WO2011030492A1 - 多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法 - Google Patents

多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法 Download PDF

Info

Publication number
WO2011030492A1
WO2011030492A1 PCT/JP2010/004478 JP2010004478W WO2011030492A1 WO 2011030492 A1 WO2011030492 A1 WO 2011030492A1 JP 2010004478 W JP2010004478 W JP 2010004478W WO 2011030492 A1 WO2011030492 A1 WO 2011030492A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycrystalline silicon
reactor
wall
alloy material
corrosion
Prior art date
Application number
PCT/JP2010/004478
Other languages
English (en)
French (fr)
Inventor
祢津茂義
小黒暁二
清水孝明
黒澤靖志
久米史高
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP10815095.4A priority Critical patent/EP2479143B1/en
Priority to AU2010293739A priority patent/AU2010293739B2/en
Priority to US13/496,002 priority patent/US9193596B2/en
Priority to CN201080040883.9A priority patent/CN102498065B/zh
Publication of WO2011030492A1 publication Critical patent/WO2011030492A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a technique for producing polycrystalline silicon, and more specifically, it is possible to provide high-purity polycrystalline silicon by reducing contamination of dopant impurities from the inner wall of the reactor when depositing polycrystalline silicon in the reactor. It relates to the technology.
  • Siemens method and fluidized bed reaction method are known as methods for producing high-purity polycrystalline silicon used as a raw material for single crystal silicon for semiconductor production.
  • the Siemens method is a method in which a source gas containing chlorosilane is brought into contact with a heated silicon core wire, and polycrystalline silicon is grown on the surface of the silicon core wire by a CVD (Chemical Vapor Deposition) method.
  • the fluidized bed reaction method is a method for obtaining granular polysilicon by supplying monosilane or trichlorosilane as raw materials and performing vapor deposition in a flowing gas.
  • Patent Document 1 discloses a technique for obtaining high-purity precipitated silicon by precipitating silicon in a reaction vessel made of a material that hardly releases outgas. ing.
  • the reaction vessel has an inner wall made of a heat-resistant alloy containing 28% by weight or more of nickel.
  • the above-mentioned “heat-resistant alloy containing nickel of 28% by weight or more” is used as Incoloy 800, Inconel 600. Inconel 601, Incoloy 825, Incoloy 801, Hastelloy B, Hastelloy C and the like are exemplified.
  • Polycrystalline silicon for semiconductor production is required to have extremely high purity, and in recent years, the total amount of dopant impurities is required to be 100 ppt (ppt ⁇ atomic) or less in terms of atomic ratio.
  • ppt ⁇ atomic ppt ⁇ atomic
  • Patent Document 1 discloses that, as a conventional technique, the reaction furnace is cooled with water in order to obtain corrosion resistance of the reaction furnace.
  • a well-known technique for cooling the reaction furnace by supplying water near room temperature is described. Just do it.
  • an object of the present invention is to provide a technology for efficiently recovering the heat supplied for producing polycrystalline silicon while obtaining high-purity polycrystalline silicon.
  • the reactor for producing polycrystalline silicon according to the present invention includes chromium (Cr), nickel (Ni), and silicon (Si) content mass% on the inner surface side of the inner wall.
  • a first composition having an R value defined by R [Cr] + [Ni] ⁇ 1.5 [Si] of 40% or more when [Cr], [Ni], and [Si] are used.
  • a corrosion-resistant layer made of an alloy material is provided, and a cooling water channel capable of circulating pressurized cooling water having a normal boiling point or higher is disposed in the reactor, and the first water-cooling channel is disposed between the corrosion-resistant layer and the cooling water channel.
  • a heat conductive layer made of a second alloy material having a higher thermal conductivity than the first alloy material is provided.
  • the R value is 60% or more.
  • the Cr content, the Ni content, and the Si content mass% of the first alloy material are [Cr]: 14.6 to 25.2 mass%, [Ni]: 19.6 to 77.5 mass%, [Si]: Within the range of 0.3 to 0.6% by mass.
  • the second alloy material is, for example, a single steel material or a clad steel material obtained by bonding a plurality of types of metals.
  • the polycrystalline silicon production system of the present invention includes the above-described reactor for producing polycrystalline silicon, and a temperature control mechanism capable of controlling the furnace inner surface temperature when depositing polycrystalline silicon in the reactor to 370 ° C. or lower. I have.
  • the furnace inner surface side contains chromium (Cr), nickel (Ni), and silicon (Si) containing mass% as [Cr], [Ni], and [Si], respectively.
  • a silicon raw material gas is supplied into the inner wall in a state controlled at 370 ° C. or lower to perform a polycrystalline silicon precipitation reaction.
  • a reaction furnace inner wall made of an alloy material having a composition with an R value of 60% or more is used, and the furnace inner surface temperature of the reaction furnace inner wall is controlled to less than 300 ° C.
  • an R value defined by R [Cr] + [Ni] ⁇ 1.5 [Si] is 40% or more. Since the alloy material is used, it is possible to reduce the contamination of dopant impurities from the inner wall of the reactor when depositing polycrystalline silicon in the reactor, and to provide a technique for obtaining high-purity polycrystalline silicon. it can.
  • the heat supplied to produce polycrystalline silicon can be obtained. It can be efficiently recovered via cooling water. The heat recovered through the cooling water can be reused as steam, for example.
  • the inner wall surface temperature at the outlet side of the cooling medium immediately before the end of the polycrystalline silicon precipitation process and the dopant impurities incorporated into the polycrystalline silicon It is a figure which shows the relationship with a density
  • FIG. 1 is a diagram for explaining a configuration example of a polycrystalline silicon manufacturing system according to the present invention.
  • a polycrystalline silicon manufacturing system 100 for depositing polycrystalline silicon by a Siemens method is illustrated.
  • the reaction furnace 10 is provided on the base plate 1, and an inverted U-shaped silicon core wire 5 which is connected to the electrodes 2a and 2b at both ends and can be energized is set therein.
  • a raw material gas such as trichlorosilane gas for depositing polycrystalline silicon, or a process gas such as nitrogen gas or hydrogen gas is supplied from the gas nozzle 3 into the reaction furnace 10 and heated by current supply from the electrodes 2a and 2b.
  • Polycrystalline silicon 6 is deposited by vapor phase growth on the surface. Gas exhaust from the reaction furnace 10 is performed from the exhaust port 4.
  • pressurized cooling water (hot water) 15 having a normal boiling point or higher as a cooling medium circulates from the steam drum 20 through the pressurized cooling water supply pump 21 to circulate the pressurized cooling water in the reaction furnace. Supplied to the enabled flow path.
  • the hot water 15 is discharged from above the reaction furnace 10, and its pressure is detected by a first pressure control unit provided on the downstream side of the reaction furnace 10, that is, the pressure indicating controller PIC 22, and the opening degree of the control valve 23 is detected. By adjusting the pressure, the pressure is controlled and the pressure is reduced to a predetermined pressure.
  • the hot water 15 may be used for other heating while having high energy, but in order to make the steam easier to use, the depressurized hot water 15 is flushed into the steam drum 20 to generate steam. Cool while cooling.
  • the pressure in the steam drum 20 that has risen with the generation of the steam is detected by the second pressure control unit, that is, the pressure indicating controller PIC31, and the steam is collected through the control valve 32.
  • the cooling medium recovered in a state where the energy per unit amount of the refrigerant is high can be reused as a heating source for another application as steam having a higher value than hot water.
  • the level of the hot water 15 in the steam drum 20 is detected by the level controller LIC41, and an amount corresponding to the hot water 15 lost by the steam recovery described above or a slight excess amount of pure water is supplied to the control valve. Replenish by adjusting the opening of 42.
  • the temperature of the hot water that is the cooling medium is cooled when the hot water 15 is flushed into the steam drum 20 through the pressure control valve 23 of the first pressure control unit, and further through the adjustment valve 42. Although it cools also by supplying pure water, it is the pressure adjustment by a 2nd pressure control part that determines the temperature of the hot water in the steam drum 20.
  • the temperature-controlled hot water 15 in the steam drum 20 is further circulated to the reaction furnace 10 via the supply pump 21.
  • FIG. 2 is a cross-sectional view for explaining the structure of the wall portion of the reaction furnace 10 of the present invention.
  • the cooling medium is disposed outside the furnace of the inner wall 11, that is, between the inner wall 11 inside the furnace and the outer wall 12 outside the furnace.
  • the refrigerant flow path portion 13 having a sufficient pressure resistance for circulating the hot water 15 is provided in a spiral shape, for example, and the hot water 15 is supplied from the lower part of the reactor 10 and discharged from the top of the head. Will be.
  • the inner wall 11 has a two-layer structure, and a corrosion-resistant layer 11a made of a highly corrosion-resistant alloy material is provided inside the furnace in contact with the corrosive process gas, and between the corrosion-resistant layer 11a and the cooling water flow path 13 is provided.
  • a heat conduction layer 11b for efficiently conducting heat in the reaction furnace 10 from the inner wall surface to the cooling medium flow path 13 is provided.
  • the heat conductive layer 11b is made of an alloy material having a higher thermal conductivity than the alloy material used for the corrosion resistant layer 11a.
  • SB steel carbon steel for boilers and pressure vessels
  • SGV steel for medium / normal temperature pressure vessels
  • the heat conductive layer 11b does not need to be limited to what consists of a single steel material, It is good also as what consists of a clad steel material which laminated
  • the material of the outer wall 12 is not particularly required, but the same alloy material as that of the heat conductive layer 11b may be used, or stainless steel such as SUS304 may be used.
  • the temperature and time were selected as 200 ° C. and 9 days as the first condition, and the temperature and time were selected as 300 ° C. and 9 days as the second condition, and corrosion experiments were performed under these first and second conditions.
  • the temperature was set to 400 ° C. and 500 ° C., respectively, and the time was selected to be 19 days. Other than that, the corrosion test was performed again in the same procedure as described above.
  • Table 1 and FIG. 3 summarize the results of the corrosion test under the above-described third condition (temperature 400 ° C., time: 19 days).
  • Table 1 summarizes the specific composition of the alloy material (steel type) and the change in weight after the corrosion test.
  • NAR is a registered trademark of Sumitomo Metal Industries, Ltd.
  • Incoloy and Inconel are registered trademarks of Inco
  • Hastelloy is a registered trademark of Highness Stellite
  • Carpenter is a registered trademark of Carpenter.
  • an alloy material having the R value of 40% or more is preferable, and a more preferable R value is 60% or more.
  • a significant change in weight was observed as compared with the third condition.
  • the diameter is 120 to 130 mm at a temperature of 1000 ° C. to 1100 ° C. A polycrystalline silicon rod was grown.
  • FIG. 4 shows the inner wall surface temperature (horizontal axis) at the outlet side of the cooling medium immediately before the end of the polycrystalline silicon precipitation process for each reactor of the inner wall made of SUS310S and Hastelloy C, which are Cr—Ni—Si alloy materials. It is a figure which shows the relationship with the dopant impurity density
  • the total amount of dopant shown on the vertical axis is the total amount of dopant obtained by photoluminescence analysis, and specifically, the total content of phosphorus, arsenic, boron, and aluminum.
  • the total amount of dopant in polycrystalline silicon is 100 ppt ⁇ atomic or less due to practical requirements for controlling resistivity during CZ single crystal growth or FZ single crystal growth used for semiconductor applications.
  • the total amount of dopant in the polycrystalline silicon can be reduced to 100 ppt ⁇ atomic or less by keeping the temperature of the inner wall surface at 220 ° C. or lower.
  • Hastelloy C is used for the inner wall surface, the total amount of dopant in the polycrystalline silicon can be reduced to 100 ppt ⁇ atomic or less by keeping the temperature of the inner wall surface at 370 ° C. or lower.
  • the total amount of dopant in the polycrystalline silicon can be expected to be 10ppt ⁇ atomic or less.
  • the reactor 10 is cooled by pressurized cooling water (hot water) 15 having a normal boiling point or higher, the temperature of the inner wall surface is controlled to 100 ° C. or higher.
  • An alloy material having an R value defined by R [Cr] + [Ni] ⁇ 1.5 [Si] of 40% or more, which is preferable as a material for a corrosion resistant layer on the inner wall of a reactor for producing polycrystalline silicon Is shown in Table 2.
  • the procedure for conducting the polycrystalline silicon precipitation reaction using the reactor of the present invention is generally as follows. First, the silicon core wire 5 is connected to the electrode 2, the reaction furnace 10 is placed in close contact with the base plate 1, and nitrogen gas is supplied from the gas nozzle 3 to replace the air in the reaction furnace 10 with nitrogen. Air and nitrogen in the reaction furnace 10 are exhausted from the exhaust port 4.
  • the silicon core wire 5 is preheated to a temperature of 250 ° C. or higher so that the current can flow efficiently. Subsequently, a current is supplied from the electrode 2 to the silicon core wire 5 to heat the silicon core wire 5 to 900 ° C. or higher. Further, trichlorosilane gas is supplied as a raw material gas together with hydrogen gas, and polycrystalline silicon 6 is vapor-phase grown on the silicon core wire 5 in a temperature range of 900 ° C. or more and 1200 ° C. or less. Unreacted gas and by-product gas are discharged from the exhaust port 4.
  • hot water 15 is supplied as a cooling medium to cool the reaction furnace 10.
  • the inner wall surface of the reaction furnace 10 is kept at 370 ° C. or lower by the following temperature control mechanism.
  • the temperature control mechanism here may be controlled by a control mechanism that further installs a temperature measuring device on the inner surface of the furnace and determines the refrigerant temperature and the circulation amount based on the measured temperature.
  • a control mechanism that further installs a temperature measuring device on the inner surface of the furnace and determines the refrigerant temperature and the circulation amount based on the measured temperature.
  • a system in which the heat balance in the furnace and the cooling system is monitored and the furnace inner surface temperature is controlled by adjusting the amount of hot water circulating in the cooling system and the hot water temperature is preferable.
  • the furnace inner surface temperature control mechanism based on this heat balance is based on the basic data at the time of system design, that is, the energization amount to the silicon core wire 5, the introduction amount and temperature of hydrogen and silane gas, the surface temperature of the growing polycrystalline silicon 6, the reaction
  • the furnace inner surface temperature is obtained from the heat balance obtained from the thermal conductivity of the furnace material, hot water inlet temperature and outlet temperature, and the circulation rate, and the furnace temperature is adjusted by adjusting the hot water inlet temperature and circulation rate of the cooling system.
  • This is a method of controlling the inner surface temperature within a control temperature range.
  • the temperature inside the furnace is estimated from the thermal conductivity and thickness of the reactor material, the inlet and outlet temperatures of hot water and the circulation rate, and the temperature and / or circulation rate of the supplied cooling water. Can be controlled by.
  • the hot water 15 supplied as a cooling medium for cooling the reaction furnace 10 is set to a temperature range of more than 100 ° C. and less than 200 ° C. exceeding the normal boiling point temperature, and in the heat removal surface boundary film of the heat conduction layer 11b. In order to prevent boiling, the pressure is controlled to exceed the vapor pressure at the boundary film temperature.
  • the pressure-controlled hot water 15 is supplied from below the reaction furnace 10 by the hot water supply pump 21 and cools the inner wall 11 through the cooling medium flow path 13 in contact with the heat conduction layer 11b, while the heat conduction layer 11b It is heated, heated up, and discharged from above the reactor 10.
  • the supply of the source gas and the current supply to the polycrystalline silicon 6 are stopped in this order, and the temperature in the reaction furnace 10 is lowered.
  • the hot water 15 is switched to cold water, and the reaction furnace 10 is cooled to near room temperature.
  • the reaction furnace 10 is opened to the atmosphere, and the grown polycrystalline silicon 6 is trimmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Silicon Compounds (AREA)

Abstract

 本発明は、高純度の多結晶シリコンを得ると共に、多結晶シリコンの製造により発生した熱を価値の高い状態で回収するための技術を提供する。反応炉10の内壁11は、2層構造を有し、腐食性のプロセスガスに接する炉内側には、耐食性の高い合金材料からなる耐食層11aが設けられ、炉外側(外壁側)には、反応炉10内の熱を内壁面から冷却媒体流路13へと効率的に伝導させるための熱伝導層11bが設けられている。また、冷却媒体流路は標準沸点以上の熱水を循環可能な耐圧性を備える。耐食層11aは、クロム(Cr)、ニッケル(Ni)、およびシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の合金材料からなる。反応炉内壁の炉内側表面温度を370℃以下に制御した状態で多結晶シリコンの析出反応を行なう。

Description

多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法
 本発明は多結晶シリコンの製造技術に関し、より詳細には、反応炉内で多結晶シリコンを析出させる際の反応炉内壁からのドーパント不純物混入を低減して高純度の多結晶シリコンの提供を可能とする技術に関する。
 半導体製造用単結晶シリコンの原料となる高純度の多結晶シリコンを製造する手法として、シーメンス法と流動床反応法が知られている。シーメンス法は、クロロシランを含む原料ガスを加熱されたシリコン芯線に接触させ、該シリコン芯線の表面に多結晶シリコンをCVD(Chemical Vapor Deposition)法で成長させる方法である。また、流動床反応法は、原料であるモノシランやトリクロロシランを供給して、流動ガス中で気相析出させて粒状ポリシリコンを得る方法である。
 ところで、多結晶シリコンを製造させる際、シリコンの析出反応に用いられる反応容器の内壁面から不純物ガスが放出され、当該不純物ガスが多結晶シリコン中に取り込まれてその品質を低下させてしまうという現象が知られている。鋼製の反応容器を用いる場合、その内壁面の温度が400℃以上になると、トリクロロシランなどのシリコン原料ガスを水素ガスで希釈したプロセスガスに接する反応容器の内壁面が徐々に腐食され、内壁面を構成する鋼の成分元素のみならず、当該鋼に含有されている不純物元素も反応雰囲気中に放出される。このような不純物元素がシリコン結晶中でアクセプターやドナーとして作用する燐、硼素、アルミニウム、砒素などのドーパント不純物元素である場合には、多結晶シリコンの品質を著しく低下させてしまう結果となる。
 特開平8-259211号公報(特許文献1)には、かかる問題に鑑み、アウトガスを放出し難い材料で作製した反応容器内でシリコンを析出させることにより高純度の析出シリコンを得る技術が開示されている。
 具体的には、ニッケルを28重量%以上含有する耐熱合金は600℃以下の温度ではアウトガスを殆ど放出しないという知見に基づき、ニッケルを28重量%以上含有する耐熱合金よりなる内壁を有する反応容器内でシラン類の分解・還元反応を行うことにより、得られる多結晶シリコンの高純度化を図るというものであり、上述の「ニッケルを28重量%以上含有する耐熱合金」として、インコロイ800、インコネル600、インコネル601、インコロイ825、インコロイ801、ハステロイB、ハステロイCなどが例示されている。
特開平8-259211号公報
 半導体製造用の多結晶シリコンは極めて高純度であることが要求され、近年ではドーパント不純物総量は原子比で100ppt(ppt・atomic)以下であることが必要である。しかしながら、本発明者らが行った一連の実験によれば、例えばハステロイCからなる内壁面を有する反応容器内でシーメンス法により多結晶シリコンを析出させた場合でも、多結晶シリコンの析出反応の進行に伴い反応容器の内壁温度が上昇するにつれて多結晶シリコン中に取り込まれるドーパント不純物量が増加してしまうことが判明した。特に、反応容器の内壁温度が370℃を超える条件で析出反応が行なわれると、多結晶シリコン中に取り込まれるドーパント不純物の総量は100ppt・atomicを超えてしまうことが明らかとなった。
 特許文献1には、従来技術として、反応炉の耐食性を得るため、反応炉が水冷されていることを開示しているが、室温付近の水を供給して反応炉を冷却する周知技術を記載するにすぎない。反応炉内で多結晶シリコンを析出させる際の反応炉内壁からのドーパント不純物の混入を低減し、高純度の多結晶シリコンを得るためには、従来提唱されていた上限温度よりも低く管理する必要がある。
 そこで、本発明の課題は、高純度の多結晶シリコンを得ると共に、多結晶シリコンの製造するために供給した熱を効率的に回収する技術を提供することにある。
 上述の課題を解決するために、本発明の多結晶シリコン製造用反応炉は、内壁の炉内表面側に、クロム(Cr)、ニッケル(Ni)、およびシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の第1の合金材料からなる耐食層が設けられ、更に前記反応炉には標準沸点以上の加圧冷却水を循環可能な冷却水路が配されており、前記耐食層と前記冷却水流路の間に、前記第1の合金材料よりも高い熱伝導率の第2の合金材料からなる熱伝導層が設けられている。好ましくは、前記R値が60%以上である。
 例えば、前記第1の合金材料のCr、Ni、およびSiの含有質量%はそれぞれ、[Cr]:14.6~25.2質量%、[Ni]:19.6~77.5質量%、[Si]:0.3~0.6質量%の範囲内にある。
 また、前記第2の合金材料は、例えば、単一鋼材又は複数種類の金属を張り合わせたクラッド鋼材である。
 本発明の多結晶シリコン製造システムは、上記多結晶シリコン製造用反応炉と、前記反応炉内で多結晶シリコンを析出させる際の炉内側表面温度を370℃以下に制御し得る温度制御機構とを備えている。
 本発明の多結晶シリコンの製造方法は、炉内表面側が、クロム(Cr)、ニッケル(Ni)、及びシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の合金材料からなる反応炉内壁の炉内側表面温度を100℃以上370℃以下に制御した状態で前記内壁内部にシリコン原料ガスを供給して多結晶シリコンの析出反応を行なうことを特徴とする。
 好ましくは、前記R値が60%以上となる組成の合金材料からなる反応炉内壁を使用し、前記反応炉内壁の炉内側表面温度を300℃未満に制御する。
 本発明では、反応炉の内壁の炉内側に設けられる耐食層の材料として、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の合金材料を用いることとしたので、反応炉内で多結晶シリコンを析出させる際の反応炉内壁からのドーパント不純物の混入を低減し、高純度の多結晶シリコンを得るための技術を提供することができる。
 さらに、耐食層と冷却水流路の間に第1の合金材料よりも高い熱伝導率の第2の合金材料からなる熱伝導層を設けることにより、多結晶シリコンを製造するために供給した熱を冷却水を介して効率的に回収することができる。冷却水を介して回収した熱は、例えばスチームとして再利用することができる。
本発明の多結晶シリコン製造システムの構成例を説明するための図である。 本発明の多結晶シリコン製造用反応炉の壁部の構造(内壁、外壁、および冷媒流路部)を説明するための断面図である。 Cr-Ni-Si系合金材料の耐食性の組成(含有質量%:R=[Cr]+[Ni]-1.5[Si])依存性を説明するための図である。 Cr-Ni-Si系合金材料であるSUS310SおよびHastelloy Cからなる内壁の反応炉につき、多結晶シリコン析出工程終了直前における冷却媒体出口端側の内壁面温度と多結晶シリコン中に取り込まれたドーパント不純物濃度との関係を示す図である。
 以下に、図面を参照して、本発明の実施の形態について説明する。
 図1は、本発明の多結晶シリコン製造システムの構成例を説明するための図で、この図では、多結晶シリコンをシーメンス法で析出させる多結晶シリコン製造システム100が例示されている。
 反応炉10はベースプレート1上に設けられ、内部には、両端が電極2a、2bに接続されて通電可能とされた逆U字状のシリコン芯線5がセットされる。多結晶シリコン析出用のトリクロロシランガスなどの原料ガスや窒素ガス、水素ガス等のプロセスガスはガスノズル3から反応炉10内へと供給され、電極2a、2bからの電流供給により加熱されたシリコン芯線5の表面に多結晶シリコン6が気相成長により析出する。反応炉10内からのガス排気は排気口4から行なわれる。
 反応炉10の下方からは加圧冷却水供給ポンプ21を介してスチームドラム20から冷却媒体としての標準沸点以上の加圧冷却水(熱水)15が、反応炉中の加圧冷却水を循環可能とされた流路に供給される。熱水15は反応炉10の上方から排出され、その圧力は、反応炉10の下流側に設けられた第1圧力制御部、すなわち、圧力指示調節計PIC22により検知され、調節弁23の開度を調節することにより圧力制御されて所定の圧力にまで減圧される。
 高いエネルギーを持ったまま他の加熱にこの熱水15を使用しても良いが、より利用し易いスチームとするため、減圧された熱水15はスチームドラム20内にフラッシュされ、スチームを発生しながら冷却する。当該スチームの発生に伴って上昇したスチームドラム20内の圧力は第2圧力制御部、すなわち、圧力指示調節計PIC31で検知され、調節弁32を介してスチームの回収が行なわれる。このように冷媒の単位量当たりの持つエネルギーが高い状態で回収された冷却媒体は、温水よりも価値の高いスチームとして、別用途の加熱源として再利用することができる。
 スチームドラム20内の熱水15の液面高さはレベル調節計LIC41により検知され、上述のスチーム回収により失われた熱水15に相当する量乃至は若干の過剰量の純水を、調節弁42の開度を調節することで補給する。冷却媒体である熱水の温度は、上述の熱水15が第1圧力制御部の圧力制御弁23を通過してスチームドラム20内にフラッシュされる際に冷却され、更に調節弁42を介して純水が供給されることによっても冷却されるが、スチームドラム20内の熱水の温度を決定するのは、第2圧力制御部による圧力調節である。このようにしてスチームドラム20内の温度制御された熱水15は、更に供給ポンプ21を介して反応炉10に循環される。
 図2は、本発明の反応炉10の壁部の構造を説明するための断面図で、内壁11の炉外側、即ち、炉内側の内壁11と炉外側の外壁12との間に、冷却媒体としての熱水15を循環させるための耐圧性が確保された冷媒流路部13が、例えば螺旋状に設けられており、熱水15は反応炉10の下部から供給されて頭頂部から排出されることになる。
 内壁11は、2層構造を有し、腐食性のプロセスガスに接する炉内側には、耐食性の高い合金材料からなる耐食層11aが設けられ、耐食層11aと冷却水流路13との間には、反応炉10内の熱を内壁面から冷却媒体流路13へと効率的に伝導させるための熱伝導層11bが設けられている。
 この熱伝導層11bは、耐食層11aに用いられる合金材料よりも高い熱伝導率の合金材料からなり、例えば、SB鋼(ボイラ及び圧力容器用炭素鋼)やSGV鋼(中・常温圧力容器用炭素鋼)などの材料からなる。なお、熱伝導層11bは、単一鋼材からなるものに限定する必要はなく、複数種類の金属を張り合わせたクラッド鋼材からなるものとしてもよい。外壁12の材質は特に定める必要はないが、熱伝導層11bと同じ合金材料を用いてもよいし、SUS304等のステンレス鋼を用いることもできる。
 耐食層に用いられる合金材料は、後述する理由により、クロム(Cr)、ニッケル(Ni)、およびシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の合金材料であり、好ましくは、R値が60%以上の合金材料を選択する。
 以下に、上記組成の合金材料を選択することとした背景である腐食試験について説明する。
 腐食試験は、検体となる各種合金材料を、縦30mm、横25mm、厚さ2mmの大きさに切断して試験片とし、その重量を精密秤量した後、試験炉として準備した石英炉の均熱部に吊り下げ、石英炉内に多結晶シリコン反応炉からの排気ガスを導入し、所定の温度および時間経過後の重量を秤量して重量変化を求めるという手法で実行した。
 第1条件として温度と時間を200℃と9日、第2条件として温度と時間を300℃と9日を選択し、これら第1及び第2条件下で腐食実験を実行した。
 先ず、石英炉内を窒素で置換し、更に水素で置換した後に、シーメンス方式の多結晶シリコン反応炉からの排気ガスの一部を、試験片を均熱部に吊り下げた石英炉内に導入する。なお、上述の多結晶シリコン反応炉からの排気ガスは、H、HCl、SiHnCl4-n(n=0~3)を主成分とする混合ガスである。
 腐食試験終了後、石英炉内への排気ガスを水素に切り替えて冷却し、次いで窒素置換を行ってから炉内を大気開放した後、石英炉内から試験片を取り出して水洗と乾燥を行なって試験片重量を精密秤量した。その結果、上記第1及び第2条件下では、何れの合金材料の試験片においても重量変化は殆ど認められなかった。つまり、200℃以上300℃以下の範囲では、内壁面を構成する合金材料の腐食は殆ど進行しないことが確認された。
 そこで、第3及び第4条件として、合金材料の腐食を加速させるため、温度をそれぞれ400℃と500℃とし、時間は何れも19日を選択した。なお、その他は上述の同様の手順で再度腐食試験を行った。
表1および図3は、上述の第3条件(温度400℃、時間:19日)での腐食試験の結果を纏めたものである。表1は合金材料(鋼種)の具体的な組成および腐食試験後の重量変化を纏めたものであり、図3はその結果をグラフ化したもので、横軸は合金組成(R=[Cr]+[Ni]-1.5[Si])であり縦軸は腐食試験後の重量変化である。
 なお、「NAR」は住友金属工業株式会社の登録商標であり、「Incoloy」、及び「Inconel」はインコ社の登録商標であり、「Hastelloy」はハイネス・ステライト社の登録商標であり、「Carpenter」はカーペンタ社の登録商標である。
Figure JPOXMLDOC01-appb-T000001
 表1および図3から明らかなように、クロム、ニッケル、シリコンの含有質量%の関係式R=[Cr]+[Ni]-1.5[Si]の値が40%未満の鋼種は、これを反応炉の内壁材料として用いると、反応炉内で多結晶シリコンを析出させる際に腐食が進行し易い。
 つまり、多結晶シリコン製造用反応炉内壁の耐食層材料としては、上記R値が40%以上の合金材料が好ましく、より好ましいR値は60%以上である。なお、上述の第4条件(温度500℃、時間:19日)での腐食試験では、第3条件のものよりも顕著な重量変化が認められた。
実施例
 上記検討に基づき、R値40%以上の条件を満足する鋼種であるSUS310S(R値:41~46%)およびHastelloy C(R値:62%以上)を内壁耐食層とした反応炉をそれぞれ試作し、これらの反応炉を用いて実際に多結晶シリコンを析出させ、得られた多結晶シリコン棒中のドーパント不純物濃度の内壁面温度依存性を求める検討を実行した。
 鋼種SUS310S及びHastelloy Cからなる内壁耐食層を有するそれぞれの反応炉10内に、ガスノズル3から水素ガスとトリクロロシランガスを主原料として供給しつつ、1000℃以上1100℃以下の温度で直径120~130mmの多結晶シリコン棒を成長させた。
 図4は、Cr-Ni-Si系合金材料であるSUS310SおよびHastelloy Cからなる内壁のそれぞれの反応炉につき、多結晶シリコン析出工程終了直前における冷却媒体出口端側の内壁面温度(横軸)と多結晶シリコン中に取り込まれたドーパント不純物濃度との関係を示す図である。なお、縦軸に示したドーパント総量は、フォトルミネッセンス分析で得られたドーパント総量であり、具体的には、燐、砒素、硼素、及びアルミニウムの含有量の総和である。
 半導体の用途に用いられるCZ単結晶成長時またはFZ単結晶成長時に抵抗率制御を行う上での実用上の要求により、多結晶シリコン中のドーパント総量は100ppt・atomic以下であることが望ましい。図4に示すように、内壁面にSUS310Sを用いた場合は該内壁面の温度を220℃以下に保つことにより、多結晶シリコン中のドーパント総量を100ppt・atomic以下にすることができる。また、内壁面にHastelloy Cを用いた場合は該内壁面の温度を370℃以下に保つことにより、多結晶シリコン中のドーパント総量を100ppt・atomic以下にすることができる。
 さらに、R値60%以上の条件を満足する鋼種を内壁耐食層とした反応炉内で、内壁面の温度を300℃以下に保ちながら多結晶シリコンを析出させると、多結晶シリコン中のドーパント総量を10ppt・atomic以下にすることが期待できる。
 ここで、反応炉10は標準沸点以上の加圧冷却水(熱水)15により冷却されるので、内壁面の温度は100℃以上に制御される。
 R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上の合金材料であって、多結晶シリコン製造用反応炉内壁の耐食層用材料として好ましい合金材料を例示すると、表2のようになる。
Figure JPOXMLDOC01-appb-T000002
 本発明の反応炉を用いて多結晶シリコンの析出反応を行なう手順は、概ね下記のとおりである。先ず、電極2にシリコン芯線5を接続し、反応炉10をベースプレート1上に密着載置し、ガスノズル3から窒素ガスを供給して反応炉10内の空気を窒素に置換する。反応炉10内の空気と窒素は、排気口4から排出される。
 反応炉10内を窒素雰囲気に置換開始後、冷却媒体流路13に熱水15を供給し、反応炉10内の加温を開始する。反応炉10内を窒素雰囲気に置換終了後、窒素ガスに代えてガスノズル3から水素ガスを供給し、反応炉10内を水素雰囲気にする。
 次に、図示しないヒータを用いてシリコン芯線5を250℃以上の温度に予備加熱し、電流が効率的に流れるほどの導電性にする。続いて、電極2からシリコン芯線5に電流を供給し、シリコン芯線5を900℃以上に加熱する。さらに、水素ガスとともにトリクロロシランガスを原料ガスとして供給し、シリコン芯線5上に多結晶シリコン6を900℃以上1200℃以下の温度範囲で気相成長させる。未反応ガスと副生成ガスは、排気口4から排出される。
 シリコン芯線5の加熱開始から多結晶シリコン6の析出反応工程中(あるいは析出反応工程終了後の多結晶シリコン棒の冷却中)は、熱水15を冷却媒体として供給して反応炉10を冷却する。そして、少なくとも多結晶シリコン6の析出反応中は、下記の温度制御機構により、反応炉10の内壁面を370℃以下に保つ。
 すなわち、ここでの温度制御機構は、炉内側表面の温度計測機を更に設置して、計測された温度に基づき冷媒の温度と循環量を決める制御機構により制御を行うものとしても良い。しかし、実生産用には、炉内および冷却系の熱収支を監視し、冷却系の熱水循環量および熱水温度の調整によって炉内側表面温度の制御を行うシステムが好ましい。
 この熱収支による炉内側表面温度制御機構は、システム設計時の基礎データ、即ち、シリコン芯線5への通電量、水素およびシランガスの導入量および温度、成長中の多結晶シリコン6の表面温度、反応炉材質の持つ熱伝導率、熱水の入り口温度および出口温度と循環量などから得られる熱収支より炉内側表面温度を求め、かつ冷却系の熱水入口温度および循環量を調整することによって炉内側表面温度を制御温度範囲内に制御する方法である。これは、簡易的には、反応炉材質の持つ熱伝導率及び厚さ、熱水の入り口温度および出口温度と循環量より炉内側表面温度を推定し、供給冷却水の温度および/または循環量によって制御することができる。
 反応炉10を冷却する冷却媒体として供給される熱水15は、標準沸点温度を超えた100℃超200℃未満の温度範囲に設定されており、熱伝導層11bの除熱面境膜での沸騰を防止するために、その境膜温度における蒸気圧を超える圧力に制御される。
 圧力制御された熱水15は、熱水供給ポンプ21により反応炉10の下方から供給され、熱伝導層11bに接する冷却媒体流路13を通って内壁11を冷却する一方、熱伝導層11bにより加熱されて昇温して反応炉10の上方から排出される。
 多結晶シリコン6が所望の直径まで成長した後、多結晶シリコン6への原料ガスの供給と電流供給をこの順に停止し、反応炉10内の温度を下げる。反応炉10内の温度が十分に低下した後、熱水15を冷水に切り換え、反応炉10を室温付近まで冷却する。最後に、反応炉10内の雰囲気を水素から窒素に置換した後に反応炉10を大気開放し、成長した多結晶シリコン6を刈り取る。
本発明では、反応炉の内壁の炉内側に設けられる耐食層の材料として、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の第1の合金材料を用いることにより、反応炉内で多結晶シリコンを析出させる際の反応炉内壁からのドーパント不純物の混入を低減するとともに、耐食層と冷却水流路の間に第1の合金材料よりも高い熱伝導率の第2の合金材料からなる熱伝導層を設けることにより、多結晶シリコンを製造するために供給した熱を冷却水を介して効率的に回収することのできる技術を提供する。
1 ベースプレート
2a、2b 電極
3 ガスノズル
4 排気口
5 シリコン芯線
6 多結晶シリコン
10 反応炉(反応容器)
11 内壁
11a 耐食層
11b 熱伝導層
12 外壁
13 冷却媒体流路
15 熱水
20 スチームドラム
21 熱水供給ポンプ
22 圧力指示調節計
23 調節弁
31 圧力指示調節計
32 調節弁
41 レベル調節計
42 調節弁
100 多結晶シリコン製造システム

Claims (7)

  1. 多結晶シリコン製造用の反応炉であって、内壁の炉内表面側に、クロム(Cr)、ニッケル(Ni)、およびシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の第1の合金材料からなる耐食層が設けられ、更に前記反応炉には標準沸点以上の加圧冷却水を循環可能な冷却水流路が配されており、前記耐食層と前記冷却水流路の間に、前記第1の合金材料よりも高い熱伝導率の第2の合金材料からなる熱伝導層が設けられている多結晶シリコン製造用反応炉。
  2. 前記R値が60%以上である、請求項1に記載の多結晶シリコン製造用反応炉。
  3. 前記第1の合金材料のCr、Ni、およびSiの含有質量%はそれぞれ、[Cr]:14.6~25.2質量%、[Ni]:19.6~77.5質量%、[Si]:0.3~0.6質量%の範囲内にある、請求項1又は2に記載の多結晶シリコン製造用反応炉。
  4. 前記第2の合金材料は、単一鋼材又は複数種類の金属を張り合わせたクラッド鋼材である、請求項1に記載の多結晶シリコン製造用反応炉。
  5. 請求項1又は2に記載の多結晶シリコン製造用反応炉と、前記反応炉内で多結晶シリコンを析出させる際の炉内側表面温度を370℃以下に制御し得る温度制御機構と、を備えている多結晶シリコン製造システム。
  6. 炉内表面側が、クロム(Cr)、ニッケル(Ni)、及びシリコン(Si)の含有質量%をそれぞれ[Cr]、[Ni]、および[Si]としたときに、R=[Cr]+[Ni]-1.5[Si]で定義付けられるR値が40%以上となる組成の合金材料からなる反応炉内壁の炉内側表面温度を100℃以上370℃以下に制御した状態で前記内壁内部にシリコン原料ガスを供給して多結晶シリコンの析出反応を行なうことを特徴とする、多結晶シリコンの製造方法。
  7. 前記R値が60%以上となる組成の合金材料からなる反応炉内壁を使用し、前記反応炉内壁の炉内側表面温度を300℃未満に制御する、請求項6に記載の多結晶シリコンの製造方法。
PCT/JP2010/004478 2009-09-14 2010-07-09 多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法 WO2011030492A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP10815095.4A EP2479143B1 (en) 2009-09-14 2010-07-09 Reactor for producing polycrystalline silicon, system for producing polycrystalline silicon, and process for producing polycrystalline silicon
AU2010293739A AU2010293739B2 (en) 2009-09-14 2010-07-09 Reactor for producing polycrystalline silicon, system for producing polycrystalline silicon, and process for producing polycrystalline silicon
US13/496,002 US9193596B2 (en) 2009-09-14 2010-07-09 Reactor for producing polycrystalline silicon, system for producing polycrystalline silicon, and process for producing polycrystalline silicon
CN201080040883.9A CN102498065B (zh) 2009-09-14 2010-07-09 多晶硅制造用反应炉、多晶硅制造系统及多晶硅的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009211804A JP5308288B2 (ja) 2009-09-14 2009-09-14 多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法
JP2009-211804 2009-09-14

Publications (1)

Publication Number Publication Date
WO2011030492A1 true WO2011030492A1 (ja) 2011-03-17

Family

ID=43732175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004478 WO2011030492A1 (ja) 2009-09-14 2010-07-09 多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法

Country Status (6)

Country Link
US (1) US9193596B2 (ja)
EP (1) EP2479143B1 (ja)
JP (1) JP5308288B2 (ja)
CN (1) CN102498065B (ja)
AU (1) AU2010293739B2 (ja)
WO (1) WO2011030492A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274851A1 (en) * 2010-05-10 2011-11-10 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
CN102344141A (zh) * 2011-06-02 2012-02-08 洛阳金诺机械工程有限公司 可提高接触面积和减小电阻的插接式硅芯搭接结构及方法

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5552284B2 (ja) * 2009-09-14 2014-07-16 信越化学工業株式会社 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法
US20110318909A1 (en) * 2010-06-29 2011-12-29 Gt Solar Incorporated System and method of semiconductor manufacturing with energy recovery
CN102225651B (zh) * 2011-04-12 2014-03-12 合肥云荣机电科技有限公司 用于多晶硅铸锭炉的石墨烯-Sr3Ti2O7/锌-铝-锆系耐腐蚀涂层
CN102538479B (zh) * 2012-03-02 2013-08-28 重庆大全新能源有限公司 一种冷却循环冷却水的装置及方法
DE102013200660A1 (de) * 2013-01-17 2014-07-17 Wacker Chemie Ag Verfahren zur Abscheidung von polykristallinem Silicium
JP5909203B2 (ja) * 2013-02-25 2016-04-26 信越化学工業株式会社 多結晶シリコン製造用反応炉および多結晶シリコンの製造方法
JP6370232B2 (ja) * 2015-01-28 2018-08-08 株式会社トクヤマ 多結晶シリコンロッドの製造方法
JP6452475B2 (ja) * 2015-02-06 2019-01-16 株式会社トクヤマ 多結晶シリコン製造装置に用いる無機材料の評価用試料作製装置、評価用試料作製方法、及び評価方法
CN107746979B (zh) * 2017-10-20 2019-04-16 东北大学 一种基于晶体硅金刚线切割废料的硅添加剂及制备方法
WO2021065685A1 (ja) * 2019-10-02 2021-04-08 株式会社トクヤマ 多結晶シリコンの製造装置、製造方法および多結晶シリコン
WO2024148255A1 (en) * 2023-01-05 2024-07-11 Ut-Battelle, Llc High temperature alloys and methods for fabricating same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374909A (ja) * 1986-09-19 1988-04-05 Shin Etsu Handotai Co Ltd 大直径多結晶シリコン棒の製造方法
JPH08259211A (ja) 1995-03-24 1996-10-08 Tokuyama Corp シラン類の分解・還元反応装置および高純度結晶シリコンの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1147832B (it) * 1982-03-29 1986-11-26 Dynamit Nobel Ag Apparecchio e procedimento per la produzione di materiali semiconduttori iperpuri
JP2004137548A (ja) 2002-10-17 2004-05-13 Sumitomo Chem Co Ltd 耐食性部材および腐食防止方法
DE602009001114D1 (de) 2008-01-25 2011-06-09 Mitsubishi Materials Corp Reaktorreinigungsvorrichtung
JP2009292675A (ja) 2008-06-04 2009-12-17 Sumitomo Chemical Co Ltd シリコン又はハロゲン化シランの製造方法及び製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6374909A (ja) * 1986-09-19 1988-04-05 Shin Etsu Handotai Co Ltd 大直径多結晶シリコン棒の製造方法
JPH08259211A (ja) 1995-03-24 1996-10-08 Tokuyama Corp シラン類の分解・還元反応装置および高純度結晶シリコンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2479143A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274851A1 (en) * 2010-05-10 2011-11-10 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
US9315895B2 (en) * 2010-05-10 2016-04-19 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
CN102344141A (zh) * 2011-06-02 2012-02-08 洛阳金诺机械工程有限公司 可提高接触面积和减小电阻的插接式硅芯搭接结构及方法

Also Published As

Publication number Publication date
AU2010293739B2 (en) 2012-12-20
JP5308288B2 (ja) 2013-10-09
EP2479143A4 (en) 2013-05-01
JP2011057526A (ja) 2011-03-24
CN102498065A (zh) 2012-06-13
US20120237429A1 (en) 2012-09-20
EP2479143B1 (en) 2016-09-21
CN102498065B (zh) 2014-06-11
EP2479143A1 (en) 2012-07-25
AU2010293739A1 (en) 2012-04-12
US9193596B2 (en) 2015-11-24

Similar Documents

Publication Publication Date Title
JP5308288B2 (ja) 多結晶シリコン製造用反応炉、多結晶シリコン製造システム、および多結晶シリコンの製造方法
JP5552284B2 (ja) 多結晶シリコン製造システム、多結晶シリコン製造装置および多結晶シリコンの製造方法
JP5655429B2 (ja) 多結晶シリコンの製造方法、製造装置及び多結晶シリコン
RU2581090C2 (ru) Способ получения поликристаллического кремния и реактор для получения поликристаллического кремния
JP5648575B2 (ja) 多結晶シリコン製造装置
CN106948004A (zh) 在经调节压力下使用氦的高温工艺改进
KR101385997B1 (ko) 단결정 제조장치 및 단결정 제조방법
JP6370232B2 (ja) 多結晶シリコンロッドの製造方法
TWI593627B (zh) Polycrystalline silicon crystal stick and its manufacturing method
JP5873392B2 (ja) 多結晶シリコンロッドの製造方法と製造装置
JP6038625B2 (ja) 多結晶シリコンロッドの製造方法と製造装置
JP2016145118A (ja) 多結晶シリコン製造装置に用いる無機材料の評価用試料作製装置、評価用試料作製方法、及び評価方法
CN115583653A (zh) 多晶硅棒的制造装置及制造方法
WO2008117571A1 (ja) 窒化物単結晶の製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080040883.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10815095

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010815095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010815095

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010293739

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010293739

Country of ref document: AU

Date of ref document: 20100709

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13496002

Country of ref document: US