WO2011027572A1 - マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器 - Google Patents

マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器 Download PDF

Info

Publication number
WO2011027572A1
WO2011027572A1 PCT/JP2010/005432 JP2010005432W WO2011027572A1 WO 2011027572 A1 WO2011027572 A1 WO 2011027572A1 JP 2010005432 W JP2010005432 W JP 2010005432W WO 2011027572 A1 WO2011027572 A1 WO 2011027572A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
microphone
permeable membrane
collection port
film
Prior art date
Application number
PCT/JP2010/005432
Other languages
English (en)
French (fr)
Inventor
阿部悠一
古内浩二
瀧石公正
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020127005627A priority Critical patent/KR101721278B1/ko
Priority to US13/141,934 priority patent/US9253297B2/en
Priority to EP10813523.7A priority patent/EP2475186B1/en
Priority to CN2010800080542A priority patent/CN102318367A/zh
Publication of WO2011027572A1 publication Critical patent/WO2011027572A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/03Constructional features of telephone transmitters or receivers, e.g. telephone hand-sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • H04R1/083Special constructions of mouthpieces
    • H04R1/086Protective screens, e.g. all weather or wind screens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/22Arrangements for obtaining desired frequency or directional characteristics for obtaining desired frequency characteristic only 
    • H04R1/28Transducer mountings or enclosures modified by provision of mechanical or acoustic impedances, e.g. resonator, damping means
    • H04R1/2807Enclosures comprising vibrating or resonating arrangements
    • H04R1/2838Enclosures comprising vibrating or resonating arrangements of the bandpass type
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R9/00Transducers of moving-coil, moving-strip, or moving-wire type
    • H04R9/08Microphones

