on the terminal metal fitting 40 side of the flange portion 19.
  • a front end side body portion 17 having an outer diameter smaller than that of the rear end side body portion 18 is formed on the center electrode 20 side with respect to the flange portion 19, and the front end side body portion 17 is further forward than the front end side body portion 17.
  • a leg length portion 13 is formed which has a smaller outer diameter and decreases toward the distal end side. *
  • the metal shell 50 of the spark plug 100 is a cylindrical metal fitting that surrounds and holds a portion ranging from a part of the rear end side body portion 18 to the leg long portion 13 of the insulator 10.
  • the low-carbon steel is used. Consists of.
  • the metal shell 50 includes a tool engaging portion 51, a mounting screw portion 52, a seal portion 54, and a tip surface 57.
  • a tool (not shown) for attaching the spark plug 100 to the engine head 200 is fitted into the tool engaging portion 51 of the metal shell 50.
  • the mounting screw portion 52 of the metal shell 50 has a thread that is screwed into the mounting screw hole 201 of the engine head 200.
  • the seal portion 54 of the metal shell 50 is formed in a hook shape at the base of the mounting screw portion 52, and an annular gasket 5 formed by bending a plate is inserted between the seal portion 54 and the engine head 200.
  • the distal end surface 57 of the metal shell 50 is a hollow circular surface formed at the distal end of the mounting screw portion 52, and the center electrode 20 wrapped in the leg long portion 13 projects from the center of the distal end surface 57.
  • the center electrode 20 of the spark plug 100 is a rod-like electrode in which a core material 25 having better thermal conductivity than the center electrode base material 21 is embedded in a center electrode base material 21 formed in a bottomed cylindrical shape.
  • the center electrode base material 21 is made of a nickel alloy containing nickel as a main component such as Inconel (registered trademark), and the core member 25 is made of copper or an alloy containing copper as a main component.
  • the center electrode 20 is inserted into the shaft hole 12 of the insulator 10 with the end of the center electrode base material 21 protruding from the shaft hole 12 of the insulator 10, and is connected to the terminal fitting 40 via the ceramic resistor 3 and the seal body 4. Electrically connected. *
  • the ground electrode 30 of the spark plug 100 is an electrode that is joined to the front end surface 57 of the metal shell 50, bent in a direction intersecting the axial direction of the center electrode 20, and opposed to the front end of the center electrode 20.
  • the ground electrode 30 is made of a nickel alloy mainly composed of nickel such as Inconel (registered trademark). *
  • FIG. 2 is an explanatory view mainly showing a detailed structure of the ground electrode 30 in the first embodiment.
  • the ground electrode 30 includes a ground electrode base material 35 and a projecting portion 36, and is opposed to the center electrode 20 among the front end surface 31 constituting the front end of the ground electrode base material 35 and the surface of the ground electrode 30. And a back surface 33 opposite to the facing surface 32 and facing away from the ground electrode 30.
  • the protruding portion 36 is joined to the opposing surface 32 of the ground electrode 30 by resistance welding so as to protrude opposite the tip of the center electrode 20.
  • the ground electrode base material 35 and the projecting portion 36 are made of the same metal (nickel in the first embodiment) as a main component, and have the relationship of the following formulas 1 and 2.
  • the specific resistance of the ground electrode base material 35 is R ( ⁇ cm), and the specific resistance of the protrusion 36 is S ( ⁇ cm).
  • the ground electrode base material 35 corresponds to the “base material” in the claims. *
  • a gap called a spark gap is formed between the protrusion 36 and the center electrode 20.
  • the center of gravity of the projecting portion 36 is located substantially along the extension line of the center axis of the center electrode 20.
  • the protrusion 3 Reference numeral 6 denotes a columnar projection having a height T from the opposing surface 32 of 0.3 mm or more and a circular cross section.
  • FIG. 3 is a cross-sectional view showing the AA cross section in FIG.
  • resistance welded portion 300 indicates a welded portion formed by resistance welding
  • laser welded portion 310 indicates a welded portion formed by laser welding.
  • the protruding portion 36 and the ground electrode base material 35 are joined by resistance welding, and a boundary portion between the outer peripheral surface of the protruding portion 36 and the ground electrode base material 35 is laser-welded.
  • FIG. 4 is a schematic diagram showing a welding surface between the protruding portion 36 and the facing surface 32 in the first embodiment.
  • the area A (indicated by hatching in FIG. 4) of the welding surface 350 between the protrusion 36 and the facing surface 32 is 1.1 mm 2 or more.
  • “welded portion” and “welded surface” are formed by melting and mixing the materials of the ground electrode base material 35 and the protruding portion 36 by resistance welding, or at the atomic level. It represents the joint portion and the joint surface between the ground electrode base material 35 and the projecting portion 36 formed by diffusion.
  • FIG. 5 is a flowchart showing a step of welding the protruding portion 36 to the ground electrode base material 35 in the first embodiment.
  • FIG. 6 is a view for explaining the welding of the protruding portion 36 to the ground electrode base material 35.
  • FIG. 6A shows welding by resistance welding
  • FIG. 6B shows welding by laser welding. *
  • a ground electrode base material 35 and a chip that becomes the protruding portion 36 are formed of a material mainly composed of nickel (step S10).
  • the ground electrode base material 35 and the tip are resistance-welded (step S12).
  • the resistance welding electrode 500 is subjected to resistance welding in a state where the upper end surface of the nickel tip 36a to be the protruding portion 36 is pressed almost uniformly with a predetermined pressure. Executed.
  • the potential of the resistance welding electrode 500 is set higher than the ground potential of the ground electrode base material 35, and as a result, a large current flows through the nickel tip 36 a and the ground electrode base material 35 via the resistance welding electrode 500. .
  • both the lower side surface of the nickel tip 36a and the ground electrode base material 35 in contact with the lower side surface are melted and mixed to form the resistance welded portion 300, and the ground electrode base material 35 and the nickel tip are formed.
  • 36a is resistance-welded to form a protrusion 36.
  • various conventionally used ones such as those having a split mold shape or a concave portion can be applied. *
  • the projecting portion 36 has a smaller volume than the ground electrode base material 35, but the ground electrode base material 35 and the projecting portion 36 are formed so that the specific resistance satisfies the relationship of the above formulas 1 and 2. Therefore, the temperature rise of the ground electrode base material 35 is promoted, and the ground electrode base material 35 and the protruding portion 36 start to melt at substantially the same timing. As a result, the molten material of the ground electrode base material 35 and the protruding portion 36 is efficiently mixed, and the strength of resistance welding between the ground electrode base material 35 and the protruding portion 36 is improved. *
  • the boundary portion between the outer peripheral surface of the projecting portion 36 and the ground electrode base material 35 is welded by laser welding.
  • the irradiated portion is made to make one turn over the entire contact surface.
  • the material of the boundary portion between the ground electrode base material 35 and the projecting portion 36 is melted and mixed to form a ring-shaped laser welded portion 310, and the ground electrode The base material 35 and the protruding portion 36 are firmly joined.
  • the ground electrode 30 is assembled to the metal shell 50 and grounded so that the projecting portion 36 faces the center electrode 20 with a predetermined spark gap.
  • the tip portion of the electrode base material 35 is bent by bending.
  • the ground electrode 30 is manufactured through the steps described above and assembled to the metal shell 50. *
  • FIG. 7 is an explanatory diagram for explaining a rupture test of the protruding portion 36 in the first embodiment.
  • Table 1 is a list showing the components of the sample materials used in the break test in the first example, and
  • Table 2 is a table showing the evaluation results of the break test in the first example. *
  • the fracture test 1 was performed under the following conditions. (1) Prepare materials with different specific resistance values (materials mainly composed of nickel) and perform welding using a general AC resistance welding power source. The specific resistance value was measured by a four-terminal measurement method using a metal electrical resistance measuring device (TER2000RH) manufactured by ULVAC-RIKO. (2) The welding conditions were a load of 200 N, a welding frequency: 60 Hz, a welding cycle: 10 cycles, and a current value of 1 kA. (3) The outer base material has a width of 2.5 mm and a height of 1.4 mm, and the nickel chip forming the protruding portion 36 has a columnar shape with a height (length) of 1 mm and a diameter of ⁇ 1 mm. *
  • a sample material having a specific resistance of 55 ⁇ cm is 90% nickel (Ni), 3% chromium (Cr), 5% iron (Fe), and others (silicon (Si And 2% of manganese (Mn)).
  • the nickel tip 36a to be the protruding portion 36 is welded to the ground electrode base material 35 by resistance welding (FIG. 7 (a)).
  • the welding surface of 35 is bent and deformed at R5 using a bending jig (FIG. 7B).
  • a force is applied in the horizontal direction r1 to a portion 0.6 mm from the upper surface of the ground electrode base material 35 (FIG. 7C).
  • FIGS. 7 (d)-(1) even if the upper part of the nickel tip is broken, if the peeling of the weld surface 350 is less than half of the weld area, the result is OK (OK).
  • As shown in (d)-(2) when peeling of more than half of the area of the weld surface 350 occurs, it is determined as rejected (NG). *
  • a plurality of sample materials were evaluated in the following three ways according to the number of peeling occurrences among 30 samples evaluated. 0: A 1 to 3 (the number of peeling occurrence is 10% or less of the number of samples to be evaluated): B 4 to 30: C
  • Table 3 is a table showing the evaluation result of the breaking test 2 in the first example.
  • the fracture test 2 was performed under the following conditions.
  • (1) A combination (sample 5) in which the specific resistance value R of the ground electrode base material 35 is 55 ⁇ cm, the specific resistance value S of the nickel tip 36 a is 55 ⁇ cm, and the specific resistance value R of the ground electrode base material 35 is 55 ⁇ cm
  • the size of the ground electrode 30 is 2.8 mm in width and the height from the facing surface 32 is 1.5 mm.
  • Length Fixed at 0.9mm.
  • the welding conditions were a load of 200 N, a welding frequency: 60 Hz, a welding cycle: 10 cycles, and a current value of 1 kA (same conditions as in the fracture test 1).
  • the area A of the weld surface is changed from 0.5 mm to 2.5 mm. *
  • the number of non-defective products and the effect ratio among 30 samples evaluated for each sample were evaluated.
  • “the number of non-defective products” is a numerical value obtained by counting the above-mentioned evaluations A and B of the break test 1 as “non-defective products”. This represents the ratio of non-defective products.
  • the material of the protrusion is not a precious metal, it is desired to increase the size of the protrusion 36 from the viewpoint of improving the durability.
  • the welding area is increased, the weldability of the central portion of the material is reduced. As a result, the welding strength also decreases.
  • the area A of the welded portion is 1.1 mm 2 or more, (the specific resistance R of the ground electrode base material 35) ⁇ (the specific resistance S of the projecting portion 36) ⁇ 20, As a result, the effect of improving the welding strength was obtained.
  • the ground electrode base material 35 and the protruding portion 36 of the ground electrode 30 formed of a material mainly composed of the same metal, nickel, are (ground electrode).
  • the specific resistance R of the base material 35> (specific resistance S of the protrusion) is formed. Therefore, melting of the ground electrode base material 35 having a volume larger than that of the protruding portion 36 can be promoted, and the welding strength can be improved.
  • (resistivity R of ground electrode base material 35) ⁇ (resistivity S of projecting portion 36) ⁇ 20 can sufficiently improve the welding strength.
  • the ground electrode base material 35 and the protruding portion 36 can be formed using inexpensive nickel as a main component. Therefore, cost can be reduced.
  • the ground electrode base material 35 and the protruding portion 36 are subjected to resistance welding, and then laser welding is applied to the boundary portion of the outer peripheral surface. Therefore, the welding strength between the ground electrode base material 35 and the protruding portion 36 can be further improved.
  • FIG. 8 is an enlarged view of the tip portion of the ground electrode 30 in the modification (1).
  • the modified protrusion is a two-layer protrusion, and the two-layer protrusion 436 includes the same main component (nickel) as the main component constituting the ground electrode base material 35.
  • a nickel tip 36 a (nickel tip member 36 a) made of a material is resistance-welded to the ground electrode base material 35, and a noble metal tip 36 b is welded on the end face of the nickel tip member 36 a facing the center electrode 20. Has been.
  • the welded portion 36c represents a welded portion between the nickel tip member 36a and the noble metal tip 36b.
  • Nickel tip member 36a and noble metal tip 36 Various known welding methods, for example, laser welding, can be used as the welding method with b. By doing so, the durability of the ground electrode 30 can be improved.
  • the protruding portion 36 is formed as a columnar protrusion having a circular cross section, but may be a prismatic protrusion having a rectangular cross section, for example.
  • FIG. 9 is a schematic diagram showing a welding surface 350a between the projecting portion 36 and the opposing surface 32 in the modification (2).
  • the area A (shown by hatching in FIG. 9) of the welding surface 350a between the protrusion 36 and the tip surface 31 is preferably 1.1 mm 2 or more, as in the first embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Spark Plugs (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

接地電極に突き出し部分を抵抗溶接する際の、溶接強度の向上を課題とする。 接地電極30は、接地電極母材35と、突状部36とから構成されている。突状部36は、接地電極30の対向面32に、中心電極20の先端に対向して突出するように抵抗溶接により接合されている。接地電極母材35と突状部36とは、同一の金属(例えば、ニッケル)を主成分とする材料により形成されており、以下の式1および式2の関係を有する。ただし、式1において、接地電極母材35の比抵抗をR(μΩcm)とし、突状部36の比抵抗をS(μΩcm)とする。比抵抗R>比抵抗S …(式1)、比抵抗R-比抵抗S≧20 …(式2)。こうすることにより、突状部36に比して体積の大きい接地電極母材35の溶融を促進でき、溶接強度を向上させることができる。

Description

スパークプラグ
本発明は、内燃機関において電気的に火花を発生させることによって燃料に着火させるスパークプラグ(点火プラグ)に関し、特に、スパークプラグの接地電極に関する。
スパークプラグには、良好な着火性が望まれており、例えば、接地電極の中心電極に対向する突き出し部分を備えることによって、火炎の広がりを良好にし、着火性を向上させる技術が提案されている。このようなスパークプラグでは、接地電極に貴金属を抵抗溶接して突き出し部分を形成することにより、着火性を向上させる技術が開示されている。
特開2003-317896号公報 特開2008-243713号公報
貴金属は高価であるため、接地電極の母材を形成する安価な合金(例えばニッケル)と同種の安価な合金を抵抗溶接して突き出し部分を形成する技術が提案されている。しかしながら、接地電極の母材と突き出し部分とが同種の金属の場合、各材料の融点に差が無いため、体積の小さい突き出し部分の温度上昇速度に比して、体積の大きい母材の温度上昇速度が遅くなる。この結果、母材の溶融が突き出し部分よりも遅くなり、十分な溶接強度とならないという問題が生じる。 
本発明は上述の課題に鑑みてなされたものであり、接地電極に突き出し部分を抵抗溶接する際の、溶接強度の向上を目的とする。
本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。 
[適用例1] 軸線方向に延びる中心電極と、前記中心電極の先端を露出させつつ前記中心電極の外周に形成された絶縁体と、前記絶縁体の外周に形成された主体金具と、前記主体金具に接合された接地電極と、を備え、前記接地電極は、先端部分が前記中心電極の端面と対向するように配置された母材と、前記先端部分に設けられ、前記中心電極側に突状に形成された突状部と、を有し、前記母材と前記突状部は、同一の金属を主成分とする材料により形成され、抵抗溶接により接合されたスパークプラグであって、前記母材と前記突状部は、前記母材の比抵抗をR(μΩcm)とし、前記突状部の比抵抗をS(μΩcm)としたとき、R>Sの関係が成立するように形成されている、スパークプラグ。 
[適用例2] 適用例1のスパークプラグであって、前記母材と前記突状部は、ニッケルを主成分とする材料により形成されている。 
[適用例3] 適用例1または適用例2のスパークプラグであって、前記母材と前記突状部は、R-S≧20の関係が成立するように形成されている。 
[適用例4] 適用例1ないし適用例3いずれかのスパークプラグであって、前記先端部分と前記突状部との溶接部分の面積は、1.1mm以上である。一般的に、溶接部分の面積が大きくなると、材料の中心部分では溶接性が悪化し、溶接強度が低下するが、 
[適用例5] 適用例1ないし適用例4いずれかのスパークプラグであって、前記突状部の先端に、貴金属合金が溶接されている。 
[適用例6] 適用例1ないし適用例5のスパークプラグであって、前記突状部の外周面における前記母材との境界部分は、レーザ溶接されている。 
[適用例7] 軸線方向に延びる中心電極と、前記中心電極の先端を露出させつつ前記中心電極の外周に形成された絶縁体と、前記主体金具に接合された接地電極であって、先端部分が前記中心電極の端面と対向するように配置された母材と、前記先端部分に設けられ、前記中心電極側に突状に形成された突状部と、を備える接地電極と、備えるスパークプラグの製造方法であって、前記母材と同一金属を主成分とする材料を用いて、前記母材の比抵抗よりも小さい比抵抗となるように部材を形成し、前記部材を、前記先端部分の前記中心電極側に抵抗溶接する。 
[適用例8]適用例7のスパークプラグの製造方法であって、前記部材の先端に、貴金属合金を溶接した後、前記部材を前記先端部分の前記中心電極側に抵抗溶接する。 
本発明において、上述した種々の態様は、適宜、組み合わせたり、一部を省略したりして適用することができる。
適用例1のスパークプラグによれば、同一の金属を主成分とする材料により形成された接地電極の母材と突状部は、(母材の比抵抗R)>(突状部の比抵抗S)となるように形成されている。従って、突状部に比して体積の大きい母材の溶融を促進でき、溶接強度を向上させることができる。
適用例2のスパークプラグによれば、安価なニッケルを主成分として母材と突状部とを形成できる。よって、コストを削減できる。
適用例3のスパークプラグによれば、(母材の比抵抗R)-(突状部の比抵抗S)≧20とすることにより、十分な溶接強度の向上を図ることができる。
適用例4のスパークプラグによれば、接地電極の先端部分と突状部の溶接部分の面積が1.1mm以上であっても、R-S≧20とすることにより、溶接強度を向上させることができる。
適用例5のスパークプラグによれば、突状部の先端に貴金属合金が溶接されている。従って、突状部全体を貴金属で形成する場合に比して、安価に、耐久性を向上できる。
適用例6のスパークプラグによれば、母材と突状部とは、抵抗溶接された上で、外周境界部分にレーザ溶接が施されている。従って、母材と突状部との溶接強度を更に向上できる。
適用例7のスパークプラグの製造方法によれは、母材と同一金属を主成分とする材料を用いて、母材の比抵抗よりも小さい比抵抗となるように形成された部材が、先端部の中心電極側に抵抗溶接される。従って、部材に比して体積の大きい母材の溶融を促進でき、溶接強度を向上させることができる。
適用例8のスパークプラグの製造方法によれば、突状部全体を貴金属で形成する場合に比して、安価に、耐久性の向上されたスパークプラグを製造できる。
第1実施例におけるスパークプラグ100の部分断面を主に示す説明図。 第1実施例における接地電極30の詳細構造を主に示す説明図。 図2におけるA-A断面を表す断面図。 第1実施例における突状部36と対向面32との溶接部分を示す模式図。 第1実施例における接地電極母材35に突状部36を溶接する工程を示すフローチャート。 第1実施例における接地電極母材35と突状部36との溶接について説明する説明図。 第1実施例における突状部36の破断試験について説明する説明図。 変形例(1)における接地電極30aの先端部分の拡大図。 変形例(2)における突状部36と対向面32との溶接面350aを示す模式図。
A.実施例:A1.スパークプラグの構成: 図1は、スパークプラグ100の部分断面を主に示す説明図である。スパークプラグ100は、絶縁碍子10と、中心電極20と、接地電極30と、端子金具40と、主体金具50とを備える。絶縁碍子10の一端から突出する棒状の中心電極20は、絶縁碍子10の内部を通じて、絶縁碍子10の他端に設けられた端子金具40に電気的に接続されている。中心電極20の外周は、絶縁碍子10によって絶縁され、絶縁碍子10の外周は、端子金具40から離れた位置で主体金具50によって保持されている。主体金具50に電気的に接続された接地電極30は、火花を発生させる隙間である火花ギャップを中心電極20の先端との間に形成する。スパークプラグ100は、内燃機関(図示しない)のエンジンヘッド200に設けられた取付ネジ孔201に主体金具50を介して取り付けられ、2万~3万ボルトの高電圧が端子金具40に印加されると、中心電極20と接地電極30との間に形成された火花ギャップに火花が発生する。 
スパークプラグ100の絶縁碍子10は、アルミナを始めとするセラミックス材料を焼成して形成された絶縁体である。絶縁碍子10は、中心電極20および端子金具40を収容する軸孔12が中心に形成された筒状体である。絶縁碍子10の軸方向中央には外径を大きくした鍔部19が形成されている。鍔部19よりも端子金具40側には、端子金具40と主体金具50との間を絶縁する後端側胴部18が形成されている。鍔部19よりも中心電極20側には、後端側胴部18よりも外径が小さい先端側胴部17が形成され、先端側胴部17の更に先には、先端側胴部17よりも小さい外径であって先端側へ向かうほど外径が小さくなる脚長部13が形成されている。 
スパークプラグ100の主体金具50は、絶縁碍子10の後端側胴部18の一部から脚長部13に亘る部位を包囲して保持する円筒状の金具であり、本実施例では、低炭素鋼から成る。主体金具50は、工具係合部51と、取付ネジ部52と、シール部54と、先端面57とを備える。主体金具50の工具係合部51は、スパークプラグ100をエンジンヘッド200に取り付ける工具(図示しない)が嵌合する。主体金具50の取付ネジ部52は、エンジンヘッド200の取付ネジ孔201に螺合するネジ山を有する。主体金具50のシール部54は、取付ネジ部52の根元に鍔状に形成され、シール部54とエンジンヘッド200との間には、板体を折り曲げて形成した環状のガスケット5が嵌挿される。主体金具50の先端面57は、取付ネジ部52の先端に形成された中空円状の面であり、先端面57の中央には、脚長部13に包まれた中心電極20が突出する。 
スパークプラグ100の中心電極20は、有底筒状に形成された中心電極母材21の内部に、中心電極母材21よりも熱伝導性に優れる芯材25を埋設した棒状の電極である。本実施例では、中心電極母材21は、インコネル(登録商標)を始めとするニッケルを主成分とするニッケル合金から成り、芯材25は、銅または銅を主成分とする合金から成る。中心電極20は、中心電極母材21の先端が絶縁碍子10の軸孔12から突出した状態で絶縁碍子10の軸孔12に挿入され、セラミック抵抗3およびシール体4を介して端子金具40に電気的に接続されている。 
スパークプラグ100の接地電極30は、主体金具50の先端面57に接合され、中心電極20の軸方向に交差する方向に屈曲して中心電極20の先端に対向する電極である。本実施例では、接地電極30は、インコネル(登録商標)を始めとするニッケルを主成分とするニッケル合金から成る。 
図2は、第1実施例における接地電極30の詳細構造を主に示す説明図である。接地電極30は、接地電極母材35と、突状部36とから構成されており、接地電極母材35の先端を構成する先端面31と、接地電極30の表面のうち中心電極20に対向する対向面32と、対向面32とは反対側の面であり接地電極30に背を向ける背面33とを備える。突状部36は、接地電極30の対向面32に、中心電極20の先端に対向して突出するように抵抗溶接により接合されている。接地電極母材35と突状部36とは、同一の金属(第1実施例では、ニッケル)を主成分とする材料により形成されており、以下の式1および式2の関係を有する。ただし、式1において、接地電極母材35の比抵抗をR(μΩcm)とし、突状部36の比抵抗をS(μΩcm)とする。第1実施例において、接地電極母材35は、特許請求の範囲の「母材」に当たる。 
比抵抗R>比抵抗S …(式1) 比抵抗R-比抵抗S≧20 …(式2) 
図2に示すように、突状部36と中心電極20との間には、火花ギャップと呼ばれる間隙が形成される。突状部36の重心は、中心電極20の中心軸の延長線上に略沿って位置する。本実施例では、突状部3
6は、対向面32からの高さTが0.3mm以上であり、円形の断面を有する円柱状の突起である。 
図3は、図2におけるA-A断面を表す断面図である。図3において、抵抗溶接部300は、抵抗溶接により形成される溶接部分を示しており、レーザ溶接部310は、レーザ溶接により形成される溶接部分を示している。突状部36と接地電極母材35は、抵抗溶接により接合され、更に、突状部36の外周面における接地電極母材35との境界部分は、レーザ溶接されている。 
図4は、第1実施例における突状部36と対向面32との溶接面を示す模式図である。図4に示すように、突状部36と対向面32との溶接面350の面積A(図4にハッチングで示す)は、1.1mm以上である。なお、本明細書において、「溶接部分」、「溶接面」とは、抵抗溶接により、接地電極母材35および突状部36の材料が溶融して混ざり合い形成された、もしくは、原子レベルの拡散によって形成された、接地電極母材35と突状部36の接合部分および接合面のことを表す。 
A2.溶接工程: 図5は、第1実施例における接地電極母材35に突状部36を溶接する工程を示すフローチャートである。図6は、接地電極母材35に対する突状部36の溶接について説明するための図である。図6(a)は、抵抗溶接による溶接を示しており、図6(b)は、レーザ溶接による溶接を示している。 
まず、ニッケルを主成分とする材料により、接地電極母材35と、突状部36となるチップを形成する(ステップS10)。次に、接地電極母材35とチップとを抵抗溶接する(ステップS12)。具体的には、図6(a)に示すように、抵抗溶接用電極500は、突状部36となるニッケルチップ36aの上側端面を所定の圧力で概ね均一に押圧した状態で、抵抗溶接が実行される。抵抗溶接用電極500の電位が接地電極母材35の接地電位に対して高電圧にされ、その結果、抵抗溶接用電極500を介して、ニッケルチップ36a、接地電極母材35に大電流が流れる。これにより、ニッケルチップ36aの下側面と、当該下側面と接触している接地電極母材35との両者が溶融して混ざり合って抵抗溶接部300が形成され、接地電極母材35とニッケルチップ36aとが抵抗溶接され、突状部36が形成される。なお、抵抗溶接用電極500には、割型形状や凹部を有するものなど、従来から使用されている種々のものを適用可能である。 
なお、突状部36は接地電極母材35に比して体積が小さいが、接地電極母材35と突状部36とは、比抵抗が上記式1および式2の関係を満たすように形成されているので、接地電極母材35の温度上昇が促進され、接地電極母材35と突状部36とはほぼ同じタイミングで溶融し始める。この結果、接地電極母材35と突状部36の溶融した材料が効率的に混ざり合い、接地電極母材35と突状部36との抵抗溶接の強度が向上される。 
第1実施例では、更に、接地電極母材35と突状部36とを抵抗溶接により接合した後、突状部36の外周面における接地電極母材35との境界部分を、レーザ溶接により溶接する。具体的には、突状部36と接地電極母材35との当接面を狙ってレーザを照射しつつ、その照射箇所を当接面全周に亘って一周させる。このレーザ溶接により、図6(b)に示すように、接地電極母材35と突状部36の境界部分の材料が溶融して混ざり合い、リング形状のレーザ溶接部310が形成され、接地電極母材35と突状部36とが強固に接合される。 
接地電極母材35と突状部36とをレーザ溶接により溶接した後、接地電極30を主体金具50に組み付け、突状部36が、所定の火花ギャップで中心電極20に対向するように、接地電極母材35の先端部分を曲げ加工により曲げる。以上説明した工程で接地電極30が製造され、主体金具50に組み付けられる。 
A3.実験結果1(破断試験1): 図7は、第1実施例における突状部36の破断試験について説明する説明図である。また、表1は、第1実施例における破断試験で用いたサンプル材の成分を示す一覧表であり、表2には、第1実施例における破断試験の評価結果を示す表である。 
第1実施例では、以下の条件で破断試験1を行った。(1)各種比抵抗値の違う材料(ニッケルが主成分の材料)を準備し、一般的な交流式抵抗溶接電源を用いて溶接を行う。なお、比抵抗値は、アルバック理工株式会社製、金属用電気抵抗測定装置(TER2000RH)を使用して、4端子測定法にて測定した。(2)溶接条件は荷重200N、溶接周波数:60Hz、溶接サイクル:10サイクル、電流値1kAで実施。(3)外側母材は幅2.5mm、高さ1.4mmを使用、突状部36を形成するニッケルチップは高さ(長さ)1mm、径φ1mmの円柱状を使用。 
第1実施例では、表1に示すように、種々の比抵抗値のサンプル材を用いて破断試験を行う。なお、表1において、Ni:ニッケル、Cr:クロム、Fe:鉄、Si:ケイ素、Mn:マンガンを表す。 
Figure JPOXMLDOC01-appb-T000001
例えば、表1に示すように、比抵抗が55μΩcmであるサンプル材は、ニッケル(Ni)が90%、クロム(Cr)が3%、鉄(Fe)が5%、および、その他(ケイ素(Si)やマンガン(Mn))が2%混合された材料により形成されている。 
以上の条件のもと、図7に示すように、突状部36となるニッケルチップ36aを抵抗溶接により接地電極母材35に溶接し(図7(a))、溶接後、接地電極母材35の溶接面を曲げ治具を用いてR5で曲げ変形する(図7(b))。その後、接地電極母材35上面から0.6mmの部分に水平方向r1に力を加える(図7(c))。この結果、図7(d)-(1)に示すように、ニッケルチップの上方が破断したとしても、溶接面350の剥がれが溶接面積の半分未満の場合には合格(OK)とし、図7(d)-(2)に示すように、溶接面350の面積の半分以上の剥がれが発生する場合には不合格(NG)とする。 
第1実施例では、複数のサンプル材について、30本評価をした中の剥れ発生数に応じて、以下の3通りに評価した。 0本:A 1~3本(剥れ発生数が評価対象のサンプル数の10%以下):B 4~30本:C 
Figure JPOXMLDOC01-appb-T000002
表2に示すように、接地電極母材35の比抵抗Rと、ニッケルチップ36a(突状部36)の比抵抗Sとが式1(R>S)の関係を満たすサンプル1~4,8,9および12は剥がれ発生率が10%以下であり、式2(R-S≧20)の関係を満たすサンプル1,2,8,12は、剥がれ発生数が0本である。従って、実験結果から、接地電極母材35の比抵抗Rと、ニッケルチップ36aの比抵抗Sとは、式1の関係を満たすことが好ましく、式2の関係を満たすことが更に好ましい。 
A4.実験結果2(破断試験2): 表3は、第1実施例における破断試験2の評価結果を示す表である。第1実施例では、以下の条件で破断試験2を行った。(1)接地電極母材35の比抵抗値Rを55μΩcmとし、ニッケルチップ36aの比抵抗値Sを55μΩcmとした組み合わせ(サンプル5)と、接地電極母材35の比抵抗値Rを55μΩcmとし、ニッケルチップの比抵抗値Sを35μΩcmとした組み合わせ(サンプル2)で、それぞれ共に接地電極30のサイズを幅2.8mm、対向面32からの高さ1.5mmとして、ニッケルチップ36aを高さ(長さ)0.9mmに固定。(2)溶接条件は荷重200N、溶接周波数:60Hz、溶接サイクル:10サイクル、電流値1kAで実施(破断試験1と同一条件)。(3)溶接面の面積Aを0.5mm~2.5mmまで変化させる。 
第1実施例では、各サンプルについて、30本評価をした中の、良品数および効果比率について評価した。なお、表3における「良品数」とは、上述の破断試験1の評価AおよびBのものを「良品」としてカウントした数値であり、「効果比率」とは、サンプル5の良品数に対するサンプル2の良品数の比率を表している。 
Figure JPOXMLDOC01-appb-T000003
表3に示すように、溶接部分の面積Aが1.1mm未満の場合、式1、式2を満たさないサンプル5および式1、式2を満たすサンプル2には、共に、良品数に大きな差は無く、効果比率にも大きな差はない。一方、溶接部分の面積Aが1.1mm以上の場合、サンプル5では良品数が急激に低下するのに対し、サンプル2は、良品数が30個、すなわち、評価した30本のサンプル全てが良品と判断され、効果比率が数倍~十数倍となる。 
突部の材質が貴金属ではない場合、耐久性の向上の観点から突状部36のサイズを大きくすることが望まれているが、溶接面積が大きくなると、材料の中心部分の溶接性が低下することにともない、溶接強度も低下する。本実施例の評価によれば、溶接部分の面積Aが1.1mm以上であっても、(接地電極母材35の比抵抗R)-(突状部36の比抵抗S)≧20、とすることにより、溶接強度の向上効果が得られた。 
以上説明した第1実施例のスパークプラグ100によれば、同一の金属であるニッケルを主成分とする材料により形成された接地電極30の接地電極母材35と突状部36は、(接地電極母材35の比抵抗R)>(突状部の比抵抗S)、となるように形成されている。従って、突状部36に比して体積の大きい接地電極母材35の溶融を促進でき、溶接強度を向上させることができる。特に、第1実施例では、(接地電極母材35の比抵抗R)-(突状部36の比抵抗S)≧20、とすることにより、十分な溶接強度の向上を図ることができる。 
また、第1実施例のスパークプラグ100によれば、安価なニッケルを主成分として接地電極母材35と突状部36とを形成できる。よって、コストを削減できる。 
また、第1実施例のスパークプラグ100によれば、接地電極母材35と突状部36とは、抵抗溶接された上で、外周面の境界部分にレーザ溶接が施されている。従って、接地電極母材35と突状部36との溶接強度を更に向上できる。 
B.変形例:(1)突状部の中心電極20に対向する端面に、貴金属が溶接されていてもよい。図8は、変形例(1)における接地電極30の先端部分の拡大図である。図8に示すように、変形例突状部は二層の突状部であり、二層突状部436は、接地電極母材35を構成する主成分と同一の主成分(ニッケル)を含む材料により形成されたニッケルチップ36a(ニッケルチップ部材36a)が接地電極母材35に抵抗溶接され、ニッケルチップ部材36aの、中心電極20に対向する端面上に貴金属チップ36bが溶接されることによって形成されている。溶接部36cは、ニッケルチップ部材36aと貴金属チップ36bとの溶接部分を表す。ニッケルチップ部材36aと貴金属チップ36
bとの溶接方法は公知の種々の溶接方法、例えば、レーザ溶接を利用できる。こうすることにより、接地電極30の耐久性を向上できる。 
(2)実施例では、突状部36は、円形の断面を有する円柱状の突起として形成されているが、例えば、矩形状の断面を有する角柱状の突起としてもよい。図9は、変形例(2)における突状部36と対向面32との溶接面350aを示す模式図である。突状部36と先端面31との溶接面350aの面積A(図9にハッチングで示す)は、第1実施例と同様に、1.1mm以上であることが好ましい。 
以上、本発明の種々の実施例について説明したが、本発明はこれらの実施例に限定されず、その趣旨を逸脱しない範囲で種々の構成をとることができる。
3…セラミック抵抗  4…シール体  5…ガスケット  10…絶縁碍子  12…軸孔  13…脚長部  17…先端側胴部  18…後端側胴部  19…鍔部  20…中心電極  21…中心電極母材  25…芯材  30…接地電極  31…先端面  32…対向面  33…背面  35…接地電極母材  36…突状部  36a…ニッケルチップ  36b…貴金属チップ  36c…溶接部  40…端子金具  50…主体金具  51…工具係合部  52…取付ネジ部  54…シール部  57…先端面  100…スパークプラグ  200…エンジンヘッド  201…取付ネジ孔  300…抵抗溶接部  310…レーザ溶接部  350…溶接面  436…突状部  500…抵抗溶接用電極

Claims (8)

  1. 軸線方向に延びる中心電極と、 前記中心電極の先端を露出させつつ前記中心電極の外周に形成された絶縁体と、 前記絶縁体の外周に形成された主体金具と、 前記主体金具に接合された接地電極と、を備え、 前記接地電極は、先端部分が前記中心電極の端面と対向するように配置された母材と、前記先端部分に設けられ、前記中心電極側に突状に形成された突状部と、を有し、 前記母材と前記突状部は、同一の金属を主成分とする材料により形成され、抵抗溶接により接合されたスパークプラグであって、 前記母材と前記突状部は、前記母材の比抵抗をR(μΩcm)とし、前記突状部の比抵抗をS(μΩcm)としたとき、R>Sの関係が成立するように形成されている、 スパークプラグ。
  2. 請求項1記載のスパークプラグであって、 前記母材と前記突状部は、ニッケルを主成分とする材料により形成されている、 スパークプラグ。
  3. 請求項1または請求項2記載のスパークプラグであって、 前記母材と前記突状部は、R-S≧20の関係が成立するように形成されている、 スパークプラグ。
  4. 請求項1ないし請求項3いずれか記載のスパークプラグであって、 前記先端部分と前記突状部との溶接部分の面積は、1.1mm以上である、 スパークプラグ。
  5. 請求項1ないし請求項4いずれか記載のスパークプラグであって、 前記突状部の先端に、貴金属合金が溶接されている、 スパークプラグ。
  6. 請求項1ないし請求項5記載のスパークプラグであって、 前記突状部の外周面における前記母材との境界部分は、レーザ溶接されている、 スパークプラグ。
  7. 軸線方向に延びる中心電極と、前記中心電極の先端を露出させつつ前記中心電極の外周に形成された絶縁体と、前記主体金具に接合された接地電極であって、先端部分が前記中心電極の端面と対向するように配置された母材と、前記先端部分に設けられ、前記中心電極側に突状に形成された突状部と、を備える接地電極と、備えるスパークプラグの製造方法であって、 前記母材と同一金属を主成分とする材料を用いて、前記母材の比抵抗よりも小さい比抵抗となるように部材を形成し、 前記部材を、前記先端部分の前記中心電極側に抵抗溶接する、 スパークプラグの製造方法。
  8. 請求項7記載のスパークプラグの製造方法であって、 前記部材の先端に、貴金属合金を溶接した後、前記部材を前記先端部分の前記中心電極側に抵抗溶接する、 スパークプラグの製造方法。
PCT/JP2010/004900 2009-09-11 2010-08-04 スパークプラグ WO2011030503A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
IN2114DEN2012 IN2012DN02114A (ja) 2009-09-11 2010-08-04
EP10815104.4A EP2477287B1 (en) 2009-09-11 2010-08-04 Spark plug
US13/395,257 US8736154B2 (en) 2009-09-11 2010-08-04 Spark plug
CN2010800406763A CN102576986B (zh) 2009-09-11 2010-08-04 火花塞
KR1020127006327A KR101392032B1 (ko) 2009-09-11 2010-08-04 스파크 플러그

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-209891 2009-09-11
JP2009209891A JP4964281B2 (ja) 2009-09-11 2009-09-11 スパークプラグ

Publications (1)

Publication Number Publication Date
WO2011030503A1 true WO2011030503A1 (ja) 2011-03-17

Family

ID=43732184

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004900 WO2011030503A1 (ja) 2009-09-11 2010-08-04 スパークプラグ

Country Status (7)

Country Link
US (1) US8736154B2 (ja)
EP (1) EP2477287B1 (ja)
JP (1) JP4964281B2 (ja)
KR (1) KR101392032B1 (ja)
CN (1) CN102576986B (ja)
IN (1) IN2012DN02114A (ja)
WO (1) WO2011030503A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453208A (zh) * 2016-04-11 2017-12-08 日本特殊陶业株式会社 火花塞

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140184054A1 (en) * 2011-07-28 2014-07-03 Tanaka Kikinzoku Kogyo K.K. Clad Electrode for Spark Plug and Method For Manufacturing Same
CN103457162B (zh) * 2013-08-09 2017-03-08 株洲湘火炬火花塞有限责任公司 一种大头钉式的侧电极点火针及其制造方法
JP6166004B1 (ja) * 2016-06-22 2017-07-19 日本特殊陶業株式会社 スパークプラグの製造方法
JP6457470B2 (ja) * 2016-12-12 2019-01-23 日本特殊陶業株式会社 スパークプラグの製造方法
KR102283864B1 (ko) * 2019-10-21 2021-08-02 한국서부발전 주식회사 점화 장치용 점화 플러그

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229551A (ja) * 1993-02-04 1994-08-16 Nippondenso Co Ltd セラミックグロープラグ
JPH08298178A (ja) * 1995-04-27 1996-11-12 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JPH11204233A (ja) * 1998-01-19 1999-07-30 Ngk Spark Plug Co Ltd スパークプラグ
JP2001060488A (ja) * 1999-08-20 2001-03-06 Ngk Spark Plug Co Ltd スパークプラグの製造方法及びスパークプラグ
JP2003317896A (ja) 2002-02-19 2003-11-07 Denso Corp スパークプラグ
JP2004134209A (ja) * 2002-10-10 2004-04-30 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JP2008243713A (ja) 2007-03-28 2008-10-09 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4514657A (en) * 1980-04-28 1985-04-30 Nippon Soken, Inc. Spark plug having dual gaps for internal combustion engines
JPS5947436B2 (ja) * 1982-01-14 1984-11-19 株式会社デンソー 内燃機関用スパ−クプラグ
JP3301094B2 (ja) * 1991-12-13 2002-07-15 株式会社デンソー 内燃機関用スパークプラグおよびその製造方法
JP4353080B2 (ja) * 2004-02-06 2009-10-28 株式会社デンソー スパークプラグの製造方法
JP4769070B2 (ja) * 2005-01-31 2011-09-07 日本特殊陶業株式会社 内燃機関用スパークプラグ
JP4413951B2 (ja) * 2007-07-06 2010-02-10 日本特殊陶業株式会社 スパークプラグ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06229551A (ja) * 1993-02-04 1994-08-16 Nippondenso Co Ltd セラミックグロープラグ
JPH08298178A (ja) * 1995-04-27 1996-11-12 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JPH11204233A (ja) * 1998-01-19 1999-07-30 Ngk Spark Plug Co Ltd スパークプラグ
JP2001060488A (ja) * 1999-08-20 2001-03-06 Ngk Spark Plug Co Ltd スパークプラグの製造方法及びスパークプラグ
JP2003317896A (ja) 2002-02-19 2003-11-07 Denso Corp スパークプラグ
JP2004134209A (ja) * 2002-10-10 2004-04-30 Ngk Spark Plug Co Ltd スパークプラグ及びその製造方法
JP2008243713A (ja) 2007-03-28 2008-10-09 Ngk Spark Plug Co Ltd スパークプラグの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107453208A (zh) * 2016-04-11 2017-12-08 日本特殊陶业株式会社 火花塞
CN107453208B (zh) * 2016-04-11 2020-03-06 日本特殊陶业株式会社 火花塞

Also Published As

Publication number Publication date
KR101392032B1 (ko) 2014-05-07
CN102576986B (zh) 2013-06-05
JP4964281B2 (ja) 2012-06-27
EP2477287A1 (en) 2012-07-18
IN2012DN02114A (ja) 2015-08-21
JP2011060616A (ja) 2011-03-24
US8736154B2 (en) 2014-05-27
CN102576986A (zh) 2012-07-11
EP2477287A4 (en) 2013-11-27
EP2477287B1 (en) 2019-10-09
US20120176019A1 (en) 2012-07-12
KR20120083325A (ko) 2012-07-25

Similar Documents

Publication Publication Date Title
EP2063508B1 (en) Spark plug for internal combustion engine and method for producing the spark plug
WO2011030503A1 (ja) スパークプラグ
US7666047B2 (en) Method for securing a metal noble tip to an electrode of a spark plug using a resistance and laser welding process
JP6205006B2 (ja) スパークプラグ
JP6634927B2 (ja) スパークプラグ及びスパークプラグの製造方法
EP2672588B1 (en) Spark plug
US9083155B2 (en) Spark plug with an improved separation resistance of a noble metal tip
KR20100084176A (ko) 내연 엔진용 스파크 플러그
EP2741383B1 (en) Spark plug
KR20130061185A (ko) 스파크 플러그 및 그 제조방법
WO2010134254A1 (ja) スパークプラグ
JP5669689B2 (ja) スパークプラグ
EP2226912A1 (en) Spark plug
US8922104B1 (en) Spark plug having an embedded tip that is prevented from detachment due to thermal stress
WO2011142106A1 (ja) スパークプラグ
JP4885837B2 (ja) スパークプラグの製造方法
JP5995912B2 (ja) スパークプラグおよびスパークプラグの製造方法
JP2015513775A (ja) 接地電極プラトーを有する点火プラグおよびその製造方法
JP5820323B2 (ja) スパークプラグの製造方法
US9716370B2 (en) Spark plug
JP2021150199A (ja) スパークプラグ
JP2017157511A (ja) スパークプラグ
JP2017033812A (ja) スパークプラグの製造方法
JP2010205492A (ja) スパークプラグ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040676.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010815104

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127006327

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13395257

Country of ref document: US

Ref document number: 2114/DELNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE