WO2011027824A1 - ワイヤ駆動式ロボット - Google Patents

ワイヤ駆動式ロボット Download PDF

Info

Publication number
WO2011027824A1
WO2011027824A1 PCT/JP2010/065025 JP2010065025W WO2011027824A1 WO 2011027824 A1 WO2011027824 A1 WO 2011027824A1 JP 2010065025 W JP2010065025 W JP 2010065025W WO 2011027824 A1 WO2011027824 A1 WO 2011027824A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
chuck
arm
traveling
base
Prior art date
Application number
PCT/JP2010/065025
Other languages
English (en)
French (fr)
Inventor
勝年 中村
Original Assignee
株式会社Kec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010115714A external-priority patent/JP5411062B2/ja
Priority claimed from JP2010115710A external-priority patent/JP2011240448A/ja
Priority claimed from JP2010115719A external-priority patent/JP5478359B2/ja
Application filed by 株式会社Kec filed Critical 株式会社Kec
Publication of WO2011027824A1 publication Critical patent/WO2011027824A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/023Cartesian coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/02Gripping heads and other end effectors servo-actuated
    • B25J15/0206Gripping heads and other end effectors servo-actuated comprising articulated grippers
    • B25J15/0226Gripping heads and other end effectors servo-actuated comprising articulated grippers actuated by cams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/104Programme-controlled manipulators characterised by positioning means for manipulator elements with cables, chains or ribbons

Definitions

  • the present invention relates to an X ⁇ Z type robot having a horizontal slide mechanism, an up-and-down lift mechanism, and an arm turning mechanism, and more particularly to a robot employing a wire drive system using a wire and a pulley.
  • a robot used for assembling, processing, transporting, and the like of a product generates a desired operation by performing drive control of each joint and traveling / lifting / rotating control by servo control or the like on the arm.
  • it in order to make such many complicated movements, it must be a relatively large and heavy arm, and the torque and parts of the drive source required for control must naturally have high output and strength. It becomes.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a small robot that can perform accurate and quick control on movement in a plurality of directions without mounting a drive source on a movable portion.
  • An X ⁇ Z-type wire-driven robot made to solve the above-described problems is a lifting base provided with a ⁇ rotating means for turning a robot arm, a lifting guide for restricting a lifting orbit of the lifting base in the Z-axis direction, A traveling base that supports the lifting guide, a traveling guide that restricts the traveling track of the traveling base in the X-axis direction perpendicular to the Z-axis, a base frame that directly or indirectly supports the traveling guide, and the Z-axis on the lifting base
  • the base frame is provided with an elevating drive source and a travel drive source.
  • the Z-axis drive means supports a pair of left and right transmission pulleys on the travel base at substantially the same height with a rotation axis perpendicular to the Z axis and the X axis, and a pair of upper and lower passive pulleys on the lift base and the Z axis and Pull out one end of the lifting wire that is spirally wound around the driving pulley fixed to the shaft of the lifting drive source, supported at a position that overlaps with the axis of rotation perpendicular to the X axis, for example, left end or right end of the base frame Hang on the first pulley (Z-axis swing pulley) supported on the starting end of the traveling track, and then on the transmission pulley supported on the starting end of the traveling track of the traveling base from below, It is hung on the upper passive pulley, and further on the transmission pulley supported on the end side of the traveling track of the traveling base from below, for example, it is fastened to the end of the traveling track, such as the right end or
  • a fixed bearing fixed at the starting end of the traveling track such as one of the left and right ends of the base frame, and a dynamic bearing that swings in the gap between the left and right support plates that constitute the fixed bearing.
  • the second pulley is rotatably supported
  • the first pulley is rotatably supported by the dynamic bearing
  • the fixed bearing includes two upper and lower support shafts that project from the inner surface of the support plate toward the gap
  • the dynamic bearing is provided with a bearing that is open in the same direction in which the two upper and lower support shafts are loosely fitted.
  • the upper part of the dynamic bearing is a traveling track with a bolt or the like that has a compression spring at the start end of the traveling track.
  • the X-axis drive means pulls out one end of a traveling wire spirally wound around a driving pulley fixed to the shaft of the traveling drive source, and supports the end of the traveling track such as the right end or the left end of the base frame.
  • a traveling wire spirally wound around a driving pulley fixed to the shaft of the traveling drive source After hanging on the third pulley (right relay pulley), and then hanging on the fourth pulley (X-axis swing pulley) supported at the start end of the traveling track, such as the left end or the right end, for example,
  • One end of the traveling wire is fastened, while the other end of the traveling wire spirally wound around the driving pulley fixed to the shaft of the traveling drive source is pulled out, for example, the end of the traveling track such as the right end or the left end of the base frame
  • a fifth pulley (right relay pulley) supported by the portion, and then the other end of the traveling wire is fastened to the traveling base.
  • the traveling track comprises a fixed bearing fixed at the start end of the traveling track, such as one of the left and right ends of the base frame, and a dynamic bearing that swings in the gap between the left and right support plates that constitute the fixed bearing.
  • the fourth pulley is rotatably supported, and the fixed bearing is provided with two upper and lower support shafts protruding from the inner surface of the support plate toward the gap, and the two upper and lower support shafts are loosely fitted to the dynamic bearing.
  • Bearings opened in the same direction for example, elastically biasing the upper part of the dynamic bearings toward the end of the traveling track with a bolt or the like passing through a compression spring at the starting end of the traveling track, etc.
  • the dynamic bearing may be urged and supported in the direction in which the traveling wire is stretched, and the first pulley may be provided with an extension detection mechanism including an attitude sensor that detects the inclination of the dynamic bearing.
  • the elevating drive source and the travel drive source may be a prime mover such as a motor, or a bearing portion that supports a rotation shaft in which a reduction gear, a gear, or a belt stopper is connected to the rotation shaft of the prime mover.
  • the wire-driven robot according to the present invention employs the X ⁇ Z drive system to temporarily move the trajectory of the arm at each joint as compared to a multi-joint arm (hereinafter abbreviated as a multi-joint arm) that requires control of the amount of rotation at each joint.
  • a multi-joint arm hereinafter abbreviated as a multi-joint arm
  • it is easy to adopt a buffering method to be removed, but it is possible to obtain an operating range and accuracy that are not inferior to the articulated arm, and convenience of control.
  • since there are few requests for providing a plurality of actuators on one arm for positioning it is extremely convenient for reducing the weight of the arm.
  • the traveling arm and the lifting arm are driven by mounting the lifting arm on the traveling arm and performing the two-axis driving composed of the Z-axis driving means and the X-axis driving means by the wire driving method instead of the driving method by the gear or belt.
  • the source can be placed outside the travel base. It can also be configured as a small robot that can move the operating point at a relatively high speed by placing the driving source of the traveling arm and lifting arm outside the traveling base, and can be used when performing precise work at high speed. There is an effect that can be.
  • the efficient arrangement of the pulleys and the way of laying the wires enables a small, lightweight and accurate movement of the arm with the minimum number of pulleys and the shortest possible wire.
  • the elongation detection mechanism If the elongation detection mechanism is provided, the elongation of the wires of the Z-axis driving means and the X-axis driving means can be managed collectively with a relatively simple configuration, and the elongation adjusting mechanism according to the present invention is adopted. Then, an appropriate tension can be applied to the wire with a simple operation.
  • FIG. 1 is a perspective view of a main part showing an example of a wire-driven robot according to the present invention.
  • FIG. 2 is a perspective view seen from the back side showing an example of the Z-axis driving means of the wire-driven robot according to the present invention.
  • FIG. 3 is a perspective view seen from the back side showing an example of the X-axis drive means of the wire-driven robot according to the present invention.
  • FIG. 4 is an enlarged view seen from the back side showing an example of a travel-based back plate in the wire-driven robot according to the present invention.
  • FIG. 5 is a perspective view showing an example of a wire winding structure in a driving pulley of a wire driven robot according to the present invention.
  • FIG. 6 is a perspective view showing an example of a wire winding structure in a driving pulley of a wire driven robot according to the present invention.
  • FIG. 7 is a perspective view showing an example of an extension detection mechanism in the wire drive robot according to the present invention.
  • FIG. 8 is an exploded perspective view showing an example of an extension detection mechanism in the wire drive robot according to the present invention.
  • FIG. 9 is a side view showing an operation example of the elongation detection mechanism in the wire drive robot according to the present invention.
  • FIG. 10 is an exploded view showing an example of a robot arm according to the present invention.
  • FIG. 11 is an enlarged view of a main part showing an example of the operation of the robot arm according to the present invention.
  • FIG. 12A is a plan view and FIG.
  • FIG. 12B is a side view in a steady posture showing an example of a robot arm according to the present invention.
  • 13A and 13B show an example of the operation of the robot arm according to the present invention.
  • FIG. 13A is a plan view and FIG. 13B is a side view.
  • 14A and 14B show an example of the operation of the robot arm according to the present invention.
  • FIG. 14A is a plan view and FIG. 14B is a side view.
  • 15A and 15B show an example of the operation of the robot arm according to the present invention.
  • FIG. 15A is a plan view and FIG. 15B is a side view.
  • FIG. 16 is a main part perspective view showing an example of an X ⁇ Z drive type robot that can use the robot arm according to the present invention as seen from the front side.
  • FIG. 16 is a main part perspective view showing an example of an X ⁇ Z drive type robot that can use the robot arm according to the present invention as seen from the front side.
  • FIG. 17 is a perspective view seen from the back side showing an example of the Z-axis drive means in the X ⁇ Z drive type robot that can use the robot arm according to the present invention.
  • FIG. 18 is a perspective view seen from the back side showing an example of the X-axis drive means in the X ⁇ Z drive type robot that can use the robot arm according to the present invention.
  • FIG. 19 is a cross-sectional view showing an example of a chuck according to the present invention.
  • FIG. 20 is a sectional view showing an example of the chuck according to the present invention.
  • FIG. 21 is a sectional view showing an example of a robot arm according to the present invention, and is an explanatory view showing a state of holding dimension control.
  • FIG. 22 is a cross-sectional view showing an example of a robot arm according to the present invention, and is an explanatory view showing a holding force control state.
  • FIG. 23 is a cross-sectional view showing an example of the robot arm according to the present invention, and is an explanatory view showing the operating state of the suction means.
  • FIG. 24 is a cross-sectional view showing an example of the robot arm according to the present invention, and is an explanatory view showing an operating state of the rotation transmitting means.
  • FIG. 25 is a front view showing an example of a chuck according to the present invention.
  • FIG. 26 shows an example of a holding mode of the chuck according to the present invention, (A) is a perspective view, and (B) and (C) are sectional views.
  • FIG. 27 shows an example of a chuck holding mode according to the present invention
  • (A) is a perspective view
  • (B) is a plan view of a work to be held
  • (C) is a longitudinal sectional view of (A).
  • FIG. 28 is an exploded view showing an example of a robot arm according to the present invention.
  • FIG. 29 is a cross-sectional view showing an example of a robot arm according to the present invention.
  • FIG. 30 is a table showing an example of a control form of the holding dimension and holding force of the robot arm shown in FIG.
  • FIG. 31 is a perspective view showing an example of a robot arm according to the present invention, and is a perspective view showing an example of a structure for detecting a load generated by holding a workpiece with a chuck.
  • FIG. 32 is a side view showing an example of a robot arm according to the present invention, and is an explanatory view showing an example of a structure for detecting a load generated by holding a workpiece with a chuck.
  • FIG. 33 is an exploded view showing an example of means for detecting a load generated by holding a workpiece with a chuck.
  • FIG. 34 is a sectional view showing an example of the chuck according to the present invention.
  • FIG. 35 shows an example of a robot arm according to the present invention.
  • FIG. 35A is a side view
  • FIG. FIG. 36 shows an example of a chuck according to the present invention.
  • FIG. 36 (A) is a side view
  • FIG. 36 (B) is a longitudinal sectional view showing a state in which (A) is rotated 90 degrees.
  • FIG. 37 shows an example of the chuck according to the present invention, (A) is a perspective view seen from obliquely below, and (B) is a perspective view showing a state in which a half of the chuck ring of (A) is removed.
  • FIG. 38 is a rear view showing an example of the tip of the robot arm according to the present invention.
  • FIG. 39 is a cross-sectional view showing an arrangement example of air paths of the robot arm according to the present invention.
  • the robot arm 6 adopting the X ⁇ Z drive system (turning in the ⁇ direction, linear movement in the X axis direction perpendicular to the turning axis, and in the Z axis direction parallel to the turning axis).
  • This is a robot of a driving system consisting of a linear movement.
  • the X ⁇ Z drive system in this embodiment is composed of ⁇ rotation means (see FIG. 1) 1, Z-axis drive means (see FIG. 2) 2 and X-axis drive means (see FIG. 3) 3 by wire drive system.
  • ⁇ rotating means 1 and a vertical shaft 1a driven by the motor are mounted on a wire-driven lift base 4, and the lift base 4 is mounted on a wire-driven travel base 5.
  • the robot arm 6 fixed to the vertical shaft 1a can be moved up and down, left and right, and turned.
  • the vertical shaft 1 a to which the robot arm 6 of the present embodiment is fixed is provided in the vertical direction from the ⁇ rotation means 1.
  • the ⁇ rotation means 1 of the present embodiment includes a motor fixed to the elevating base 4 via a stay 1b, a speed reducer connected to the rotating shaft, and the like, and receives control (deceleration) of the rotational speed by the speed reducer.
  • the rotating shaft is referred to as a vertical shaft 1a (see FIG. 1).
  • the ⁇ rotation means 1 can freely rotate 360 degrees around the rotation axis, and therefore the robot arm 6 can also freely move within a range of 360 degrees around the rotation axis. .
  • the lift base 4 is slidably mounted on vertical travel guides (guides in the X-axis direction) 8a and 8b passed over the base frame 7 under so-called automatic control (see FIG. 1).
  • the base frame 7 includes a left side plate 7a and a right side plate (not shown), and a bottom plate (not shown) that supports the plate so as to stand vertically.
  • the left side plate 7a and the right side plate support a pair of upper and lower traveling guides 8a and 8b at the front lower part and the rear upper part thereof so as to be parallel to each other.
  • the traveling base 5 has a back plate 5b standing vertically on the rear side of the substrate 5a (see FIG. 1).
  • the back plate 5b includes an upper support portion 5c through which the upper travel guide 8a is inserted, and a pair of left and right transmission pulleys 10a constituting the Z-axis drive means 2 at the same height in the middle portion of the back plate 5b. , 10b are supported by a rotation axis perpendicular to the X-axis direction and the Z-axis direction (see FIGS. 1 to 3).
  • the back plate 5b includes two wire fixing mechanisms 12a and 12b that support both ends of the traveling wire 11 (see FIGS. 3 and 4).
  • the wire fixing mechanisms 12a and 12b receive the traveling force by the X-axis driving means 3 through the traveling wire 11 fixed thereto.
  • the substrate 5a is provided with a lower support portion 5d through which the lower traveling guide 8b is inserted in the front portion thereof, and a pair of left and right lifting guides (in the Z-axis direction) that stands vertically from the surface of the substrate 5a in the middle portion of the depth.
  • Guides 9 and 9 are provided (see FIGS. 1 and 2).
  • the upper and lower guides 9 and 9 are supported at the top by a top plate 5e that is fixed to the upper portion of the back plate 5b so as to protrude forward.
  • the lifting base 4 is integrally provided with a lifting base body 4 a and a passive body 4 b that receives the lifting force from the Z-axis driving means 2.
  • the elevating base body 4a includes support portions 4c and 4c through which the elevating guides 9 and 9 are inserted, and a base surface for fixing the stay 1b on the front surface thereof (see FIGS. 1 and 2).
  • the passive body 4b supports a pair of upper and lower passive pulleys 13a and 13b constituting the Z-axis driving means 2 with a rotation axis perpendicular to the X-axis direction and the Z-axis direction.
  • the lifting base 4 is integrated by fixing the passive body 4b between the guide holes provided in the support portions 4c, 4c of the lifting base body 4a.
  • the passive body 4 b By attaching the elevating base 4 to the elevating guides 9, 9 of the traveling base 5, the passive body 4 b receives elevating force from the Z-axis driving means 2 via the elevating wires 14, and a pair of left and right transmission pulleys 10 a, In the space between 10b, the track regulated by the lifting guides 9 and 9 is lifted and lowered.
  • the X-axis drive means 3 of the present embodiment includes a motor as a travel drive source 3a fixed to the right end of the bottom plate in the base frame 7 and has the following configuration (see FIG. 3). That is, one end of a traveling wire 11 spirally wound around a driving pulley 3b fixed to the shaft of the traveling drive source 3a is pulled out and one of a pair of right relay pulleys having the same coaxial diameter and supported on the nearest (right) side plate ( (3rd pulley) 15 and then hanging on the X-axis swing pulley (fourth pulley) 16 supported on the opposite side plate (left side) 7a, then the traveling wire is connected to one wire fixing mechanism 12a of the back plate 5b. 11 end is fastened.
  • the driving pulley 20 passes through the winding surface thereof through a spiral groove (not shown) along the rotational direction of the traveling drive source 3a or the elevating drive source 2a and a central portion of the driving pulley 20 at right angles to the rotation axis. It is desirable to provide the pin hole 20a and the lock hole 20b (refer FIG. 5).
  • the lock hole 20b is a hole through which a lock screw 19 that functions as a detachment stopper for the wire fixing pin 18 inserted through the pin hole 20a is inserted.
  • the pin hole 20a and the lock hole 20b are set in a positional relationship where they intersect within the driving pulley 20 so as to contact each other by about 1/3 to about 1/4 of the diameter of the wire fixing pin 18.
  • the wire fixing pin 18 includes a wire hole 18a penetrating at a right angle to the longitudinal direction of the wire fixing pin 18 so as to pass through the intermediate portion of the traveling wire 11 or the lifting wire 14 wound spirally around the driving pulley 20 ( (See FIG. 6).
  • the wire fixing pin 18 is provided with a tapered surface 18b in contact with the side surface of the lock screw 19 inserted through the lock hole 20b at a portion facing the lock hole 20b when buried.
  • the tip of the lock screw 19 screwed into the lock hole 20 comes into contact with the taper portion 18b.
  • the side surface of the lock screw 19 presses the taper 18b and pushes down the wire fixing pin 18, and when the taper surface 18b comes into contact with the side surface of the lock screw 19, a part of the wire hole 18a becomes a driving pulley.
  • the inclination and range are set so as to be buried from the surface of 20.
  • the wire fixing pin 18 that is adopted as the driving source of the X-axis driving means 3 and the traveling wire 11 is passed through the wire hole 18a is loaded into the pin hole 20a of the driving pulley 3b and the lock screw 19 is tightened.
  • the fixing pin 18 is buried in the driving pulley 20 to fix the intermediate portion of the traveling wire 11. Subsequently, starting from the portion fixed to the wire fixing pin 18 of the traveling wire 11, if the winding amount of one of the traveling wires 11 wound around the starting point is increased, the other winding amount is increased.
  • the traveling wire 11 is wound so as to decrease (see FIG. 6).
  • the wire winding mechanism can be used not only for the X-axis drive means 3 but also for the shaft of the elevating drive source 2 a of the Z-axis drive means 2.
  • the Z-axis drive means 2 of the present embodiment is provided with a motor as its elevation drive source 2a fixed to the left end of the bottom plate in the base frame 7, and has the following configuration. That is, one end of a lifting wire 14 spirally wound around a driving pulley 2b fixed to the shaft of the lifting drive source 2a is pulled out and a Z-axis swing pulley (first pulley) supported below the nearest (left) side plate 7a. ), And then hung on the left transmission pulley 10a supported on the left side of the back plate 5b from below, then on the upper passive pulley 13a of the passive body 4b, and further supported on the right side of the back plate 5b. The pulley 10b is hung from below and fastened to the wire fixing mechanism 22 provided on the opposite (right) side plate (see FIG. 2).
  • the other end of the lifting / lowering wire 14 spirally wound around the driving pulley 2b fixed to the shaft of the lifting / lowering drive source 2a is pulled out, and a Z-axis fixed pulley (second shaft) supported above the nearest (left) side plate 7a.
  • Pulley) 23 and then hung from above on the left transmission pulley 10a supported on the left side of the back plate 5b, then on the lower passive pulley 13b of the passive body 4b, and further supported on the right side of the back plate 5b.
  • the transmission pulley 10b is hung from above and fastened to the wire fixing mechanism 22 provided on the right side plate.
  • the lifting base 4 can be lifted in the Z-axis direction according to the amount of rotation.
  • a mechanism 25 and a Z-axis elongation adjusting mechanism 26 are provided (see FIGS. 2 to 4 and FIGS. 7 to 9).
  • the elongation detecting mechanism 24 detects slack and disconnection of the traveling wire 11 and the lifting wire 14, and the driving body (the traveling base 5 and the lifting base 4) moved by the wires 11 and 14 has been overloaded due to a collision or the like. It is a mechanism for detecting cases.
  • the stretch detection mechanism 24 of the present embodiment is a dynamic bearing that swings between a fixed bearing fixed to the left end of the base frame (the right and left may be switched as appropriate) and a left and right support plate that constitutes the fixed bearing. It consists of.
  • the fixed bearing is composed of a pair of support plates 27 and 27 which are spaced apart from each other and face each other in parallel. In order to rotatably support the Z-axis fixed pulley 23 between the pair of support plates 27, 27, and to detect the swing angle of the dynamic bearing disposed between the support plates 27, 27 between them. Posture sensors 28 and 28 are provided.
  • the pair of left and right support plates 27, 27 project two upper and lower support shafts 29 a, 29 b at positions facing each other inside, and a Z-axis fixed pulley at an intermediate point between the support plates 27, 27.
  • the bearing 30 which supports the both ends of 23 spindles is provided.
  • the dynamic bearings are adjacent to each other between the pair of support plates 27 and 27 so as to be able to stably swing while maintaining a constant distance from the support plate. 31b.
  • the X-axis detection plate 31a and the Z-axis detection plate 31b are each provided with a bearing 32 at a position facing each other, and the bearing 32 passes between the X-axis detection plate 31a and the Z-axis detection plate 31b.
  • a horizontal shaft is supported, and the X-axis swing pulley 16 and the Z-axis swing pulley 21 are supported by the horizontal shaft so that they can rotate independently (see FIGS. 7 and 8).
  • the X-axis detection plate 31a and the Z-axis detection plate 31b include bearings 33a and 33b in which the two upper and lower support shafts 29a and 29b are loosely fitted in the same direction, and both detection plates 31a and 31b.
  • a relief portion 33c that avoids interference with the support shaft of the Z-axis fixed pulley 23 is provided at an intermediate point between the bearings 33a and 33b (see FIG. 8).
  • the X-axis detection plate 31a and the Z-axis detection plate 31b are bent at upper portions thereof in a U-shape at right angles to form suspension pieces 34a and 34b, and the left side plate 7a of the left side plate 7a is formed through the guide holes of the suspension pieces 34a and 34b.
  • the maximum amount of swinging is adjusted by suspending the suspension pieces 34a and 34b by the amount of bolts 35a and 35b.
  • a compression spring 36 is interposed between at least one of the bolts 35a and 35b and the suspension piece 34a or 34b through which the bolt 35a or 35b is inserted,
  • the upper portions of the X-axis detection plate 31a and the Z-axis detection plate 31b are urged toward the outer surface (the direction of the right side plate) of the left side plate 7a.
  • the detected load can be adjusted by adjusting the strength of the compression spring 36 and tightening the bolt 35a or 35b inserted through the compression spring 36.
  • the X-axis detection plate 31a and the Z-axis detection plate 31b have detected portions 37 and 37, which are detection targets of the posture sensors 28 and 28, at the upper ends thereof, and outputs of the posture sensors 28 and 28 according to their swinging. Is prepared to change (see FIG. 9).
  • the posture sensor 28 in the present embodiment is a limit switch that detects two on / off states along the swinging direction of the X-axis detection plate 31a and the Z-axis detection plate 31b. The cam portion presses the detection portion 28a of the limit switch.
  • the stretch detection mechanism 24 of the present embodiment is configured as described above.
  • the lifting / lowering wire 14 in the Z-axis driving means 2 becomes stronger, the lifting / lowering wire 14 causes the Z-axis swing pulley 21 to move to the left side plate 7a.
  • the X-axis detection plate 31a and the Z-axis detection plate 31b are pivoted on the lower support shaft 29b (see FIG. 9C).
  • the tension of the elevating wire 14 in the Z-axis driving means 2 is weakened, the pulling force on the Z-axis swing pulley 21 is weakened, and the upper part of the Z-axis detection plate 31b is applied to the left side plate 7a by the compression spring 36.
  • the lower part is swayed by the compression spring 36 in a direction away from the left side plate 7a. At this time, the fulcrum of the X-axis detection plate 31a and the Z-axis detection plate 31b is pivoted with the upper support shaft 29a. (See FIG. 9D).
  • the detection part 28a of the X-axis detection board 31a and the Z-axis detection board 31b can obtain the output according to the position of the to-be-detected part 37 from the said attitude
  • the detection unit 37 presses the detection unit 28a and sets the output in this state as a normal signal (see FIGS. 9A and 9B).
  • the X-axis oscillating pulley 16 and the Z-axis oscillating pulley 21 are rotatably supported by a single horizontal axis passed between the X-axis detecting plate 31a and the Z-axis detecting plate 31b.
  • the configuration is such that, in response to an abnormality in either the lifting wire 14 or the traveling wire 11, it swings in a direction that alleviates the obstacles to the other.
  • the X-axis extension adjusting mechanism 25 and the Z-axis extension adjusting mechanism 26 adjust the traveling wire 11 or the lifting wire 14 to an appropriate tension when the traveling wire 11 or the lifting wire 14 is slackened.
  • the elongation adjusting mechanism includes a pulling member that applies tension to the wire, a fixing member that holds an end portion of the wire fastened to the pulling member, and a track changing unit that changes the track of the wire in a holding region of the fixing member.
  • the X-axis elongation adjusting mechanism 25 of the present embodiment is provided integrally with one of the wire fixing mechanisms 12a and 12b provided in the back plate 5b of the traveling base 5 (see FIG. 4).
  • the X-axis elongation adjusting mechanism 25 of the present embodiment fixes the two fixing plates 39a and 39b that hold the end portion of the traveling wire 11 between the tip portions thereof, and the fixing plates 39a and 39b.
  • the fastening screw 41a to be converted into the fixing plate 39a and the pressurizing screw 41b (fixing member) which presses the traveling wire 11 between the two fixing plates 39a and 39b at the tip thereof are integrated.
  • the traveling wire 11 Fastened to the fulcrum screw 40 serving as a fulcrum of the fixed plates 39a and 39b and the base ends of the integrated fixed plates 39a and 39b, and the swing of the integrated fixed plates 39a and 39b is applied to the traveling wire 11. It consists of a tension spring 38 and a (tensile member) that urges it in the direction of applying tension.
  • the tension spring 38 is disposed horizontally below the back surface of the back plate 5b, and has one end fixed to the right end of the back plate 5b and integrated with the other end of the tension spring 38.
  • the base ends of 39a and 39b are connected.
  • the fulcrum screw 40 of the present embodiment is intended to change the thread for fixing the upper fixing plate 39a to the lower fixing plate (the one that is in close contact with the back plate 5b) 39b and the trajectory of the traveling wire 11 that runs horizontally.
  • An arcuate peripheral surface for guiding the end of the traveling wire 11 is provided (track changing means).
  • the traveling wire 11 is bent downward at a right angle with the peripheral surface of the fulcrum screw 40 and the inner surfaces of the fixing plates 39a and 39b, and the end of the traveling wire 11 is fixed with the pressure screw 41b. is doing.
  • the X-axis elongation adjusting mechanism 25 of the present embodiment applies a tension according to the strength to the traveling wire 11 by the tension spring 38.
  • the swinging of the fixing plates 39a and 39b is stopped, and a suitable tension of the traveling wire 11 applied by the tension spring 38 is maintained.
  • the Z-axis extension adjusting mechanism 26 of the present embodiment is provided integrally with the wire fixing mechanism 22 fixed to the side plate on the opposite side (right side) from the lifting drive source 2a (see FIG. 2). That is, the Z-axis elongation adjusting mechanism 26 of the present embodiment has a tension spring 42 (a tension member) that fastens one end of the lifting wire 14 and a fixing that holds the end of the lifting wire 14 fastened to the tension spring 42.
  • the Z-axis stretch adjusting mechanism 26 of the present embodiment is fixed to the outside of the right side plate and at substantially the same height as the X-axis stretch adjusting mechanism 25.
  • the Z-axis extension adjusting mechanism 26 has a tension spring 42 arranged in a vertical direction below the wire fixing mechanism 22, and one end portion of the elevating wire 14 extending from the wire fixing mechanism 22 is attached to the upper end of the tension spring 42. The length is adjusted so that it can be adjusted, and the lower end of the tension spring 42 is fixed to the right side plate.
  • the adjustment of the length in the present embodiment is realized by connecting the elevating wire 14 and the upper end of the tension spring 42 via the wire hook ring 48. That is, one end portion of the excess lifting wire 14 extending from the wire fixing mechanism 22 is passed through the hole of the wire fastening bracket 47, and the lifting wire 14 is connected to the wire hook ring 48 connected to the upper end hook of the tension spring 42. It is wound and folded, and is pulled by pulling up the end of the lifting / lowering wire 14 until it passes through the other hole of the wire fastening fitting 47 and the extension of the tension spring 42 becomes an appropriate amount that gives a desired tension to the lifting / lowering wire 14 (pulling) A mark or the like is provided at a position where the spring 42 has an appropriate length).
  • the wire fastening bracket 47 If the hole of the wire fastening bracket 47 is close to a distance shorter than the diameter of the wire hook ring 48, the wire fastening bracket 47 is pulled toward the wire hook ring 48, thereby allowing the lifting wire 14 to pass through the wire fastening bracket 47. It is restrained and the effective length of the elevating wire 14 can be easily adjusted and fixed.
  • the fixing block 43 has a substantially flat upper surface, and the fixing plate 44 fixed to the upper surface has a diameter (about approximately) of the lifting wire 14 so as to regulate the trajectory of the lifting wire 14 on the back surface.
  • the elevating wire 14 is guided perpendicularly toward the back side along the holding groove 46 (see FIG. 2), and further, on the back surface of the fixed block 43 (the surface facing the back side of the base frame 7). The end is connected to the upper end of the tension spring 42.
  • the corner at the boundary between the upper surface and the back surface of the fixed block 43 in the present embodiment is chamfered into a cylindrical side surface so as not to impose a burden on the lifting wire 14.
  • the pressure screw 45b when the pressure screw 45b is loosened, a tension according to the strength is applied by the tension spring 42. If the lifting wire 14 is loosened, loosen the pressure screw 45b, and then adjust the length of the excess lifting wire 14 passed through the wire fastener 47 so that the tension spring 42 has a predetermined elongation. The lifting wire 14 is maintained at a suitable tension by tightening the pressure screw 45b again.
  • the robot arm 6 of the present embodiment has a base end portion directly fixed to the vertical shaft 1a and is subjected to rotation control with the vertical shaft 1a as an axis.
  • a work chuck capable of receiving a rotational force via a pulley and a belt is attached to the tip of the robot arm 6 by, for example, providing a support hole.
  • the robot is configured according to the purpose of use.
  • the robot arm according to the present invention adopts an X ⁇ Z drive system (a drive system comprising a linear movement in the X-axis direction, a turn in the ⁇ -direction, and a linear movement in the Z-direction parallel to the rotation axis), and is suitable for a collision or the like. It has a buffer means.
  • X ⁇ Z drive system a drive system comprising a linear movement in the X-axis direction, a turn in the ⁇ -direction, and a linear movement in the Z-direction parallel to the rotation axis
  • the robot arm performs drive control of each joint by servo control, generates a desired motion, and is used for manufacturing and processing.
  • the robot arm according to the present invention has been made in view of the above circumstances, and has a structure with which a buffering action can be obtained with a relatively simple structure.
  • the robot arm according to the present invention is an X ⁇ Z drive type robot arm, and is a first arm that is turned by ⁇ rotation means such as a motor, and a second arm that is connected to the tip of the first arm and can swing up and down and right and left.
  • An arm, and a work tool such as a chuck capable of rotating at the tip of the second arm through a work part, i.e., a shaft parallel to the vertical shaft via a pulley and a belt, or the like
  • a support region or the like to which the work tool can be attached and detached is appropriately provided.
  • the tip end portion of the first arm and the base end of the second arm are stacked one above the other (whichever is upper), for example, on the tip end portion of the first arm
  • a structure in which the vertical swing shaft supported by the tip of the first arm is supported by the swing shaft, or a ball bearing is connected to the first arm so that the second arm can swing vertically and horizontally. Any of the configurations can be adopted.
  • the robot arm according to the present invention is provided with a buffer means between the first arm and the second arm, and the buffer means is a posture for guiding the second arm to a steady posture with respect to the first arm. It is characterized by comprising a maintaining means and a retracting means for guiding the tip of the second arm left and right and upward from a steady posture with respect to the first arm.
  • the buffer means may be constituted by a valley-shaped guide surface including slopes facing each other and a protrusion that contacts the guide surface.
  • the form of the valley-shaped guide surface including the slope may be a mortar shape or a spherical shape.
  • the buffer means is provided with the guide surface in front of or behind the connecting portion including the horizontal swing shaft, the vertical swing shaft, or the ball bearing in one of the first arm and the second arm.
  • the protruding portion is provided on the other of the first arm and the second arm so as to face the guide surface.
  • the adjustment of the magnetic force causes a steady posture. Maintenance / induction strength can be adjusted.
  • a method (return means) for pulling the contact portion to the deepest portion of the guide surface the angle between the first arm and the second arm is restored so that the contact portion goes to the deepest portion of the guide surface.
  • a coil spring or a leaf spring that biases as much as possible can also be used.
  • the embodiment shown in FIG. 10 is a robot arm used for an X ⁇ Z drive type robot.
  • a motor that is the ⁇ rotation means 107 and a vertical shaft that is driven by the motor are mounted on a wire-driven Z-axis drive means 108, and the Z-axis drive means 108 is connected to a wire-driven X-axis. It is mounted on the shaft drive means 109.
  • the vertical shaft 107a can be moved up and down, left and right, and the robot arm fixed to the vertical shaft 107a can be turned. To do.
  • the robot arm includes a first arm 101 whose base end is directly fixed to the vertical shaft 107a and subjected to turning control about the vertical shaft 107a, and a base end at the front end of the first arm 101.
  • a second arm 102 that can be connected vertically and horizontally, and a chuck 103 at the tip of the second arm 102 that can be rotated by the vertical shaft via a pulley 128 and a belt (not shown). .
  • the robot arm according to the present embodiment has a structure in which the base end portion of the second arm 102 is overlapped below the tip end portion of the first arm 101, and the first arm 101 and the second arm 102 are mutually connected. A joint part to be connected is provided.
  • the joint portion includes vertical and horizontal hinge mechanisms and buffer means 106.
  • the hinge mechanism of the present embodiment is a combination of vertical and horizontal hinge mechanisms. That is, the base end portion of the second arm 102 is provided with a bifurcated bearing 102a, and the lateral swing shaft 104 is loosely fitted into the crotch portion 102b of the bearing 102a, and the shaft hole 102c and the lateral swing shaft 104 of the bearing 102a.
  • the vertical swing shaft 105 communicates with the shaft hole 104a, and the upper end portion of the horizontal swing shaft 104 is rotatably supported in the shaft hole 101a at the tip of the first arm 101 so as not to be detached. Yes (see FIG. 10).
  • the lateral swing shaft 104 swings up and down and swings left and right at the base end portion of the second arm 102 (see FIG. 13).
  • the buffer means 106 of the present embodiment includes a posture maintaining means for guiding the second arm 102 to a steady posture in which the second arm 102 is disposed on an extension line of the first arm 101, and the steady posture with respect to the first arm 101.
  • a posture maintaining means for guiding the second arm 102 to a steady posture in which the second arm 102 is disposed on an extension line of the first arm 101, and the steady posture with respect to the first arm 101.
  • FIG. 12 is an integrated retraction means capable of guiding the tip of the second arm 102 left and right and upward.
  • the buffer means 106 includes a valley-shaped guide surface 129 including slopes 106a facing each other, and a protrusion 106b that contacts the guide surface 129.
  • the guide surface 129 includes the first arm 101 and the first
  • the protrusion 106 b is provided on the other of the first arm 101 and the second arm 102, and is provided behind the horizontal swing shaft 104 and the vertical swing shaft 105 in either one of the two arms 102.
  • a pin having a spherical surface is attached to the hole 101 b of the first arm 101 and the second arm 102.
  • a pair of planar slopes 106a and 106a in contact with the protruding portion 106b are formed on the upper surface of the second arm 102 by cutting out the base end portion of the second arm 102 from the upper surface side so that the cross-sectional shape becomes a valley shape.
  • a series of guiding surfaces 129 are formed by connecting with curved surfaces curved with a curvature of.
  • the posture maintaining means of the present embodiment employs a magnetic pin as the pin serving as the protrusion 106b, and the valleys of the pair of slopes 106a and 106a (the deepest region between the pair of slopes 106a and 106a).
  • the magnet 106ab for attracting the pin is fixed to the part).
  • the trough portion of the guide surface 129 is configured so that the gap and the slope of the pair of slopes 106a and 106a can support the trough portion and the spherical surface of the tip end portion (contact portion 106aa) of the pin without backlash. Combined with the magnetic force adjustment of 106ab, it is possible to prevent displacement and swing of the second arm 102 against vibration and impact during normal operation (see FIG. 15).
  • the robot arm according to the present invention is configured as described above, and the tip of the second arm 102 is directed left and right upward with respect to the first arm 101 by an impact from the side that exceeds the fixing force of the magnet 106ab. Retracted (see FIGS. 11 and 13), and the tip of the second arm 102 is retracted upward with respect to the first arm 101 by an impact from below that exceeds the fixing force of the magnet 106ab (see FIG. 11). 14).
  • the second arm 102 returns to a steady posture while the protrusion 106b traces the slopes 106a and 106a by its own weight (see FIG. 11) (see FIG. 12).
  • a magnet sensor is attached to the protrusion 106b, it is possible to electrically detect the state where the robot arm is out of the normal posture.
  • the vertical shaft 107 a to which the robot arm is fixed is provided vertically upward from the ⁇ rotation means 107.
  • the ⁇ rotation means 107 includes a motor fixed to the arm base 110 via a stay 111 and a speed reducer connected to the rotation shaft thereof. The rotation that is subjected to rotation speed control (deceleration) by the speed reducer.
  • the axis is a vertical shaft 107a (see FIG. 16).
  • the arm base 110 is slidably mounted on traveling guides (guides in the X-axis direction) 112a and 112b passed over a base frame (not shown) under the control of the control means (FIG. 16). reference).
  • the base frame of the present embodiment includes left and right side plates and a bottom plate that supports the left and right side plates so as to stand vertically.
  • the left and right plate is constructed so that a pair of upper and lower travel guides 112a and 112b are arranged in parallel with each other at the lower front portion and the upper rear portion.
  • the arm base 110 includes a traveling base 110a and a lifting base 110b.
  • the traveling base 110a has a back plate 110ab vertically erected on the rear side of the board 110aa (see FIG. 16).
  • the back plate 110ab includes an upper support portion 110c through which the upper traveling guide 112a is inserted, and a pair of left and right transmission pulleys 113a and 113b constituting the Z-axis drive means 108 are provided at substantially the same height in the middle portion. It is supported by a rotation axis perpendicular to the surface of the back plate 110ab (see FIG. 16). Furthermore, the back plate 110ab includes two wire fixing mechanisms 115 and 115 that support both ends of the traveling wire 114 (see FIGS. 16 and 18). The wire fixing mechanisms 115 and 115 receive the traveling force from the X-axis driving means 109 via the traveling wire 114 fixed thereto.
  • the substrate 110aa includes a lower support portion 110d through which the lower traveling guide 112b is inserted in the front portion thereof, and a pair of left and right lifting guides (guides in the Z-axis direction) standing upright from the surface of the bottom plate in the middle portion of the depth. ) 116, 116 (see FIGS. 16 and 17).
  • the upper and lower guides 116 and 116 are fixed at the top by a top plate 110e that is fixed to the upper portion of the back plate 110ab so as to protrude forward.
  • the lifting base 110b includes a lifting base body 110ba and a passive body 110bb that receives the lifting force from the Z-axis driving means 108.
  • the lifting base body 110ba includes support portions 110f and 110f through which the lifting guides 116 and 116 are inserted, and the stay 111 is fixed to the front surface thereof (see FIG. 16).
  • the passive body 110bb supports a pair of upper and lower passive pulleys 117a and 117b constituting the Z-axis driving means 108 with a rotation axis perpendicular to the surface of the passive body 110bb.
  • the lift base 110b is integrated by fixing the passive body 110bb between the guide holes provided in the support portions 110f and 110f of the lift base body 110ba.
  • the elevating base 110b By attaching the elevating base 110b to the elevating guides 116 and 116 of the traveling base 110a, the elevating base 110b moves up and down on a track regulated by the elevating guides 116 and 116.
  • the elevating force by the Z-axis driving means 108 is received through the elevating wire 118 while elevating in the region sandwiched between the rotating shafts of the transmission pulleys 113a and 113b.
  • the X-axis drive means 109 of the present embodiment includes a motor 119 as a travel drive source fixed to the right end of the bottom plate in the base frame, and has the following configuration (see FIG. 18). That is, one end of a traveling wire 114 spirally wound around a driving pulley 120 fixed to the shaft of the traveling drive source is pulled out, and one of a pair of right relay pulleys 121, 121 having the same coaxial diameter and supported on the right side plate, After being hooked on the left relay pulley 122 supported by the left side plate, one end of the traveling wire 114 is fastened to one of the wire fixing mechanisms 115 and 115 provided in the back plate 110ab.
  • the other end of the traveling wire 114 spirally wound around the driving pulley 120 is pulled out, and the other of the pair of coaxial pulleys 121 and 121 having the same diameter and supported on the right side plate, followed by the wire provided in the back plate 110ab. Fastened to the other of the fixing mechanisms 115, 115.
  • the Z-axis drive means 108 of the present embodiment includes a motor 123 as a lifting drive source fixed to the left end of the bottom plate in the base frame, and has the following configuration. That is, one end of the lifting wire 118 spirally wound around the driving pulley 124 fixed to the shaft of the lifting drive source is pulled out and hung on the swing relay pulley 125 supported below the left side plate, and then the back plate 110ab After hanging on the left transmission pulley 113a supported on the left side from below, it is hung on the upper passive pulley 117a included in the passive body 110bb, and further hung on the right transmission pulley 113b supported on the right side of the back plate 110ab from below. Fastened to the wire fixing mechanism 127 provided.
  • the other end of the lifting / lowering wire 118 spirally wound around the driving pulley 124 fixed to the shaft of the lifting / lowering drive source is pulled out and hung on the fixed relay pulley 126 supported on the upper side of the left side plate, and then the back plate After hanging on the left transmission pulley 113a supported on the left side from above, it is hung on the lower passive pulley 117b included in the passive body 110bb, and further on the right transmission pulley 113b supported on the right side of the back plate 110ab, and the right side plate is Fastened to the wire fixing mechanism 127 provided.
  • a platform that supports the object to be processed will be attached as appropriate, and the robot will be suitable for the purpose of use.
  • the robot arm according to the present invention adopts the X ⁇ Z drive method, and thus the trajectory of the arm at each joint is temporarily compared with a multi-joint arm (hereinafter abbreviated as a “multi-joint arm”) that requires a rotation amount control at each joint. While easy to remove, it is possible to obtain an operating range and accuracy that are not inferior to the articulated arm, and convenience of control.
  • a multi-joint arm that requires a rotation amount control at each joint. While easy to remove, it is possible to obtain an operating range and accuracy that are not inferior to the articulated arm, and convenience of control.
  • the lateral swing shaft is supported at the distal end portion of the first arm, and the base portion of the second arm is supported on the lateral swing shaft.
  • the buffering means Due to the presence of the buffering means, sufficient buffering can be performed at the moment of the collision, and the damage caused by the collision can be prevented and reduced.
  • the collision state can be resolved based on the detection result by the sensor while the second arm is retracted by a certain amount. Will also be convenient.
  • Embodiments of a chuck according to the present invention and a robot hand using the chuck will be described below with reference to the drawings.
  • the chuck and the robot hand according to the present invention are used for an assembly operation, a processing operation, or a transfer operation by an automatic machine.
  • the robot hand has a complex structure in which a plurality of various actuators and mechanical parts are combined in order to stably hold the workpiece. For this reason, there is a limit to reducing the size of the robot hand, and it has been difficult to hold a fine workpiece. Conventionally, there is a method called an air balloon chuck, but there is a great limitation on the size and shape of the workpiece to be chucked.
  • the chuck and the robot hand according to the present invention have been made in view of the above circumstances, and can support various workpieces and the like with a relatively simple and lightweight structure.
  • the chuck according to the present invention includes a chuck holder, an operating rod, and a chuck claw, and the chuck holder supports a notch in which the chuck claw can be swung so as to satisfy a work holding and releasing function, and a base rear surface of the chuck claw.
  • the operating rod is provided with a rocking fulcrum.
  • the operating rod has a pressurizing portion protruding laterally at the tip thereof, and the operating rod is inserted into the hollow portion of the chuck holder so as to be able to advance and retract.
  • each chuck claw is clamped by the swing fulcrum, and the amount of advancement / retraction of the pressurizing part accompanying the advance / retreat of the operating rod is set on the inner surface of the base of each chuck claw in the centrifugal direction and centripetal direction of each chuck claw. It is characterized by comprising a cam portion that converts the amount of swinging into a swing amount.
  • the chuck holder has a notch that allows the base of the chuck claw to be swingable.
  • One or a plurality of desired angular intervals along the longitudinal direction of the chuck ring (an interval suitable for the size and shape of the workpiece.
  • a support groove that crosses the notch and goes around the chuck holder on the outer surface of the chuck holder, and the support groove is loaded with a fulcrum ring that serves as a swing fulcrum of the chuck claw. .
  • a chuck ring that covers the base of the chuck claw that fits in the notch of the chuck holder and the fulcrum ring loaded in the support groove of the chuck holder may be attached to the lower part of the chuck holder.
  • the chuck claw includes a protrusion that fits on a swing fulcrum on the back surface of the base, and the chuck ring is formed by a pair of upper and lower rings.
  • the inside of the lower end of the upper chuck ring and the upper end of the lower chuck ring is chamfered, and each is provided with an inward inclined surface. It is also possible to form a rocking fulcrum that accommodates the protrusions, and the upper and lower rings are in close contact with each other and fixed to the chuck holder to support the base of the chuck claw that fits in the notch of the chuck holder from the outside.
  • suction nozzle connected to the said hollow part in the front-end
  • the sensor head may be fixed to the tip of the operation rod through the hollow portion so as to give the chuck the function of detecting the presence or absence of an object, light, pressure, or the like.
  • the robot arm according to the present invention rotatably supports a chuck holder that rotatably supports the operation rod on the arm housing, and rotates the chuck holder on the arm housing to move the operation rod forward and backward.
  • a chuck having a rotation transmitting means is provided.
  • the airtightness of the outer space between the chuck holder and the bearing portion is provided in the bearing portion that supports the chuck holder.
  • the chuck holder is provided with a means for ensuring airtightness of the inner gap between the operation rod and the chuck holder, and the operation rod is a hollow member, and a through-hole for communicating the hollow portion with the inner gap.
  • the chuck holder may have a structure that includes a through hole that allows the inner gap and the outer gap to communicate with each other, and that the arm casing includes an air path that allows the outer gap and the outlet of the arm casing to communicate with each other.
  • the elevating means may be one in which a piston rod of a cylinder mechanism that moves back and forth in parallel and an operation rod of the chuck are connected by a transmission arm.
  • each piston rod may be advanced or retracted in parallel, and two or three cylinder mechanisms connected to each piston rod may be provided. At that time, it is assumed that all the cylinder mechanisms and the operating rods are arranged in a substantially linear manner, and the operating rods are arranged at their ends.
  • the cylinder mechanism may be built in the arm casing in a form in which the arm casing itself is a member of the cylinder mechanism.
  • the transmission arm may be composed of a plurality of leaf springs that are stacked with an interval in the advancing and retreating direction of the operating rod. Furthermore, it is good also as a structure provided with the load adjustment member which connects and supports the said several leaf
  • [About chuck] 19, 20, and 25 includes a chuck claw 203, a chuck holder 201, and an operation rod 202.
  • the chuck claw 203 is formed by integrally forming the working portion 203a and the base portion 203b, and the amount of advancement / retraction of the pressurizing portion 208 accompanying the advance / retreat of the operation rod 202 is determined on the inner surface of the base portion 203b of each chuck claw 203.
  • a cam portion 209 that converts the amount of oscillation in the centripetal direction.
  • the working portion 203a which is tapered and has a flat inner surface and the cam portion 209 which is curved and recessed are provided, and the chuck claw 203 is prevented from being displaced in the vertical direction on the front side (center of the back portion) of the central portion of the recess.
  • a support groove 210 for accommodating the fulcrum ring 211 as the swing fulcrum of the chuck claw 203 is provided over the entire width.
  • the chuck holder 201 has a cylindrical pipe portion 201a having a common central axis that communicates with a hollow portion having a circular cross section, and a cylindrical shape having a wider diameter than that of the pipe portion 201a, and an outer side at the lowermost end.
  • a holder portion 201b having a flange portion 201c that is widened is integrally connected.
  • the holder portion 201b of the chuck holder 201 is provided with a notch (or groove) 207 along the longitudinal direction of the chuck holder 201 so that the base portion (particularly the back portion) 203b of the chuck claw 203 can swing freely.
  • a plurality of (the same number as the chuck claws 203) are bored at substantially equal angular intervals, and the notch 207 is formed on the outer surface of the holder portion 201b (along the upper outer edge of the flange portion 201c in this example).
  • a support groove 210 that crosses the entire circumference of the chuck claw 203 is drilled over the entire circumference, and a fulcrum ring 211 that serves as a swing fulcrum of the chuck claw 203 is loaded into the support groove 210 (see FIGS. 20 and 25).
  • the chuck claw 203 can satisfy the function of holding and releasing the workpiece 206, and the chuck claw 203 supported by the fulcrum ring 211 can be prevented from being laterally displaced along the fulcrum ring 211.
  • the chuck ring 205 can be mounted for the purpose of stabilizing the fulcrum ring 211 and preventing the fulcrum ring 211 from being detached from the holder portion 201b.
  • the chuck ring 205 has a cylindrical shape with a diameter through which the pipe portion 201a of the chuck holder 201 is inserted and stays around the holder portion 201b, and has an inner diameter that advances and retreats around the holder portion 201b.
  • a notch portion into which the flange portion 201 c is fitted may be provided on the lower inner periphery of the chuck ring 205.
  • the chuck ring 205 When the chuck ring 205 stays around the holder part 201b, the chuck ring 205 covers the base part 203b of the chuck claw 203 that fits in the notch 207 of the holder part 201b and the fulcrum ring 211 loaded in the support groove 210 of the chuck holder 201.
  • the fulcrum ring 211 is supported from the outside.
  • Adopting this configuration if the endless fulcrum ring 211 is cut or notched in one endless ring or cut in half in the endless ring, the elasticity is used to make the chuck 204 A certain margin can be given to the size of the object to be held, and it is easy to remove it. By removing the fulcrum ring 211, the chuck claw 203 can be easily removed and replaced.
  • each chuck claw 203 swings while being supported on the side surface inside the notch 207, so that left and right blur does not occur.
  • the rigidity of the chuck claw 203 can be complemented by the holder portion 201b that sandwiches the notch. From the above structure, even if the width of the chuck claw 203 is reduced to about 0.1 mm, for example, depending on the material, it is possible to accurately apply force to the object to be held, and it is extremely fine. It can also be used to hold a simple workpiece 206.
  • the operation rod 202 is a cylindrical pipe having a thickness that advances and retreats the hollow portion of the chuck holder 201.
  • the operation rod 202 includes a pressurizing unit 208 that presses the cam unit 209 of the chuck claw 203 at the tip.
  • the pressure part 208 in this example has a rotary bearing fixed in a bowl shape as a pressure ring 208a protruding to the side, supports the pressure ring 208a at the tip so as not to be detached, and is combined with the surface of the pressure part 208a to form a cam part.
  • a tapered cap 208b along the surface shape 209 is attached.
  • the operation rod 202 is inserted into the hollow portion of the chuck holder 201 so as to be able to advance and retreat, and to rotate freely.
  • the chuck ring 205 or the fulcrum ring 211 of the chuck holder 201 and the pressing portion 208 of the operation rod 202 The base portions 203b of the plurality of chuck claws 203 are clamped. With such a configuration, a predetermined number of chuck claws 203 are held inside the chuck ring 205 under the same conditions.
  • the chuck claws 203 held in this way are shifted in the pressure / clamping area with respect to the base 203b of the chuck claws 203 as the operating rod 202 advances and retreats.
  • the opening of the (work unit 203a) is adjusted.
  • the embodiment shown in FIG. 34 has the opposite effect to the embodiment shown in FIGS. 19 and 20. That is, the operation rod 202 of the present embodiment includes a magnet core 222 that draws the cam portion 209 of the chuck claw 203 made of a magnetic material instead of the pressurizing portion 208 at the tip portion.
  • the operation rod 202 is inserted into the hollow portion of the chuck holder 201 so as to be able to advance and retreat, and can be freely rotated.
  • the chuck ring 205 or the fulcrum ring 211 of the chuck holder 201 and the magnet core 222 of the operation rod 202 are connected to a plurality of swing fulcrums.
  • a predetermined number of chuck claws 203 are held in the chuck ring 205 under the same conditions.
  • the chuck claw 203 held in this way receives the magnetic force of the magnet core 222 at its cam portion 209 as the operating rod 202 advances and retreats. That is, the opening / closing of the working portion 203a of each chuck claw 203 held by the chuck ring 205 is adjusted by shifting the pulling area in the cam portion 209 of the chuck claw 203. As a result, the work portion 203a of the chuck claw 203 closes when the magnet core 222 approaches the work portion 203a, and the work portion 203a of the chuck claw 203 opens when the magnet core 222 approaches the base portion 203b.
  • the robot arm shown in FIGS. 21 to 24 rotatably supports the chuck holder 201 of the chuck 204 on a bearing portion (see FIG. 28) 217 of the arm housing 213.
  • the bearing portion 217 includes a rotary bearing 217a that is in contact with the outer surface of the chuck holder 201.
  • the chuck holder 201 supported by the bearing portion 217 has a pulley 218 for receiving a rotational force as an upper portion of the rotation transmission means.
  • the rotation transmitting means refers to a member or a combination of members that transmits a force used for rotating the chuck to the chuck.
  • the bearing portion 217 of the arm housing 213 includes a ring-shaped protruding portion 223 having a narrow inner diameter at the middle portion of the inner wall of the shaft hole penetrating vertically.
  • a rotary bearing 217a is mounted above and below the projecting portion 223 in the shaft hole, and a pulley 218 and a lock ring 218a for preventing them from being detached are mounted on the upper rotary bearing 217a (see FIG. 28).
  • the operation rod 202 is inserted from above, and one or more bushes 224 and a chuck ring 205 are mounted following the rotary bearing 217 a below the protruding portion 223 and inserted into the chuck holder 201.
  • the rotary bearing 208a is attached to the distal end portion of the operation rod 202 as the pressure ring 208a.
  • the nut 225 is screwed into the distal end portion of the operation rod 202 and supports the rotary bearing 208a. It may be fixed with.
  • the operation rod 202 shown in FIGS. 19 to 25 is provided with a suction nozzle 212 connected to the hollow portion at the tip thereof, and by setting the hollow portion to a sufficient negative pressure, an object to be held by the chuck is obtained.
  • It can be used as an adsorbing means that adsorbs and holds or supplements the holding force.
  • a fiber sensor 226 that detects a specific object is inserted into the hollow portion of the operation rod 202, and a lens 226a that passes light projected and received at the tip of the operation rod 202 is inserted. You may mount
  • the robot arm is provided with an elevating means for moving the operation rod 202 back and forth in the arm casing 213.
  • the elevating means is configured by connecting a piston rod 214a of the cylinder mechanism 214 that advances and retreats in parallel with each other and an operation rod 202 of the chuck 204 by a transmission arm 215.
  • the elevating means in this example is two cylinder mechanisms 214 arranged in a substantially linear side-by-side manner on the arm housing 213.
  • the piston rods 214a of the two cylinder mechanisms 214 are connected at their exposed portions by a cylinder link 219 so as to be vertically swingable, and fix one end of the transmission arm 215 to the cylinder link 219.
  • the other end of the transmission arm 215 is connected to the exposed portion of the operation rod 202 so as to be vertically swingable.
  • both ends of the cylinder link 219 are bifurcated, and each arm bifurcated has a hole through which a connecting pin is inserted.
  • the transmission arm 215 is two leaf springs 215a that are substantially stacked in parallel with a gap in the forward / backward direction of the operation rod 202.
  • a plurality of spacers 220 are interposed between the leaf springs 215a, and the first spacer 220 is fixed to the cylinder link 219 together with one end portions of the two leaf springs 215a.
  • the second spacer 220 is fixed to the other end portions of the two leaf springs 215a, and the front side of the second spacer 220 at the other end portion of the leaf springs 215a is swingably connected to the operation rod 202.
  • each leaf spring 215a is bifurcated, and the exposed portion of the operation rod 202 is sandwiched between the crotch gaps.
  • the operating rod 227 is fixed horizontally to the exposed portion of the operating rod 202, and the operating rod 227 is sandwiched between the tip portions of the upper and lower leaf springs 215a.
  • the load adjusting member 216 is fixed so that the position can be adjusted in the region sandwiched between the first spacer 220 and the second spacer 220, and the two leaf springs 215a are connected by the first spacer and the second spacer. It is appropriately connected and supported by a part of the sandwiched longitudinal direction.
  • Each cylinder mechanism 214 is housed in an arm housing 213. That is, the arm housing 213 in this example is formed by molding synthetic resin, aluminum alloy or the like into a square bar shape, and includes two vertical holes (cylinder chamber 214b) for incorporating a cylinder along the longitudinal direction. Furthermore, a bearing portion 217 is provided on the distal end side on the extended line connecting both the cylinder chambers 214b and 214b (see FIGS. 21 to 24 and FIG. 28).
  • a timing belt 221 is passed over the arm casing 213 as a rotation transmission means for rotating the chuck holder 201 of the chuck.
  • the timing belt 221 is hung on a pulley 218 of the chuck holder 201 and a relay pulley via a rotational force generated by a motor as a rotational driving means or a rotational driving means installed elsewhere (not shown).
  • FIG. 21A shows the state of the lifting means that narrows the distance between the tips of the chuck claws 203 (hereinafter referred to as a holding dimension).
  • the cylinder mechanism hereinafter referred to as the first cylinder
  • the first cylinder far from the chuck 204 minimizes the amount of protrusion of the piston rod 214 a
  • the cylinder mechanism closer to the chuck 204 hereinafter, this is referred to as a second cylinder.
  • the protruding amount of the piston rod 214a of 214 is maximized. That is, the angle formed by the arm housing 213 and the transmission arm 215 is maximized.
  • the minimum holding dimension can be adjusted by preparing various chuck claws 203 having different forms.
  • FIG. 21 (B) shows a state of the lifting means in which the holding dimension is increased by one step from the minimum holding dimension.
  • the protruding amounts of both the first cylinder and the second cylinder are maximized while the arm housing 213 and the transmission arm 215 are kept parallel.
  • FIG. 21 (C) shows the state of the lifting / lowering means with the holding dimension further widened. In this case, the protruding amount of both the first cylinder and the second cylinder is minimized while keeping the arm casing 213 and the transmission arm 215 in parallel.
  • FIG. 21 (D) shows the state of the lifting means that makes the holding dimension the widest.
  • the protrusion amount of the piston rod 214a of the first cylinder is maximized, and the protrusion amount of the piston rod 214a of the second cylinder is minimized. That is, the angle formed by the arm housing 213 and the transmission arm 215 is maximized with an inclination opposite to that in the case of the minimum holding dimension.
  • the protruding amount of the operating rod 202 from the chuck 204 is minimized, and the pressurizing portion 208 presses the most distal end portion of the cam portion 209 of the chuck claw 203.
  • the cylinder mechanism 214 may be constituted by three columns (see FIG. 29). As shown in FIG. 30, the cylinder a, the cylinder b, and the cylinder c are separated from the chuck 204 and are combined with individual controls of the three cylinder mechanisms. Controls the holding dimension (opening / closing amount) and holding force (opening / closing force) of the variation.
  • the arrow indicates the position of the piston rod 214a. When the arrow is upward, the upper position is indicated. When the arrow is downward, the lower position is indicated. When two arrows are indicated, the intermediate position is indicated. A blank indicates that the piston rod 214a is free.
  • the suction nozzle 212 or the lens 226a provided at the tip of the operation rod 202 can be advanced and retracted as the operation rod 202 advances and retracts.
  • the suction nozzle 212 or the lens 226a is most advanced and exposed from between the chuck claws 203 (FIG. 21D, FIG. 23, and FIG. 24). , And FIG. 28 and FIG. 35).
  • the transmission arm 215 is configured by the two leaf springs 215a that are substantially stacked in parallel with a gap in the advancing and retreating direction of the operating rod 202 and the spacer 220 interposed between the two leaf springs 215a.
  • a structure for detecting a load generated by holding the workpiece with the chuck hereinafter, referred to as a holding load detection structure
  • the base ends of the two leaf springs 215 a are fixed to the cylinder link 219 together with the spacer 220.
  • the distal end portion of the transmission arm 215 is coupled to the exposed portion of the operation rod 202 so as to be vertically swingable.
  • the tip of each leaf spring 215a is bifurcated, and the exposed portion of the operation rod 202 is sandwiched between the crotch gaps.
  • the operating rod 227 is fixed horizontally to the exposed portion of the operating rod 202, and the operating rod 227 is sandwiched between the tip portions of the upper and lower leaf springs 215a.
  • One of the upper and lower leaf springs (the lower leaf spring in the example shown in FIG. 33) 215a is mounted with a circuit board 229 equipped with a cable 231 for mounting the Hall element 228 and taking out the output, and the other leaf spring.
  • the upper plate spring A support hole 215b is formed at a position facing the hall element 228 of the 215a, and the magnet grain 228a is pressed by the installation pressing plate 230 (see FIGS. 31 to 33).
  • the holding load detection structure configured as described above, if the lower leaf spring 215a bends due to the load caused by holding the workpiece 206, the load change such as the distance between the Hall element 228 and the magnet grain 228a increases. As a result, the electrical signal extracted from the Hall element 228 changes. According to this change, the operation of the cylinder mechanism 214 can be adjusted so that the robot arm performs an operation set to a desired holding force or the like at a desired position.
  • the chuck shown in FIGS. 36 to 39 includes a chuck claw 203, a chuck holder 201, and an operation rod 202.
  • the chuck claw 203 is formed by integrally forming the working part 203a and the base part 203b, and the amount of advancement / retraction of the pressure part 208 accompanying the advance / retreat of the operation rod 202 is set on the inner surface of the base part 203b of each chuck claw 203.
  • a working portion 203a that is tapered and has a flat inner surface, and a cam portion 209 that is curved and recessed are provided.
  • a protrusion 203 c that prevents the chuck claw 203 from shifting in the vertical direction and fits on the swing fulcrum of the chuck claw 203 over the entire width is provided on the front side (center of the back portion) of the center of the recess.
  • the rubber is equal to the width of the notch 207 of the chuck holder 201 or slightly thicker than the width of the notch 207 (thickness that does not hinder the control of the chuck claws 203).
  • a tube-like or spherical one made of fluorine resin or the like is used.
  • the chuck holder 201 has a cylindrical pipe portion 201a and a cylindrical shape having a wider diameter than that of the pipe portion 201a, and has a flange portion 201c widened outward at the uppermost end.
  • the portions 201b are integrally connected in such a manner that the hollow portions of each circular cross section communicate with each other and have a common central axis.
  • the pipe portion of the chuck holder 201 has a diameter to which the rotary bearing 217a can be attached, and has a through hole 201f connected to the hollow portion in the middle portion thereof, and the holder portion 201b of the chuck holder 201 has a base portion (particularly, a chuck claw 203).
  • a plurality of incisions (or grooves) 207 along the longitudinal direction of the chuck holder 201 are formed over the entire circumference of the holder portion 201b (chuck) so that the back portion 203b can be swung freely along the radius of the holder portion.
  • the fixing holes 201e are provided on the end surfaces of one or a plurality of blocks 201d provided at substantially equal angular intervals or a desired interval and separated by the cuts 207 (see FIG. 37).
  • a chuck ring 205 is further mounted for the purpose of holding the protrusion 203c of the chuck claw 203 and preventing the chuck claw 203 from being detached from the holder portion 201b.
  • the chuck ring 205 includes a pair of upper and lower rings 205a and 205b, and has a relatively shallow cylindrical shape that can be slidably mounted around the holder portion 201b of the chuck holder 201.
  • the upper chuck ring 205a is in contact with the flange 201c of the chuck holder 201
  • the lower chuck ring 205b is in contact with the upper chuck ring 205a
  • the upper and lower chuck rings 205a and 205b are in close contact with each other.
  • the chuck ring 205 is fixed to the chuck holder 201 with an attachment screw 234 that is screwed into the fixing hole 201e.
  • the lower end of the upper chuck ring 205a and the upper end of the lower chuck ring 205b are each provided with an inclined surface that is chamfered at the same depth.
  • a support groove 205c in which all or a part of the protrusion 203c is accommodated is formed.
  • the chuck claw 203 functions to hold and release the workpiece 206.
  • the mounting operation of the fulcrum ring 211 which was relatively difficult, can be avoided, and the accuracy of the fulcrum ring can be avoided. Therefore, the amount of positional deviation caused by warping, bending, or variation in the mounting position is reduced, and the backlash of the chuck claw 203 can be reduced.
  • the operation rod 202 of the present embodiment is a cylindrical pipe having a thickness that advances and retreats the hollow portion of the chuck holder 201, and includes a through hole 202a that is connected to the hollow portion at an intermediate portion thereof.
  • the operation rod 202 is supported rotatably and reciprocally at the center of the hollow portion of the chuck holder 201 by mounting oil-free bushes 243 on both upper and lower ends.
  • the operating rod 202 includes a pressurizing portion 208 that presses the cam portion 209 of the chuck claw 203 at a tip portion thereof.
  • the pressurizing unit 208 in this example supports the pressurizing ring 208a so that it can rotate and cannot be detached.
  • the chuck ring 205 of the chuck holder 201 and the pressurizing portion 208 of the operating rod 202 sandwich the base portions 203b of the plurality of chuck claws 203 related to the support groove 205c serving as the swing fulcrum.
  • a predetermined number of chuck claws 203 are held under the same conditions.
  • the chuck claws 203 held in this way are shifted in the pressure / clamping area with respect to the base 203b of the chuck claws 203 as the operating rod 202 advances and retreats.
  • the opening of (work unit 203a) changes.
  • This embodiment can also be configured to produce the opposite effect to the embodiment shown in FIGS. 36 to 38, as in the embodiment shown in FIG. That is, the operation rod 202 of the embodiment may have a configuration in which a magnet core that draws the cam portion 209 of the chuck claw 203 made of a magnetic material is provided at the distal end portion instead of the pressurizing portion 208 (not shown). .
  • the robot arm rotatably supports the chuck holder 201 of the chuck on a bearing portion 217 of an arm housing 213 shown in FIG.
  • the bearing portion 217 includes a rotary bearing 217a that is in contact with the outer surface of the chuck holder 201.
  • the chuck holder 201 supported by the bearing portion 217 has a pulley 240 for receiving a rotational force at its upper portion as one of rotation transmission means.
  • the rotation transmitting means refers to a member or a combination of members that transmits a force used for rotating the chuck to the chuck.
  • the bearing portion 217 of the arm housing 213 includes a ring-shaped protruding portion 223 having a narrow inner diameter at the middle portion of the inner wall of the shaft hole penetrating vertically, and a ring-shaped storage portion 235 having a larger inner diameter at both ends of the inner wall.
  • a notch 236 is provided in a part of the protruding portion 223 to form an opening continuing to the air path 237.
  • Rotating bearings 217a are mounted on the upper and lower sides of the projecting portion 223 in the shaft hole, and an O-ring 238 having elasticity and airtightness is mounted on each surrounding storage portion 235. Subsequently, the chuck is loaded from the bottom of the arm housing 213 to the bearing portion 217, and the washer 239 covering them is mounted on the rotary bearing 217a and the O-ring 238 mounted on the protruding portion 223, and the pulley 240 is fixed to the upper surface of the washer 239 so that the pipe portion 201a of the chuck holder 201 does not rotate or shift. Thus, the chuck is rotatably supported by the bearing portion 217 (see FIGS. 36B, 37A, and 38).
  • the robot arm is provided with an elevating means for moving the operation rod 202 back and forth in the arm casing 213.
  • the elevating means is configured by connecting the piston rod 214a of the cylinder mechanism 214 that advances and retreats in parallel with each other and the operation rod 202 of the chuck by the transmission arm 215. Even in the configuration of the electric arm 215, the electric arm 215 similar to the embodiment described above can be employed.
  • a timing belt 221 is passed over the arm housing 213 as a rotation transmission means for rotating the chuck holder 201 of the chuck, and an air path 237 following the notch 236 of the bearing portion 217. Is provided.
  • the air path 237 starts from the notch 236 of the bearing portion 217 and has a vent groove 244 provided along the longitudinal direction on the side surface of the arm housing 213, and a lead hole that connects the inside of the vent groove 244 and the notch 236. 245.
  • the ventilation groove 244 forms a part of the air path 237 by sealing the side thereof with the sealing tape 244a.
  • a lead-in hole 246 is provided from the end of the ventilation groove 244 to the lead-out opening 247 opened on the upper surface of the arm housing 213, and an air tube connecting portion is provided with the draw-out opening 247 as the end of the air path 237 (not shown).
  • the robot arm according to the present embodiment is configured as described above, so that the suction nozzle connected to the hollow portion at the distal end portion of the operation rod 202 (see, for example, FIG. 23 or FIG. 29), as in the previous embodiment.
  • the suction nozzle connected to the hollow portion at the distal end portion of the operation rod 202 (see, for example, FIG. 23 or FIG. 29), as in the previous embodiment.
  • the method of setting the hollow portion in this embodiment to a negative pressure is different from the method of sucking air from the upper end of the operation rod 202 through an air tube or the like as in the previous embodiment, and the side surface of the operation rod 202 and the chuck holder 201.
  • the upper and lower oil-free bushings 243 and 243 and the upper and lower O-rings 238 and 238 are mounted on the gap 241 sandwiched between the inner surface of the chuck holder 201 and the gap 242 sandwiched between the outer surface of the chuck holder 201 and the inner surface of the bearing portion 217, respectively. In addition, the airtightness of both the gaps 241 and 242 is ensured.
  • the intake air path of this configuration communicates the hollow portion of the operating rod 202 with both the air gaps 241 and 242 through the through holes 202a and 201f, and communicates with the air path 237 through the notch 236 of the bearing portion 217.
  • An air tube or the like is connected to a connection portion attached to the housing 213.
  • the hollow portion of the operating rod 202 can be set to a sufficient negative pressure without connecting the air tube to the chuck. Thereby, it can be used as an adsorbing means for adsorbing and holding an object to be held on the chuck or supplementing the holding force.
  • the operation rod 202 and the chuck claw 203 are rotated in the same direction, and a frictional force in the rotational direction between the operation rod 202 and the pressure ring. Can be eliminated.
  • the robot hand according to the present invention is provided with a plurality of cylinders in the robot arm housing, the transmission arms and fulcrums are provided in the cylinders, and the opening and closing dimensions of the chuck tip are controlled by changing the combination of supplying air to each cylinder.
  • the holding force is adjusted. Because of this configuration, the holding dimensions and holding force of the chuck can be controlled simply by controlling a plurality of cylinders provided in the robot arm housing, making it smaller, lighter and less expensive than conventional robot hands. It can be. Further, since the number of parts used can be reduced, there is an advantage that maintenance and adjustment are easy.
  • the configuration in which a plurality of cylinders and chucks are arranged in series is particularly effective for a rotary robot arm.
  • the structure of the transmission arm is provided with two leaf springs, and a load adjustment member that can slide is attached, so that the holding force can be controlled via the transmission arm consisting of leaf springs, so fine pressure adjustment can be performed, for example, air
  • the holding force can be controlled relatively easily by adjusting the position of the load adjustment member attached to the leaf spring without using an expensive electropneumatic regulator to control the air pressure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)

Abstract

 駆動源を可動部に搭載することなく複数方向への移動に対して正確で且つ迅速な制御を行い得る小型のワイヤ駆動式ロボットの提供。 水平スライド機構と、上下昇降機構と、アーム旋回機構を有する、XθZ形のワイヤ駆動式ロボットにおいて、ロボットアームを旋回させるθ回転手段を備える昇降ベースと、昇降ベースの昇降軌道をZ軸方向に規制する昇降ガイドと、昇降ガイドを支持する走行ベースと、走行ベースの走行軌道をZ軸と直角なX軸方向に規制する走行ガイドと、走行ガイドを支持するベースフレームと、昇降ベースにZ軸方向への駆動力を与えるワイヤ駆動方式のZ軸駆動手段と、走行ベースにX軸方向への駆動力を与えるワイヤ駆動方式のX軸駆動手段と、からなり、Z軸駆動手段及びX軸駆動手段の昇降駆動源及び走行駆動源をベースフレームに備えることを特徴とするワイヤ駆動式ロボット。

Description

ワイヤ駆動式ロボット
 本発明は、水平スライド機構と、上下昇降機構と、アーム旋回機構を有する、XθZ形ロボットにおいて、特に、ワイヤとプーリを利用したワイヤ駆動方式を採用したロボットに関する。
 製品の組立・加工や搬送等に利用されるロボットは、そのアームに対し、サーボ制御等で各関節の駆動制御や走行・昇降・回転制御を行い、所望の動作を発生させるものである。
 しかし、その様に多くの複雑な動きをさせるには、比較的規模の大きな重量の嵩むアームとならざるを得ず、制御に要する駆動源のトルクや部品も自ずと高い出力や強度が求められることとなる。
 アームを構成する各可動部を軽量化するには、駆動源を可動部に搭載しないことが効果的であり、ベルト(例えば下記特許文献1参照)やワイヤ(例えば下記特許文献2参照)を介してチャック等の加工ツールへ動力を伝える手法が紹介されている。
実用新案登録第2506918号公報 特開2005-40888号公報
 しかし、上記従来の方法は、いずれも駆動源を可動部に搭載していない点で共通するが、いずれも、駆動方向が水平方向に限られている。
 従って、他の方向への駆動に際してはそれぞれ駆動方向を別途備える必要がある。
 本発明は、上記実情に鑑みてなされたものであって、駆動源を可動部に搭載することなく複数方向への移動に対して正確で且つ迅速な制御を行い得る小型のロボットの提供を目的とする。
 上記課題を解決する為になされた本発明によるXθZ形ワイヤ駆動式ロボットは、ロボットアームを旋回させるθ回転手段を備える昇降ベースと、昇降ベースの昇降軌道をZ軸方向に規制する昇降ガイドと、昇降ガイドを支持する走行ベースと、走行ベースの走行軌道をZ軸と直角なX軸方向に規制する走行ガイドと、走行ガイドを直接的又は間接的に支持するベースフレームと、昇降ベースにZ軸方向への駆動力を与えるワイヤ駆動方式のZ軸駆動手段と、走行ベースにX軸方向への駆動力を与えるワイヤ駆動方式のX軸駆動手段と、からなり、Z軸駆動手段及びX軸駆動手段の昇降駆動源及び走行駆動源をベースフレームに備えることを特徴とする。
 前記Z軸駆動手段は、走行ベースに、左右一対の伝動プーリをZ軸及びX軸と垂直な回転軸で略同じ高さに支持すると共に、昇降ベースに、上下一対の受動プーリをZ軸及びX軸と垂直な回転軸で略上下に重なる位置に支持し、昇降駆動源のシャフトに固定した原動プーリに螺旋状に巻き付けた昇降ワイヤの一端を引き出し、例えば、ベースフレームの左端部又は右端部等、走行軌道の始端部に支持した第一プーリ(Z軸揺動プーリ)に掛け、続いて、走行ベースの走行軌道の始端側に支持した伝動プーリに下から掛けた後に、前記昇降ベースの上受動プーリに掛け、更に、走行ベースの走行軌道の終端側に支持した伝動プーリに下から掛け、例えば、ベースフレームの右端部又は左端部等、走行軌道の終端部に締結する一方、昇降駆動源のシャフトに固定した原動プーリに螺旋状に巻き付けた走行ワイヤの他端を引き出し、例えば、ベースフレームの左端部又は右端部等、走行軌道の始端部に支持した第二プーリ(Z軸固定プーリ)に掛け、続いて、走行ベースの走行軌道の始端側に支持した伝動プーリに上から掛けた後に、前記昇降ベースの下受動プーリに掛け、更に、走行ベースの走行軌道の終端側に支持した伝動プーリに上から掛け、例えば、ベースフレームの右端部又は左端部等、走行軌道の終端部に締結してなるものを採用することができる。
 例えば、ベースフレームの左右いずれか一端部等、走行軌道の始端部に定着した定軸受けと、当該定軸受けを構成する左右支持板の間隙で揺動する動軸受けとからなり、前記定軸受けに前記第二プーリを回転自在に支持し、前記動軸受けに前記第一プーリを回転自在に支持し、前記定軸受けは、支持板の内面から間隙に向けて突出する上下二本の支軸を備え、前記動軸受けは、前記上下二本の支軸が遊嵌する同じ方向に開口した軸受けを備え、例えば、前記動軸受けの上部を、走行軌道の始端部に圧縮バネを通したボルト等で走行軌道の終端部へ向けて弾性的に付勢する等、当該動軸受けを昇降ワイヤを張る方向に付勢して支持し、前記動軸受けの傾きを検出する姿勢センサを備える伸び検出機構を具備する構成としても良い。
 前記X軸駆動手段は、前記走行駆動源のシャフトに固定した原動プーリに螺旋状に巻き付けた走行ワイヤの一端を引き出し、例えば、ベースフレームの右端部又は左端部等走行軌道の終端部に支持した第三プーリ(右中継プーリ)に掛け、続いて、例えば、左端部又は右端部等、走行軌道の始端部に支持した第四プーリ(X軸揺動プーリ)に掛けた後に、前記走行ベースに走行ワイヤの一端を締結する一方、前記走行駆動源のシャフトに固定した原動プーリに螺旋状に巻き付けた走行ワイヤの他端を引き出し、例えば、ベースフレームの右端部又は左端部等、走行軌道の終端部に支持した第五プーリ(右中継プーリ)に掛け、続いて前記走行ベースに走行ワイヤの他端を締結してなるものを採用することができる。
 例えば、ベースフレームの左右いずれか一端部等、走行軌道の始端部に定着した定軸受けと、当該定軸受けを構成する左右支持板の間隙で揺動する動軸受けとからなり、前記動軸受けに前記第四プーリを回転自在に支持し、前記定軸受けは、支持板の内面から間隙に向けて突出する上下二本の支軸を備え、前記動軸受けは、前記上下二本の支軸が遊嵌する同じ方向に開口した軸受けを備え、例えば、前記動軸受けの上部を、前記走行軌道の始端部に圧縮バネを通したボルト等で前記走行軌道の終端部へ向けて弾性的に付勢する等、当該動軸受けを走行ワイヤを張る方向に付勢して支持し、前記第一プーリを前記動軸受けの傾きを検出する姿勢センサを備える伸び検出機構を具備する構成としても良く、前記定軸受けに前記第二プーリを回転自在に支持し、前記動軸受けに前記第一プーリを回転自在に支持した伸び検出機構と一体的に構成しても良い。
 前記走行ワイヤ又は昇降ワイヤに張力を与える引っ張り部材と、当該引っ張り部材に締結された走行ワイヤ又は昇降ワイヤの端部を保持する固定部材と、当該固定部材の保持領域において走行ワイヤ又は昇降ワイヤの軌道を変更する軌道変更手段を有する伸び調整機構を備える構成としても良い。
 尚、ここで、昇降駆動源及び走行駆動源とは、モータ等の原動機そのものでも良いし、原動機の回転軸に対して減速機やギヤやベルト当を連結した回転シャフトを支持する軸受け部分でも良く、昇降ワイヤや走行ワイヤに対して直接的に動力を加え得るものを言う。
 また、昇降、走行、上下、左右、始端・終端、側、天、及び底とは、ベースフレーム上における相対的な位置関係を示したものであって、ベースフレームの固定状態や設計上の便宜に応じて各々の絶対的な方向性等とは異なる場合がある。
 本発明によるワイヤ駆動式ロボットは、XθZ駆動方式の採用により、各関節において回転量の制御が必要な多関節アーム(以下多関節アームと略記する)と比べて、各関節におけるアームの軌道を一時的に外す緩衝手法を採ることが容易でありながら、多関節アームに引けをとらない稼動範囲及び精度並びに制御の便宜を得ることができる。加えて、位置決めに際して一のアームに複数のアクチュエータを備える要請も少ないことから、アームの軽量化には極めて都合が良い。
 更に、走行アームに昇降アームを搭載し、Z軸駆動手段とX軸駆動手段からなる二軸駆動を、ギヤやベルトによる駆動方式ではなくワイヤ駆動方式で行うことにより、走行アーム及び昇降アームの駆動源を、走行ベースの外に置くことができる。また、走行アーム及び昇降アームの駆動源を、走行ベースの外に置くことによって、比較的高速に作用点を移動できる小型ロボットとして構成することも出来、精密な作業を高速で行う際に用いることができるという効果を奏する。
 また、上記効率の良いプーリの配置及びワイヤの掛け方により、最低限のプーリ及び、考え得る最短のワイヤを以って、小規模・軽量で且つ正確なアームの移動が可能となる。
 上記伸び検出機構を付設すれば、比較的簡単な構成を以って、Z軸駆動手段とX軸駆動手段のワイヤの伸びを一括して管理することができ、本発明による伸び調整機構を採用すれば、簡単な操作を以って適正な張力をワイヤに対して与えることができる。
図1は本発明によるワイヤ駆動式ロボットの一例を示す要部斜視図である。 図2は本発明によるワイヤ駆動式ロボットのZ軸駆動手段の一例を示す裏側から観た斜視図である。 図3は本発明によるワイヤ駆動式ロボットのX軸駆動手段の一例を示す裏側から観た斜視図である。 図4は本発明によるワイヤ駆動式ロボットにおける走行ベースの背板の一例を示す裏側から観た拡大図である。 図5は本発明によるワイヤ駆動式ロボットの原動プーリにおけるワイヤの巻き付け構造の一例を示す斜視図である。 図6は本発明によるワイヤ駆動式ロボットの原動プーリにおけるワイヤの巻き付け構造の一例を示す斜視図である。 図7は本発明によるワイヤ駆動式ロボットにおける伸び検出機構の一例を示す斜視図である。 図8は本発明によるワイヤ駆動式ロボットにおける伸び検出機構の一例を示す分解斜視図である。 図9は本発明によるワイヤ駆動式ロボットにおける伸び検出機構の動作例を示す側面図である。 図10は本発明によるロボットアームの一例を示す分解図である。 図11は本発明によるロボットアームの動作の一例を示す要部拡大図である。 図12は本発明によるロボットアームの一例を示す定常姿勢における、(A)は平面図、(B)は側面図である。 図13は本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。 図14は本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。 図15は本発明によるロボットアームの動作の一例を示す、(A)は平面図、(B)は側面図である。 図16は本発明によるロボットアームを用い得るXθZ駆動方式のロボットの一例を示す正面側から見た要部斜視図である。 図17は本発明によるロボットアームを用い得るXθZ駆動方式のロボットにおけるZ軸駆動手段の一例を示す裏側から見た斜視図である。 図18は本発明によるロボットアームを用い得るXθZ駆動方式のロボットにおけるX軸駆動手段の一例を示す裏側から見た斜視図である。 図19は本発明によるチャックの一例を示す断面図である。 図20は本発明によるチャックの一例を示す断面図である。 図21は本発明によるロボットアームの一例を示す断面図であり、保持寸法の制御の状態を示す説明図である。 図22は本発明によるロボットアームの一例を示す断面図であり、保持力の制御の状態を示す説明図である。 図23は本発明によるロボットアームの一例を示す断面図であり、吸着手段の稼動状態を示す説明図である。 図24は本発明によるロボットアームの一例を示す断面図であり、回転伝達手段の稼動状態を示す説明図である。 図25は本発明によるチャックの例を示す正面図である。 図26は本発明によるチャックの保持態様の一例を示す、(A)は斜視図、(B)及び(C)は、断面図である。 図27は本発明によるチャックの保持態様の一例を示す、(A)は斜視図、(B)は保持すべきワークの平面図、(C)は、(A)の縦断面図である。 図28は本発明によるロボットアームの一例を示す分解図である。 図29は本発明によるロボットアームの一例を示す断面図である。 図30は図29に示すロボットアームの保持寸法及び保持力の制御形態の一例を示す表である。 図31は本発明によるロボットアームの一例を示す斜視図であり、チャックでワークを保持することで生じた荷重を検出する構造の一例を示す斜視図である。 図32は本発明によるロボットアームの一例を示す側面図であり、チャックでワークを保持することで生じた荷重を検出する構造の一例を示す説明図である。 図33はチャックでワークを保持することで生じた荷重を検出する手段の一例を示す分解図である。 図34は本発明によるチャックの一例を示す断面図である。 図35は本発明によるロボットアームの一例を示す、(A)は側面図、(B)はその要部断面図である。 図36は本発明によるチャックの一例を示す、(A)は側面図、(B)は(A)を90度回転させた状態の縦断面図である。 図37は本発明によるチャックの一例を示す、(A)は斜め下方から見た斜視図、(B)は(A)のチャックリングを半分取り外した状態を示す斜視図である。 図38は本発明によるロボットアームの先部の一例を示す裏面図である。 図39は本発明によるロボットアームのエア経路の配設例を示す断面図である。
 以下、本発明によるワイヤ駆動方式のロボットの実施の形態を図面に基づき説明する。
 図1に示す実施の形態は、XθZ駆動方式を採用したロボットアーム6(θ方向への旋回、その旋回軸と垂直なX軸方向への直線移動、及びその旋回軸と平行なZ軸方向への直線移動からなる駆動方式)のロボットである。
 本実施の形態におけるXθZ駆動方式は、θ回転手段(図1参照)1と、ワイヤ駆動方式によるZ軸駆動手段(図2参照)2とX軸駆動手段(図3参照)3とで構成され、θ回転手段1であるモータ等及びモータで駆動する縦シャフト1aを、ワイヤ駆動の昇降ベース4に搭載し、当該昇降ベース4を、ワイヤ駆動の走行ベース5に搭載したものである。
 本実施の形態では、モータで駆動する縦シャフト1aにロボットアーム6の基端部を固定することにより、縦シャフト1aに固定したロボットアーム6の上下左右への移動、及び旋回を可能とする。
 本実施の形態のロボットアーム6を固定した縦シャフト1aは、θ回転手段1から鉛直方向に備える。
 本実施の形態のθ回転手段1は、昇降ベース4にステー1bを介して固定されたモータ、及びその回転軸に連結する減速器等を備え、減速器で回転速度の制御(減速)を受けた回転軸を縦シャフト1aとする(図1参照)。なお、θ回転手段1は、回転軸を中心として360度自由に回転することが可能であり、従って、ロボットアーム6も、回転軸を中心として360度の範囲を自由に動くことが可能である。
 昇降ベース4は、所謂自動制御の下、ベースフレーム7に渡し掛けた上下走行ガイド(X軸方向へのガイド)8a,8bに対して摺動可能に装着したものである(図1参照)。
 ベースフレーム7は、左側板7a及び右側板(図示省略)と、それを垂直に起立させる様に支える底板(図示省略)とからなる。
 左側板7a及び右側板は、その前方下部及び後方上部に一対の上下走行ガイド8a,8bを相互に平行となる様に支持する。
 走行ベース5は、基板5aの後方に背板5bを垂直に立設したものである(図1参照)。
 背板5bは、その上部に、上走行ガイド8aを挿通する上支持部5cを備え、当該背板5bの中間部の同じ高さに、Z軸駆動手段2を構成する左右一対の伝動プーリ10a,10bをX軸方向及びZ軸方向に対して垂直な回転軸で支持する(図1乃至図3参照)。
 更に、背板5bは、走行ワイヤ11の両端を支持する二つのワイヤ固定機構12a,12bを備える(図3及び図4参照)。当該ワイヤ固定機構12a,12bは、そこへ固定された走行ワイヤ11を介してX軸駆動手段3による走行力を受けることとなる。
 基板5aは、その前部に、下走行ガイド8bを挿通する下支持部5dを備え、その奥行きの中間部に、基板5aの表面から垂直に起立する左右一対の昇降ガイド(Z軸方向へのガイド)9,9を備える(図1及び図2参照)。
 昇降ガイド9,9は、その上部を、背板5bの上部に前方へ迫出す形で固定した天板5eで支持する。
 昇降ベース4は、昇降ベース本体4aと、前記Z軸駆動手段2から昇降力を受ける受動体4bを一体に備えてなる。
 昇降ベース本体4aは、昇降ガイド9,9が挿通する支持部4c,4cを備え、その前面に前記ステー1bを固定するベース面を備える(図1及び図2参照)。
 受動体4bは、Z軸駆動手段2を構成する上下一対の受動プーリ13a,13bをX軸方向及びZ軸方向に対して垂直な回転軸で支持する。
 前記昇降ベース本体4aの支持部4c,4cが備える各ガイド孔の間に、当該受動体4bを固定することを以って昇降ベース4は一体となる。
 上記走行ベース5の昇降ガイド9,9に、昇降ベース4を装着することで、受動体4bは、昇降ワイヤ14を介してZ軸駆動手段2による昇降力を受け、一対の左右伝動プーリ10a,10bに挟まれた空間で、昇降ガイド9,9に規制された軌道を昇降することとなる。
 本実施の形態のX軸駆動手段3は、その走行駆動源3aたるモータを前記ベースフレーム7における底板の右端に固定して備え、以下の構成を有する(図3参照)。
 即ち、当該走行駆動源3aのシャフトに固定した原動プーリ3bに螺旋状に巻き付けた走行ワイヤ11の一端を引き出し、最寄り(右側)の側板に支持した同軸同径の一対の右中継プーリの一方(第三プーリ)15、続いて反対側(左側)の側板7aに支持したX軸揺動プーリ(第四プーリ)16に掛けた後に、前記背板5bが備える一方のワイヤ固定機構12aに走行ワイヤ11の一端を締結する。
 更に、前記原動プーリ3bに螺旋状に巻き付けた走行ワイヤ11の他端を引き出し、最寄り(右側)の側板に支持した同軸同径の一対の他方の右中継プーリ(第五プーリ)17、続いて前記背板5bが備える他方のワイヤ固定機構12bに締結する(図3及び図4参照)。
 原動プーリ20は、その巻取り面に走行駆動源3a又は昇降駆動源2aの回転方向に沿った螺旋溝(図示省略)と、原動プーリ20の中央部をその回転軸に対して直角に貫通するピン孔20aと、ロック孔20bを備えることが望ましい(図5参照)。
 前記ロック孔20bは、当該ピン孔20aに挿通するワイヤ固定ピン18の離脱止めとして機能するロックネジ19を挿通する孔である。
 ピン孔20aとロック孔20bとは、原動プーリ20の内部で、ワイヤ固定ピン18の直径の約1/3から約1/4程度だけ抵触する様に交差する位置関係で設定する。
 ワイヤ固定ピン18は、原動プーリ20に螺旋状に巻き付ける走行ワイヤ11又は昇降ワイヤ14の中間部を挿通すべく、当該ワイヤ固定ピン18の長手方向に対して直角に貫通するワイヤ孔18aを備える(図6参照)。
 ワイヤ固定ピン18は、埋没時においてロック孔20bと面する部分に、当該ロック孔20bに挿通されたロックネジ19の側面と接するテーパー面18bを備える。当該テーパー面18bは、ワイヤ孔18aの全体が原動プーリ20の表面から露出している場合には、ロック孔20に捩じ込まれたロックネジ19の先端が当該テーパー部18bに当接し、ロックネジ19がロック孔20bに進入するに従って、ロックネジ19の側面がテーパー18bを圧してワイヤ固定ピン18を押し下げ、テーパー面18bがロックネジ19の側面と接するに至った時に、ワイヤ孔18aの一部が原動プーリ20の表面から埋没する様な傾斜及び範囲に設定されている。
 本実施の形態では、X軸駆動手段3の駆動源に採用され、ワイヤ孔18aに走行ワイヤ11を通したワイヤ固定ピン18を原動プーリ3bのピン孔20aに装填しロックネジ19を締めると、ワイヤ固定ピン18が原動プーリ20内に埋没して走行ワイヤ11の中間部を固定する。続いて、走行ワイヤ11のワイヤ固定ピン18に固定された部分を始点として、当該始点を境とする二方に巻かれた走行ワイヤ11のうちの一方の巻き量が増加すれば他方の巻き量が減少する様に走行ワイヤ11を巻き付ける(図6参照)。
 以上の構成により、走行駆動源3aが正転逆転を行うことによって、その回転量に応じたX軸方向への走行が可能となり、ワイヤの中間部を滑り無く確実に保持することが可能となり、位置決めの精度向上に寄与することとなる。
 当該ワイヤ巻取り機構は、X軸駆動手段3のみならず、Z軸駆動手段2の昇降駆動源2aのシャフトに用いることができる。
 本実施の形態のZ軸駆動手段2は、その昇降駆動源2aたるモータを前記ベースフレーム7における底板の左端に固定して備え、以下の構成を有する。
 即ち、当該昇降駆動源2aのシャフトに固定した原動プーリ2bに螺旋状に巻き付けた昇降ワイヤ14の一端を引き出し、最寄り(左側)の側板7aの下位に支持したZ軸揺動プーリ(第一プーリ)21に掛け、続いて背板5bの左側に支持した左伝動プーリ10aに下から掛けた後に、前記受動体4bが備える上受動プーリ13aに掛け、更に背板5bの右側に支持した右伝動プーリ10bに下から掛け、反対側(右側)の側板が備えるワイヤ固定機構22に締結する(図2参照)。
 加えて、前記昇降駆動源2aのシャフトに固定した原動プーリ2bに螺旋状に巻き付けた昇降ワイヤ14の他端を引き出し、最寄り(左側)の側板7aの上位に支持したZ軸固定プーリ(第二プーリ)23に掛け、続いて背板5bの左側に支持した左伝動プーリ10aに上から掛けた後に、前記受動体4bが備える下受動プーリ13bに掛け、更に背板5bの右側に支持した右伝動プーリ10bに上から掛け、右側の側板が備えるワイヤ固定機構22に締結する。
 以上の構成により、昇降駆動源2aが正転逆転を行うことによって、その回転量に応じた昇降ベース4のZ軸方向への昇降が可能となる。
 本実施の形態では、上記X軸揺動プーリ16、並びにZ軸固定プーリ23及びZ軸固定プーリ21を構成要素とする走行ワイヤ11及び昇降ワイヤ14の伸び検出機構24と、前記X軸伸び調整機構25及びZ軸伸び調整機構26を備える(図2乃至図4、及び図7乃至図9参照)。
 前記伸び検出機構24は、走行ワイヤ11及び昇降ワイヤ14の弛み及び断線を検知すると共に、ワイヤ11,14により移動する駆動体(走行ベース5及び昇降ベース4)が衝突などにより過負荷を受けた場合を検知する機構である。
 本実施の形態の前記伸び検出機構24は、ベースフレームの左端部(左右を適宜入れ替えても良い)に定着した定軸受けと、当該定軸受けを構成する左右支持板の間隙で揺動する動軸受けとからなる。
 前記定軸受けは、相離隔して平行に向かい合う一対の支持板27,27からなる。
 当該一対の支持板27,27の間に、前記Z軸固定プーリ23を回転自在に支持すると共に、各支持板27,27の上部に、その間に配置した動軸受けの揺動角を検出する為の姿勢センサ28,28を各々備える。
 当該一対の左右支持板27,27は、それらの内側の相互に対向する位置に、上下二本の支軸29a,29bを突設し、両支持板27,27の中間点にZ軸固定プーリ23の支軸の両端を支持する軸受け30を備える。
 動軸受けは、前記一対の支持板27,27の間において、当該支持板との間隔を一定に維持した安定した揺動が出来る様に配置した相隣接するX軸検知板31a及びZ軸検知板31bとで構成される。
 前記X軸検知板31a及びZ軸検知板31bは、各々対抗する位置に軸受け32を備え、当該軸受け32で当該X軸検知板31aとZ軸検知板31bとの間に渡し掛けた一本の水平軸を支持し、当該水平軸で、X軸揺動プーリ16とZ軸揺動プーリ21を各々独立して回転し得る様に支持する(図7及び図8参照)。
 また、当該X軸検知板31a及びZ軸検知板31bは、前記上下二本の支軸29a,29bが遊嵌する軸受け33a,33bを同じ方向に開口して備えると共に、両検知板31a,31bの中間点に、前記Z軸固定プーリ23の支軸との干渉を回避する逃げ部33cを前記軸受け33a,33bと同じ方向に開口して備える(図8参照)。
 当該X軸検知板31a及びZ軸検知板31bは、その上部をくの字状に直角に折り曲げて吊り片34a,34bを形成し、当該吊り片34a,34bのガイド孔を通して左側の側板7aの外面に吊り、且つ前記吊り片34a,34bをボルト35a,35bのネジ入れ量で各々の揺動の最大量を調整する。更に、本実施の形態では、当該ボルト35a,35bのうち、少なくとも一方のボルト35a又は35bと、そのボルト35a又は35bが挿通する吊り片34a又は34bとの間に圧縮バネ36を介在し、当該X軸検知板31a及びZ軸検知板31bの上部を、当該左側の側板7aの外面(右側の側板の方向)へ向けて付勢する。当該圧縮バネ36の強度調整と、当該圧縮バネ36に挿通するボルト35a又は35bの締め具合で検知荷重を調整することができる。
 当該X軸検知板31a及びZ軸検知板31bは、その上端に前記姿勢センサ28,28の検出対象たる被検出部37,37を、それらの揺動に応じて当該姿勢センサ28,28の出力が変化する様に備える(図9参照)。
 本実施の形態における前記姿勢センサ28は、X軸検知板31a及びZ軸検知板31bの揺動方向に沿ってオン/オフ二つの状態を検出するリミットスイッチであって、前記被検出部37は、当該リミットスイッチの検出部28aを押圧するカム部である。
 本実施の形態の伸び検出機構24は、以上の如く構成され、Z軸駆動手段2における昇降ワイヤ14の張りが強くなれば、当該昇降ワイヤ14によってZ軸揺動プーリ21は、左側の側板7aに向けて引寄せられ、X軸検知板31a及びZ軸検知板31bの揺動の支点は下の支軸29bとなる(図9(C)参照)。
 一方、Z軸駆動手段2における昇降ワイヤ14の張りが弱くなれば、Z軸揺動プーリ21に対する引寄せる力が弱まり、Z軸検知板31bの、上部は圧縮バネ36により当該左側の側板7aに押し付けられ、下部は、前記圧縮バネ36によって左側の側板7aから離隔する方向へ揺動し、その際、X軸検知板31a及びZ軸検知板31bの揺動の支点は上の支軸29aとなる(図9(D)参照)。
 この様に、X軸検知板31a及びZ軸検知板31bの揺動に際して、それらの支点は、当該X軸検知板31a及びZ軸検知板31bの揺動に応じ、それらの軸受け33a,33bに掛かる上下二本の支軸29a,29bのいずれかに交番する。そして、その都度、X軸検知板31a及びZ軸検知板31bの検出部28aは、被検出部37の位置に応じた出力を当該姿勢センサ28から得ることができる(図9参照)。
 即ち、走行ワイヤ11及び昇降ワイヤ14に対して、ともに適正な張りが生じている場合には、上下の支軸29a,29bのいずれもが、前記軸受け33a,33bの最深部において支持され、被検出部37は、検出部28aを押圧し、この状態における出力を正常信号とする(図9(A)(B)参照)。
 一方、ロボットアーム6に対して過度な負荷がかかり、走行ワイヤ11又は昇降ワイヤ14のいずれかの張力が過度に増加した場合には、下の支軸29bが動軸受けの揺動の支点となり、被検出部37による、検出部28aの押圧が解除され、この状態における出力を異常信号とする(図9(C)参照)。
 逆に、走行ワイヤ11又は昇降ワイヤ14の切断等によっていずれかのワイヤが過度に弛んだ場合には、上の支軸29aが動軸受けの揺動の支点となり、被検出部37による、検出部28aの押圧が解除され、この状態における出力を異常信号とする(図9(D)参照)。
 これらの出力の変化を用いて、アラームの鳴動や、所定の処理のトリガといった処理を行なわせることができる。
 上記の如く、当該X軸検知板31aとZ軸検知板31bとの間に渡し掛けた一本の水平軸を以ってX軸揺動プーリ16とZ軸揺動プーリ21を回転自在に支持する構成となっていることによって、昇降ワイヤ14又は走行ワイヤ11のいずれか一方の異常に対して、他方への支障をも緩和する方向へ揺動する構成となっている。
 前記X軸伸び調整機構25及びZ軸伸び調整機構26は、走行ワイヤ11又は昇降ワイヤ14に弛みが生じた時に、走行ワイヤ11又は昇降ワイヤ14を適正な張力に調整するものである。
 伸び調整機構は、ワイヤに張力を与える引っ張り部材と、当該引っ張り部材に締結されたワイヤの端部を保持する固定部材と、当該固定部材の保持領域においてワイヤの軌道を変更する軌道変更手段を備える。
 本実施の形態のX軸伸び調整機構25は、前記走行ベース5の背板5bが備えるワイヤ固定機構12a,12bの一方と一体的に備えられる(図4参照)。
 本実施の形態のX軸伸び調整機構25は、走行ワイヤ11の端部をその先端部に挟んで保持する二枚の固定板39a,39bと、両固定板39a,39bを相互に定着し一体化する締付ネジ41aと、当該固定板39aと螺合し、当該二枚の固定板39a,39bの間において走行ワイヤ11をその先端部で押える加圧ネジ41bと(固定部材)、一体化した固定板39a,39bの揺動の支点となる支点ネジ40と、一体化した固定板39a,39bの基端部に締結され、一体化した固定板39a,39bの揺動を走行ワイヤ11に張力を与える方向へ付勢する引っ張りバネ38と(引っ張り部材)からなる。
 本実施の形態の引っ張りバネ38は、背板5bの裏面の下位に水平に配置し、当該背板5bの右端に一端部を固定し、当該引っ張りバネ38の他端部と一体化した固定板39a,39bの基端部を連結する。
 本実施の形態の前記支点ネジ40は、下位固定板(背板5bに密着する方)39bに上位固定板39aを定着する為のネジ山、及び水平に走る走行ワイヤ11の軌道を変更させるべく走行ワイヤ11の端部を誘導する円弧状の周面を備える(軌道変更手段)。
 本実施の形態では、当該支点ネジ40の周面と固定板39a,39bの内面を以って走行ワイヤ11を下方へ直角に曲げ、当該走行ワイヤ11の端部を前記加圧ネジ41bで固定している。
 本実施の形態のX軸伸び調整機構25は、支点ネジ40を緩めると、引っ張りバネ38によってその強さに応じた張力が走行ワイヤ11に加えられる。その張力を維持しつつ支点ネジ40を締めることによって、固定板39a,39bの揺動が制止され、引っ張りバネ38によって加えられた走行ワイヤ11の好適な張力が維持されることとなる。
 本実施の形態のZ軸伸び調整機構26は、昇降駆動源2aとは反対側(右側)の側板に固定した前記ワイヤ固定機構22と一体的に備えられる(図2参照)。
 即ち、本実施の形態のZ軸伸び調整機構26は、昇降ワイヤ14の一端を締結する引っ張りバネ42と(引っ張り部材)、当該引っ張りバネ42に締結された昇降ワイヤ14の端部を保持する固定ブロック43及び固定板44と、当該固定ブロック43及び固定板44に昇降ワイヤ14を固定する力を加える加圧ネジ45bと、当該固定ブロック43と固定板44を相互に定着し一体化する二本の締付ネジ45a,45aとからなる(固定部材)。
 本実施の形態のZ軸伸び調整機構26は、右側の側板における外側であって前記X軸伸び調整機構25と略同じ高さに固定する。
 当該Z軸伸び調整機構26は、ワイヤ固定機構22の下方に、引っ張りバネ42を鉛直方向に配置し、当該引っ張りバネ42の上端に、ワイヤ固定機構22から延出した昇降ワイヤ14の一端部を長さの調整が可能な様に連結すると共に、引っ張りバネ42の下端を前記右側の側板に固定したものである。
 本実施の形態における長さの調整は、昇降ワイヤ14と引っ張りバネ42の上端とを、ワイヤフックリング48を介して連結することによって実現する。
 即ち、ワイヤ固定機構22から延出した余剰の昇降ワイヤ14の一端部を、ワイヤ締結金具47の孔に通し、更に、引っ張りバネ42の上端フックと連結したワイヤフックリング48に当該昇降ワイヤ14を巻いて折り返すと共に、前記ワイヤ締結金具47の他の孔に通し、引っ張りバネ42の伸びが昇降ワイヤ14に所望の張りを与える適正量となるまで昇降ワイヤ14の端部を引き上げることにより行なう(引っ張りバネ42が適正長となる位置に目印等をつける)。ワイヤ締結金具47の孔がワイヤフックリング48の直径よりも短い距離に近接していれば、ワイヤ締結金具47をワイヤフックリング48へ引寄せることによって、ワイヤ締結金具47における昇降ワイヤ14の通過が制止され、昇降ワイヤ14の有効長を容易に調整し固定することが出来る。
 本実施の形態においては、前記固定ブロック43は、上面を略平坦な面とし、当該上面に定着する固定板44は、裏面に昇降ワイヤ14の軌道を規制すべく、昇降ワイヤ14の径(約1mmから約5mm程度)と同等若しくはそれよりも僅かに浅い保持溝46を備える(軌道変更手段)。
 本実施の形態では、前記保持溝46に沿って昇降ワイヤ14を裏側へ向けて直角に誘導し(図2参照)、更に、固定ブロック43の裏面(ベースフレーム7の裏側に面する面)に沿って下方へ誘導し、その端部を引っ張りバネ42の上端に連結する。尚、本実施の形態における固定ブロック43の上面と裏面との境目にある角は、昇降ワイヤ14に負担を与えない様に円筒の側面状に面取りがなされる。
 本実施の形態のZ軸伸び調整機構26は、加圧ネジ45bを緩めると、引っ張りバネ42によってその強さに応じた張力が加えられる。
 昇降ワイヤ14が弛んだ場合には、加圧ネジ45bを緩めてから、ワイヤ締結金具47に通された余剰の昇降ワイヤ14の長さを、引っ張りバネ42が所定の伸びとなる様に調整し、再び加圧ネジ45bを締めることによって昇降ワイヤ14が好適な張力で維持されることとなる。
 本実施の形態のロボットアーム6は、前記縦シャフト1aに基端部が直接固定され縦シャフト1aを軸として回転制御を受ける。
 上記構造を基礎として、当該ロボットアーム6の先端部には、例えば、支持孔を設ける等して、プーリとベルトを介して回転力を受けることができる作業用のチャックを装着し、作業対象を支持するプラットフォーム等を適宜付設することにより、使用目的に応じたロボットとして構成する。
 以下、本発明によるロボットアームの実施の形態を図面に基づき説明する。
 本発明によるロボットアームは、XθZ駆動方式(X軸方向への直線移動、θ方向への旋回、及びその旋回軸と平行なZ方向への直線移動からなる駆動方式)を採用し、衝突等に対する緩衝手段を有する。
 ロボットアームは、サーボ制御で各関節の駆動制御を行い、所望の動作を発生させて製造・加工等に用いられるものである。
 しかし、例えば、位置合わせ時や、非常の環境変化の際には、ロボットアームの稼動領域に障害物が存在する場合があり、障害物にロボットアームが衝突することによる破損事故や人身事故が生じる虞が生じる。
 そこで、センサによって衝突を検出し、トルクの解除及び動作の反転を行う手法が種々紹介されていた。
 しかし、上記従来の方法は、駆動制御のみで緩衝を行なう手法であることから、衝突の瞬間における緩衝が不十分である。そのため、その様な手法だけでは、事実上、衝突による被害の防止というよりも、衝突状態の解消に寄与すると言う作用に留まっていた。
 本発明によるロボットアームは、上記実情に鑑みてなされたものであって、比較的簡素な構造で緩衝作用が得られる構造を備えている。
 本発明によるロボットアームは、XθZ駆動方式のロボットアームであって、モータ等のθ回転手段で旋回する第1アームと、当該第1アームの先端部に連結し上下左右に揺動可能な第2アームを備えてなり、当該第2アームの先端部に作業部、即ち、プーリとベルト等を介して前記縦シャフトと平行な軸を回転軸として回転することができるチャック等の作業ツール、又は当該作業ツールを脱着できる支持領域等を適宜備えたものである。
 前記当該第1アームと第2アームの連結部としては、前記第1アームの先端部と第2アームの基端を上下に重ね(どちらが上でも良い)、例えば、前記第1アームの先端部に横揺動軸を支持し、当該横揺動軸に前記第2アームの基部が支持する縦揺動軸を支持する構成や、前記第2アームの基部に横揺動軸を支持し、当該横揺動軸に前記第1アームの先端部が支持する縦揺動軸を支持する構成や、ボール軸受けで当該第1アームに対して第2アームが上下左右に揺動可能となる様に連結する構成のいずれを採ることもできる。
 更に、本発明によるロボットアームは、前記第1アームと第2アームとの間に緩衝手段を備えたものであって、当該緩衝手段は、第2アームを第1アームに対する定常姿勢へ誘導する姿勢維持手段と、第2アームを第1アームに対する定常姿勢から第2アームの先端部を左右及び上方へ誘導する退避手段を備えることを特徴とする。
 前記緩衝手段は、相互に向かい合うスロープを含む谷状の誘導面と、当該誘導面に当接する突起部で構成することが可能である。ここで、スロープを含む谷状の誘導面の態様としては、すり鉢状、又は球面状であっても良い。
 その際、前記緩衝手段は、前記誘導面は第1アームと第2アームのうちのいずれか一方における、横揺動軸及び縦揺動軸又はボール軸受け等からなる連結部の前方又は後方に備え、前記突起部は第1アームと第2アームのうちの他方に、誘導面に面して備える構成とする。
 前記突起部の先端に磁性体からなる当接部を備え、前記誘導面の最深部に前記当接部を引寄せ、又は吸着する磁石を備える構成とすれば、磁力の調整により、定常姿勢の維持・誘導強度を調整することができる。尚、前記誘導面の最深部に当接部を引寄せる手法(復帰手段)としては、当該当接部が誘導面の最深部へ向かう様に、第1アームと第2アームの角度を復元すべく付勢するコイルスプリングや板バネを用いることもできる。
 図10に示す実施の形態は、XθZ駆動方式のロボットに用いるロボットアームである。
 本実施の形態におけるXθZ駆動方式は、θ回転手段107であるモータ及びモータで駆動する縦シャフトを、ワイヤ駆動のZ軸駆動手段108に搭載し、当該Z軸駆動手段108を、ワイヤ駆動のX軸駆動手段109に搭載したものである。
 本実施の形態では、モータで駆動する縦シャフト107aにロボットアームの基端部を固定することにより、縦シャフト107aの上下左右への移動、及び縦シャフト107aに固定したロボットアームの旋回を可能とする。
 本実施の形態のロボットアームは、前記縦シャフト107aに基端部が直接固定され縦シャフト107aを軸として旋回制御を受ける第1アーム101と、当該第1アーム101の先端部にその基端部を連結し上下左右に可能な第2アーム102と、当該第2アーム102の先端部にあってプーリ128とベルト(図示省略)を介して前記縦シャフトによって回転することができるチャック103とを備える。
 本実施の形態のロボットアームは、第1アーム101の先端部の下に第2アーム102の基端部を重ねた構造を有し、第1アーム101と第2アーム102との間に相互を連結させる関節部を備える。
 当該関節部は、縦横のヒンジ機構と緩衝手段106を備えるが、チャック103をその機能を果たすべき位置(作用点)へ移動させる構造として、第1アーム101に対する第2アーム102の連結角度等を制御上変化させることはなく、第1アーム101と第2アーム102との間で障害物との衝突等による衝撃を和らげる退避動作を行うに留まる。
 本実施の形態のヒンジ機構は、縦横のヒンジ機構が一体となったものである。即ち、第2アーム102の基端部に二股形状の軸受け102aを備え、当該軸受け102aの股間部102bに横揺動軸104を遊嵌し、前記軸受け102aの軸孔102c及び横揺動軸104の軸孔104aに縦揺動軸105を連通し、第1アーム101の先端部の軸孔101aに前記横揺動軸104の上端部を回転可能に、且つ離脱しないように軸支したものである(図10参照)。
 以上の構造により、第2アーム102の基端部において横揺動軸104が上下に揺動し、且つ左右に揺動することとなる(図13参照)。
 本実施の形態の緩衝手段106は、第2アーム102を第1アーム101の延長線上に配置する定常姿勢へ誘導するための姿勢維持手段と、第2アーム102を第1アーム101に対する前記定常姿勢(図12参照)から第2アーム102の先端部を左右及び上方へ誘導可能な退避手段を一体化したものである。
 本実施の形態の緩衝手段106は、相互に向かい合うスロープ106aを含む谷状の誘導面129と、当該誘導面129に当接する突起部106bからなり、前記誘導面129は、第1アーム101と第2アーム102のうちのいずれか一方における横揺動軸104及び縦揺動軸105の後方に備え、前記突起部106bは第1アーム101と第2アーム102のうちの他方に備える。
 尚、図10及び図11に示す例では、突起部106bを第1アーム101の裏面に備えるべく、第1アーム101の孔101bに、球面を先端とするピンを装着すると共に、第2アーム102の基端部を上面側から横断面形状が谷状となる様に切欠することによって、第2アーム102の上面に前記突起部106bと接する一対の平面状スロープ106a,106aを、前記突起部106bの曲率で湾曲した曲面を以って連結し、一連の誘導面129を形成したものである。
 本実施の形態の姿勢維持手段は、前記突起部106bとなるピンとして磁性体のピンを採用し、前記一対のスロープ106a,106aの谷部(一対のスロープ106a,106aに挟まれた領域の最深部)に当該ピンを引寄せる磁石106abを固定したものである。誘導面129の谷部は、前記一対のスロープ106a,106aの間隔及び傾斜を、谷部とピンの先端部(当接部106aa)の球面をガタつき無く支持できる様に構成することによって、磁石106abの磁力調整と相俟って、正常稼動時における振動や衝撃に対抗して第2アーム102の位置ズレや揺動を防止できる(図15参照)。
 本発明によるロボットアームは、以上の如く構成され、磁石106abによる定着力を凌駕する側方からの衝撃によって、第2アーム102の先端部は、第1アーム101に対して左右上方へ向く形で退避し(図11及び図13参照)、磁石106abによる定着力を凌駕する下方からの衝撃によって、第2アーム102の先端部は、第1アーム101に対して上方へ向く形で退避する(図14参照)。
 障害物からの圧力が解除されれば、第2アーム102は、その自重により前記突起部106bがスロープ106a,106aをトレースしつつ(図11参照)、定常姿勢に復帰する(図12参照)。上記構成において、突起部106bにマグネットセンサを付ければ、ロボットアームが定常姿勢から外れた状態を電気的に検知することができる。
 以下、本実施の形態のXθZ駆動方式を説明する。
 ロボットアームを固定した縦シャフト107aは、θ回転手段107から鉛直方向上向きに備える。
 本実施の形態のθ回転手段107は、アームベース110にステー111を介して固定されたモータ及びその回転軸に連結する減速器からなり、減速器で回転速度の制御(減速)を受けた回転軸を縦シャフト107aとする(図16参照)。
 アームベース110は、制御手段による制御の下、ベースフレーム(図示省略)に渡し掛けた走行ガイド(X軸方向へのガイド)112a,112bに対して摺動可能に装着したものである(図16参照)。
 本実施の形態のベースフレームは、左右側板と、それを垂直に起立する様に支える底板を備える。
 左右側板は、その前方下部及び後方上部に一対の上下走行ガイド112a,112bを相互に平行となる様に架設する。
 アームベース110は、走行ベース110aに昇降ベース110bを備えたものである。走行ベース110aは、基板110aaの後方に背板110abを垂直に立設したものである(図16参照)。
 背板110abは、その上部に、上走行ガイド112aを挿通する上支持部110cを備え、その中間部の略同じ高さに、Z軸駆動手段108を構成する左右一対の伝動プーリ113a,113bを背板110abの表面に対して垂直な回転軸で支持する(図16参照)。
 更に、背板110abは、走行ワイヤ114の両端を支持する二つのワイヤ固定機構115,115を備える(図16及び図18参照)。当該ワイヤ固定機構115,115は、そこへ固定された走行ワイヤ114を介してX軸駆動手段109による走行力を受けることとなる。
 基板110aaは、その前部に、下走行ガイド112bを挿通する下支持部110dを備え、その奥行きの中間部に、底板の表面から垂直に起立する左右一対の昇降ガイド(Z軸方向へのガイド)116,116を備える(図16及び図17参照)。
 昇降ガイド116,116は、その上部を、背板110abの上部に前方へ迫出す形で固定した天板110eで固定する。
 昇降ベース110bは、昇降ベース本体110baと、前記Z軸駆動手段108から昇降力を受ける受動体110bbとからなる。
 昇降ベース本体110baは、昇降ガイド116,116が挿通する支持部110f,110fを備え、その前面に前記ステー111を固定する(図16参照)。
 受動体110bbは、Z軸駆動手段108を構成する上下一対の受動プーリ117a,117bを受動体110bbの表面に対して垂直な回転軸で支持する。
 前記昇降ベース本体110baの支持部110f,110fが備える各ガイド孔の間に、当該受動体110bbを固定することを以って昇降ベース110bは一体となる。
 上記走行ベース110aの昇降ガイド116,116に、昇降ベース110bを装着することで、当該昇降ベース110bは、昇降ガイド116,116に規制された軌道で昇降し、その際、受動体110bbは、一対の伝動プーリ113a,113bの回転軸に挟まれた領域で昇降しつつ、昇降ワイヤ118を介してZ軸駆動手段108による昇降力を受けることとなる。
 本実施の形態のX軸駆動手段109は、その走行駆動源たるモータ119を前記ベースフレームにおける底板の右端に固定して備え、以下の構成を有する(図18参照)。
 即ち、当該走行駆動源のシャフトに固定した原動プーリ120に螺旋状に巻き付けた走行ワイヤ114の一端を引き出し、右側の側板に支持した同軸同径の一対の右中継プーリ121,121の一方、続いて左側の側板に支持した左中継プーリ122に掛けた後に、前記背板110abが備えるワイヤ固定機構115,115の一方に走行ワイヤ114の一端を締結する。
 更に、前記原動プーリ120に螺旋状に巻き付けた走行ワイヤ114の他端を引き出し、右側の側板に支持した同軸同径の一対の中継プーリ121,121の他方、続いて前記背板110abが備えるワイヤ固定機構115,115の他方に締結する。
 以上の構成により、走行駆動源が正転逆転を行うことによって、その回転量に応じたX軸方向への走行が可能となる。
 本実施の形態のZ軸駆動手段108は、その昇降駆動源たるモータ123を前記ベースフレームにおける底板の左端に固定して備え、以下の構成を有する。
 即ち、当該昇降駆動源のシャフトに固定した原動プーリ124に螺旋状に巻き付けた昇降ワイヤ118の一端を引き出し、左側の側板の下位に支持した揺動中継プーリ125に掛け、続いて背板110abの左側に支持した左伝動プーリ113aに下から掛けた後に、前記受動体110bbが備える上受動プーリ117aに掛け、更に背板110abの右側に支持した右伝動プーリ113bに下から掛け、右側の側板が備えるワイヤ固定機構127に締結する。
 加えて、前記昇降駆動源のシャフトに固定した原動プーリ124に螺旋状に巻き付けた昇降ワイヤ118の他端を引き出し、左側の側板の上位に支持した固定中継プーリ126に掛け、続いて背板の左側に支持した左伝動プーリ113aに上から掛けた後に、前記受動体110bbが備える下受動プーリ117bに掛け、更に背板110abの右側に支持した右伝動プーリ113bに上から掛け、右側の側板が備えるワイヤ固定機構127に締結する。
 以上の構成により、昇降駆動源が正転逆転を行うことによって、その回転量に応じたZ軸方向への昇降が可能となる。
 上記構造を基礎として、加工対象を支持するプラットフォーム等が適宜付設し、使用目的に応じたロボットとする。
 本発明によるロボットアームは、XθZ駆動方式の採用により、各関節において回転量の制御が必要な多関節アーム(以下多関節アームと略記する)と比べれば、各関節におけるアームの軌道を一時的に外すことが容易でありながら、多関節アームに引けをとらない稼動範囲及び精度並びに制御の便宜を得ることができる。
 上記の如く、各関節においてアームの軌道を一時的に外すことが許容される結果、第1アームの先端部に横揺動軸を支持し、当該横揺動軸に前記第2アームの基部が支持する縦揺動軸を支持し、第2アームを第1アームに対する定常姿勢へ誘導する姿勢維持手段と、第2アームを第1アームに対する定常姿勢から第2アームの先端部を左右及び上方へ誘導可能な退避手段を備える緩衝手段を有する構成とすることができる。
 前記緩衝手段の存在によって、衝突の瞬間において十分な緩衝を行なうことができ、衝突による被害の防止軽減が可能となる。また、従来技術と併用すれば、第2アームについて一定量の退避が行なわれる間に、センサによる検出結果に基いて、衝突状態の解消動作を開始することができることから、衝突事故の復旧制御にも便宜となる。
 以下、本発明によるチャック及びそれを利用したロボットハンドの実施の形態を図面に基づき説明する。
 本発明によるチャック及びロボットハンドは、自動機による組立作業、加工作業、又は搬送作業に用いる。
 ロボットハンドは、安定してワークを保持するために、様々なアクチュエータや機構部品を複数組み合わせた複雑な構造を有している。そのため、ロボットハンドのサイズを小型化するにも限度があり、微細なワークを保持することは困難だった。
 従来、エアバルーンチャックと言う手法も存在するが、チャッキングするワークのサイズや形状に大きな制限がある。
 また、工程が変わるごとに、必要数のロボットを配置し、或いは工程の目的に応じてチャックを取り替える必要があった。
 そして、それを解決する為に、複数個のロボットハンドと機構部品を持たせた物や、ATC機構を持たせてその都度チャック部分を交換する方法がとられていた。
 しかし、ロボットアーム関連機構が複雑になるほど制御機構が複雑となり、ハンド以外の部分にそれらを制御するコントローラ等をおかなければならなくなる。その結果、筐体部分が大きくなるのみに留まらず、配線や配管が増加し、更に、ロボットハンドとロボットアームを連結する継ぎ手部分の構造も複雑となるので、必然的に装置全体が大きくなる。
 加えて、ロボットアームの重量が増えると、それに見合うバランスをとる事が要求され、その結果相対的にロボットアームの運動スピードが遅くなるという問題も生じた。
 また、チャックの保持力制御を行う場合は、圧力センサ等をロボットハンドの先端に取り付けなくてはならず、小型軽量で安価なロボットハンドの実現が困難であるという問題があった。
 本発明によるチャック及びロボットハンドは、上記実情に鑑みてなされたものであって、比較的簡素で、且つ軽量な構造で多様なワークの保持等に対応できる。
 本発明によるチャックは、チャックホルダ、操作ロッド、及びチャック爪からなり、チャックホルダは、ワークの保持開放機能を満足すべくチャック爪が揺動自在に収まる切り込みと、チャック爪の基部背面を支持する揺動支点を備え、操作ロッドは、その先端部に側方へ突出した加圧部を備え、チャックホルダの中空部に、操作ロッドを進退可能に挿通し、操作ロッドの加圧部とチャックホルダの揺動支点で、複数のチャック爪の基部を挟持し、各チャック爪の基部の内面に、操作ロッドの進退に伴う加圧部の進退量を、各チャック爪の遠心方向及び向心方向への揺動量に変換するカム部を備えることを特徴とする。
 チャックホルダに、チャック爪の基部が揺動自在に収まる切り込みを、当該チャックリングの長手方向に沿って単数又は複数所望角度間隔(ワークの大きさ及び形状に適した間隔。例えば、複数略等角度間隔等。)で備え、当該チャックホルダの外面に、前記切り込みを横切りチャックホルダを一周する支え溝を備え、当該支え溝に、チャック爪の揺動支点となる支点リングを装填した構造としてもよい。
 チャックホルダの下部に、チャックホルダの切り込みに収まるチャック爪の基部、及びチャックホルダの支え溝に装填した支点リングを覆うチャックリングを装着してもよい。
 また、チャックホルダの側方を覆うチャックリングを備えた構造の一つとして、前記チャック爪が、基部の背面に各々揺動支点に嵌まる突起を備え、前記チャックリングは、上下一対のリングからなり、上のチャックリングの下端及び下のチャックリングの上端の内側を大きく面取りして、各々に内向きの傾斜面を設け、上下チャックリングが密着し両傾斜面が連続することにより、チャック爪の突起が収まる揺動支点を形成し、上下リングが相互に密着してチャックホルダに固定され、チャックホルダの切り込みに収まるチャック爪の基部を外側から支える構造としても良い。
 チャック爪の基部に収容孔を備え、収容孔に、チャックホルダの切り込みの幅以上の厚みを有する弾性を持ったガタツキ止めを装填した構造を採ることもできる。
 尚、保持すべき物を吸引力によって保持し、又は保持力を補強すべく、操作ロッドを中空部材とし、その先端部に当該中空部に繋がる吸着ノズルを備える構造としてもよい。また、チャックに物体や光や圧力等の存否や量を検出する機能を付与すべく操作ロッドの先端部にその中空部を通してセンサのヘッドを固定してもよい。
 チャックの回転に対しても同様に操作ロッドを稼動させるべく、チャックホルダに対して操作ロッドを回転自在に支持した構成としてもよい。
 本発明によるロボットアームは、アーム筐体に、前記操作ロッドを回転自在に支持したチャックホルダを回転自在に支持し、当該アーム筐体に、操作ロッドを進退させる昇降手段と、前記チャックホルダを回す回転伝達手段を備えるチャックを具備することを特徴とする。
 先端部に当該中空部に繋がる吸着ノズルを備える構造を持ったチャックを回転自在に支持するロボットアームにあっては、チャックホルダを支持する軸受部に、チャックホルダと軸受部間の外空隙の気密を確保する手段を備え、チャックホルダに、操作ロッドとチャックホルダ間の内空隙の気密を確保する手段を備え、操作ロッドは、中空部材であり、且つその中空部と内空隙を連通させる透孔を備え、チャックホルダは、その内空隙と外空隙を連通させる透孔を備え、アーム筐体に、外空隙とアーム筐体の引出口を連通させるエア経路を備える構造を採っても良い。
 チャックの保持力を調整できるように、前記昇降手段は、略平行に進退するシリンダ機構のピストンロッドとチャックの操作ロッドを伝動腕で連結したものであってもよい。
 前記昇降手段として、各々のピストンロッドが平行に進退し、且つ各々のピストンロッドを連結した二又は三のシリンダ機構を備えてもよい。その際、全てのシリンダ機構と操作ロッドが略直線的な横並びに配置され、且つ当該操作ロッドがそれらの端に配置されていることとする。前記シリンダ機構は、アーム筐体自体をシリンダ機構の一部材とする形態で、当該アーム筐体に内装してもよい。
 チャックの保持力に弾性的な幅を持たせるべく、前記伝動腕を、操作ロッドの進退方向に間隔を隔てて重ねた複数枚の板バネで構成してもよい。更に、チャックの保持力を調整すべく、前記複数枚の板バネを長手方向の一部で位置調整可能に連結支持する荷重調整部材を備える構成としてもよい。
〔チャックについて〕
 図19、図20、及び図25に示すチャック204は、チャック爪203、チャックホルダ201、及び操作ロッド202からなる。
 チャック爪203は、作業部203aと基部203bを一体成形し、各チャック爪203の基部203bの内面に、操作ロッド202の進退に伴う加圧部208の進退量を、各チャック爪203の遠心方向及び向心方向への揺動量に変換するカム部209を備える。当該例では、先細りで内面が平坦な作業部203aと、湾曲して凹んだカム部209を備え、当該凹みの中央部の表側(背部中央)に、チャック爪203の縦方向へのズレを防止し、チャック爪203の揺動支点たる支点リング211を収めるための支え溝210を全幅に亘って設ける。
 チャックホルダ201は、円形断面の中空部が連通し共通の中心軸を持つ円筒状のパイプ部201aと、当該パイプ部201aと比較して口径が広い円筒状であって、且つその最下端に外側に拡幅した鍔部201cを持つホルダ部201bを一体的に連結したものである。
 チャックホルダ201のホルダ部201bは、チャック爪203の基部(特にその背部)203bが揺動自在に収まる様に、当該チャックホルダ201の長手方向に沿った切り込み(又は溝)207を、ホルダ部201bの全周に亘って複数(チャック爪203と同数)略等角度間隔で穿設すると共に、当該ホルダ部201bの外面(当該例では、鍔部201cの上部外縁に沿って)に、前記切り込み207を横切る支え溝210を全周に亘って穿設し、当該支え溝210に、チャック爪203の揺動支点となる支点リング211を装填した構成である(図20及び図25参照)。
 当該構成を以って、チャック爪203がワーク206の保持及び開放機能を満足し、且つ当該支点リング211に支持されたチャック爪203が支点リング211に沿って横ズレを生じない様にできる。
 更に、支点リング211の安定や、ホルダ部201bからの離脱防止を目的としてチャックリング205を装着することができる。
 チャックリング205は、チャックホルダ201のパイプ部201aが挿通し、且つホルダ部201bの周囲に留まる径の円筒状を呈し、ホルダ部201bの周囲で進退する内径を備える。チャックホルダ201の鍔部201cの形状に応じて、鍔部201cが嵌まる切欠部を、チャックリング205の下部内周縁に備えてもよい。
 当該チャックリング205は、ホルダ部201bの周囲に留まる際に、当該ホルダ部201bの切り込み207に収まるチャック爪203の基部203b、及びチャックホルダ201の支え溝210に装填した支点リング211を覆い、当該支点リング211を外側から支える。
 当該構成を採用し、有端の支点リング211として、無端リングの一箇所を切断若しくは切欠されたもの、又は無端リングを半分に切断したものを用いれば、その弾性を利用して、チャック204で保持する物のサイズに一定の余裕を持たせることができ、しかも、その取り外しが容易となり、当該支点リング211を外す事によって、容易にチャック爪203を取り外し交換することができる。
 また、当該構成は、各チャック爪203は、切り込み207の内側で側面を支持されつつ揺動することから、左右のブレが生じない。また、チャック爪203の剛性を、切り込みを挟むホルダ部201bで補完できる。以上の構造から、チャック爪203の幅を、その素材に応じて、例えば、約0.1mm程度にまで薄くしても、保持すべき物に対して正確に力を加えることができ、極めて微細なワーク206の保持に用いることもできる。
 操作ロッド202は、前記チャックホルダ201の中空部を進退する太さの円筒状のパイプである。
 当該操作ロッド202は、その先端部に前記チャック爪203のカム部209を押圧する加圧部208を備える。当該例の加圧部208は、側方へ突出する加圧リング208aとして回転軸受けを鍔状に固定し、先端に、加圧リング208aを離脱不能に支持し、且つその表面と合わさってカム部209の表面形状に沿う先窄まりのキャップ208bを装着したものである。当該構成を以って、加圧部208の表面がカム部209の表面の曲面に倣い、チャック爪203に対してガタツキの無い安定した開き量を、操作ロッド202の回転に対応しつつ与えることとなる。
 前記操作ロッド202は、チャックホルダ201の中空部に、進退可能に、且つ回転自在に挿通し、チャックホルダ201のチャックリング205又は支点リング211と操作ロッド202の加圧部208で、揺動支点に係る複数のチャック爪203の基部203bを挟持する。この様な構成によって、チャックリング205の内部に所定数のチャック爪203をそれぞれ同じ条件で保持する。
 この様に保持されたチャック爪203は、前記操作ロッド202の進退に伴う当該チャック爪203の基部203bに対する加圧・挟持領域のシフトによって、チャックリング205に保持された各チャック爪203の先端部(作業部203a)の開きを調整する。
 図34に示す実施の形態は、図19及び図20に示す実施の形態とは逆の作用を生ぜしめるものである。即ち、当該実施の形態の操作ロッド202は、その先端部に、前記加圧部208に替えて、磁性体からなるチャック爪203のカム部209を引き寄せるマグネットコア222を備える。
 チャックホルダ201の中空部に、操作ロッド202を進退可能に、且つ回転自在に挿通し、チャックホルダ201のチャックリング205又は支点リング211と操作ロッド202のマグネットコア222で、揺動支点に係る複数のチャック爪203の基部203bを挟持することによって、チャックリング205の内部に所定数のチャック爪203をそれぞれ同じ条件で保持する。
 この様に保持されたチャック爪203は、前記操作ロッド202の進退に伴い、そのカム部209で前記マグネットコア222の磁力を受ける。即ち、当該チャック爪203のカム部209における引き寄せ領域のシフトによって、チャックリング205に保持された各チャック爪203の作業部203aの開閉を調整する。
 その結果、作業部203aにマグネットコア222が近づく事によってチャック爪203の作業部203aが閉じ、基部203bにマグネットコア222が近づく事によってチャック爪203の作業部203aが開く。
〔ロボットアームについて〕
 図21乃至図24に示すロボットアームは、アーム筐体213の軸受部(図28参照)217に、前記チャック204のチャックホルダ201を回転自在に支持する。
 軸受部217は、チャックホルダ201の外面に接する回転軸受け217aを備え、当該軸受部217に支持されるチャックホルダ201は、その上部に回転力の伝達を受けるためのプーリ218を回転伝達手段の一部として一体的に備える。
 尚、回転伝達手段とは、チャックの回転に用いる力を、チャックに対して伝達する部材又は部材の組み合わせを言う。
 アーム筐体213の軸受部217は、上下に貫通する軸孔の内壁中間部に内径を狭くしたリング状の迫出し部223を備える。当該軸孔における迫出し部223を挟む上下に回転軸受け217aを装着し、上の回転軸受け217a上には、プーリ218と、それらの離脱を防ぐロックリング218aを装着する(図28参照)。
 更に、操作ロッド202をその上から挿入し、前記迫出し部223の下の回転軸受け217aに続いて一つ以上のブッシュ224、及びチャックリング205を装着し、チャックホルダ201に挿入する。
 当該操作ロッド202の先端部に前記の如く加圧リング208aとして回転軸受け208aを装着するが、図28に示す様に、操作ロッド202の先端部に螺合し、回転軸受け208aを下支えするナット225で固定してもよい。
 前記チャックには、保持その他の目的を達成すべく、種々の部材を付設することができる。
 例えば、図19乃至図25に示す操作ロッド202は、その先端部に当該中空部に繋がる吸着ノズル212を備え、当該中空部を十分な負圧とすることにより、当該チャックに保持すべき物を吸着して保持し、又は保持力を補足する吸着手段として用いることができる。
 例えば、図28に示すように操作ロッド202の中空部に、特定の物体を検出するファイバセンサ226を挿通し、当該操作ロッド202の先端部に投射した光及び受光する光を通過するレンズ226aを装着してもよい(図35参照)。
 前記ロボットアームは、アーム筐体213に、操作ロッド202を進退させる昇降手段を備える。昇降手段は、互いに平行に進退するシリンダ機構214のピストンロッド214aと、チャック204の操作ロッド202を伝動腕215で連結したものである。当該例における昇降手段は、アーム筐体213に略直線的な横並びで配置された二つのシリンダ機構214である。二つのシリンダ機構214のピストンロッド214aは、その露出部をシリンダリンク219で縦揺動自在に連結し、当該シリンダリンク219に伝動腕215の一端を固定する。伝動腕215の他端は、操作ロッド202の露出部に縦揺動自在に連結する。
 当該例におけるシリンダリンク219の両端部は各々二股に分かれており、二股に分かれた各腕には、連結ピンを挿通する孔を有する。シリンダリンク219の股の間隙にピストンロッド214aの露出部を挟み、当該ピストンロッド214aの露出部に設けられた孔とシリンダリンク219の両端に設けられた孔に操作棒227を通すことによって、両ピストンロッド214aの露出部は相互に連結される。
 前記伝動腕215は、略操作ロッド202の進退方向に間隔を隔てて平行に重ねた二枚の板バネ215aである。各板バネ215aの間には複数のスペーサ220を介在し、第一のスペーサ220は、二枚の板バネ215aの一端部と共にシリンダリンク219に固定する。第二のスペーサ220は、二枚の板バネ215aの他端部に固定し、当該板バネ215aの他端部における第二のスペーサ220の先側を操作ロッド202と揺動可能に連結する。
 当該例における各板バネ215aの先端部は各々二股に分かれており、それらの股の間隙に操作ロッド202の露出部を挟む。操作ロッド202の露出部には、操作棒227を水平に固定し、上下両板バネ215aの先端部で当該操作棒227を挟む。
 更に、第一のスペーサ220と第二のスペーサ220に挟まれた領域において位置調整可能に荷重調整部材216を固定し、二枚の板バネ215aを、前記第一のスペーサ及び第二のスペーサで挟まれた長手方向の一部で適宜連結し支持する。
 図21、図23、及び図24の様に、荷重調整部材216を操作ロッド202に近付ければ、二枚の板バネ215aの作用点での一体性が高まり、二枚の板バネ215a集合体としての硬直性が高まることによって、操作ロッド202へシリンダ機構214の動きが硬直的に伝達される。一方、荷重調整部材216を操作ロッド202から遠ざければ(図22参照)、二枚の板バネ215aの独立性が高まり、二枚の板バネ215a集合体としての弾性が高まることによって、操作ロッド202へシリンダ機構214の動きが弾性的に伝達される。この様な荷重調整部材216の位置調整を以って、チャック204の耐荷重を調整することができる。
 各シリンダ機構214は、アーム筐体213に内装されている。即ち、当該例のアーム筐体213は、合成樹脂やアルミ合金等を角棒状に成形したものであり、その長手方向に沿って、シリンダを内蔵するための縦穴(シリンダ室214b)を二つ備え、更に、両シリンダ室214b,214bを結ぶ延長線上の先端側に軸受部217を備える(図21乃至図24、及び図28参照)。
 アーム筐体213には、チャックのチャックホルダ201を回す回転伝達手段としてタイミングベルト221が渡し掛けられている。タイミングベルト221は、チャックホルダ201のプーリ218と、回転駆動手段たるモータ、又は他に設置された回転駆動手段が発生した回転力を介する中継プーリに掛けられる(図示省略)。
 以下、上記ロボットアームの基本的な制御形態を説明する。
 図21(A)は、各チャック爪203の先端の間隔(以下、保持寸法と記す。)をもっとも狭くする昇降手段の状態を示したものである。この場合、二つのシリンダ機構214のうち、チャック204から遠い方のシリンダ機構(以下、第一シリンダと記す。)214のピストンロッド214aの突出量を最小とし、チャック204に近い方のシリンダ機構(以下、第二シリンダと記す。)214のピストンロッド214aの突出量を最大とする。即ち、アーム筐体213と伝動腕215とでなす角を最大とする。そうすることにより、操作ロッド202のチャック204からの突出量は最大となり、その加圧部はチャック爪203のカム部209における最も末端部を加圧する。尚、最小保持寸法は、形態の異なるチャック爪203を種々準備すること等によって調整することができる。
 図21(B)は、保持寸法を最小保持寸法から一段広くした昇降手段の状態を示したものである。この場合、アーム筐体213と伝動腕215を平行にしたまま、第一シリンダ及び第二シリンダの双方の突出量を最大とする。
 図21(C)は、保持寸法を更に一段広くした昇降手段の状態を示したものである。この場合、アーム筐体213と伝動腕215を平行にしたまま、第一シリンダ及び第二シリンダの双方の突出量を最小とする。
 図21(D)は、保持寸法をもっとも広くする昇降手段の状態を示したものである。この場合、第一シリンダのピストンロッド214aの突出量を最大とし、第二シリンダのピストンロッド214aの突出量を最小とする。即ち、アーム筐体213と伝動腕215とでなす角を、前記最小保持寸法となる場合とは逆の傾斜で最大とする。そうすることにより、操作ロッド202のチャック204からの突出量は最小となり、その加圧部208はチャック爪203のカム部209における最も先端側の部分を加圧する。
 シリンダ機構214を三連立てで構成しても良く(図29参照)、チャック204に遠い方から、シリンダa、シリンダb、シリンダcとして、三つのシリンダ機構の個別制御の組み合わせにより図30に示すバリエーションの保持寸法(開閉量)及び保持力(開閉力)の制御を行う。尚、表中矢印は、ピストンロッド214aの位置を示し、矢印が上向きの場合は上位、下向きの場合は下位、矢印が二つ記されている場合は中間位置とする。空欄は、ピストンロッド214aがフリーな状態を示す。
 また、上記保持寸法の制御と同時に、操作ロッド202の進退に伴って、その先端に設けられた吸着ノズル212又はレンズ226aが進退する様に構成することができる。当該例では、チャック爪203の保持寸法が最大となった時に、吸着ノズル212又はレンズ226aが最も前進し、各チャック爪203の間から露出する(図21(D)、図23、及び図24、並びに図28及び図35参照)。
 更に、上記のごとく、略操作ロッド202の進退方向に間隔を隔てて平行に重ねた二枚の板バネ215aと、二枚の板バネ215aの間に介在するスペーサ220で伝動腕215を構成することで、チャックでワークを保持することで生じた荷重を検出する構造(以下、保持荷重検出構造と記す。)を得ることができる。
 二枚の板バネ215aの基端部をスペーサ220と共にシリンダリンク219に固定する。伝動腕215の先端部は、操作ロッド202の露出部に縦揺動自在に連結する。
 当該例における各板バネ215aの先端部は各々二股に分かれており、それらの股の間隙に操作ロッド202の露出部を挟む。操作ロッド202の露出部には、操作棒227を水平に固定し、上下両板バネ215aの先端部で当該操作棒227を挟む。
 上下何れかの板バネ(図33に示す例では下の板バネ)215aには、ホール素子228を実装し、出力を取り出す為のケーブル231を備えた回路基板229を搭載し、他方の板バネ(図33に示す例では上の板バネ)215aのホール素子228に対向する位置には支持穴215bを穿設し、マグネット粒228aを据え付け押え板230で押える(図31乃至図33参照)。
 以上の如く構成された保持荷重検出構造によれば、下の板バネ215aがワーク206を保持することによる荷重で撓れば、ホール素子228とマグネット粒228aとの距離が離れるなど、荷重の変化によりホール素子228から取り出される電気信号が変化する。この変化に応じてシリンダ機構214の動作を調整し、ロボットアームが所望の位置において所望の保持力等に設定された動作を行なうようにすることができる。
 以下、本発明によるチャック及びそれを利用したロボットハンドのその他の実施の形態を図面に基づき説明する。
〔チャックについて〕
 図36乃至図39に示すチャックは、チャック爪203、チャックホルダ201、及び操作ロッド202からなる。
 チャック爪203は、先の実施例と同様に、作業部203aと基部203bを一体成形し、各チャック爪203の基部203bの内面に、操作ロッド202の進退に伴う加圧部208の進退量を、各チャック爪203の遠心方向及び向心方向への揺動量に変換するカム部209を備える。当該例では、先細りで内面が平坦な作業部203aと、湾曲して凹んだカム部209を備える。
 本実施の形態のチャック爪203は、当該凹みの中央部の表側(背部中央)に、チャック爪203の縦方向へのズレを防止しチャック爪203の揺動支点に収まる突起203cを全幅に亘って備え、基部203bの端面にガタツキ止め232を装着する為の収容孔(一部切欠していても良い)233を表裏貫通する態様で備える。尚、この例では、ガタツキ止め232として、チャックホルダ201の切り込み207の幅と等しいか、若しくは切り込み207の幅よりも僅かに厚い(チャック爪203の制御に支障が出ない程度の厚さ)ゴムやフッ素樹脂等からなるチューブ状又は球状のものを用いる。
 本実施の形態のチャックホルダ201は、円筒状のパイプ部201aと、当該パイプ部201aと比較して口径が広い円筒状であって、且つその最上端に外側に拡幅した鍔部201cを持つホルダ部201bを、各々の円形断面の中空部が連通し、且つ共通の中心軸を持つ態様で一体的に連結したものである。
 チャックホルダ201のパイプ部は、回転軸受け217aを装着し得る径であって、その中間部に中空部に繋がる透孔201fを備え、チャックホルダ201のホルダ部201bは、チャック爪203の基部(特にその背部)203bがホルダ部の半径に沿って揺動自在に収まる様に、当該チャックホルダ201の長手方向に沿った切り込み(又は溝)207を、ホルダ部201bの全周に亘って複数(チャック爪203と同数)略等角度間隔、又は所望の間隔で備え、切り込み207で隔された一又は複数のブロック201dの端面に定着孔201eを備える(図37参照)。
 本実施の形態は、チャック爪203の突起203cの保持や、チャック爪203のホルダ部201bからの離脱防止を目的として、更に、チャックリング205を装着する。
 チャックリング205は、上下一対のリング205a,205bからなり、チャックホルダ201のホルダ部201bの周囲に摺動可能に装着できる比較的浅い円筒状を呈する。上のチャックリング205aは、チャックホルダ201の鍔部201cに当接し、下のチャックリング205bは、上のチャックリング205aに当接し、上下チャックリング205a,205bが相互に密着した状態でチャックホルダ201に固定する。
 チャックホルダ201へのチャックリング205の固定は、定着孔201eへ螺合する取付ネジ234で行なう。
 上のチャックリング205aの下端及び下のチャックリング205bの上端は、各々同じ深さで面取りを施してなる傾斜面を備え、両チャックリング205a,205bが上下に密着することにより、チャック爪203の突起203cの全部又は一部が収まる支持溝205cを形成する。
 当該チャックリング205は、ホルダ部201bの周囲に留まる際に、当該ホルダ部201bの切り込み207に収まるチャック爪203の基部203bを覆いつつ外側から支える。
 当該構成を以って、チャック爪203がワーク206の保持及び開放機能を奏する。
 この様に、支点リング211を用いない構成を採用することにより、上記他の実施の形態による効果に加え、比較的困難であった支点リング211の装着作業が回避される他、支点リングの精度と反り曲がりや、取り付け位置のばらつきで生じる位置ズレ量が少なくなり、チャック爪203のガタツキを少なくすることができる。
 更に、収容孔233にガタツキ止め232を装着することによって、ワークを保持していない時にチャック爪203のカム部209と加圧リング208aのガタツキによって生じるチャック爪203の開閉量の変化を、ガタツキ止め232が有する弾性と摩擦によって防止することができる。
 その結果、微細なチャック爪203が正確に動作できる様になる。
 本実施の形態の操作ロッド202は、前記チャックホルダ201の中空部を進退する太さの円筒状のパイプであって、その中間部に中空部に繋がる透孔202aを備えたものである。
 当該操作ロッド202は、上下両端部に無給油ブッシュ243を各々装着することで、チャックホルダ201の中空部における中心に進退可能に、且つ回転自在に支持される。
 操作ロッド202は、その先端部に前記チャック爪203のカム部209を押圧する加圧部208を備える。当該例の加圧部208は、加圧リング208aを回転自在に、且つ離脱不能に支持したものである。
 これらの構成を以って、チャックホルダ201のチャックリング205と操作ロッド202の加圧部208で、揺動支点たる支持溝205cに係る複数のチャック爪203の基部203bが挟持され、チャックリング205の内部に所定数のチャック爪203がそれぞれ同じ条件で保持されることとなる。
 この様に保持されたチャック爪203は、前記操作ロッド202の進退に伴う当該チャック爪203の基部203bに対する加圧・挟持領域のシフトによって、チャックリング205に保持された各チャック爪203の先端部(作業部203a)の開きが変化する。
 また、操作ロッド202の加圧部208の表面が、カム部209の表面の曲面に倣って移動することによって、チャック爪203に対してガタツキの無い安定した開き量を、操作ロッド202の回転に対応しつつ与えることができる。
 本実施の形態は、図34に示す実施の形態と同様に、図36乃至図38に示す実施の形態とは逆の作用を生ぜしめるものとして構成することも可能である。即ち、当該実施の形態の操作ロッド202は、その先端部に、前記加圧部208に替えて、磁性体からなるチャック爪203のカム部209を引き寄せるマグネットコアを備える構成でも良い(図示省略)。
〔ロボットアームについて〕
 本実施の形態によるロボットアームは、図39に示すアーム筐体213の軸受部217に、前記チャックのチャックホルダ201を回転自在に支持する。
 軸受部217は、チャックホルダ201の外面に接する回転軸受け217aを備え、当該軸受部217に支持されるチャックホルダ201は、その上部に回転力の伝達を受けるためのプーリ240を回転伝達手段の一部として一体的に備える。
 尚、回転伝達手段とは、チャックの回転に用いる力を、チャックに対して伝達する部材又は部材の組み合わせを言う。
 アーム筐体213の軸受部217は、上下に貫通する軸孔の内壁中間部に内径を狭くしたリング状の迫出し部223を備えると共に、内壁両端部に内径を広くしたリング状の収納部235を各々備え、迫出し部223の一部に切欠部236を設け、エア経路237に続く開口部とする。
 当該軸孔における迫出し部223を挟む上下に回転軸受け217aを装着し、各々の周囲の収納部235に弾性・気密性を備えたOリング238を装着する。続いて、アーム筐体213の下から軸受部217へ上記チャックを装填し、迫出し部223の上に装着した回転軸受け217a及びOリング238の上に、それらを覆うワッシャ239を装着し、プーリ240を、ワッシャ239の上面に密着させつつチャックホルダ201のパイプ部201aに対して回転及びズレが生じない様に固定する。以上を以って、軸受部217にチャックが回転自在に支持される(図36(B)、図37(A)、及び図38参照)。
 前記ロボットアームは、アーム筐体213に、操作ロッド202を進退させる昇降手段を備える。昇降手段は、先に説明した実施の形態と同様に、互いに平行に進退するシリンダ機構214のピストンロッド214aと、チャックの操作ロッド202を伝動腕215で連結したものである。電動腕215の構成にあっても、先に説明した実施の形態と同様の電動腕215を採用することができる。
 アーム筐体213には、先の実施の形態と同様に、チャックのチャックホルダ201を回す回転伝達手段としてタイミングベルト221が渡し掛けられている他、軸受部217の切欠部236に続くエア経路237を備える。
 エア経路237は、軸受部217の切欠部236を始端とし、アーム筐体213の側面にその長手方向に沿って設けた通気溝244と、その通気溝244の内部と切欠部236をつなぐ引出孔245とからなる。
 通気溝244は、シールテープ244aでその側方を封じることでエア経路237の一部を形成する。通気溝244の終端から、アーム筐体213の上面において開口する引出口247に通じる引込孔246を備え、引出口247をエア経路237の終端としてエアチューブの接続部を付設する(図示省略)。
 本実施の形態のロボットアームは、以上の如く構成されることにより、先の実施の形態と同様に、操作ロッド202の先端部に当該中空部に繋がる吸着ノズル(例えば図23又は図29参照)212を装着し、当該中空部を十分な負圧とすることにより、当該チャックに保持すべき物を吸着して保持し、又は保持力を補足する吸着手段として用いることができる。
 本実施例における中空部を負圧とする手法は、先の実施の形態の様に、操作ロッド202の上端からエアチューブ等を経て吸気する手法とは異なり、操作ロッド202の側面とチャックホルダ201の内面に挟まれた空隙241、及びチャックホルダ201の外面と軸受部217の内面に挟まれた空隙242に対して、それぞれ、上下無給油ブッシュ243,243、及び上下Oリング238,238を装着し、両空隙241,242の気密を確保する。
 この構成による吸気の経路は、操作ロッド202の中空部と両空隙241,242を透孔202a,201fを介して連通し、軸受部217の切欠部236を介してエア経路237に連通し、アーム筐体213に付設した接続部にエアチューブ等を接続するものである。
 以上の構成によって、操作ロッド202の中空部をチャックにエアチューブを繋ぐことなく、十分な負圧とすることができる。これにより、当該チャックに保持すべき物を吸着して保持し、又は保持力を補足する吸着手段として用いることができる。
 加えて、操作ロッド202へのエアチューブの配管が不要となる結果、操作ロッド202とチャック爪203を同じ方向へ回転させることとなり、操作ロッド202と加圧リングの間で、回転方向の摩擦力を排することが可能となる。その結果、加圧リング208aにベアリングを必ずしも使用しなくても良くなり、加圧リング208aも、チャック爪203のカム部209に適した形状のものを採用することができる。
 本発明によるロボットハンドは、ロボットアーム筐体に複数のシリンダを設け、そのシリンダに伝動腕と支点を設け、各シリンダにエアを供給する組み合わせを替える事により、チャック先端の開閉寸法を制御し、保持力の調整を行なうものである。
 この様な構成から、ロボットアームの筐体の中に設けられた複数のシリンダの制御だけでチャックの保持寸法と保持力をコントロールできるので、従来のロボットハンドに比べて小型且つ軽量で安価な構成とすることができる。また、使用部品点数を少なくできるので保守や調整が容易となる利点もある。
 上記の如く、複数のシリンダとチャックとを直列に並べる構成から回転型のロボットアームに対して特に有効である。
 伝動腕の形状を二枚の板バネを設け、スライドできる荷重調整部材を付設した構成により、板バネからなる伝動腕を介して保持力をコントロールできるので、微妙な圧力調整が出来、例えば、エアシリンダの場合、高価な電空レギュレータ等を使用する等して空気圧をコントロールしなくとも、板バネに装着した荷重調整部材の位置調整を行なう事により、比較的容易に保持力をコントロールすることができる利点がある。
 チャックの先端部に、開放状態で露出する吸着ノズルを備えることによって、真空吸着を併用した保持が可能となる。
  1 θ回転手段,1a 縦シャフト,1b ステー,
  2 Z軸駆動手段,2a 昇降駆動源,2b 原動プーリ(Z軸駆動手段),
  3 X軸駆動手段,3a 走行駆動源,3b 原動プーリ(X軸駆動手段),
  4 昇降ベース,4a 昇降ベース本体,4b 受動体,4c 支持部,
  5 走行ベース,
  5a 基板,5b 背板,5c 上支持部,5d 下支持部,5e 天板,
  6 ロボットアーム,
  7 ベースフレーム,7a 側板(左),
  8a 上走行ガイド,8b 下走行ガイド,
  9 昇降ガイド,
 10a 左伝動プーリ,10b 右伝動プーリ,
 11 走行ワイヤ,
 12a ワイヤ固定機構(X軸),12b ワイヤ固定機構(X軸),
 13a 上受動プーリ,13b 下受動プーリ,
 14 昇降ワイヤ,
 15 右中継プーリ(第三プーリ),
 16 X軸揺動プーリ(第四プーリ),
 17 右中継プーリ(第五プーリ),
 18 ワイヤ固定ピン,18a ワイヤ孔,18b テーパー部,
 19 ロックネジ,
 20 原動プーリ,20a ピン孔,20b ロック孔,
 21 Z軸揺動プーリ(第一プーリ),
 22 ワイヤ固定機構(Z軸駆動手段),
 23 Z軸固定プーリ(第二プーリ),
 24 伸び検出機構,
 25 X軸伸び調整機構,
 26 Z軸伸び調整機構,
 27 支持板,
 28 姿勢センサ,28a 検出部,
 29a 支軸,29b 支軸,
 30 軸受け(支持板),
 31a X軸検知板,31b Z軸検知板,
 32 軸受け(X軸検知板,Z軸検知板),
 33a 軸受け,33b 軸受け,33c 逃げ部,
 34a 吊り片(X軸),34b 吊り片(Z軸),
 35a ボルト(X軸),35b ボルト(Z軸),
 36 圧縮バネ,
 37 被検出部,
 38 引っ張りバネ(X軸)
 39a 固定板,39b 固定板,
 40 支点ネジ,41a 締付ネジ,41b 加圧ネジ,
 42 引っ張りバネ(Z軸),43 固定ブロック,44 固定板,
 45a 締付ネジ,45b 加圧ネジ,
 46 保持溝,47 ワイヤ締結金具,48 ワイヤフックリング,
101 第1アーム,101a 軸孔,101b 孔,
102 第2アーム,102a 軸受け,102b 股間部,102c 軸孔,
103 チャック,
104 横揺動軸,104a 軸孔,
105 縦揺動軸,
106 緩衝手段,106a スロープ,106aa 当接部,106ab 磁石,
106b 突起部,
107 θ回転手段,107a 縦シャフト,
108 Z軸駆動手段,109 X軸駆動手段,
110 アームベース,
110a 走行ベース,110aa 基板,110ab 背板,
110b 昇降ベース,110ba 昇降ベース本体,110bb 受動体,
110c 上支持部,110d 下支持部,
110e 天板,110f 支持部,
111 ステー,
112a 上走行ガイド,112b 下走行ガイド,
113a 左伝動プーリ,113b 右伝動プーリ,
114 走行ワイヤ,115 ワイヤ固定機構,
116 昇降ガイド,
117a 上受動プーリ,117b 下受動プーリ,
118 昇降ワイヤ,
119 モータ(X軸)
120 原動プーリ(X軸),121 右中継プーリ,122 左中継プーリ,
123 モータ(Z軸)
124 原動プーリ(Z軸),125 揺動中継プーリ,126 固定中継プーリ,
127 ワイヤ固定機構,
128 プーリ,129 誘導面,
201 チャックホルダ,
201a パイプ部,201b ホルダ部,201c 鍔部,
201d ブロック,201e 定着孔,201f 透孔,
202 操作ロッド,202a 透孔,
203 チャック爪,203a 作業部,203b 基部,203c 突起,
204 チャック,
205 チャックリング,
205a 上のチャックリング,205b 下のチャックリング,205c 支持溝,
206 ワーク,207 切り込み,
208 加圧部,208a 加圧リング,208b キャップ,
209 カム部,210 支え溝,211 支点リング,212 吸着ノズル,
213 アーム筐体,
214 シリンダ機構,214a ピストンロッド,214b シリンダ室,
215 伝動腕,215a 板バネ,215b 支持穴,216 荷重調整部材,
217 軸受部,217a 回転軸受け,
218 プーリ,218a ロックリング,219 シリンダリンク,
220 スペーサ,
221 タイミングベルト,
222 マグネットコア,223 迫出し部,224 ブッシュ,225 ナット,
226 ファイバセンサ,226a レンズ,227 操作棒,
228 ホール素子,228a マグネット粒,229 回路基板,230 押え板,
231 ケーブル,232 ガタツキ止め,233 収容孔,234 取付ネジ,
235 収納部,236 切欠部,237 エア経路,
238 Oリング,239 ワッシャ,240 プーリ,
241 空隙(操作ロッド側方),242 空隙(チャックホルダ側方),
243 ブッシュ,
244 通気溝,244a シールテープ,
245 引出孔,246 引込孔,247 引出口,

Claims (20)

  1.  水平スライド機構と、上下昇降機構と、アーム旋回機構を有する、XθZ形のワイヤ駆動式ロボットにおいて、
     ロボットアームを旋回させるθ回転手段(1)を備える昇降ベース(4)と、
     当該昇降ベース(4)の昇降軌道をZ軸方向に規制する昇降ガイドと、
     当該昇降ガイドを支持する走行ベース(5)と、
     当該走行ベース(5)の走行軌道をZ軸と直角なX軸方向に規制する走行ガイドと、
     当該走行ガイドを支持するベースフレームと、
     前記昇降ベース(4)にZ軸方向への駆動力を与えるワイヤ駆動方式のZ軸駆動手段(2)と、
     前記走行ベース(5)にX軸方向への駆動力を与えるワイヤ駆動方式のX軸駆動手段(3)と、からなり、
     前記Z軸駆動手段(2)及びX軸駆動手段(3)の昇降駆動源及び走行駆動源をベースフレームに備えることを特徴とするワイヤ駆動式ロボット。
  2.  前記Z軸駆動手段(2)は、走行ベース(5)に、左右一対の伝動プーリ(10a,10b)をZ軸及びX軸と垂直な回転軸で支持すると共に、昇降ベース(4)に、上下一対の受動プーリ(13a,13b)をZ軸及びX軸と垂直な回転軸で支持し、
     前記昇降駆動源のシャフトに固定した原動プーリ(2b)に螺旋状に巻き付けた昇降ワイヤ(14)の一端を引き出し、走行軌道の始端部に支持した第一プーリ(21)に掛け、続いて走行ベース(5)の走行軌道の始端側に支持した伝動プーリ(10a)に下から掛けた後に、前記昇降ベース(4)の上受動プーリ(13a)に掛け、更に走行ベース(5)の走行軌道の終端側に支持した伝動プーリ(10b)に下から掛け、走行軌道の終端部に締結する一方、
     当該昇降駆動源のシャフトに固定した原動プーリ(2b)に螺旋状に巻き付けた昇降ワイヤ(14)の他端を引き出し、走行軌道の始端部に支持した第二プーリ(23)に掛け、続いて走行ベース(5)の走行軌道の始端側に支持した伝動プーリ(10a)に上から掛けた後に、前記昇降ベース(4)の下受動プーリ(13b)に掛け、更に走行ベース(5)の走行軌道の終端側に支持した伝動プーリ(10b)に上から掛け、走行軌道の終端部に締結してなることを特徴とする前記請求項1に記載のワイヤ駆動式ロボット。
  3.  走行軌道の始端部に定着した定軸受けと、当該定軸受けを構成する左右支持板(27,27)の間隙で揺動する動軸受けとからなり、
     前記定軸受けに前記第二プーリ(23)を回転自在に支持し、
     前記動軸受けに前記第一プーリ(21)を回転自在に支持し、
     前記定軸受けは、支持板(27,27)の内面から間隙に向けて突出する上下二本の支軸(29a,29b)を備え、
     前記動軸受けは、前記上下二本の支軸(29a,29b)が遊嵌する同じ方向に開口した軸受け(33a,33b)を備え、
     前記走行軌道の始端部に、動軸受けの上部を、前記走行軌道の終端部へ向けて付勢して支持し、
     前記動軸受けの傾きを検出する姿勢センサ(28)を備える伸び検出機構を具備することを特徴とする前記請求項2に記載のワイヤ駆動式ロボット。
  4.  前記X軸駆動手段(3)は、
     前記走行駆動源のシャフトに固定した原動プーリ(3b)に螺旋状に巻き付けた走行ワイヤ(11)の一端を引き出し、走行軌道の終端部に支持した第三プーリ(15)に掛け、続いて走行軌道の始端部に支持した第四プーリ(16)に掛けた後に、前記走行ベース(5)に当該走行ワイヤ(11)の一端を締結する一方、
     前記走行駆動源のシャフトに固定した原動プーリ(3b)に螺旋状に巻き付けた走行ワイヤ(11)の他端を引き出し、走行軌道の終端部に支持した第五プーリ(17)に掛け、続いて前記走行ベース(5)に当該走行ワイヤ(11)の他端を締結してなることを特徴とする前記請求項1乃至請求項3のいずれかに記載のワイヤ駆動式ロボット。
  5.  前記走行軌道の始端部に定着した定軸受けと、当該定軸受けを構成する左右支持板(27,27)の間隙で揺動する動軸受けとからなり、
     前記動軸受けに前記第四プーリ(16)を回転自在に支持し、
     前記定軸受けは、支持板(27,27)の内面から間隙に向けて突出する上下二本の支軸(29a,29b)を備え、
     前記動軸受けは、前記上下二本の支軸(29a,29b)が遊嵌する同じ方向に開口した軸受け(33a,33b)を備え、
     前記走行軌道の始端部に、当該動軸受けの上部を、前記走行軌道の終端部へ向けて付勢して支持し、
     当該動軸受けの傾きを検出する姿勢センサ(28)を備える伸び検出機構を具備することを特徴とする前記請求項4に記載のワイヤ駆動式ロボット。
  6.  前記走行ワイヤ(11)又は昇降ワイヤ(14)に張力を与える引っ張り部材と、当該引っ張り部材に締結された走行ワイヤ(11)又は昇降ワイヤ(14)の端部を保持する固定部材と、当該固定部材の保持領域において走行ワイヤ(11)又は昇降ワイヤ(14)の軌道を変更する軌道変更手段を有する伸び調整機構を備えることを特徴とする前記請求項2乃至請求項5のいずれかに記載のワイヤ駆動式ロボット。
  7.  前記ロボットアームは、
     前記θ回転手段(1,107)で旋回する第1アーム(101)と、
     当該第1アーム(101)の先端部に連結し上下左右に揺動可能な第2アーム(102)を備えてなり、
     前記第1アーム(101)と前記第2アーム(102)との間に緩衝手段(106)を備え、
     当該緩衝手段(106)は、
     前記第2アーム(102)を前記第1アーム(101)に対する定常姿勢へ誘導する姿勢維持手段と、
     前記第2アーム(102)を前記第1アーム(101)に対する定常姿勢から前記第2アーム(102)の先端部を左右及び上方へ誘導可能な退避手段を備えることを特徴とする前記請求項1乃至請求項6のいずれかに記載のワイヤ駆動式ロボット。
  8.  前記緩衝手段(106)は、相互に向かい合うスロープ(106a)を含む谷状の誘導面(129)と、当該誘導面(129)に当接する突起部(106b)からなり、
     前記誘導面(129)は前記第1アーム(101)と前記第2アーム(102)のうちのいずれか一方に備え、
     前記突起部(106b)は前記第1アーム(101)と前記第2アーム(102)のうちの他方に備えることを特徴とする前記請求項7に記載のワイヤ駆動式ロボット。
  9.  前記ロボットアームは、
     アーム筐体(213)と、チャック(204)を備えてなり、
     前記チャック(204)は、
     チャックホルダ(201)、操作ロッド(202)、及びチャック爪(203)からなり、
     前記チャックホルダ(201)は、ワーク(206)の保持開放機能を満足すべく前記チャック爪(203)が揺動自在に収まる切り込み(207)と、前記チャック爪(203)の基部(203b)背面を支持する揺動支点を備え、
     前記操作ロッド(202)は、その先端部に側方へ突出した加圧部(208)を備え、
     前記チャックホルダ(201)の中空部に、前記操作ロッド(202)を進退可能に挿通し、
     前記操作ロッドの前記加圧部(208)と前記チャックホルダ(201)の揺動支点で、複数の前記チャック爪(203)の前記基部(203b)を挟持し、
     各チャック爪(203)の前記基部(203b)の内面に、前記操作ロッド(202)の進退に伴う前記加圧部(208)の進退量を、各チャック爪(203)の遠心及び向心方向への揺動量に変換するカム部(209)を備えることを特徴とする前記請求項1乃至請求項6のいずれかに記載のワイヤ駆動式ロボット。
  10.  前記チャックホルダ(201)に、前記チャック爪(203)の前記基部(203b)が揺動自在に収まる切り込み(207)を、当該チャックホルダ(201)の長手方向に沿って単数又は複数所望角度間隔で備え、
     当該チャックホルダ(201)の外面に、前記切り込み(207)を横切り前記チャックホルダ(201)を一周する支え溝(210)を備え、当該支え溝(210)に、前記チャック爪(203)の揺動支点となる支点リング(211)を装填したことを特徴とする前記請求項9に記載のワイヤ駆動式ロボット。
  11.  前記チャックホルダ(201)の下部に、前記チャックホルダ(201)の前記切り込み(207)に収まる前記チャック爪(203)の前記基部(203b)、及び前記チャックホルダ(201)の前記支え溝(210)に装填した前記支点リング(211)を覆うチャックリング(205)を装着したことを特徴とする前記請求項10に記載のワイヤ駆動式ロボット。
  12.  前記チャックホルダ(201)の側方を覆うチャックリング(205)を備え、
     前記チャック爪(203)は、前記基部(203b)の背面に各々揺動支点に嵌まる突起(203c)を備え、
     前記チャックリング(205)は、上下一対のリング(205a,205b)からなり、上のチャックリング(205a)の下端及び下のチャックリング(205b)の上端に、各々同じ深さで面取りを施してなる傾斜面を備え、両チャックリング(205a,205b)が上下に密着することにより、前記チャック爪(203)の前記突起(203c)が収まる揺動支点を形成し、前記上下リング(205a,205b)が相互に密着して前記チャックホルダ(201)に固定され、前記チャックホルダ(201)の前記切り込み(207)に収まる前記チャック爪(203)の前記基部(203b)を外側から支えることを特徴とする前記請求9に記載のワイヤ駆動式ロボット。
  13.  前記操作ロッド(202)は中空部材であり、その先端部に当該中空部に繋がる吸着ノズル(212)を備えることを特徴とする前記請求項9乃至請求項12のいずれかに記載のワイヤ駆動式ロボット。
  14.  前記操作ロッド(202)は中空部材であり、その先端部に当該中空部を通してセンサ(226)のヘッドを固定したことを特徴とする前記請求項9乃至請求項12のいずれかに記載のワイヤ駆動式ロボット。
  15.  前記チャックホルダ(201)に対して前記操作ロッド(202)を回転自在に支持したことを特徴とする前記請求項9乃至請求項14のいずれかに記載のワイヤ駆動式ロボット。
  16.  前記アーム筐体(213)に前記請求項15に記載の前記チャック(204)の前記チャックホルダ(201)を回転自在に支持し、前記アーム筐体(213)に、前記操作ロッド(202)を進退させる昇降手段と、前記チャックホルダ(201)を回す回転伝達手段を備えることを特徴とする前記請求項9乃至請求項14のいずれかに記載のワイヤ駆動式ロボット。
  17.  前記アーム筐体(213)に前記請求項13に記載の前記チャック(204)の前記チャックホルダ(201)を回転自在に支持し、
     前記チャックホルダ(201)を支持する軸受部(217)に、前記チャックホルダ(201)と当該軸受部(217)間の外空隙(242)の気密を確保する手段を備え、前記チャックホルダ(201)に、前記操作ロッド(202)と前記チャックホルダ(201)間の内空隙(241)の気密を確保する手段を備え、
     前記操作ロッド(202)は、中空部材であり、且つその中空部と前記内空隙(241)を連通させる透孔(202a)を備え、前記チャックホルダ(201)は、前記内空隙(241)と前記外空隙(242)を連通させる透孔(201f)を備え、前記アーム筐体(213)に、前記外空隙(242)と前記アーム筐体(213)の引出口(247)を連通させるエア経路(237)と、前記操作ロッド(202)を進退させる昇降手段と、前記チャックホルダ(201)を回す回転伝達手段を備えることを特徴とする前記請求項9乃至請求項14のいずれかに記載のワイヤ駆動式ロボット。
  18.  前記昇降手段は、略平行に進退するシリンダ機構(14)のピストンロッド(14a)とチャックの操作ロッド(2)を伝動腕(15)で連結したものであることを特徴とする前記請求項16又は請求項17のいずれかに記載のワイヤ駆動式ロボット。
  19.  前記昇降手段は、各々のピストンロッド(14a)が平行に進退し、且つ各々のピストンロッド(14a)を連結した二又は三のシリンダ機構(14)を備え、全てのシリンダ機構(14)と操作ロッド(2)が略直線的な横並びに配置され、且つ当該操作ロッド(2)がそれらの端に配置されたことを特徴とする前記請求項18に記載のワイヤ駆動式ロボット。
  20.  前記シリンダ機構(14)をアーム筐体(13)に内装した前記請求項18又は請求項19のいずれかに記載のワイヤ駆動式ロボット。
PCT/JP2010/065025 2009-09-02 2010-09-02 ワイヤ駆動式ロボット WO2011027824A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2009202860 2009-09-02
JP2009-202860 2009-09-02
JP2010-115714 2010-05-19
JP2010-115719 2010-05-19
JP2010115714A JP5411062B2 (ja) 2010-05-19 2010-05-19 ロボットアーム
JP2010115710A JP2011240448A (ja) 2010-05-19 2010-05-19 ワイヤ駆動式ロボット
JP2010115719A JP5478359B2 (ja) 2009-09-02 2010-05-19 チャック及びロボットハンド
JP2010-115710 2010-05-19

Publications (1)

Publication Number Publication Date
WO2011027824A1 true WO2011027824A1 (ja) 2011-03-10

Family

ID=43649358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/065025 WO2011027824A1 (ja) 2009-09-02 2010-09-02 ワイヤ駆動式ロボット

Country Status (1)

Country Link
WO (1) WO2011027824A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941573A (zh) * 2012-11-13 2013-02-27 庄德胜 一种绳驱动多关节机器人
CN106737610A (zh) * 2017-02-22 2017-05-31 上海云线娃娃信息科技有限公司 一种具有升降线和长链结构的机械手
CN108942362A (zh) * 2018-08-15 2018-12-07 芜湖源码自动化设备有限公司 一种带有夹持机构的金属板切割设备用送料机构
JP2019039170A (ja) * 2017-08-23 2019-03-14 大成建設株式会社 自走式鉄筋結束機
CN112123355A (zh) * 2019-06-25 2020-12-25 发那科株式会社 机器人手以及机器人
CN114352693A (zh) * 2022-01-06 2022-04-15 杭州申昊科技股份有限公司 一种轨道巡检机器人的驱动涨紧机构
CN114655704A (zh) * 2022-05-24 2022-06-24 烟台吉兴汽车部件有限公司 一种基于汽车顶篷自动组立生产线的输送机构

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125084U (ja) * 1984-01-27 1985-08-23 有限会社 エリ−工業 産業用ロボツト
JPS61214984A (ja) * 1985-03-15 1986-09-24 株式会社デンソー 産業用ロボツト
JPS61214985A (ja) * 1985-03-15 1986-09-24 株式会社デンソー 産業用ロボツト
JPH01183382A (ja) * 1987-09-25 1989-07-21 Kemble Instr Co Ltd:The 機械駆動機構
JPH0254298U (ja) * 1988-10-14 1990-04-19
JPH0382187U (ja) * 1989-12-14 1991-08-21
JPH03211103A (ja) * 1990-01-16 1991-09-13 Seibu Electric & Mach Co Ltd ワイヤ駆動のピッカー装置
JPH07202492A (ja) * 1993-12-28 1995-08-04 Yamaha Motor Co Ltd 実装機の吸着ヘッド
JPH1094937A (ja) * 1996-09-20 1998-04-14 Hitachi Koki Co Ltd アクチュエータ
JP2000108072A (ja) * 1998-09-30 2000-04-18 Nec Corp 多軸駆動機構
JP2003209156A (ja) * 2002-01-17 2003-07-25 Juki Corp 基板搬送装置
JP2004009152A (ja) * 2002-06-03 2004-01-15 Sankyo Seiki Mfg Co Ltd 産業用ロボット

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60125084U (ja) * 1984-01-27 1985-08-23 有限会社 エリ−工業 産業用ロボツト
JPS61214984A (ja) * 1985-03-15 1986-09-24 株式会社デンソー 産業用ロボツト
JPS61214985A (ja) * 1985-03-15 1986-09-24 株式会社デンソー 産業用ロボツト
JPH01183382A (ja) * 1987-09-25 1989-07-21 Kemble Instr Co Ltd:The 機械駆動機構
JPH0254298U (ja) * 1988-10-14 1990-04-19
JPH0382187U (ja) * 1989-12-14 1991-08-21
JPH03211103A (ja) * 1990-01-16 1991-09-13 Seibu Electric & Mach Co Ltd ワイヤ駆動のピッカー装置
JPH07202492A (ja) * 1993-12-28 1995-08-04 Yamaha Motor Co Ltd 実装機の吸着ヘッド
JPH1094937A (ja) * 1996-09-20 1998-04-14 Hitachi Koki Co Ltd アクチュエータ
JP2000108072A (ja) * 1998-09-30 2000-04-18 Nec Corp 多軸駆動機構
JP2003209156A (ja) * 2002-01-17 2003-07-25 Juki Corp 基板搬送装置
JP2004009152A (ja) * 2002-06-03 2004-01-15 Sankyo Seiki Mfg Co Ltd 産業用ロボット

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102941573A (zh) * 2012-11-13 2013-02-27 庄德胜 一种绳驱动多关节机器人
CN102941573B (zh) * 2012-11-13 2015-02-25 庄德胜 一种绳驱动多关节机器人
CN106737610A (zh) * 2017-02-22 2017-05-31 上海云线娃娃信息科技有限公司 一种具有升降线和长链结构的机械手
JP2019039170A (ja) * 2017-08-23 2019-03-14 大成建設株式会社 自走式鉄筋結束機
JP7028581B2 (ja) 2017-08-23 2022-03-02 大成建設株式会社 自走式鉄筋結束機
CN108942362A (zh) * 2018-08-15 2018-12-07 芜湖源码自动化设备有限公司 一种带有夹持机构的金属板切割设备用送料机构
CN112123355A (zh) * 2019-06-25 2020-12-25 发那科株式会社 机器人手以及机器人
CN114352693A (zh) * 2022-01-06 2022-04-15 杭州申昊科技股份有限公司 一种轨道巡检机器人的驱动涨紧机构
CN114352693B (zh) * 2022-01-06 2023-10-24 杭州申昊科技股份有限公司 一种轨道巡检机器人的驱动涨紧机构
CN114655704A (zh) * 2022-05-24 2022-06-24 烟台吉兴汽车部件有限公司 一种基于汽车顶篷自动组立生产线的输送机构
CN114655704B (zh) * 2022-05-24 2022-08-23 烟台吉兴汽车部件有限公司 一种基于汽车顶篷自动组立生产线的输送机构

Similar Documents

Publication Publication Date Title
WO2011027824A1 (ja) ワイヤ駆動式ロボット
KR101338044B1 (ko) 중력보상기구를 구비한 매니퓰레이터 및 이를 이용한 얼굴로봇
US7331750B2 (en) Parallel robot
US20080229862A1 (en) Wire drive mechanism, robot arm mechanism, and robot
JP6450401B2 (ja) 双腕ロボット
JP2011240448A (ja) ワイヤ駆動式ロボット
JP2014124742A (ja) アーム駆動装置
JP2011073135A (ja) チャック及びロボットハンド
KR20220100670A (ko) 천장 반송차
US10603800B1 (en) Gripper having a four bar linkage
US20150336180A1 (en) Device for drilling an acoustic component, casette, acoustic drilling method and method of manufacturing an acoustic component
KR101332694B1 (ko) 중력 보상 기능을 가지는 햅틱 장치
CN109153130A (zh) 具有驱动装置的机器人夹持器
JP6455060B2 (ja) ロボットの調整方法
JP5411062B2 (ja) ロボットアーム
JPS63156676A (ja) 水平関節型ロボツトのア−ム構造
CN107009160A (zh) 驱动设备和配备有该驱动设备的工件夹紧单元
JP5289074B2 (ja) 駆動装置
CN110271022A (zh) 一种抓取装置
KR100559314B1 (ko) 패널 이송장치의 패널 흡착장치
JP7499677B2 (ja) ロボットハンド
CN216803505U (zh) 一种机械臂
JP2001179560A (ja) 工作機械
JPH08118269A (ja) 産業用ロボット
JP2023142317A (ja) ロボット

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10813772

Country of ref document: EP

Kind code of ref document: A1