Definitions

  • the present invention relates to a microphone sound-transmitting membrane that transmits sound to the sound conversion unit while preventing foreign matter from entering the sound conversion unit of the microphone.
  • the present invention also relates to a sound permeable membrane member for a microphone including the sound permeable membrane, a microphone, and an electronic device including the microphone.
  • the microphone is usually housed in a housing of an electronic device as a microphone unit in which a sound conversion unit (sound collecting unit) having a diaphragm and a back plate is housed in a housing.
  • the sound from the outside is guided to the sound conversion unit of the microphone through both the sound collection port provided in the housing and the sound collection port provided in the housing.
  • a sound conversion unit sound collecting unit
  • the foreign matter vibrates in the vicinity of the sound conversion unit, and noise is generated.
  • the entry of foreign matter into the audio conversion unit leads to a failure of the microphone.
  • a sound-permeable membrane that allows sound to pass therethrough is disposed at the sound collection port of at least one member selected from the housing and the housing.
  • a porous sheet having air permeability is used for the sound-permeable membrane.
  • Japanese Patent Application Laid-Open No. 2008-199225 discloses that a woven or non-woven fiber made of a resin such as nylon or polyethylene can be used for the sound-permeable membrane.
  • Japanese Patent Application Laid-Open No. 2007-81881 discloses that a polytetrafluoroethylene (PTFE) porous membrane can be used as a sound-permeable membrane. The latter sound-permeable membrane is expected to suppress not only dust but also water intrusion as a foreign substance based on the characteristics of the PTFE porous membrane.
  • PTFE polytetrafluoroethylene
  • a porous sheet (porous film) having air permeability is used for the sound-transmitting film of the microphone, and a film having no air permeability is not used. This is because it has been considered that it is indispensable to ensure the microphone performance that the sound-permeable membrane has air permeability. It has always been the common technical knowledge of those skilled in the art to use a porous sheet having air permeability for a sound-permeable membrane of a microphone. The present inventors reconsidered this common sense and examined again whether the air permeability of the sound-permeable membrane is really indispensable for ensuring the microphone performance.
  • the microphone sound-transmitting membrane according to the present invention allows sound to pass through while preventing foreign matter from entering from the sound collection port to the sound conversion unit of the microphone by arranging the microphone at the sound collection port.
  • the microphone sound-permeable membrane of the present invention is composed of a non-porous film or a multilayer film including a non-porous film, has a surface density of 30 g / m 2 or less, and an acoustic transmission loss of less than 3 dB in a frequency range of 300 to 4000 Hz. is there.
  • the microphone sound-transmitting membrane member according to the present invention is arranged from the sound collection port to the sound conversion unit of the microphone by arranging the sound collection port of the microphone and / or the sound collection port provided in the housing of the electronic device including the microphone. And a double-sided pressure-sensitive adhesive sheet that joins the sound-permeable film to the member having the sound-collecting port so as to block the sound-collecting port.
  • the sound-transmitting membrane is the microphone sound-transmitting membrane of the present invention.
  • the said double-sided adhesive sheet is arrange
  • the microphone according to the present invention includes a sound conversion unit; a housing that houses the sound conversion unit and includes a sound collection port that guides sound to the sound conversion unit; and is joined to the housing so as to close the sound collection port And a sound-permeable membrane that transmits sound while preventing foreign matter from entering the sound conversion unit from the sound collection port.
  • the sound-transmitting membrane is the microphone sound-transmitting membrane of the present invention.
  • An electronic device including a microphone includes a microphone including a sound conversion unit, and a housing provided with a sound collection port that houses the sound conversion unit and guides the sound to the sound conversion unit; A housing provided with a sound collection port for guiding sound to the microphone; and is joined to the at least one member so as to close the sound collection port of at least one member selected from the housing and the housing; A sound-permeable membrane that transmits sound while preventing entry of foreign matter from the sound collection port of the at least one member into the sound conversion unit.
  • the sound-transmitting membrane is the microphone sound-transmitting membrane of the present invention.
  • the microphone sound-permeable membrane of the present invention is composed of a nonporous film or a multilayer film including a nonporous film. For this reason, it is possible to prevent foreign matters, such as fine dust, that are difficult to block with a conventional sound-permeable film from entering the sound conversion unit of the microphone. In addition, it is possible to prevent water vapor (a very large amount of water vapor is contained during speech) from entering the voice conversion unit, and to suppress the occurrence of condensation in the voice conversion unit, which is seen with conventional sound-permeable membranes. .
  • the microphone performance when the sound-permeable membrane is disposed is also ensured.
  • the microphone of the present invention provided with such a sound-permeable membrane is highly reliable with less generation of noise and failure due to the entry of foreign matter into the sound conversion unit.
  • FIG. 1 is an example of a sound-transmitting membrane for a microphone according to the present invention.
  • a microphone sound-permeable membrane (hereinafter simply “sound-permeable membrane”) 1 shown in FIG. 1 is a non-porous film 11.
  • the surface density of the sound-permeable membrane 1 is 30 g / m 2 or less.
  • the surface density of the sound-permeable membrane 1 is a value obtained by dividing the weight of the membrane by the area of the main surface of the membrane. In other words, the surface density is the weight per unit area of the main surface in the sound-permeable membrane 1.
  • the surface density of the sound-permeable film greatly affects the change in sound pressure when sound passes through the film. In addition to this, the sound transmission loss of the sound-permeable membrane 1 in the frequency region of 300 to 4000 Hz is less than 3 dB.
  • the sound-transmitting membrane ensures the microphone performance when in use, that is, when the microphone is disposed at the sound collection port that guides the sound to the sound conversion unit of the microphone.
  • the sound transmission loss is a value reflecting a change in sound pressure (sound pressure loss) when sound passes through the evaluation object. If the sound transmission loss is less than 3 dB, the change cannot be perceived by human hearing.
  • the sound transmission loss in the frequency region of 300 to 4000 Hz means an average value of the sound transmission loss in the frequency region.
  • the sound transmission loss in the frequency region of 300 to 4000 Hz is hereinafter simply referred to as “acoustic transmission loss”. 300 to 4000 Hz corresponds to the human voice frequency.
  • the surface density of the sound-permeable membrane 1 is preferably 25 g / m 2 or less, more preferably 20 g / m 2, more preferably 15 g / m 2 or less. In this case, the sound transmission loss of the sound permeable membrane 1 becomes smaller.
  • the lower limit of the surface density of the sound-permeable membrane 1 is not particularly limited, and is, for example, 1 g / m 2 , and the lower limit is preferably 10 g / m 2 . If the surface density is excessively small, the strength of the sound-transmitting film 1 is lowered and it is easy to receive damage from foreign matter.
  • the surface density of the sound-permeable membrane 1 is preferably between the lower limit value or the preferred lower limit value and the above-described upper limit value or the preferred upper limit value.
  • the lower limit of the sound transmission loss of the sound permeable membrane 1 is not particularly limited. From the viewpoint of microphone performance, the smaller the sound transmission loss, the better.
  • the lower limit of the sound transmission loss of the sound permeable membrane 1 is, for example, 0.5 dB.
  • the sound transmission loss of the sound-permeable membrane 1 is, for example, not less than 0.5 dB and less than 3 dB.
  • the structure and material of the non-porous film 11 are not particularly limited.
  • the nonporous film 11 is made of, for example, a metal, a resin, or a composite material thereof.
  • the nonporous film 11 is typically a resin film.
  • the kind of resin is not particularly limited, and examples thereof include polytetrafluoroethylene (PTFE), polyester (PET), polycarbonate, polyethylene (PE), and polyimide.
  • PTFE polytetrafluoroethylene
  • PET polyester
  • PE polycarbonate
  • PE polyethylene
  • Polyimide polyimide
  • the non-porous film 11 is preferably a PTFE film or a PET film, particularly preferably a PTFE film, because the balance between weight and strength is good.
  • the thickness of the nonporous film 11 is not particularly limited as long as the surface density as the sound-permeable membrane 1 is 30 g / m 2 or less and the sound transmission loss is less than 3 dB.
  • the sound-permeable membrane 1 may be composed of a non-porous film 11 having two or more layers.
  • the type of each non-porous film 11 may be the same or different. From the viewpoint of minimizing sound transmission loss in the sound-permeable membrane 1, it is preferable that the sound-permeable membrane 1 is a single layer film of a non-porous film 11 as shown in FIG. 1.
  • FIG. 2 is another example of the sound-permeable membrane of the present invention.
  • the sound-permeable membrane 2 shown in FIG. 2 is a multilayer film of a nonporous film 11 and a breathable support material 12.
  • the surface density of the sound-permeable membrane 2 (surface density as a multilayer film including the nonporous film 11 and the air-permeable support material 12) is 30 g / m 2 or less. In addition to this, the sound transmission loss of the sound-permeable membrane 2 is less than 3 dB. As a result, a sound-permeable membrane is obtained in which the microphone performance during use is ensured.
  • the areal density of sound-transmitting membrane 2 is preferably from 25 g / m 2 or less, more preferably 20g / m 2, 15g / m 2 The following is more preferable. In this case, the sound transmission loss of the sound permeable membrane 2 becomes smaller.
  • the lower limit of the surface density is not particularly limited in the sound-permeable membrane 2 constituted by a multilayer film including the non-porous film 11, and is, for example, 1 g / m 2 , and the lower limit is 10 g / m 2. Is preferred.
  • the surface density of the sound-permeable membrane 2 is preferably between the lower limit value or the preferred lower limit value and the above-described upper limit value or the preferred upper limit value.
  • the sound transmission loss of the sound-permeable membrane 2 (sound transmission loss as a multilayer film including the nonporous film 11 and the air-permeable support material 12) is less than 3 dB.
  • the lower limit of the sound transmission loss is not particularly limited in the sound-transmitting film 2 constituted by a multilayer film including the nonporous film 11. From the viewpoint of microphone performance, the smaller the sound transmission loss, the better.
  • the lower limit of the sound transmission loss of the sound permeable membrane 2 is, for example, 0.5 dB.
  • the sound transmission loss of the sound-permeable membrane 2 is, for example, not less than 0.5 dB and less than 3 dB.
  • the non-porous film 11 is the same as the non-porous film 11 of the sound-permeable membrane 1 shown in FIG.
  • the air-permeable support material 12 is an air-permeable layer that supports the nonporous film 11 and has an effect of improving the strength as the sound-permeable membrane 2.
  • the breathable support material 12 is typically a woven fabric, non-woven fabric, mesh, net, sponge, foam, or porous body made of metal or resin or a composite material thereof.
  • the resin is, for example, polyolefin, polyester, polyamide, polyimide, aramid, fluororesin, or ultrahigh molecular weight polyethylene.
  • the non-porous film 11 and the breathable support material 12 are laminated and integrated. In the lamination and integration, various types such as thermal lamination, heat welding, and ultrasonic welding are used. You may join both using the joining method of this.
  • the thicknesses of the nonporous film 11 and the air-permeable support material 12 are not particularly limited.
  • the sound-permeable membrane 2 may have two or more layers of the non-porous film 11 and / or the breathable support material 12, and the stacking order of each layer is not particularly limited.
  • the kind of each non-porous film 11 may be the same or different.
  • the type of each of the breathable support materials 12 may be the same or different.
  • the sound-permeable membrane 2 may have any layer other than the nonporous film 11 and the air-permeable support material 12 as long as the effect of the present invention is obtained. From the viewpoint of making the sound transmission loss as small as possible, as shown in FIG. 2, a sound-permeable membrane 2 comprising a single layer of non-porous film 11 and a single layer of air-permeable support material 12 is preferable.
  • the sound-permeable membranes 1 and 2 By appropriately arranging the sound-permeable membranes 1 and 2 at the sound collection port of the microphone or the electronic device equipped with the microphone, foreign substances such as dust and water enter the sound conversion unit of the microphone from the sound collection port. Sound can be transmitted while preventing this. This ensures microphone performance while reducing noise generation and failure.
  • FIG. 3 shows an example of a sound-permeable membrane member for a microphone according to the present invention (hereinafter simply referred to as “sound-permeable membrane member”).
  • the sound-permeable membrane member 3 shown in FIG. 3 has a single-layer sound-permeable membrane 1 composed of a non-porous sheet 11 and a double-sided adhesive that joins the sound-permeable membrane 1 to a member having a sound collection port so as to close the sound collection port.
  • a sheet 13 The double-sided pressure-sensitive adhesive sheet 13 shown in FIG. 3 has a ring shape and is bonded to the peripheral edge of one main surface of the disc-shaped sound-permeable membrane 1.
  • the member having the sound collection port is a member constituting a microphone or an electronic device including the microphone, and is, for example, a housing in which a sound conversion unit in the microphone is accommodated or a housing of the electronic device including the microphone.
  • the double-sided pressure-sensitive adhesive sheet 13 in the sound-permeable membrane member 3 realizes simple joining of the sound-permeable membrane 1 to a member having a sound collection port.
  • By joining the sound-permeable membrane member 3 to a member having a sound collection port so as to close the sound collection port, while preventing entry of foreign matters such as dust and water from the sound collection port to the sound conversion unit of the microphone The sound can be transmitted, and the microphone performance can be ensured while reducing the occurrence of noise and failure.
  • the sound-permeable membrane 1 is reinforced by the double-sided pressure-sensitive adhesive sheet 13. For this reason, handling of the sound-permeable membrane 1 becomes easy.
  • the sound-permeable membrane in the sound-permeable membrane member of the present invention is the above-described sound-permeable membrane of the present invention.
  • the shape of the sound-permeable membrane is not particularly limited, and may be a circular shape shown in FIG. 3 or another shape (for example, an elliptical shape, a rectangular shape).
  • the shape, structure, and material of the double-sided pressure-sensitive adhesive sheet 13 are such that a sound-transmitting film can be stably joined to a member having a sound collection port so as to block the sound collection port, and a sound conversion unit of a microphone is provided via the sound collection port. There is no particular limitation as long as the sound can be transmitted through. As shown in FIG. 3, when the sound-permeable membrane 1 is circular, the double-sided pressure-sensitive adhesive sheet 13 is typically ring-shaped.
  • the double-sided pressure-sensitive adhesive sheet 13 preferably has heat resistance.
  • the double-sided pressure-sensitive adhesive sheet may be disposed on the peripheral portions of both main surfaces of the sound-permeable membrane.
  • two or more members having a sound collection opening and a sound-permeable membrane member are sandwiched between the two or more members by both double-sided adhesive sheets. Can be joined in an open state.
  • FIG. 4 is an example of the microphone of the present invention.
  • the microphone 4 shown in FIG. 4 is a so-called microphone unit having a structure in which a sound conversion unit 14 for converting sound into an electric signal is accommodated in a housing 15.
  • the housing 15 is a rectangular parallelepiped with a hollow inside, and a sound collection port 16 for guiding sound from the outside to the sound conversion unit 14 is provided on one surface of the housing 15.
  • the sound-permeable membrane 1 of the present invention is joined to the housing 15 via the double-sided pressure-sensitive adhesive sheet 13 so as to close the sound collection port 16.
  • the double-sided pressure-sensitive adhesive sheet 13 is bonded to the peripheral portion of one main surface of the sound-permeable membrane 1, and the sound-permeable film 1 and the double-sided pressure-sensitive adhesive sheet 13 are also the sound-permeable membrane member 3 of the present invention.
  • a pair of terminals 17 for outputting an electrical signal converted from sound by the sound conversion unit 14 is provided on the bottom surface of the housing 15.
  • the microphone 4 is disposed on a circuit board, for example, and is used by electrically connecting the terminal 17 and the circuit board.
  • the sound transmission membrane 1 arranged so as to block the sound collection port 16 prevents the entry of foreign matter such as dust and water from the sound collection port 16 to the sound conversion unit 14, and the sound is transmitted to the sound conversion unit 14. Can be transmitted, and the performance of the microphone can be ensured while reducing the occurrence of noise and failure.
  • the structure of the voice conversion unit 14 is not particularly limited.
  • the microphone 4 is a condenser microphone (electret condenser microphone: ECM)
  • the sound conversion unit 14 includes a diaphragm and a back plate (back electrode), and vibration of the diaphragm due to the sound guided to the sound conversion unit 14 is an electrical signal. Converted. The same applies to the silicon microphone.
  • the structure and material of the housing 15 are not particularly limited, and are typically made of resin.
  • the opening in the housing 15 is usually only the sound collection port 16.
  • the housing state of the sound conversion unit 14 in the housing 15, the shape and size of the housing 15, the shape and size of the sound collection port 16, the distance between the sound collection port 16 and the sound conversion unit 14, and the shape of the terminal 17 are not particularly limited. .
  • the sound-permeable membrane 1 is joined to the housing 15 of the microphone 4 via the double-sided adhesive sheet 13, but the joining method of the sound-permeable membrane 1 to the housing 15 is not particularly limited.
  • the sound-permeable membrane 1 may be joined to the housing 15 by a technique such as an adhesive, heat welding, or ultrasonic welding.
  • the sound-permeable membrane 1 is joined to the housing 15 via a double-sided pressure-sensitive adhesive sheet 13 disposed on the peripheral edge of at least one main surface of the membrane. 1 can be reliably joined to the housing 15, and the method is preferable because it is simple.
  • FIG. 5 shows a part of a cross section including the microphone 4 in the mobile phone.
  • a microphone (microphone unit) 4 is accommodated in the housing 18 of the mobile phone 5A shown in FIG.
  • the housing 18 is provided with a sound collection port 19 for guiding sound from the outside to the microphone 4.
  • a sound conversion unit 14 that converts sound into an electric signal is accommodated in the housing 15 of the microphone 4.
  • the housing 15 is a rectangular parallelepiped with a hollow inside, and a sound collection port 16 for guiding the sound introduced from the sound collection port 19 of the housing 18 to the sound conversion unit 14 of the microphone 4 is provided on one surface of the housing 15. It has been.
  • the housing 15 and the housing 18 have a pair of double-sided adhesives in which the sound-permeable membrane 1 of the present invention is adhered to the peripheral portions of both main surfaces of the sound-permeable membrane 1 so as to close the sound collection ports 16 and 19. It is joined via a sheet (not shown).
  • the microphone 4 is electrically connected to the circuit board 20 of the mobile phone 5A by a terminal (not shown) provided on the bottom surface of the housing 15, and an electric signal converted from sound by the sound converting unit 14 is The signal is output to the circuit board 20 via the terminal.
  • the sound-permeable membrane 1 arranged so as to block both the sound collection ports 16 and 19 prevents foreign matter such as dust and water from entering the sound conversion unit 14 of the microphone 4 from the sound collection port.
  • the voice can be transmitted to the voice converter 14. Thereby, the microphone performance can be ensured while reducing the occurrence of noise in the microphone 4 and the failure thereof.
  • the sound-permeable membrane 1 is joined to both the housing 15 and the housing 18 so as to block the sound collection ports 16 and 19 of both the housing 15 and the housing 18.
  • the membrane 1 has at least one selected from the housing 15 and the housing 18 so as to block at least one sound collection port as long as the sound can be transmitted to the sound conversion unit 14 while preventing foreign matter from entering the sound conversion unit 14. What is necessary is just to be joined to the member. However, from the viewpoint of preventing foreign matter from entering the sound conversion unit 14, the sound-permeable membrane 1 is formed on the housing 15 and the housing 18 so as to block the sound collection ports 16 and 19 of both the housing 15 and the housing 18. It is preferable that both are joined.
  • FIG. 6 An example of a mobile phone in which the sound-permeable membrane 1 is joined to the housing 15 is shown in FIG. 6, and an example of a mobile phone in which the sound-permeable membrane 1 is joined to the housing 18 is shown in FIG.
  • the mobile phones 5B and 5C shown in FIGS. 6 and 7 are the same as the mobile phone 5A shown in FIG. 5 except that the member to which the sound-permeable membrane 1 is joined is only one selected from the housing 15 and the housing 18. It has the composition of.
  • the electronic device including the microphone of the present invention may include two or more sound-permeable films of the present invention.
  • An example of such an electronic device is illustrated in FIG.
  • the mobile phone 5D shown in FIG. 8 one sound-permeable membrane 1a is joined to the housing 15 so as to block the sound collection port 16, and the other passage is formed so as to block the sound collection port 19 to the housing 18.
  • the sound membrane 1b is joined.
  • the mobile phone 5D shown in FIG. 8 includes two or more sound-permeable membranes 1 (1a, 1b), and is joined to the housing 15 so that one sound-permeable membrane 1a closes the sound collection port 16, and the other sound-permeable membrane 1D. Except that the membrane 1b is joined to the housing 18 so as to close the sound collection port 19, it has the same configuration as the mobile phone 5A shown in FIG.
  • the accommodation state of the microphone 4 in the mobile phone 5A is not limited to the example shown in FIG.
  • the sound-permeable membrane 1 is joined to the housing 15 and the housing 18 via the double-sided adhesive sheet 13, but the method for joining the sound-permeable membrane is not particularly limited.
  • the sound-permeable membrane 1 may be joined to at least one member selected from the housing 15 and the housing 18 by a technique such as an adhesive, heat welding, and ultrasonic welding.
  • the sound-permeable membrane 1 is bonded to the at least one member via the double-sided pressure-sensitive adhesive sheet 13 disposed on the peripheral edge of at least one main surface of the membrane. It is preferable because the sound-permeable membrane 1 can be reliably joined and the method is simple.
  • the electronic device including the microphone of the present invention is not limited to a mobile phone, and may be a microphone unit externally attached to an electronic device such as a digital camera, a digital video camera, a portable TV, a transceiver, and a voice recorder. .
  • the surface density of the sound-permeable membrane was obtained by punching the membrane with a punch having a diameter of 47 mm, measuring the mass of the punched portion, and converting it to a weight per 1 m 2 .
  • a simulated housing (made of acrylic, outer shape 70 ⁇ 50 ⁇ 15 mm) simulating a mobile phone housing was prepared.
  • the simulated casing 51 includes two portions 51a and 51b, and the portions 51a and 51b can be fitted to each other.
  • the attachment hole 52 serves as a sound collection port for guiding sound to the microphone depending on the arrangement of the microphone.
  • the sound-permeable membrane 1 produced in each example and the sound-permeable membrane 55 produced in each comparative example were punched into a circle having a diameter of 8 mm using a Thomson mold.
  • double-sided tape 13 (Nitto Denko, No. 5620A, thickness 0. 5 mm) punched into a ring shape having an outer diameter of 8 mm and an inner diameter of 4 mm is formed on the peripheral portions of both main surfaces of the punched sound-permeable membrane 1 (or 55). 2 mm), and the sound-permeable membrane 1 (or 55) is applied to the microphone unit 4 (Knowles Si microphone, SPM0208HD5), and the double-sided tape 13 is used to close the sound collection port 16 of the unit 4. And pasted.
  • the microphone unit 4 has a structure in which the sound conversion unit 14 is accommodated in a rectangular parallelepiped housing 15, and a sound collection port 16 is formed on one surface of the housing 15.
  • the microphone unit 4 to which the sound-permeable membrane 1 (or 55) is attached is attached to the microphone attachment hole 52 in the portion 51a of the housing 51.
  • the sound transmitting membrane 1 (or 55) faces the hole 52 and is fixed from the inner surface when fitted with the portion 51b so that the mounting hole 52 is closed.
  • the microphone unit 4 was fixed to the portion 51a by the double-sided tape 13 attached to the surface of the sound-permeable membrane 1 (or 55) opposite to the microphone unit 4 side. At that time, care was taken that the double-sided tape 13 did not cover the attachment hole 52 and that the attachment hole 52 was completely blocked by the sound-permeable membrane 1 (or 55).
  • the conduction port 53 was closed with putty after the microphone cable was led out.
  • a microphone cable and a speaker as a sound source are connected to an acoustic evaluation device (B & K, 3560-B-030), and 50 mm from the microphone mounting hole 52 in the simulated housing 51. Speakers were placed at remote locations.
  • SSR Solid State Response
  • test signal 20 Hz to 20 kHz, sweep up was selected and executed as an evaluation method, and the sound transmission loss of the sound permeable membrane was evaluated.
  • the acoustic evaluation loss was an average value of 300 to 4000 Hz.
  • Example 1 100 parts by weight of PTFE molding powder (manufactured by Daikin Industries, TFEM-12) and 0.2 parts by weight of activated carbon (manufactured by Wako Pure Chemical Industries, Ltd.) from which particles having a particle size of 10 ⁇ m or more had been removed by pulverization were mixed well.
  • the obtained mixture was introduced into a cylindrical mold having a height of 800 mm and an inner diameter of 200 mm, and preformed at a pressure of 280 kg / cm 2 for 1 hour.
  • the obtained PTFE preform was taken out from the mold and then fired at a temperature of 360 ° C. for 48 hours to obtain a cylindrical PTFE block having a height of about 500 mm and an outer shape of about 200 mm.
  • this block is housed in a stainless steel container having a height of 700 mm and an inner diameter of 200 mm, and the inside of the container is replaced with nitrogen, followed by further baking at a temperature of 340 ° C. for 20 hours to obtain a cylindrical PTFE block for cutting. It was.
  • the obtained PTFE block for cutting was cut with a cutting lathe to obtain a PTFE film (skive film) having a thickness of 5 ⁇ m, which was used as a sound-transmitting film.
  • a PTFE film skive film
  • the air permeability of the obtained film was evaluated by the Frazier air permeability specified in JIS L1096, the numerical value was 0, and the film was non-porous, that is, non-porous.
  • Example 2 A PTFE film having a thickness of 7 ⁇ m (Example 2) and 10 ⁇ m (Example 3) was obtained in the same manner as in Example 1 except that the cutting thickness by the cutting lathe was changed to 7 ⁇ m and 10 ⁇ m. did.
  • Example 4 A commercially available PET film (manufactured by Teijin DuPont Film) having a thickness of 5 ⁇ m (Example 4), 15 ⁇ m (Example 5), and 30 ⁇ m (Comparative Example 3) was used as a sound-permeable membrane.
  • Table 1 below shows the evaluation results of surface density and sound transmission loss for the sound-permeable membranes of Examples 1 to 5 and Comparative Examples 1 to 3. *
  • the sound-transmitting membrane for microphones of the present invention is composed of a non-porous film or a multilayer film including a non-porous film, foreign matters such as fine dust that are difficult to block with conventional sound-transmitting membranes are transferred to the sound conversion unit of the microphone. Intrusion can be prevented. In addition, it is possible to prevent water vapor from entering the sound conversion unit, and to suppress the occurrence of condensation in the sound conversion unit as seen with conventional sound-permeable membranes. Furthermore, by setting the surface density and sound transmission loss as the sound-transmitting film to a predetermined value or less, the microphone performance when the sound-transmitting film is disposed is also ensured.
  • the microphone of the present invention provided with such a sound-permeable membrane is less likely to cause noise and failure due to a small amount of foreign matter entering the sound conversion unit, and has high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Telephone Set Structure (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

 マイクロフォンに音声を導く集音口への配置により、集音口からマイクロフォン内部への異物の侵入を防ぎながら音声を透過させるマイクロフォン用通音膜であって、微細な塵芥、水蒸気など、従来の通音膜では遮ることが難しかった異物の侵入を抑制するとともに、マイクロフォン性能が確保される通音膜を提供する。このマイクロフォン用通音膜は、無孔フィルムまたは無孔フィルムを含む多層膜により構成され、面密度が30g/m2以下であり、300~4000Hzの周波数領域における音響透過損失が3dB未満である。

Description

マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器
 本発明は、マイクロフォンの音声変換部(sound transducer)への異物の侵入を防ぎながら、音声を前記音声変換部へ透過させるマイクロフォン用通音膜に関する。本発明は、また、当該通音膜を備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器に関する。
 携帯電話およびデジタルカメラのような、マイクロフォンを備える電子機器の普及が進んでいる。これらの電子機器が備えるマイクロフォンは、一般に、小型のコンデンサマイクロフォンである。当該マイクロフォンは、通常、ダイヤフラムおよびバックプレートを有する音声変換部(集音部)がハウジング内に収容されたマイクロフォンユニットとして、電子機器の筐体内に収容されている。外部からの音声は、筐体に設けられた集音口ならびにハウジングに設けられた集音口の双方を介して、マイクロフォンの音声変換部に導かれる。これら集音口から塵芥などの異物が侵入すると、音声変換部の近傍で当該異物が振動して、雑音が発生する。これに加えて、音声変換部への異物の侵入は、マイクロフォンの故障につながる。このため、筐体およびハウジングから選ばれる少なくとも1つの部材の集音口には、一般に、異物の侵入を防ぎながら音声を透過させる通音膜が配置される。通音膜を配置することによって、風または息の吹き込みによって生じる雑音も抑えられる。
 従来、通気性を有する多孔質シートが通音膜に使用される。特開2008-199225号公報は、ナイロン、ポリエチレンなどの樹脂からなる繊維の織布または不織布が通音膜に使用できることを開示している。特開2007-81881号公報は、ポリテトラフルオロエチレン(PTFE)多孔質膜が通音膜に使用できることを開示している。後者の通音膜では、PTFE多孔質膜の特性に基づき、異物として塵芥だけではなく水の侵入の抑制が期待される。
特開2008-199225号公報 特開2007-81881号公報
 しかし、多孔質シートを通音膜に使用した場合、その通気性が故に、微細な塵芥の侵入を防ぐことが難しい。電子機器におけるスピーカー、ブザーなどの発音部にもマイクロフォン同様の通音膜が使用されるが、発音部では微細な塵芥が問題となりにくいのに対し、マイクロフォンでは、微細な塵芥によって雑音の発生および故障が見られるため、大きな問題となる。このため、微細な塵芥の侵入を防ぐ通音膜が望まれる。
 一方、平均孔径を調整したPTFE多孔質膜を通音膜として使用することによって、水とともに微細な塵芥の多くを遮ることが可能となるが、水蒸気の透過を防ぐことはできず、侵入した水蒸気が音声変換部で結露すると、結果として水の侵入を許すことになってしまう。
 上述したように、マイクロフォンの通音膜には、従来、通気性を有する多孔質シート(多孔質膜)が使用されており、通気性を有さない膜は使用されていない。これは、通音膜が通気性を有することが、マイクロフォン性能の確保に必要不可欠と考えられてきたためである。通気性を有する多孔質シートをマイクロフォンの通音膜に使用することが、常に、当業者の技術常識であり続けてきた。本発明者らは、この技術常識に逆らい、通音膜の通気性がマイクロフォン性能の確保のために本当に必要不可欠であるかを改めて検討した。検討の結果、非常に意外なことに、(1)通音膜の通気性の有無は、当該膜を透過する音の歪みに大きな影響を与える(通音膜が通気性を有さない場合、有する場合に比べて、当該膜を透過する際に生じる音の歪みが大きくなる)が、当該膜を透過する音の音圧にはそれほど影響を与えないこと、(2)スピーカーに使用する通音膜では、通音膜において発生する音の歪みが聞き取る音質に大きく影響を与えるために、通気性が必要不可欠であること、(3)一方でマイクロフォン性能に対しては、音源と通音膜との距離が遠いためか、通音膜における音圧の変化が大きく影響し、音の歪みはそれほど影響しないこと、が判明した。即ち、通気性を有さない膜をスピーカー用通音膜としたときに発生する「音歪みによる音質の劣化」が念頭にあるために、従来、当業者は、マイクロフォン用通音膜においても通気性が必要不可欠であると考え続けてきた。しかし、実際には、マイクロフォン性能を確保するために通音膜の通気性は必ずしも必要ではなく、通気性を有さない無孔フィルムを通音膜に用いた場合にも、一定の条件下でマイクロフォン性能が確保されることがわかった。
 本発明のマイクロフォン用通音膜は、マイクロフォンの集音口への配置により、前記集音口から前記マイクロフォンの音声変換部への異物の侵入を防ぎながら音声を透過させる。本発明のマイクロフォン用通音膜は、無孔フィルムまたは無孔フィルムを含む多層膜により構成され、面密度が30g/m2以下であり、300~4000Hzの周波数領域における音響透過損失が3dB未満である。
 本発明のマイクロフォン用通音膜部材は、マイクロフォンの集音口および/またはマイクロフォンを備える電子機器の筐体に設けられた集音口への配置により、前記集音口から前記マイクロフォンの音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と、前記通音膜を、前記集音口を有する部材に当該集音口を塞ぐように接合させる両面粘着シートと、を備える。前記通音膜は、本発明のマイクロフォン用通音膜である。前記両面粘着シートは、前記通音膜における少なくとも一方の主面の周縁部に配置されている。
 本発明のマイクロフォンは、音声変換部と;前記音声変換部を収容するとともに、音声を前記音声変換部に導く集音口が設けられたハウジングと;前記集音口を塞ぐように前記ハウジングに接合され、前記集音口から前記音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と;を備える。前記通音膜は、本発明のマイクロフォン用通音膜である。
 本発明のマイクロフォンを備える電子機器は、音声変換部と、前記音声変換部を収容するとともに、音声を前記音声変換部に導く集音口が設けられたハウジングとを備えるマイクロフォンと;前記マイクロフォンを収容し、音声を前記マイクロフォンに導く集音口が設けられた筐体と;前記ハウジングおよび前記筐体から選ばれる少なくとも1つの部材の前記集音口を塞ぐように前記少なくとも1つの部材に接合され、前記少なくとも1つの部材の前記集音口から前記音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と;を備える。前記通音膜は、本発明のマイクロフォン用通音膜である。
 本発明のマイクロフォン用通音膜は、無孔フィルムまたは無孔フィルムを含む多層膜からなる。このため、微細な塵芥など、従来の通音膜では遮ることが難しかった異物が、マイクロフォンの音声変換部に侵入することを防ぐことができる。また、音声変換部への水蒸気(発声中には非常に多くの水蒸気が含まれる)の侵入を防ぐことができ、従来の通音膜で見られた、音声変換部における結露の発生を抑制できる。さらに、面密度を30g/m2以下とするとともに、300~4000Hzの周波数領域における音響透過損失を3dB未満とすることによって、当該通音膜を配置したときのマイクロフォン性能も確保される。このような通音膜を備える本発明のマイクロフォンは、音声変換部への異物の侵入による雑音の発生および故障が少なく、信頼性が高い。
本発明のマイクロフォン用通音膜の一例を模式的に示す断面図である。 本発明のマイクロフォン用通音膜の別の一例を模式的に示す断面図である。 本発明のマイクロフォン用通音膜部材の一例を模式的に示す斜視図である。 本発明のマイクロフォンの一例を模式的に示す断面図である。 本発明のマイクロフォンを備える電子機器の一例を模式的に示す断面図である。 本発明のマイクロフォンを備える電子機器の別の一例を模式的に示す断面図である。 本発明のマイクロフォンを備える電子機器のまた別の一例を模式的に示す断面図である。 本発明のマイクロフォンを備える電子機器のさらに別の一例を模式的に示す断面図である。 実施例で用いた、通音膜の音響透過損失の評価方法を説明するための模式図である。
 [マイクロフォン用通音膜]
 図1は、本発明のマイクロフォン用通音膜の一例である。図1に示すマイクロフォン用通音膜(以下、単に「通音膜」)1は、無孔フィルム11である。
 通音膜1の面密度は30g/m2以下である。通音膜1の面密度は、当該膜の重量を当該膜の主面の面積で除した値である。換言すれば、面密度は、通音膜1における、主面の単位面積あたりの重量である。通音膜の面密度は、音が当該膜を透過する際の音圧の変化に大きく影響する。これに加えて、通音膜1の300~4000Hzの周波数領域における音響透過損失は3dB未満である。これらにより、使用時、即ち、マイクロフォンの音声変換部へ音声を導く集音口へ配置したとき、におけるマイクロフォン性能が確保された通音膜となる。音響透過損失は、評価対象物を音が透過する際の音圧の変化(音圧損失)を反映する値である。音響透過損失が3dB未満であれば、人間の聴力ではその変化を感じ取ることができない。300~4000Hzの周波数領域における音響透過損失は、当該周波数領域における音響透過損失の平均値を意味する。300~4000Hzの周波数領域における音響透過損失を、以下、単に「音響透過損失」という。300~4000Hzは、人間の発声周波数に対応する。面密度および音響透過損失に関するこれらの限定は、本発明の通音膜が多孔質シートではなく無孔フィルムまたは無孔フィルムを含む多層膜により構成されるが故に、非常に重要である。
 通音膜1の面密度は、25g/m2以下が好ましく、20g/m2以下がより好ましく、15g/m2以下がさらに好ましい。この場合、通音膜1の音響透過損失がより小さくなる。通音膜1の面密度の下限は特に限定されず、例えば1g/m2であり、当該下限は10g/m2が好ましい。面密度が過度に小さくなると、通音膜1の強度が低下し、異物によるダメージを受けやすくなる。通音膜1の面密度は、当該下限値または好ましい下限値と、上述した上限値または好ましい上限値との間にあることが好ましい。
 通音膜1の音響透過損失の下限は特に限定されない。マイクロフォン性能の観点からは、音響透過損失は小さいほどよい。通音膜1の音響透過損失の下限は、例えば0.5dBである。通音膜1の音響透過損失は、例えば0.5dB以上3dB未満である。
 無孔フィルム11の構造および材質は特に限定されない。無孔フィルム11は、例えば、金属もしくは樹脂またはこれらの複合材料からなる。無孔フィルム11は、典型的には樹脂フィルムである。樹脂の種類は特に限定されず、例えば、ポリテトラフルオロエチレン(PTFE)、ポリエステル(PET)、ポリカーボネート、ポリエチレン(PE)、ポリイミドである。「無孔」とは、フィルムの一方の主面と他方の主面とを連通する細孔が存在しないことを意味する。例えば、一方の主面と他方の主面との間の通気度がゼロであるフィルムを、無孔フィルムと判断することができる。
 無孔フィルム11は、重量と強度とのバランスが良好であることから、PTFEフィルムまたはPETフィルムが好ましく、PTFEフィルムが特に好ましい。
 通音膜1としての面密度が30g/m2以下であり、音響透過損失が3dB未満である限り、無孔フィルム11の厚さは特に限定されない。
 通音膜1は、2層以上の無孔フィルム11から構成されていてもよい。この場合、各々の無孔フィルム11の種類は同一であっても異なっていてもよい。通音膜1における音響透過損失をできるだけ小さくする観点からは、図1に示すように、通音膜1が無孔フィルム11の単層膜であることが好ましい。
 図2は、本発明の通音膜の別の一例である。図2に示す通音膜2は、無孔フィルム11と通気性支持材12との多層膜である。
 通音膜2の面密度(無孔フィルム11および通気性支持材12を含む多層膜としての面密度)は30g/m2以下である。これに加えて、通音膜2の音響透過損失は3dB未満である。これらにより、使用時におけるマイクロフォン性能が確保された通音膜となる。
 通音膜2の面密度(無孔フィルム11および通気性支持材12を含む多層膜としての面密度)は、25g/m2以下が好ましく、20g/m2以下がより好ましく、15g/m2以下がさらに好ましい。この場合、通音膜2の音響透過損失がより小さくなる。通音膜1と同様に、無孔フィルム11を含む多層膜により構成される通音膜2においても面密度の下限は特に限定されず、例えば1g/m2であり、下限は10g/m2が好ましい。通音膜2の面密度は、当該下限値または好ましい下限値と、上述した上限値または好ましい上限値との間にあることが好ましい。
 通音膜2の音響透過損失(無孔フィルム11および通気性支持材12を含む多層膜としての音響透過損失)は3dB未満である。通音膜1と同様に、無孔フィルム11を含む多層膜により構成される通音膜2においても音響透過損失の下限は特に限定されない。マイクロフォン性能の観点からは、音響透過損失は小さいほどよい。通音膜2の音響透過損失の下限は、例えば0.5dBである。通音膜2の音響透過損失は、例えば0.5dB以上3dB未満である。
 無孔フィルム11は、図1に示す通音膜1の無孔フィルム11と同様である。
 通気性支持材12は、無孔フィルム11を支持し、通音膜2としての強度を向上させる作用を有する通気性層である。通気性支持材12は、典型的には、金属もしくは樹脂またはこれらの複合材料からなる織布、不織布、メッシュ、ネット、スポンジ、フォーム、多孔体である。樹脂は、例えば、ポリオレフィン、ポリエステル、ポリアミド、ポリイミド、アラミド、フッ素樹脂、超高分子量ポリエチレンである。図2に示す通音膜2では、無孔フィルム11と通気性支持材12とが積層一体化されているが、積層一体化の際には、熱ラミネート、加熱溶着、超音波溶着などの各種の接合方法を用いて両者を接合してもよい。
 通音膜2としての面密度が30g/m2以下であり、音響透過損失が3dB未満である限り、無孔フィルム11および通気性支持材12の厚さは特に限定されない。
 通音膜2は、2層以上の無孔フィルム11および/または通気性支持材12を有していてもよく、それぞれの層の積層順序は特に限定されない。2層以上の無孔フィルム11を有する場合、各々の無孔フィルム11の種類は同一であっても異なっていてもよい。2層以上の通気性支持材12を有する場合、各々の通気性支持材12の種類は同一であっても異なっていてもよい。
 通音膜2は、本発明の効果が得られる限り、無孔フィルム11および通気性支持材12以外の任意の層を有していてもよい。音響透過損失をできるだけ小さくする観点からは、図2に示すように、1層の無孔フィルム11と、1層の通気性支持材12とからなる通音膜2が好ましい。
 通音膜1,2を、マイクロフォンの集音口またはマイクロフォンを備える電子機器の集音口に適切に配置することによって、当該集音口からマイクロフォンの音声変換部へ塵芥および水などの異物が侵入することを防ぎながら音声を透過させることができる。これにより、雑音の発生および故障が減少しながらマイクロフォン性能が確保される。
 [マイクロフォン用通音膜部材]
 図3は、本発明のマイクロフォン用通音膜部材(以下、単に「通音膜部材」)の一例である。図3に示す通音膜部材3は、無孔シート11からなる単層の通音膜1と、集音口を有する部材に当該集音口を塞ぐように通音膜1を接合させる両面粘着シート13とを備える。図3に示す両面粘着シート13はリング状であり、円板状の通音膜1における一方の主面の周縁部に接着されている。集音口を有する部材は、マイクロフォンまたはマイクロフォンを備える電子機器を構成する部材であり、例えば、マイクロフォンにおける音声変換部が収容されたハウジング、またはマイクロフォンを備える電子機器の筐体である。
 通音膜部材3における両面粘着シート13は、集音口を有する部材への通音膜1の簡便な接合を実現する。通音膜部材3を、集音口を有する部材に当該集音口を塞ぐように接合することによって、当該集音口からマイクロフォンの音声変換部への塵芥および水などの異物の侵入を防ぎながら音声を透過させることができ、雑音の発生および故障を少なくしながら、マイクロフォン性能を確保できる。
 さらに、通音膜部材3では、両面粘着シート13によって通音膜1が補強される。このため、通音膜1の取り扱いが容易となる。
 本発明の通音膜部材における通音膜は、上述した本発明の通音膜である。通音膜の形状は特に限定されず、図3に示す円形状であっても、他の形状(例えば楕円状、矩形状など)であってもよい。
 両面粘着シート13の形状、構造、材質は、集音口を有する部材に、当該集音口を塞ぐように通音膜を安定して接合できるとともに、集音口を介してマイクロフォンの音声変換部に音声を透過できる限り、特に限定されない。図3に示すように、通音膜1が円形状である場合、両面粘着シート13は典型的にはリング状である。
 両面粘着シート13は、耐熱性を有することが好ましい。
 本発明の通音膜部材では、両面粘着シートが通音膜の双方の主面の周縁部に配置されていてもよい。この場合、例えば図5に示すように、双方の両面粘着シートによって、集音口を有する2以上の部材と通音膜部材とを、当該2以上の部材の間に当該通音膜部材を挟んだ状態で接合できる。
 [マイクロフォン]
 図4は、本発明のマイクロフォンの一例である。図4に示すマイクロフォン4は、音声を電気信号に変換する音声変換部14がハウジング15内に収容された構造を有する、いわゆるマイクロフォンユニットである。ハウジング15は内部が空洞の直方体であり、ハウジング15の一つの面には、外部からの音声を音声変換部14に導く集音口16が設けられている。ハウジング15には、集音口16を塞ぐように本発明の通音膜1が、両面粘着シート13を介して接合されている。両面粘着シート13は、通音膜1における一方の主面の周縁部に接着されており、通音膜1および両面粘着シート13は、本発明の通音膜部材3でもある。ハウジング15の底面には、音声変換部14によって音声から変換された電気信号を出力する一対の端子17が設けられている。マイクロフォン4は、例えば、回路基板上に配置され、端子17と回路基板とを電気的に接続して使用される。
 マイクロフォン4では、集音口16を塞ぐように配置された通音膜1によって、集音口16から音声変換部14への塵芥および水などの異物の侵入を防ぎながら、音声変換部14へ音声を透過させることができ、雑音の発生および故障を少なくしながら、マイクロフォン性能を確保できる。
 音声変換部14の構造は特に限定されない。マイクロフォン4がコンデンサマイクロフォン(エレクトレットコンデンサーマイクロフォン:ECM)である場合、音声変換部14はダイヤフラムとバックプレート(背極)とを備え、音声変換部14に導かれた音声によるダイヤフラムの振動が電気信号に変換される。シリコンマイクロフォンについても同様である。
 ハウジング15の構造および材質は特に限定されず、典型的には樹脂からなる。ハウジング15における開口は、通常、集音口16のみである。ハウジング15における音声変換部14の収容の状態、ハウジング15の形状およびサイズ、集音口16の形状およびサイズ、集音口16と音声変換部14との距離ならびに端子17の形状なども特に限定されない。
 図4に示す例では、通音膜1は、両面粘着シート13を介して、マイクロフォン4のハウジング15に接合されているが、ハウジング15への通音膜1の接合方法は特に限定されない。通音膜1は、接着剤、加熱溶着、超音波溶着などの手法によりハウジング15に接合されていてもよい。ただし、図4に示すように、通音膜1が、当該膜における少なくとも一方の主面の周縁部に配置された両面粘着シート13を介してハウジング15に接合されていることが、通音膜1を確実にハウジング15に接合できるとともに、その方法が簡便であることから好ましい。
 [マイクロフォンを備える電子機器]
 本発明のマイクロフォンを備える電子機器である携帯電話の一例を図5に示す。図5では、携帯電話におけるマイクロフォン4を含む断面の一部を示す。
 図5に示す携帯電話5Aの筐体18内には、マイクロフォン(マイクロフォンユニット)4が収容されている。筐体18には、外部からの音声をマイクロフォン4に導く集音口19が設けられている。マイクロフォン4のハウジング15内には、音声を電気信号に変換する音声変換部14が収容されている。ハウジング15は内部が空洞の直方体であり、ハウジング15の一つの面には、筐体18の集音口19から導入された音声を、マイクロフォン4の音声変換部14に導く集音口16が設けられている。ハウジング15および筐体18には、それぞれの集音口16,19を塞ぐように本発明の通音膜1が、通音膜1における双方の主面の周縁部に接着された一対の両面粘着シート(図示せず)を介して接合されている。マイクロフォン4は、ハウジング15の底面に設けられた端子(図示せず)によって、携帯電話5Aの回路基板20と電気的に接続されており、音声変換部14によって音声から変換された電気信号が、端子を介して回路基板20に出力される。
 携帯電話5Aでは、集音口16,19の双方を塞ぐように配置された通音膜1によって、集音口からマイクロフォン4の音声変換部14への塵芥および水などの異物の侵入を防ぎながら、音声変換部14へ音声を透過させることができる。これにより、マイクロフォン4における雑音の発生およびその故障を少なくしながら、マイクロフォン性能を確保できる。
 図5に示す例では、通音膜1は、ハウジング15および筐体18の双方の集音口16,19を塞ぐように、ハウジング15および筐体18の双方に接合されているが、通音膜1は、音声変換部14への異物の侵入を防ぎながら音声変換部14へ音声を透過できる限り、少なくとも1つの集音口を塞ぐように、ハウジング15および筐体18から選ばれる少なくとも1つの部材に接合されていればよい。もっとも、音声変換部14への異物の侵入を防ぐ観点からは、通音膜1は、ハウジング15および筐体18の双方の集音口16,19を塞ぐように、ハウジング15および筐体18の双方に接合されていることが好ましい。
 ハウジング15に通音膜1が接合されている携帯電話の一例を図6に、筐体18に通音膜1が接合されている携帯電話の一例を図7に示す。図6,7に示す携帯電話5B,5Cは、通音膜1が接合されている部材がハウジング15および筐体18から選ばれる一方のみであることを除き、図5に示す携帯電話5Aと同一の構成を有する。
 本発明のマイクロフォンを備える電子機器は、2以上の本発明の通音膜を備えていてもよい。このような電子機器の一例を図8に示す。図8に示す携帯電話5Dは、ハウジング15に、その集音口16を塞ぐように1つの通音膜1aが接合され、筐体18に、その集音口19を塞ぐようにもう一つの通音膜1bが接合されている。図8に示す携帯電話5Dは、2以上の通音膜1(1a,1b)を備えるとともに、一方の通音膜1aが集音口16を塞ぐようにハウジング15に接合され、他方の通音膜1bが集音口19を塞ぐように筐体18に接合されている以外、図5に示す携帯電話5Aと同一の構成を有する。
 携帯電話5Aにおけるマイクロフォン4の収容状態は、図5に示す例に限定されない。
 図5に示す例では、通音膜1は、両面粘着シート13を介して、ハウジング15および筐体18に接合されているが、通音膜の接合方法は特に限定されない。通音膜1は、接着剤、加熱溶着、超音波溶着などの手法により、ハウジング15および筐体18から選ばれる少なくとも1つの部材に接合されていてもよい。ただし、図5に示すように、通音膜1が、当該膜における少なくとも一方の主面の周縁部に配置された両面粘着シート13を介して上記少なくとも1つの部材に接合されていることが、通音膜1を確実に接合できるとともに、その方法が簡便であることから好ましい。
 本発明のマイクロフォンを備える電子機器は、携帯電話に限定されず、例えばデジタルカメラ、デジタルビデオカメラ、ポータブルテレビ、トランシーバー、ならびにボイスレコーダーなどの電子機器に外付けされるマイクロフォンユニットなどであってもよい。
 実施例により、本発明をさらに詳細に説明する。本発明は、以下の実施例に限定されない。
 最初に、本実施例で作製した通音膜の評価方法を示す。
 [面密度]
 通音膜の面密度は、φ47mmのポンチで当該膜を打ち抜いた後、打ち抜いた部分の質量を測定し、1m2あたりの重量に換算して求めた。
 [音響透過損失]
 通音膜の音響透過損失(=「通音膜を配置しないときに測定される音圧」-「通音膜を配置したときに測定される音圧」)は、以下のように評価した。
 最初に、携帯電話の筐体を模した模擬筐体(アクリル製、外形70×50×15mm)を準備した。図9に示すように、この模擬筐体51は2つの部分51a,51bからなり、部分51aおよび51bは互いに嵌め合わせることができる。部分51aには、マイクロフォン取付穴52(φ=2mm)が設けられている。取付穴52は、マイクロフォンの配置により、当該マイクロフォンへ音声を導く集音口となる。部分51a,51bを互いに嵌め合わせることによって、筐体51内に、取付穴52およびマイクケーブルの導通口53以外の開口がない空間が形成される。
 これとは別に、各実施例において作製した通音膜1および各比較例において作製した通音膜55を、トムソン型を用いて直径8mmの円形に打ち抜いた。次に、打ち抜いた通音膜1(または55)の双方の主面の周縁部に、外形8mm、内径4mmのリング状に打ち抜いた両面テープ13(日東電工製、No.5620A、厚さ0.2mm)をそれぞれ貼り付けた後、当該通音膜1(または55)をマイクロフォンユニット4(Knowles製Siマイク、SPM0208HD5)に、当該ユニット4の集音口16を塞ぐように上記両面テープ13を用いて貼り付けた。貼り付ける際には、両面テープ13がユニット4の集音口16にかからないようにするとともに、集音口16が通音膜1(または55)によって完全に塞がれるように注意した。また、外観上、通音膜1(または55)にたるみが生じないように注意した。マイクロフォンユニット4は、音声変換部14が直方体のハウジング15内に収容された構造を有し、ハウジング15の1つの面に集音口16が形成されている。
 次に、図9に示すように、通音膜1(または55)を貼り付けたマイクロフォンユニット4を、筐体51の部分51aにおけるマイクロフォン取付穴52に、通音膜1(または55)が取付穴52に面するとともに通音膜1(または55)が取付穴52を塞ぐように、部分51bと嵌め合わせたときに内側となる面から固定した。マイクロフォンユニット4の部分51aへの固定は、通音膜1(または55)におけるマイクロフォンユニット4側とは反対側の面に貼り付けられた両面テープ13により行った。その際、両面テープ13が取付穴52にかからないようにするとともに、取付穴52が通音膜1(または55)によって完全に塞がれるように注意した。
 次に、マイクロフォンユニット4のマイクケーブル54を、導通口53を通して筐体51の外部に導き出しながら、部分51aと51bとを嵌め合わせ、通音膜の音響透過損失を測定するための模擬筐体51を形成した。導通口53は、マイクケーブルを導き出した後、パテで塞いだ。
 次に、マイクケーブルと、音源となるスピーカー(スター精密製、SCC-16A)とを音響評価装置(B&K製、3560-B-030)に接続し、模擬筐体51におけるマイクロフォン取付穴52から50mm離れた位置にスピーカーを配置した。次に、評価方式としてSSR(Solid State Response)モード(試験信号20Hz~20kHz、sweep up)を選択、実行し、通音膜の音響透過損失を評価した。音響評価損失は、300~4000Hzの平均値とした。なお、音響透過損失を評価するにあたり、予め、通音膜を配置することなくマイクロフォンユニットのみを固定した模擬筐体に対して同様の試験を行い、ブランクの音圧を測定しておいた。マイクロフォンユニットのみを固定した模擬筐体は、通音膜を用いなかった以外は上記と同様に作製した。
 (実施例1)
 PTFEモールディングパウダー(ダイキン工業製、TFEM-12)100重量部と、予め粉砕することで粒径10μm以上の粒子を除去した活性炭(和光純薬工業製)0.2重量部とをよく混合した。次に、得られた混合物を高さ800mm、内径200mmの円筒状の金型に導入し、280kg/cm2の圧力で1時間予備成形した。次に、得られたPTFEの予備成形品を金型から取り出した後、温度360℃で48時間焼成して、高さ約500mm、外形約200mmの円柱状であるPTFEブロックを得た。次に、このブロックを、高さ700mm、内径200mmのステンレス容器に収容し、容器内を窒素で置換した後に、温度340℃で20時間さらに焼成し、円柱状である切削用のPTFEブロックを得た。
 次に、得られた切削用PTFEブロックを切削旋盤により切削して、厚さ5μmのPTFEフィルム(スカイブフィルム)とし、これを通音膜とした。得られたフィルムの通気度をJIS L1096に規定するフラジール通気度により評価したところ、数値が0となり、通気性を有さない、即ち、無孔のフィルムであった。
 (実施例2、3)
 切削旋盤による切削厚さを7μmおよび10μmとした以外は、実施例1と同様にして、厚さ7μm(実施例2)および10μm(実施例3)のPTFEフィルムを得、これを通音膜とした。
 (比較例1、2)
 切削旋盤による切削厚さを15μmおよび25μmとした以外は、実施例1と同様にして、厚さ15μm(比較例1)および25μm(比較例2)のPTFEフィルムを得、これを通音膜とした。
 (実施例4、5、比較例3)
 厚さが5μm(実施例4)、15μm(実施例5)、30μm(比較例3)である市販のPETフィルム(帝人デュポンフィルム製)を通音膜とした。
 実施例1~5および比較例1~3の通音膜に対する面密度および音響透過損失の評価結果を、以下の表1に示す。 
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、面密度が約30g/m2以下において、音響透過損失が3dB未満の無孔の通音膜が得られた。
 本発明のマイクロフォン用通音膜は無孔フィルムまたは無孔フィルムを含む多層膜により構成されるため、微細な塵芥など、従来の通音膜では遮ることが難しかった異物がマイクロフォンの音声変換部へ侵入することを防ぐことができる。また、音声変換部への水蒸気の侵入を防ぐことができ、従来の通音膜で見られた音声変換部における結露の発生を抑制できる。さらに、通音膜としての面密度および音響透過損失を所定の値以下とすることによって、当該通音膜を配置したときのマイクロフォン性能も確保される。このような通音膜を備える本発明のマイクロフォンは、音声変換部への異物の侵入が少ないために雑音の発生および故障が少なく、信頼性が高い。
 

Claims (7)

  1.  マイクロフォンの集音口への配置により、前記集音口から前記マイクロフォンの音声変換部への異物の侵入を防ぎながら音声を透過させるマイクロフォン用通音膜であって、
     無孔フィルム、または無孔フィルムを含む多層膜により構成され、
     面密度が30g/m2以下であり、
     300~4000Hzの周波数領域における音響透過損失が3dB未満であるマイクロフォン用通音膜。
  2.  前記無孔フィルムが、ポリテトラフルオロエチレンフィルムである請求項1に記載のマイクロフォン用通音膜。
  3.  マイクロフォンの集音口および/またはマイクロフォンを備える電子機器の筐体に設けられた集音口への配置により、前記集音口から前記マイクロフォンの音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と、
     前記通音膜を、前記集音口を有する部材に、当該集音口を塞ぐように接合させる両面粘着シートと、を備え、
     前記通音膜が、請求項1に記載のマイクロフォン用通音膜であり、
     前記両面粘着シートが、前記通音膜における少なくとも一方の主面の周縁部に配置されている、マイクロフォン用通音膜部材。
  4.  音声変換部と、
     前記音声変換部を収容するとともに、音声を前記音声変換部に導く集音口が設けられたハウジングと、
     前記集音口を塞ぐように前記ハウジングに接合され、前記集音口から前記音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と、を備え、
     前記通音膜が、請求項1に記載のマイクロフォン用通音膜であるマイクロフォン。
  5.  前記通音膜が、当該膜における少なくとも一方の主面の周縁部に配置された両面粘着シートを介して前記ハウジングに接合されている、請求項4に記載のマイクロフォン。
  6.  音声変換部と、前記音声変換部を収容するとともに、音声を前記音声変換部に導く集音口が設けられたハウジングとを備えるマイクロフォンと、
     前記マイクロフォンを収容し、音声を前記マイクロフォンに導く集音口が設けられた筐体と、
     前記ハウジングおよび前記筐体から選ばれる少なくとも1つの部材の前記集音口を塞ぐように前記少なくとも1つの部材に接合され、前記少なくとも1つの部材の前記集音口から前記音声変換部への異物の侵入を防ぎながら音声を透過させる通音膜と、を備え、
     前記通音膜が、請求項1に記載のマイクロフォン用通音膜である、マイクロフォンを備える電子機器。
  7.  前記通音膜が、当該膜における少なくとも一方の主面の周縁部に配置された両面粘着シートを介して前記少なくとも1つの部材に接合されている、請求項6に記載のマイクロフォンを備える電子機器。
PCT/JP2010/005432 2009-09-04 2010-09-03 マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器 WO2011027572A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020127005627A KR101721278B1 (ko) 2009-09-04 2010-09-03 마이크로폰용 통음막과 그것을 구비하는 마이크로폰용 통음막 부재, 마이크로폰 및 마이크로폰을 구비하는 전자 기기
US13/141,934 US9253297B2 (en) 2009-09-04 2010-09-03 Sound-transmitting membrane for microphone, sound-transmitting membrane member for microphone provided with the membrane, microphone, and electronic device provided with microphone
EP10813523.7A EP2475186B1 (en) 2009-09-04 2010-09-03 Sound-transmitting film for microphone, sound-transmitting film member for microphone provided with the film, microphone, and electronic device provided with microphone
CN2010800080542A CN102318367A (zh) 2009-09-04 2010-09-03 话筒用透声膜以及具备其的话筒用透声膜部件、话筒及具备话筒的电子设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009204826 2009-09-04
JP2009-204826 2009-09-04

Publications (1)

Publication Number Publication Date
WO2011027572A1 true WO2011027572A1 (ja) 2011-03-10

Family

ID=43649126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005432 WO2011027572A1 (ja) 2009-09-04 2010-09-03 マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器

Country Status (6)

Country Link
US (1) US9253297B2 (ja)
EP (1) EP2475186B1 (ja)
JP (1) JP4751476B2 (ja)
KR (1) KR101721278B1 (ja)
CN (3) CN102318367A (ja)
WO (1) WO2011027572A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566183B1 (en) * 2011-09-02 2018-10-31 Saati S.p.A. MEMS microphone with a built-in textile material protecting screen

Families Citing this family (60)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100041839A (ko) * 2007-07-18 2010-04-22 닛토덴코 가부시키가이샤 방수 통음막, 방수 통음막의 제조 방법 및 그것을 사용한 전기 제품
WO2010084912A1 (ja) * 2009-01-21 2010-07-29 日東電工株式会社 防水通音膜とその製造方法ならびにそれを用いた電気製品
JP5927291B2 (ja) * 2012-03-21 2016-06-01 株式会社巴川製紙所 マイクロホン装置、マイクロホンユニット、マイクロホン構造及びそれらを用いた電子機器
US8724841B2 (en) 2012-08-30 2014-05-13 Apple Inc. Microphone with acoustic mesh to protect against sudden acoustic shock
US9510075B2 (en) 2012-12-11 2016-11-29 Amogreentech Co., Ltd. Waterproof sound transmitting sheet, and method for producing same
JP6030155B2 (ja) * 2012-12-11 2016-11-24 アモグリーンテック カンパニー リミテッド 防水通音シートおよびその製造方法
JP6075163B2 (ja) * 2013-03-29 2017-02-08 富士通株式会社 携帯型電子機器及び携帯型電子機器の防水方法
US10491993B2 (en) 2013-08-30 2019-11-26 Nitto Denko Corporation Waterproof sound-transmitting membrane, waterproof sound-transmitting member including same, electronic device, electronic device case, and waterproof sound-transmitting structure
US9529391B2 (en) 2013-09-27 2016-12-27 Apple Inc. Button retention, assembly, and water sealing
WO2015047359A1 (en) 2013-09-29 2015-04-02 Bodhi Technology Ventures Llc Waterproof port for electronic devices
EP3053355B1 (en) 2013-09-30 2019-10-23 Apple Inc. Waterproof speaker module
US9980026B2 (en) 2013-09-30 2018-05-22 Apple Inc. Method for clearing water from acoustic port and membrane
WO2015057693A1 (en) 2013-10-15 2015-04-23 Donaldson Company, Inc. Microporous membrane laminate for acoustic venting
US10092883B2 (en) * 2013-10-30 2018-10-09 Nitto Denko Corporation Waterproof ventilation structure and waterproof ventilation member
US9226076B2 (en) 2014-04-30 2015-12-29 Apple Inc. Evacuation of liquid from acoustic space
US9584886B2 (en) * 2014-07-16 2017-02-28 Htc Corporation Micro-speaker
US9363589B2 (en) 2014-07-31 2016-06-07 Apple Inc. Liquid resistant acoustic device
US9573165B2 (en) 2014-08-22 2017-02-21 Apple Inc. Hydrophobic mesh cover
US9681210B1 (en) 2014-09-02 2017-06-13 Apple Inc. Liquid-tolerant acoustic device configurations
US10154327B2 (en) * 2014-09-08 2018-12-11 Apple Inc. Molded acoustic mesh for electronic devices
EP3209027B1 (en) * 2014-10-16 2019-07-03 Nitto Denko Corporation Sound-passing membrane, sound-passing membrane member having same, microphone, and electronic device
JP2016158222A (ja) * 2015-02-26 2016-09-01 日東電工株式会社 防水通音構造と、それを備える電子機器および電子機器用ケース
US9716934B2 (en) * 2015-04-24 2017-07-25 Apple Inc. Liquid ingress-redirecting acoustic device reservoir
US9811121B2 (en) 2015-06-23 2017-11-07 Apple Inc. Liquid-resistant acoustic device gasket and membrane assemblies
US10110981B2 (en) * 2015-06-30 2018-10-23 W. L. Gore & Associates, Inc. Vibro acoustic cover using expanded PTFE composite
US9627797B2 (en) 2015-07-21 2017-04-18 Apple Inc. Ejection assembly with plug feature
US9780554B2 (en) 2015-07-31 2017-10-03 Apple Inc. Moisture sensors
US10034073B2 (en) * 2015-08-04 2018-07-24 Apple Inc. Device having a composite acoustic membrane
US10149396B2 (en) 2015-09-30 2018-12-04 Apple Inc. Circuit assembly for an electronic device
WO2017090246A1 (ja) 2015-11-24 2017-06-01 日東電工株式会社 防水通音膜、防水通音部材及び電子機器
US10911847B2 (en) 2016-04-06 2021-02-02 W. L. Gore & Associates, Inc. Pressure equalizing construction for nonporous acoustic membrane
US10209123B2 (en) 2016-08-24 2019-02-19 Apple Inc. Liquid detection for an acoustic module
US10784062B2 (en) 2016-09-08 2020-09-22 Apple Inc. Ingress prevention for keyboards
US10596604B2 (en) 2016-09-27 2020-03-24 Texas Instruments Incorporated Methods and apparatus using multistage ultrasonic lens cleaning for improved water removal
US10682675B2 (en) 2016-11-01 2020-06-16 Texas Instruments Incorporated Ultrasonic lens cleaning system with impedance monitoring to detect faults or degradation
US11237387B2 (en) 2016-12-05 2022-02-01 Texas Instruments Incorporated Ultrasonic lens cleaning system with foreign material detection
US10663418B2 (en) 2017-02-03 2020-05-26 Texas Instruments Incorporated Transducer temperature sensing
US10695805B2 (en) 2017-02-03 2020-06-30 Texas Instruments Incorporated Control system for a sensor assembly
US11042026B2 (en) 2017-02-24 2021-06-22 Texas Instruments Incorporated Transducer-induced heating and cleaning
US11420238B2 (en) 2017-02-27 2022-08-23 Texas Instruments Incorporated Transducer-induced heating-facilitated cleaning
US10780467B2 (en) 2017-04-20 2020-09-22 Texas Instruments Incorporated Methods and apparatus for surface wetting control
US11607704B2 (en) 2017-04-20 2023-03-21 Texas Instruments Incorporated Methods and apparatus for electrostatic control of expelled material for lens cleaners
US10908414B2 (en) 2017-05-10 2021-02-02 Texas Instruments Incorporated Lens cleaning via electrowetting
CN107318059A (zh) * 2017-08-02 2017-11-03 苏州孝义家精密金属有限公司 一种超薄防水透声复合模组
US10165694B1 (en) 2017-09-11 2018-12-25 Apple Inc. Concealed barometric vent for an electronic device
KR102028872B1 (ko) 2017-11-09 2019-10-04 닛토덴코 가부시키가이샤 방수 통음 부재와 이것을 구비하는 전자 기기
US10820083B2 (en) * 2018-04-26 2020-10-27 Knowles Electronics, Llc Acoustic assembly having an acoustically permeable membrane
CN113728657A (zh) * 2019-04-26 2021-11-30 日东电工株式会社 防水膜、具有该防水膜的防水构件以及电子设备
US20220312091A1 (en) * 2019-04-26 2022-09-29 Nitto Denko Corporation Conversion element member, and conversion element module and electronic device including conversion element member
US11245975B2 (en) 2019-05-30 2022-02-08 Bose Corporation Techniques for wind noise reduction
US11079875B2 (en) 2019-07-24 2021-08-03 Google Llc Compact home assistant having touch sensitive housing
US11553265B2 (en) 2019-07-24 2023-01-10 Google Llc Compact home assistant having a controlled sound path
US11614716B2 (en) 2019-09-23 2023-03-28 Apple Inc. Pressure-sensing system for a wearable electronic device
WO2021056426A1 (zh) * 2019-09-27 2021-04-01 深圳市大疆创新科技有限公司 声音采集方法、声音采集结构及无人机
US11924607B2 (en) * 2019-12-25 2024-03-05 Goertek Inc. Electronic device and acoustic waterproof structure
CA3167782A1 (en) * 2020-02-12 2021-08-19 BlackBox Biometrics, Inc. Vocal acoustic attenuation
JP7439649B2 (ja) 2020-06-01 2024-02-28 トヨタ紡織株式会社 乗物用ヘッドレスト
US11860585B2 (en) 2020-06-17 2024-01-02 Apple Inc. Wearable electronic device with a compressible air-permeable seal
US11303980B2 (en) 2020-07-27 2022-04-12 Waymo Llc Microphone module
US11638079B1 (en) 2020-07-31 2023-04-25 Waymo Llc External microphone heater

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879865A (ja) * 1994-09-05 1996-03-22 Toshiba Corp 防水膜
JP2007081881A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法
JP2007184952A (ja) * 1996-05-31 2007-07-19 W L Gore & Assoc Inc 音響伝達特性を有する保護カバー組立品
JP2008245332A (ja) * 1999-07-07 2008-10-09 Gore Enterp Holdings Inc 音響保護カバーアセンブリ

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4113999A (en) * 1975-11-20 1978-09-12 Warren A. Sturm Hand held communications microphone
US5491478A (en) * 1994-05-31 1996-02-13 Motorola, Inc. Seal membrane with integral microphone support
US5673330A (en) * 1995-11-08 1997-09-30 Chang; Ching-Lu Microphone transducer with noise reducing member
US6243474B1 (en) * 1996-04-18 2001-06-05 California Institute Of Technology Thin film electret microphone
US6347147B1 (en) * 1998-12-07 2002-02-12 The United States Of America As Represented By The Sceretary Of The Navy High noise suppression microphone
US6164409A (en) * 1998-12-11 2000-12-26 Berger; Ralph Wax guard membrane for hearing aids
JP2004083811A (ja) * 2002-08-28 2004-03-18 Nitto Denko Corp 防水通音膜
US7751579B2 (en) * 2003-06-13 2010-07-06 Etymotic Research, Inc. Acoustically transparent debris barrier for audio transducers
US6932187B2 (en) * 2003-10-14 2005-08-23 Gore Enterprise Holdings, Inc. Protective acoustic cover assembly
JP4188325B2 (ja) * 2005-02-09 2008-11-26 ホシデン株式会社 防塵板内蔵マイクロホン
JP3866748B2 (ja) * 2005-02-22 2007-01-10 リオン株式会社 防水補聴器
CN101356849B (zh) * 2006-07-04 2011-11-23 日本胜利株式会社 麦克风装置
DE102006035007A1 (de) * 2006-07-28 2008-01-31 Siemens Audiologische Technik Gmbh Hörhilfe mit einem Radiofrequenzidentifikations-Empfänger zum Schalten einer Übertragungseigenschaft
JP4924074B2 (ja) 2007-02-09 2012-04-25 日本電気株式会社 電子機器におけるマイクロホンの実装構造及び電子機器
CN201039420Y (zh) * 2007-03-29 2008-03-19 联想(北京)有限公司 防水透气结构以及发声和采声设备
US20090175477A1 (en) * 2007-08-20 2009-07-09 Yamaha Corporation Vibration transducer
JP2009071392A (ja) * 2007-09-11 2009-04-02 Optnics Precision Co Ltd 電子機器用の防水、防湿隔膜
CN101816187B (zh) * 2007-10-09 2013-09-11 日东电工株式会社 使用防水透声膜的透声部件及其制造方法
CN201210743Y (zh) * 2008-06-06 2009-03-18 苏州市江海通讯发展实业有限公司 防水透声机构
EP2404737B1 (en) * 2009-03-06 2018-02-21 National University Corporation Gunma University Method for producing super high molecular weight polyethylene film and super high molecular weight polyethylene film obtainable by said method
US8951456B2 (en) * 2010-08-31 2015-02-10 National University Corporation Gunma University Method for producing ultra-high-molecular-weight polyethylene porous membrane, method for producing ultra-high-molecular-weight polytheylene film, and porous membrane and film obtained by these methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0879865A (ja) * 1994-09-05 1996-03-22 Toshiba Corp 防水膜
JP2007184952A (ja) * 1996-05-31 2007-07-19 W L Gore & Assoc Inc 音響伝達特性を有する保護カバー組立品
JP2008245332A (ja) * 1999-07-07 2008-10-09 Gore Enterp Holdings Inc 音響保護カバーアセンブリ
JP2007081881A (ja) * 2005-09-14 2007-03-29 Nitto Denko Corp 通音膜、通音膜付き電子部品及びその電子部品を実装した回路基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2566183B1 (en) * 2011-09-02 2018-10-31 Saati S.p.A. MEMS microphone with a built-in textile material protecting screen

Also Published As

Publication number Publication date
KR20120060836A (ko) 2012-06-12
JP4751476B2 (ja) 2011-08-17
EP2475186A1 (en) 2012-07-11
EP2475186A4 (en) 2014-11-05
CN102318367A (zh) 2012-01-11
KR101721278B1 (ko) 2017-03-29
CN105307064A (zh) 2016-02-03
CN106954106A (zh) 2017-07-14
JP2011078089A (ja) 2011-04-14
US9253297B2 (en) 2016-02-02
US20110255728A1 (en) 2011-10-20
EP2475186B1 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
JP4751476B2 (ja) マイクロフォン用通音膜とそれを備えるマイクロフォン用通音膜部材、マイクロフォンならびにマイクロフォンを備える電子機器
JP5513057B2 (ja) 音響保護カバーアセンブリ
JP6472182B2 (ja) 防水部材及びその防水部材を備えた電子機器
WO2016059804A1 (ja) 通音膜とそれを備える通音膜部材、ならびにマイクロフォンおよび電子機器
JP6567158B2 (ja) 防水部材及び電子機器
KR102028872B1 (ko) 방수 통음 부재와 이것을 구비하는 전자 기기
JP2013526172A (ja) 音響部品を形成するための繊維積層構造
JP6724231B2 (ja) 防水部材及び電子機器
JP2003053872A (ja) 通気性通音膜
TW201422001A (zh) 透音膜、及具備透音膜之電子機器
JP6853400B2 (ja) 防水膜とこれを備える防水部材及び電子機器
JP5155927B2 (ja) 防水通音膜とそれを用いた防水通音部材および電気製品
WO2020218590A1 (ja) 変換素子部材とこれを備える変換素子モジュール及び電子機器

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080008054.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10813523

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13141934

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010813523

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127005627

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE