WO2021056426A1 - 声音采集方法、声音采集结构及无人机 - Google Patents

声音采集方法、声音采集结构及无人机 Download PDF

Info

Publication number
WO2021056426A1
WO2021056426A1 PCT/CN2019/108585 CN2019108585W WO2021056426A1 WO 2021056426 A1 WO2021056426 A1 WO 2021056426A1 CN 2019108585 W CN2019108585 W CN 2019108585W WO 2021056426 A1 WO2021056426 A1 WO 2021056426A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
damping member
pickup channel
channel
pressure level
Prior art date
Application number
PCT/CN2019/108585
Other languages
English (en)
French (fr)
Inventor
林浩
桑晓庆
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980032114.5A priority Critical patent/CN112205001A/zh
Priority to PCT/CN2019/108585 priority patent/WO2021056426A1/zh
Publication of WO2021056426A1 publication Critical patent/WO2021056426A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones

Definitions

  • This application relates to the field of sound processing technology, in particular to a sound collection method, a sound collection structure, and an unmanned aerial vehicle.
  • drone equipment has gradually entered people’s lives, and drones have more functions.
  • most drones currently in use have camera and video functions. Can obtain and store real-time images in the. Only drones used in rare special scenarios have recording capabilities.
  • the recording function of the existing UAV still has certain shortcomings. For example, when recording, the recording effect is poor, the recorded sound has broken sound, and the distortion is serious.
  • this application is proposed in order to provide a sound collection method, sound collection structure and unmanned aerial vehicle that solve the above problems.
  • a sound collection method including:
  • a sound collection structure including:
  • a sound pickup channel the sound pickup channel has two ends, and one end is a sound inlet;
  • the sound pickup component is arranged at the other end of the sound pickup channel
  • the first damping member is arranged in the sound pickup channel and is used to apply a first resistance to the sound waves propagating in the sound pickup channel to filter out signals whose frequencies exceed the frequency threshold.
  • a sound collection method including:
  • a sound collection structure including:
  • a sound pickup channel the sound pickup channel has two ends, and one end is a sound inlet;
  • the sound pickup component is arranged at the other end of the sound pickup channel
  • the third damping member is arranged in the sound pickup channel and is used to apply a third resistance to the sound waves propagating in the sound pickup channel to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • an unmanned aerial vehicle including: an unmanned aerial vehicle body and a sound collection structure provided on the unmanned aerial vehicle body; wherein,
  • the sound collection structure includes:
  • a sound pickup channel the sound pickup channel has two ends, and one end is a sound inlet;
  • the sound pickup component is arranged at the other end of the sound pickup channel
  • the first damping member is arranged in the sound pickup channel and is used to apply a first resistance to the sound waves propagating in the sound pickup channel to filter out signals whose frequencies exceed the frequency threshold.
  • an unmanned aerial vehicle including: an unmanned aerial vehicle body and a sound collection structure provided on the unmanned aerial vehicle body; wherein,
  • the sound collection structure includes:
  • a sound pickup channel the sound pickup channel has two ends, and one end is a sound inlet;
  • the sound pickup component is arranged at the other end of the sound pickup channel
  • the third damping member is arranged in the sound pickup channel and is used to apply a third resistance to the sound waves propagating in the sound pickup channel to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the technical solutions provided by the embodiments of the present application aim at the current situation of sound breaking in the recording in the prior art.
  • the first resistance is used to filter out the frequency exceeding the frequency in the sound waves.
  • the threshold signal solves the problems of broken sound and poor reproduction when collecting sound.
  • the applied first resistance can effectively suppress the impact of high-frequency warping in the sound wave, prevent the sound of the collected sound from breaking, and improve the degree of sound reproduction, so as to achieve a more realistic collection of the sound required by the user.
  • the technical solutions provided by the embodiments of this application have a wide range of applications, and can be applied to drones and ride-through machines with recording functions, equipment with recording/recording functions, and equipment with wind-noise environments and large noises generated by itself.
  • the solution of this application can be used for recording operations.
  • FIG. 1 is a schematic flowchart of a sound collection method provided by an embodiment of this application
  • FIG. 2 is a schematic structural diagram of a sound collection structure provided by an embodiment of the application.
  • FIG. 3 is a schematic flowchart of another sound collection method provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of another sound collection structure provided by an embodiment of the application.
  • first and second are only used to facilitate the description of different components, and cannot be understood as indicating or implying the order relationship, relative importance, or implicitly indicating what is indicated.
  • the recording function of the drone still has certain defects. For example, when recording, the recording effect is poor, the recorded sound has broken sound, and the distortion is serious.
  • the inventor thinks of solving the technical solutions provided by this application, and at the same time thinks of some application scenarios and technical problems that can be solved in the future. for example:
  • Scenario 1 It is used for real-time competition or a crossing machine for amateurs. Record the acceleration and deceleration sound of the power system of the aircraft during the flight at that time, and feel the coordination of the aircraft picture and sound, similar to the feeling of a racing car.
  • the recording function can be completed by the aircraft's own recording equipment or the installation of audio and video equipment integrated outside the aircraft.
  • wind noise will affect the actual sound of the power system that needs to be recorded. For example, when the rider is flying, the general speed can reach 50 to 60Km/H, and the highest can reach 200Km/H. High flying speed will bring high-frequency wind noise, which brings great difficulties to recording the sound of the power system.
  • the AOP Acoustic Overload Point, which refers to the maximum recording sound pressure of the MIC
  • the AOP Acoustic Overload Point, which refers to the maximum recording sound pressure of the MIC
  • the distortion may have reached 5% at 115-125, and the recording quality has begun to deteriorate. For example, when recording the sound of flying through the plane, the wind noise during the flying through the plane will cause the sound to be broken in the recorded sound, which will result in poor recording effect.
  • the microphone needs to be built into the fuselage, or built into the recording and recording equipment that can be hung on the fuselage. Because of Helmholtz resonance, the reproduction of the microphone recording will be poor, especially for recording aircraft. The sound of the power system.
  • the technical solution provided by this application can be applied to the traversing machine to reduce the sound breakage during recording and improve the reproduction degree of the recording.
  • Scenario 2 In the delivery/receiving robots, there may be flying robots to replace the current manual receiving, and the flying robots will not be restricted to the ground receiving/delivery. There may be buildings in the air to directly communicate with users, humans and machines The dialogue completes the communication, which involves recording requirements. The flying robot may not have a high flying speed like a traversing machine. However, if the flying robot communicates directly with the user in the middle of a building, the recording will also be affected by wind noise and propeller noise, which will give a high degree of reproduction at this time. Recording the user's voice causes difficulties, which in turn leads to the failure of human-computer communication.
  • the technical solution provided by this application can be applied to the flying robot to reduce the sound breakage during recording and improve the reproduction degree of the recording.
  • this application provides a sound collection method, sound collection structure, and unmanned aerial vehicle, which can effectively suppress the impact of high-frequency lift in sound waves, prevent the collected sound from breaking, and improve the degree of sound reproduction. In order to achieve a more realistic collection of the sounds required by the user.
  • FIG. 1 is a schematic flowchart of a sound collection method provided by an embodiment of the application, as shown in FIG. 1.
  • a sound collection method including:
  • Step S101 applying a first resistance to the sound wave in the sound pickup channel
  • the first resistance can be applied in a variety of ways.
  • One achievable way is to provide a first damping member 30 in the sound pickup channel.
  • the first damping member 30 can be seen in FIG. 2.
  • the first damping member 30 has a plurality of microporous channels, and the first resistance is applied to the sound wave through the microporous channels.
  • Another achievable way is that a noise reduction unit including a noise reduction microphone and a noise reduction chip is arranged in the sound pickup channel, and the first resistance is applied to the sound wave through the noise reduction unit.
  • Step S102 Under the action of the first resistance, filter out the signal whose frequency exceeds the frequency threshold in the sound wave;
  • the first resistance can buffer the sound waves entering the sound pickup channel, prevent the sound waves from being directly collected, and effectively suppress wind noise.
  • the first resistance can filter out signals whose frequencies in the sound waves exceed the frequency threshold, so as to suppress the occurrence of high-frequency warping in the sound waves.
  • Step S103 Collect the sound wave after filtering.
  • the sound waves filtered in step S102 the sound waves that are not affected by the first resistance, such as low-frequency sound waves, remain.
  • the sound that needs to be recorded such as the sound of the drone's power system and the user's voice, is the low-frequency sound wave, so the collected sound wave is the sound that needs to be recorded.
  • the technical solutions provided by the embodiments of the present application aim at the current situation of sound breaking in the recording in the prior art, by applying a first resistance to the sound waves in the sound pickup channel, and filtering out the frequency of the sound waves exceeding the frequency threshold through the effect of the first resistance.
  • the signal solves the problems of broken sound and poor reproduction when collecting sound.
  • the applied first resistance can effectively suppress the impact of high-frequency warping in the sound wave, prevent the sound of the collected sound from breaking, and improve the degree of sound reproduction, so as to achieve a more realistic collection of the sound required by the user.
  • step S101 and step S102 can be implemented by the first damping member 30.
  • a first damping member 30 is provided in the sound pickup channel, and the first damping member 30 is provided with a plurality of microporous channels, and the first resistance is applied to the sound wave through the microporous channels.
  • the filtering out signals with a frequency exceeding a frequency threshold in the sound wave includes: applying the first resistance to the sound wave through the plurality of microporous channels, so as to filter out the frequency in the sound wave exceeding the frequency threshold. signal of.
  • the microporous channel has an inhibitory effect on high-frequency sound waves. Low-frequency sound waves can pass through the microporous channel.
  • the sound waves pass through the first damping member 30, they are filtered by the microporous channel, and the high-frequency sound waves are filtered out from the sound waves. Passing through the microporous channel is collected by the subsequent device. At the same time, the microporous channel also suppresses wind noise, effectively reducing the influence of Helmholtz resonance on sound collection, so as to improve the restoration of sound collection.
  • the frequency threshold can be adjusted according to different filtering requirements, and the first resistance applied is adjusted according to different frequency thresholds, which is not specifically limited in the embodiment of the present application.
  • the arrangement of the microporous channels includes but is not limited to the following methods.
  • One achievable manner is that a plurality of the microporous channels are independent of each other and are uniformly or irregularly arranged on the first damping member 30.
  • each microporous channel can individually apply the first resistance, that is, each microporous channel can independently filter out, and combine multiple microporous channels to work together to pick up the sound
  • the signal whose frequency exceeds the frequency threshold contained in the channel is filtered out.
  • the first damping member 30 includes but is not limited to being made of foam or sponge material, and the pore diameter of the microporous channel may be micrometer or nanometer.
  • the pore size of the microporous channel can be adjusted according to different filtration requirements, which is not specifically limited here.
  • microporous channels are partially connected and arranged on the first damping member 30 evenly or irregularly.
  • the partially independent microporous channels all play a filtering role alone, and the partially connected microporous channels work together to filter.
  • the connected and unconnected microporous channels work together to reduce The signal contained in the pickup channel whose frequency exceeds the frequency threshold is filtered out.
  • the sound transmission medium is filtered.
  • the sound transmission medium in the sound pickup channel is filtered by a dustproof cloth 60.
  • the dustproof cloth 60 can be seen in FIG. 2.
  • the sound inlet 10 can be covered by the dustproof cloth 60 to prevent solid particles outside the sound pickup channel from entering the sound pickup channel, and the first damping member 30 that affects the sound pickup channel exerts a first resistance on the sound wave.
  • the sound wave When collecting sound, if the sound wave contains high sound pressure level sound, it will also cause the collected sound to have broken sound, which will bring great difficulties to recording sound without broken sound and high reduction.
  • the general speed can reach 50 to 60Km/H, and the highest can reach 200Km/H.
  • High flying speed will bring high sound pressure level wind noise, and the propeller of the power system will also have high sound pressure. Level of noise. Therefore, when collecting the sound in this situation, it will cause the sound to be broken, and then the recording effect will be poor.
  • this application proposes embodiment 2 to prevent signals whose sound pressure level exceeds the sound pressure level threshold. Affect the recorded sound and prevent recording distortion and sound breakage.
  • step S103 that is, before the collection of the filtered sound waves, the method further includes:
  • Step S1021 applying a second resistance to the sound waves in the sound pickup channel
  • the second resistance can be applied in a variety of ways.
  • One achievable way is to provide a second damping member 40 in the sound pickup channel.
  • the second damping member 40 can be seen in FIG. 2.
  • the second damping member 40 may be made of a denser and gas-impermeable material, and the second damping member 40 can apply a second resistance.
  • Another achievable way is that a noise reduction unit including a noise reduction microphone and a noise reduction chip is arranged in the sound pickup channel, and the second resistance is formed by the noise reduction unit.
  • Step S1022 Under the action of the second resistance, filter out signals in the sound wave whose sound pressure level exceeds the sound pressure level threshold.
  • the role of the second resistance on the one hand can play a secondary buffering effect on the sound waves entering the sound pickup channel, preventing the sound waves from being directly collected, and effectively suppressing wind noise.
  • the sound pressure level of the sound wave entering the sound pickup channel exceeds the sound pressure level threshold to form acoustic loss, that is, acoustic resistance is generated. After the sound wave is lost, the sound pressure level in the sound wave exceeds the sound pressure. Level threshold signal, and allow low sound pressure level to pass through.
  • the sound waves filtered in step S1022 the sound waves that are not affected by the second resistance, that is, the sound waves with low sound pressure level, are retained, and the sound that needs to be recorded, such as the sound of the drone power system and the user's voice, is low.
  • the sound wave of the sound pressure level therefore, the collected sound wave is the sound that needs to be recorded.
  • the first resistance formed can effectively suppress the influence of high-frequency warping in the sound wave
  • the second resistance formed can effectively suppress the influence of the high sound pressure level signal in the sound wave, and prevent the sound of the collected sound from breaking. Improve the degree of sound reproduction to achieve a more realistic collection of the sounds required by the user.
  • step S1021 and step S1022 can be implemented by the second damping member 40.
  • a second damping member 40 is arranged in the sound pickup channel, and the density of the second damping member 40 is greater than or equal to the density threshold.
  • the density of the second damping member 40 is greater than the density of the first damping member 30.
  • the density of the second damping member 40 makes the second damping member 40 have high density and airtight characteristics.
  • the density threshold can be adjusted according to different filtering requirements, which is not specifically limited in the embodiment of the present application.
  • filtering out the signal in the sound wave whose sound pressure level exceeds the sound pressure level threshold includes: applying the second resistance to the sound wave through the second damping member 40
  • the second resistance is to filter out the signal whose sound pressure level exceeds the sound pressure level threshold in the sound wave.
  • the high-density, air-tight second damping member 40 can play a secondary buffering effect on the sound waves entering the pickup channel, effectively suppressing wind noise, and at the same time, the sound pressure level of the sound waves entering the pickup channel exceeds the sound pressure level.
  • the threshold signal forms the acoustic loss. After the sound wave generates the loss, the signal whose sound pressure level exceeds the sound pressure level threshold in the sound wave is filtered out. At the same time, the characteristics of the second damping member 40 allow sound with a low sound pressure level to pass through.
  • the second damping member 40 includes, but is not limited to, polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate (PC )production.
  • PET polyethylene terephthalate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • embodiment 3 is proposed.
  • the embodiment of this application provides a sound collection structure, and the sound collection structure in the embodiment of this application can implement embodiment 1 and implementation.
  • FIG. 2 is a schematic structural diagram of a sound collection structure provided by an embodiment of the application, as shown in FIG. 2.
  • the embodiment of the present application provides a sound collection structure, including: a sound pickup channel, a sound pickup assembly 20 and a first damping member 30.
  • the sound pickup channel has two ends, and one end is the sound inlet 10.
  • the sound pickup assembly 20 is arranged at the other end of the sound pickup channel.
  • the first damping member 30 is disposed in the sound pickup channel, and is used to apply a first resistance to the sound wave propagating in the sound pickup channel, so as to filter out signals whose frequency exceeds the frequency threshold.
  • the first damping member 30 can be implemented in multiple ways.
  • one achievable way is that the first damping member 30 has a plurality of microporous channels, and the first damping member 30 is used to apply the first sound wave to the One resistance.
  • Another achievable way is to provide a noise reduction unit including a noise reduction microphone and a noise reduction chip in the sound pickup channel.
  • the noise reduction unit is the first damping member 30, and the noise reduction unit provides the first resistance to the sound wave. .
  • the first damping member 30 can buffer the sound waves entering the sound pickup channel, prevent the sound waves from being directly collected, and effectively suppress wind noise.
  • the first damping member 30 can filter out signals with a frequency exceeding the frequency threshold in the sound wave, so as to suppress the occurrence of high-frequency warping in the sound wave.
  • the sound waves filtered by the first damping member 30 retain sound waves that are not affected by the first resistance, such as low-frequency sound waves.
  • the sound that needs to be recorded such as the sound of the unmanned aerial vehicle power system and the user's voice, is the low-frequency sound wave. Therefore, the sound wave collected by the sound pickup component 20 is the sound that needs to be recorded.
  • the solution described in Embodiment 1 can be implemented.
  • the first damping member 30 in the sound pickup channel can be used to The first resistance is applied to the sound wave propagating in the sound pickup channel, and the first resistance is used to filter out the signal whose frequency exceeds the frequency threshold in the sound wave, which solves the problems of sound breaking and poor reproduction when collecting sound.
  • the formed first resistance can effectively suppress the impact of high-frequency warping in the sound wave, prevent the sound of the collected sound from being broken, and improve the degree of sound reproduction, so as to achieve a more realistic collection of the sound required by the user.
  • the first damping member 30 with a plurality of microporous channels is taken as an example to describe the first damping member 30 in detail below. It should be noted that the technical solutions described below or above do not improperly limit the implementation of the first damping member 30 by the noise reduction unit. It can be understood that the first damping member 30 can be referred to for the arrangement of the first damping member 30 through the noise reduction unit.
  • the first damping member 30 is provided with a plurality of microporous channels, and the part that is electrically connected to the noise reduction unit can be electrically connected to the host of the device to which it is applied, which will not be described in detail here.
  • the first damping member 30 is provided with a plurality of microporous channels, and when sound waves pass through the microporous channels, the plurality of microporous channels filter out the pickup.
  • the frequency contained in the audio channel exceeds the frequency threshold.
  • the microporous channel has an inhibitory effect on high-frequency sound waves. Low-frequency sound waves can pass through the microporous channel. Therefore, when the sound waves pass through the first damping member 30, they are filtered by the microporous channel, and the high-frequency sound waves are filtered out from the sound waves. Passing through the microporous channel is collected by the subsequent device. At the same time, the microporous channel also suppresses wind noise, effectively reducing the influence of Helmholtz resonance on sound collection, so as to improve the restoration of sound collection.
  • the frequency threshold may be adjusted according to different filtering requirements, and the first resistance may be adjusted according to different frequency thresholds, which is not specifically limited in the embodiment of the present application.
  • the arrangement of the microporous channels includes but is not limited to the following methods.
  • One achievable manner is that a plurality of the microporous channels are independent of each other and are uniformly or irregularly arranged on the first damping member 30.
  • each microporous channel can individually apply the first resistance, that is, each microporous channel can independently filter out, and combine multiple microporous channels to work together to pick up the sound
  • the signal whose frequency exceeds the frequency threshold contained in the channel is filtered out.
  • the first damping member 30 includes but is not limited to being made of foam or sponge material, and the pore diameter of the microporous channel may be micrometer or nanometer.
  • the pore size of the microporous channel can be adjusted according to different filtration requirements, which is not specifically limited here.
  • microporous channels are partially connected and arranged on the first damping member 30 evenly or irregularly.
  • some of the independent microporous channels can filter out alone, and the partially connected microporous channels work together to filter, and combine the connected and unconnected microporous channels Together, the signals contained in the pickup channel whose frequencies exceed the frequency threshold are filtered out.
  • the sound collection structure further includes a second damping member 40.
  • the second damping member 40 is disposed in the sound pickup channel, and is used to apply a second resistance to the sound wave propagating in the sound pickup channel, so as to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the implementation of the second damping member 40 includes but is not limited to the following existing methods.
  • the second damping member 40 is made of a denser, air-impermeable material, and has a higher density. It means that the density of the second damping member 40 is greater than the density threshold.
  • the density of the second damping member 40 is greater than the density of the first damping member 30.
  • a noise reduction unit including a noise reduction microphone and a noise reduction chip is arranged in the sound pickup channel, and the second resistance is formed by the noise reduction unit.
  • the noise reduction unit described here can be the same as the noise reduction unit described above as the first damping member 30, that is, a noise reduction unit can simultaneously filter out signals whose frequencies exceed the frequency threshold and filter out sound pressure levels that exceed sound pressure. Level threshold signal.
  • the noise reduction unit described here may be two different from the noise reduction unit used as the first damping member 30 in the above. One of the noise reduction unit filters out signals whose frequency exceeds the frequency threshold, and the other noise reduction unit Filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the second damping member 40 is located between the first damping member 30 and the sound pickup assembly 20.
  • the second damping member 40 can play a secondary buffering effect on the sound waves entering the sound pickup channel, preventing the sound waves from being directly collected, and effectively suppressing wind noise.
  • the acoustic loss is formed for the signal whose sound pressure level exceeds the sound pressure level threshold in the sound wave entering the sound pickup channel, that is, acoustic resistance is generated, for example, the acoustic loss is 10dB. After the sound wave is lost, the signal whose sound pressure level exceeds the sound pressure level threshold in the sound wave is filtered out, and the sound of low sound pressure level is allowed to pass.
  • the sound pressure level threshold may be adjusted according to different filtering requirements, and the second resistance may be adjusted according to different sound pressure level thresholds, which is not specifically limited in the embodiment of the present application.
  • the sound waves filtered by the second damping member 40 the sound waves that are not affected by the second resistance, such as low sound pressure level sound waves, are retained, and the sounds that need to be recorded, such as the sound of the drone's power system and the user's voice It is a sound wave with a low sound pressure level, so the collected sound wave is the sound that needs to be recorded.
  • the method described in Embodiment 2 can be performed, and the first resistance applied by the first damping member 30 can be effective
  • the second resistance applied by the second damping member 40 can effectively suppress the influence of the high sound pressure level signal in the sound wave, prevent the sound of the collected sound from being broken, and improve the sound
  • the degree of reduction is to achieve a more realistic collection of the sounds required by the user.
  • the second damping member 40 in order to better filter the effects of high sound pressure levels in sound waves by the second damping member 40, is made of a dense and air-tight material. Specifically, the density of the second damping member 40 is greater than or equal to the density threshold. For example, the density of the second damping member 40 is greater than the density of the first damping member 30.
  • the density of the second damping member 40 makes the second damping member 40 have high density and airtight characteristics, which can play a secondary buffering effect on the sound waves entering the sound pickup channel, and is effective
  • the wind noise is suppressed, and at the same time, acoustic loss is formed for the signal whose sound pressure level exceeds the sound pressure level threshold in the sound wave entering the sound pickup channel. After the sound wave is lost, the signal whose sound pressure level exceeds the sound pressure level threshold is filtered out.
  • the characteristics of the second damping member 40 allow sound with a low sound pressure level to pass through.
  • the density threshold can be adjusted according to different filtering requirements, which is not specifically limited in the embodiment of the present application.
  • the second damping member 40 includes, but is not limited to, polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate (PC )production.
  • PET polyethylene terephthalate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • the sound collection structure includes a housing 50 having the sound inlet hole 10.
  • the sound pickup assembly 20 is connected to the housing 50, and the sound pickup channel is provided between the sound inlet 10 and the sound pickup assembly 20.
  • the outer shell 50 includes but is not limited to a fuselage shell, a device shell or a structural shell.
  • the sound collection structure can be built into the fuselage of the drone during application.
  • the fuselage shell is The housing 50 is a sound collection structure, and the housing 50 is provided with at least one sound inlet hole 10.
  • the sound collection structure can also be built into the sound recording and video recording device that can be hung on the drone.
  • the device shell of the sound recording and recording device is the outer shell 50 of the sound collection structure.
  • the sound collection structure may be an independent device, and the sound pickup assembly 20, the damping member and other components are all arranged in the housing 50, and the housing 50 is provided with at least one sound inlet 10.
  • a sound pickup channel is formed between the sound inlet 10 and the sound pickup assembly 20, and at the same time, the sound pickup assembly 20 will also include components in the sound pickup channel
  • the first damping member 30 and the second damping member 40 are squeezed and fixed.
  • the sound wave enters the sound pickup channel from the sound inlet 10, is filtered by the first damping member 30 and the second damping member 40, and is collected by the sound pickup assembly 20.
  • the connection manners of the sound pickup assembly 20 and the housing 50 include but are not limited to bonding, fastener connection, snap connection, etc. to realize the connection separately, or to connect in a combined manner, for example, after connecting by screws , It is fixed by glue.
  • the sound pickup assembly 20 includes a microphone 21 and a circuit board 22.
  • the microphone 21 is electrically connected to the circuit board 22.
  • the circuit board 22 is connected to the housing 50, the circuit board 22 has a first sound through hole 23, and the first sound through hole 23 is in communication with the sound pickup channel.
  • the microphone 21 is electrically connected to external equipment through the circuit board 22.
  • the external equipment includes, but is not limited to, a host of a drone, a host of audio and video equipment, or other devices with audio processing functions.
  • the circuit board 22 has a first through-sound hole 23, after the sound wave is filtered out, it passes through the first through-sound hole 23 to be collected by the microphone 21.
  • the sound collection structure further includes a dust-proof cloth 60, which is connected to the housing 50 and covers the incoming sound ⁇ 10 ⁇ Hole 10.
  • a dust-proof cloth 60 which is connected to the housing 50 and covers the incoming sound ⁇ 10 ⁇ Hole 10.
  • One function of the dustproof cloth 60 is to block external particles from entering the sound pickup channel. If the particles enter the sound pickup channel, resonance may occur with the airflow, making the collected sound contain noise, and solid particles will also The filtering effect of the first damping member 30 and the second damping member 40 is affected.
  • Another function of the dust cloth 60 is to suppress wind noise.
  • a possible implementation of the dustproof cloth 60 is a grid cloth.
  • the dust-proof cloth 60 and the housing 50 can be connected in multiple ways.
  • the dust-proof cloth 60 and the housing 50 are connected by an adhesive layer.
  • the dustproof cloth 60 is located between the housing 50 and the sound pickup assembly 20. When the sound pickup assembly 20 is connected to the housing 50, the dustproof cloth 60 is squeezed and fixed.
  • the sound collection structure further includes a sealing gasket 70.
  • the sealing gasket 70 is arranged in the sound pickup channel and seals the sound pickup channel circumferentially.
  • the sealing gasket 70 is provided with a second sound through hole 71, the second sound through hole 71 is in communication with the sound pickup channel, and the first damping member 30 is connected to the sealing gasket 70 and covers the The second through the sound hole 71.
  • the gasket 70 can be made of materials such as silica gel, rubber, etc., and has certain elasticity. Under the squeeze of the sound pickup assembly 20, the gasket 70 will be deformed, thereby sealing the circumferential position of the sound pickup channel.
  • the position of the sealing pad 70 can be set in accordance with the position of the first damping member 30, for example, the sealing pad 70 is located between the dustproof cloth 60 and the first damping member 30; or the sealing pad 70 It is located between the first damping member 30 and the sound pickup assembly 20.
  • the gasket 70 can also be arranged in other positions, as long as the sound pickup channel is circumferentially sealed by the gasket 70, which is not specifically limited in the embodiment of the present application.
  • the second sound through hole 71 of the sealing gasket 70 may be used as a sound pickup channel, and one end of the second sound through hole 71 is the sound inlet hole 10.
  • the sound pickup assembly 20 is arranged at the other end of the second sound through hole 71.
  • the first damping member 30 is disposed in the second acoustic hole 71.
  • the second damping member 40 is also arranged in the second sound through hole 71.
  • connection manner between the first damping member 30 and the sealing gasket 70 includes a variety of ways.
  • One achievable manner is that the first damping member 30 is located in the second sound through hole. 71 external.
  • the first damping member 30 may be a sheet-like structure, which is connected to the end surface of the sealing gasket 70 and covers the second sound through hole 71.
  • the first damping member 30 of the sheet-like structure is bonded to the end surface of the sealing gasket 70 or is squeezed and fixed to the housing 50 by the sound pickup assembly 20.
  • the first damping member 30 is filled in the second sound through hole 71.
  • the first damping member 30 may be a columnar structure, extends into the second sound through hole 71, is in interference connection with the second sound through hole 71, and covers the second sound through hole 71.
  • the first damping member 30 includes a damping cap 31 and a damping column 32 provided on the damping cap 31.
  • the damping column 32 extends into and fills the second sound through hole 71.
  • the damping cap 31 is located outside the second sound through hole 71 and is connected to the end surface of the sealing gasket 70.
  • the foregoing implementation of the first damping member 30 is only an exemplary embodiment, and the embodiments of the present application are not limited to the foregoing implementation. Those skilled in the art can design other similar implementations that can implement corresponding functions according to actual conditions. The structure of is not limited here, and will not repeat them one by one.
  • Embodiment 4 is proposed.
  • the only difference from Embodiment 1 and Embodiment 2 is that the technical solution provided in Embodiment 4 only filters out signals whose sound pressure level exceeds the sound pressure level threshold in the sound wave.
  • the specific plan is as follows:
  • FIG. 3 is a schematic flowchart of another sound collection method provided by an embodiment of the application, as shown in FIG. 3.
  • the embodiment of the present application provides a sound collection method, including:
  • Step S201 applying a third resistance to the sound waves in the sound pickup channel
  • the third resistance can be applied in a variety of ways.
  • One achievable way is to provide a third damping member 80 in the sound pickup channel.
  • the third damping member 80 can be seen in FIG. 4.
  • the third damping member 80 is made of a denser and airtight material, and the third resistance is applied by the third damping member 80.
  • Another achievable way is that a noise reduction unit including a noise reduction microphone and a noise reduction chip is arranged in the sound pickup channel, and the second resistance is formed by the noise reduction unit.
  • the implementation of the third damping member 80 refer to the implementation of the second damping member 40 in Embodiment 2 and Embodiment 3.
  • Step S202 under the action of the third resistance, filter out signals in the sound wave whose sound pressure level exceeds the sound pressure level threshold;
  • the third resistance can buffer the sound waves entering the sound pickup channel, prevent the sound waves from being directly collected, and effectively suppress wind noise.
  • the sound pressure level of the sound wave entering the sound pickup channel exceeds the sound pressure level threshold to form acoustic loss, that is, acoustic resistance is generated. After the sound wave is lost, the sound pressure level in the sound wave exceeds the sound pressure. Level threshold signal, and allow low sound pressure level to pass through.
  • Step S203 Collect the sound wave after the filtering process.
  • the sound waves filtered in step S202 the sound waves that are not affected by the third resistance, that is, the sound waves of low sound pressure level, are retained, and the sound that needs to be recorded, such as the sound of the drone power system, the user's voice, is low.
  • the sound wave of the sound pressure level therefore, the collected sound wave is the sound that needs to be recorded.
  • the third damping member 80 includes, but is not limited to, polyethylene terephthalate (PET), acrylonitrile-butadiene-styrene copolymer (ABS), polycarbonate (PC )production.
  • PET polyethylene terephthalate
  • ABS acrylonitrile-butadiene-styrene copolymer
  • PC polycarbonate
  • Embodiment 5 is proposed.
  • the difference between the fifth embodiment and the third embodiment is that a third damping member 80 is provided in the sound pickup channel.
  • FIG. 4 is a schematic structural diagram of another sound collection structure provided by an embodiment of the application, as shown in FIG. 4.
  • the embodiment of this application provides a sound collection structure, and the sound collection structure in the embodiment of this application can perform the method described in Embodiment 4. details as follows:
  • the embodiment of the present application provides a sound collection structure, including: a sound pickup channel, a sound pickup assembly 20 and a third damping member 80.
  • the sound pickup channel has two ends, and one end is the sound inlet 10.
  • the sound pickup assembly 20 is arranged at the other end of the sound pickup channel.
  • the third damping member 80 is arranged in the sound pickup channel and is used to apply a third resistance to the sound waves propagating in the sound pickup channel to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the implementation of the third damping member 80 includes, but is not limited to, the following existing methods.
  • One achievable method is that the third damping member 80 is made of a denser, gas-impermeable material, and It means that the density of the third damping member 80 is greater than the density threshold.
  • the density of the third damping member 80 is greater than the density of the first damping member 30.
  • a noise reduction unit including a noise reduction microphone and a noise reduction chip is arranged in the sound pickup channel, and the third resistance is formed by the noise reduction unit.
  • the noise reduction unit described here can be the same as the noise reduction unit described above as the first damping member 30, that is, a noise reduction unit can simultaneously filter out signals whose frequencies exceed the frequency threshold and filter out sound pressure levels that exceed sound pressure. Level threshold signal.
  • the noise reduction unit described here may be two different from the noise reduction unit used as the first damping member 30 in the above. One of the noise reduction unit filters out signals whose frequency exceeds the frequency threshold, and the other noise reduction unit Filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the third damping member 80 please refer to the implementation of the second damping member 40 in Embodiment 2 and Embodiment 3, which will not be repeated here.
  • the third resistance applied by the third damping member 80 can effectively suppress the influence of the high sound pressure level signal in the sound wave, prevent the collected sound from being broken, and improve the degree of sound reproduction.
  • the sound waves filtered by the third damping element 80 retain the sound waves that are not affected by the third resistance, such as low sound pressure level sound waves, and the sounds that need to be recorded, such as the sound of the drone power system and the user's voice. It is a sound wave with a low sound pressure level, so the collected sound wave is the sound that needs to be recorded.
  • the embodiment of the present application also provides a drone, including: the drone body and the The sound collection structure on the drone body.
  • the sound collection structure can be realized by the sound collection structure described in the third embodiment.
  • the unmanned aerial vehicle includes: an unmanned aerial vehicle body and a sound collection structure arranged on the unmanned aerial vehicle body.
  • the sound collection structure includes: a sound pickup channel, a sound pickup assembly 20 and a first damper 30.
  • the sound pickup channel has two ends, and one end is a sound inlet 10.
  • the sound pickup assembly 20 is arranged at the other end of the sound pickup channel.
  • the first damping member 30 is disposed in the sound pickup channel, and is used to apply a first resistance to the sound wave propagating in the sound pickup channel, so as to filter out signals whose frequency exceeds the frequency threshold.
  • the sound collection structure further includes a second damping member 40.
  • the second damping member 40 is arranged in the sound pickup channel and is used to apply a second resistance to the sound waves propagating in the sound pickup channel to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the sound collection structure can be built into the fuselage of the drone, and the fuselage shell is the outer shell 50 of the sound collection structure.
  • the sound collection structure can also be built into a sound recording and video recording device that can be hung on the drone, and the equipment shell of the sound recording and recording device is the outer shell 50 of the sound collection structure.
  • an embodiment of the present application also provides an unmanned aerial vehicle, including: an unmanned aerial vehicle body and a sound collection structure provided on the unmanned aerial vehicle body .
  • the sound collection structure can be realized by the sound collection structure described in the above embodiment 5.
  • the unmanned aerial vehicle includes: an unmanned aerial vehicle body and a sound collection structure arranged on the unmanned aerial vehicle body.
  • the sound collection structure includes: a sound pickup channel, a sound pickup assembly 20 and a third damping member 80.
  • the sound pickup channel has two ends, and one end is a sound inlet 10.
  • the sound pickup component 20 is arranged at the other end of the sound pickup channel.
  • the third damping member 80 is arranged in the sound pickup channel and is used to apply a third resistance to the sound waves propagating in the sound pickup channel to filter out signals whose sound pressure level exceeds the sound pressure level threshold.
  • the sound collection structure can be built into the fuselage of the drone, and the fuselage shell is the outer shell 50 of the sound collection structure.
  • the sound collection structure can also be built into a sound recording and video recording device that can be hung on the drone, and the equipment shell of the sound recording and recording device is the outer shell 50 of the sound collection structure.
  • Embodiment 7 The technical solution of the sound collection structure recorded in Embodiment 7 and the technical solution described in Embodiment 4 can be referred to each other for reference, and will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Details Of Audible-Bandwidth Transducers (AREA)

Abstract

声音采集方法、声音采集结构及无人机,其中,声音采集方法包括:对拾音通道内的声波施加第一阻力(步骤S101);在第一阻力的作用下,滤除声波中频率超出频率阈值的信号(步骤S102);以及采集经滤除处理后的声波(步骤S103)。这种方法有效抑制了声波中的高频翘起的影响,防止采集的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。

Description

声音采集方法、声音采集结构及无人机 技术领域
本申请涉及声音处理技术领域,尤其涉及声音采集方法、声音采集结构及无人机。
背景技术
随着科技的发展,无人机设备已经逐渐走进人们的生活当中,并且无人机的功能也原来越多,例如,目前所使用的大部分无人机具有拍照及录像功能,在飞行过程中能够获取和存储实时的画面。只有在极少的特殊场景下所使用的无人机具有录音功能。
但是,现有的无人机的录音功能还具有一定的缺陷。例如,在进行录音时,录音效果较差,所录的声音中存在破音的情况,失真情况严重。
申请内容
鉴于上述问题,提出了本申请,以便提供一种解决上述问题的声音采集方法、声音采集结构及无人机。
在本申请的一个实施例中,提供了一种声音采集方法,包括:
对拾音通道内的声波施加第一阻力;
在所述第一阻力的作用下,滤除所述声波中频率超出频率阈值的信号;以及
采集经滤除处理后的所述声波。
在本申请的一个实施例中,还提供了一种声音采集结构,包括:
拾音通道,所述拾音通道具有两端,一端为进声孔;
拾音组件,设置在所述拾音通道的另一端;
第一阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
在本申请的一个实施例中,还提供了一种声音采集方法,包括:
对拾音通道内的声波施加第三阻力;
在所述第三阻力的作用下,滤除所述声波中声压级超出声压级阈值的信号;以及
采集经滤除处理后的所述声波。
在本申请的一个实施例中,还提供了一种声音采集结构,包括:
拾音通道,所述拾音通道具有两端,一端为进声孔;
拾音组件,设置在所述拾音通道的另一端;
第三阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
在本申请的一个实施例中,还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构;其中,
所述声音采集结构,包括:
拾音通道,所述拾音通道具有两端,一端为进声孔;
拾音组件,设置在所述拾音通道的另一端;
第一阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
在本申请的一个实施例中,还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构;其中,
所述声音采集结构,包括:
拾音通道,所述拾音通道具有两端,一端为进声孔;
拾音组件,设置在所述拾音通道的另一端;
第三阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
本申请实施例提供的技术方案,针对现有技术中录音存在的破音情况的现状,通过对拾音通道内的声波施加第一阻力,通过第一阻力的作用,滤除声波中频率超出频率阈值的信号,解决了采集声音时,出现破音及还原度较差等问题。通过施加的第一阻力可有效抑制声波中的高频翘起的影响,防止 采集的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。本申请实施例提供的技术方案应用范围广,可应用于带录音功能的无人机及穿越机、具备录音/录像功能的设备以及存在风噪环境、由自身产生的较大噪声的设备,均可采用本申请的方案进行录音操作。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请一实施例提供的声音采集方法的流程示意图;
图2为本申请一实施例提供的声音采集结构的结构示意图;
图3为本申请一实施例提供的另一声音采集方法的流程示意图;
图4为本申请一实施例提供的另一声音采集结构的结构示意图。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,在本申请的描述中,术语“第一”、“第二”仅用于方便描述不同的部件,而不能理解为指示或暗示顺序关系、相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
现有技术中,无人机的录音功能还具有一定的缺陷。例如,在进行录音 时,录音效果较差,所录的声音中存在破音的情况,失真情况严重。针对现有技术中的问题,发明人想到通过本申请提供的技术方案进行解决,同时想到未来本申请的一些应用场景以及能够解决的技术问题。举例来说:
场景1:用于实时竞赛或者业余爱好者的穿越机,记录下来当时飞机在飞行过程中动力系统的加减速声音,感受飞机画面与声音相配合,类似于赛车的感受。这种场景下,录音功能可通过飞机本身自带录音设备或者安装集成在飞机外部的录音录像设备来完成。但是,穿越机在飞行过程中,由于飞行速度较快,会有很大的风噪影响。在录音时,风噪会影响实际需要录制的动力系统的声音。例如,穿越机在飞行时,一般时速均可达到50到60Km/H,最高可以达到200Km/H,高飞行时速会带来高频率的风噪,给录制动力系统声音带来很大的困难。
微型机电麦克风的AOP(Acoustic Overload Point,指MIC的最大录音声压)在120-130dBSPL之间,但实际上可能在115-125时失真就已经达到5%,录音质量已经开始变差。如录制穿越机分飞行时的声音时,穿越机飞行时的风噪会导致录到的声音内具有破音情况,进而导致录音效果较差。
另外,麦克风需要内置机身内部,或者内置于可悬挂在机身上面的录音录像设备里面,因为亥姆霍兹共振的原因,就会导致麦克风录音的还原度较差,尤其是对于录制飞机段动力系统的声音。
基于场景1中的情况,可在穿越机上应用本申请提供的技术方案,以减少录音时出现破音的情况,并提高录音的还原度。
场景2:送货/收货机器人中,可能会存在飞行机器人来替代现在人工收货,并且飞行机器人不会受限于地面收货/送货,可能存在楼宇半空中直接与用户交流,人机对话完成沟通,这其中就涉及到录音需求。飞行机器人可能不会向穿越机那样具有很高的飞行速度,但是,飞行机器人若在楼宇半空中直接与用户交流时,录音还会受到风噪及桨噪的影响,此时会给高还原度录制用户声音造成困难,进而导致人机交流失败。
基于场景2中的情况,可在飞行机器人上应用本申请提供的技术方案,以减少录音时出现破音的情况,并提高录音的还原度。
针对上述问题,本申请提供一种声音采集方法、声音采集结构及无人机,可有效抑制声波中的高频翘起的影响,防止采集的声音出现破音的情况,提 高声音的还原度,以实现较真实的采集用户所需的声音。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
实施例1
图1为本申请一实施例提供的声音采集方法的流程示意图,如图1中所示。
在本申请的一个实施例中,提供了一种声音采集方法,包括:
步骤S101:对拾音通道内的声波施加第一阻力;
本申请实施例中可通过多种方式施加第一阻力,一种可实现的方式是,通过在拾音通道内设置第一阻尼件30,第一阻尼件30可参见图2中所示。第一阻尼件30上具有多个微孔通道,通过微孔通道对声波施加第一阻力。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,通过降噪单元对声波施加第一阻力。
步骤S102:在所述第一阻力的作用下,滤除所述声波中频率超出频率阈值的信号;
第一阻力的作用一方面可对进入拾音通道的声波起到缓冲的作用,防止声波直接被采集,可有效抑制风噪。另一方面通过第一阻力可滤除声波中频率超出频率阈值的信号,以抑制声波中出现高频翘起的情况。
步骤S103:采集经滤除处理后的所述声波。
经过步骤S102滤除后的声波中,保留了不受第一阻力作用的声波,如低频声波。而需要录制的声音,如无人机动力系统的声音、用户的声音即为低频声波,因此,采集到的声波即为需要录制的声音。
本申请实施例提供的技术方案,针对现有技术中录音存在的破音情况的现状,通过对拾音通道内的声波施加第一阻力,通过第一阻力的作用滤除声波中频率超出频率阈值的信号,解决了采集声音时存在破音及还原度较差等问题。通过施加的第一阻力可有效抑制声波中的高频翘起的影响,防止采集 的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。
本申请的一种可实现的实施例中,对于步骤S101及步骤S102可通过第一阻尼件30实现。具体地,拾音通道内设置有第一阻尼件30,第一阻尼件30上具有多个微孔通道,通过微孔通道对声波施加第一阻力。在步骤S102中,所述滤除所述声波中频率超出频率阈值的信号,包括:通过所述多个微孔通道对声波施加所述第一阻力,以滤除所述声波中频率超出频率阈值的信号。微孔通道对高频声波具有抑制作用,低频声波可通过微孔通道,因此,声波在经过第一阻尼件30时,经过微孔通道的过滤,高频声波从声波中滤除掉,低频声波穿过微孔通道被后续装置进行采集。同时,微孔通道还对风噪起到抑制作用,有效降低由于亥姆霍兹共振对声音采集造成的影响,以提高声音采集的还原度。
本申请实施例中,频率阈值可根据不同的滤除需求进行调整,根据不同的频率阈值调整施加的第一阻力,本申请实施例中不做具体限定。
微孔通道的设置方式包括但不限于以下方式,一种可实现的方式是,多个所述微孔通道相互独立,并均匀或无规则布置在所述第一阻尼件30上。声波穿过所述微孔通道时,每个微孔通道均能单独施加第一阻力,即每个微孔通道均能单独起到滤除作用,并结合多个微孔通道共同作用将拾音通道内包含的频率超出频率阈值的信号滤除。其中,第一阻尼件30包括但不限于为通过泡棉或者海绵材料制成,微孔通道的孔径可为微米级、纳米级。当然,微孔通道的孔径可根据不同的滤除需求进行调整,此处不做具体限定。
另一种可实现的微孔通道的设置方式是,多个所述微孔通道中部分连通,并均匀或无规则布置在所述第一阻尼件30上。声波穿过所述微孔通道时,部分独立的微孔通道均单独起到滤除作用,部分连通的多个微孔通道共同起到滤波作用,连通的和不连通的微孔通道共同作用将拾音通道内包含的频率超出频率阈值的信号滤除。
当然,上述的微孔通道的设置方式及第一阻尼件30的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
进一步地,为防止外部固体物质进入拾音通道内,对采集声音造成影响,在所述声波经所述进声孔10进入所述拾音通道之前,还包括:进入所述拾音通道内的传音介质进行过滤。本申请实施例中,通过防尘布60对拾音通道内的传音介质进行过滤,防尘布60可参见图2所示。通过防尘布60可对进声孔10进行封盖,防止拾音通道外的固体颗粒进入拾音通道内,影响拾音通道的第一阻尼件30对声波施加第一阻力。
实施例2
在采集声音时,声波中若包含有高声压级的声音时,也会导致采集到的的声音具有破音的情况出现,给无破音且高还原度录制声音带来很大的困难,例如,以穿越机为例,一般时速均可达到50到60Km/H,最高可以达到200Km/H,高飞行时速会带来高声压级的风噪,且动力系统螺旋桨也会有高声压级的噪声。因此,在采集此种情况下的声音时,会导致破音,进而导致录音效果较差。
基于上述问题,在实施例1的基础上,为进一步对声波中声压级超出声压级阈值的信号进行滤除,本申请提出实施例2,以防止声压级超出声压级阈值的信号影响录制的声音,防止录音失真以及破音的情况出现。
具体地,在步骤S103之前,即所述采集经滤除处理后的所述声波之前,还包括:
步骤S1021:对所述拾音通道内的声波施加第二阻力;
本申请实施例中可通过多种方式施加第二阻力,一种可实现的方式是,通过在拾音通道内设置第二阻尼件40,第二阻尼件40可参见图2中所示。第二阻尼件40可通过密度较大、不透气的材料制成,通过第二阻尼件40施加第二阻力。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,通过降噪单元形成第二阻力。
步骤S1022:在所述第二阻力的作用下,滤除所述声波中声压级超出声压级阈值的信号。
第二阻力的作用一方面可对进入拾音通道的声波起到二次缓冲的作用,防止声波直接被采集,可有效抑制风噪。另一方面是对进入拾音通道内的声波中声压级超出声压级阈值的信号形成声学损耗,即产生声阻,声波产生损 耗之后,以滤除所述声波中声压级超出声压级阈值的信号,且允许低声压级的声音通过。
经过步骤S1022滤除后的声波中,保留了不受第二阻力作用的声波,即低声压级的声波,而需要录制的声音,如无人机动力系统的声音、用户的声音即为低声压级的声波,因此,采集到的声波即为需要录制的声音。
通过形成的第一阻力可有效抑制声波中的高频翘起的影响,通过形成的第二阻力可有效抑制声波中的高声压级的信号的影响,防止采集的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。
本申请的一种可实现的实施例中,对于步骤S1021及步骤S1022可通过第二阻尼件40实现。具体地,拾音通道内设置有第二阻尼件40,所述第二阻尼件40的密度大于或等于密度阈值。例如,所述第二阻尼件40的密度大于第一阻尼件30的密度。所述第二阻尼件40的密度使得第二阻尼件40具有高密度及不透气的特性。当然,密度阈值可根据不同的滤除需求进行调整,本申请实施例中,不做具体限定。
通过第二阻尼件40施加的第二阻力,在步骤S1022中,滤除所述声波中声压级超出声压级阈值的信号,包括:通过所述第二阻尼件40对声波施加所述第二阻力,以滤除所述声波中声压级超出声压级阈值的信号。通过高密度、不透气的第二阻尼件40可对进入拾音通道的声波起到二次缓冲的作用,有效抑制风噪,同时对进入拾音通道内的声波中声压级超出声压级阈值的信号形成声学损耗,声波产生损耗之后,滤除所述声波中声压级超出声压级阈值的信号。同时,第二阻尼件40的特性允许低声压级的声音通过。
本申请实施例中,第二阻尼件40包括但不限于为通过聚对苯二甲酸乙二醇酯(PET)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)制成。当然,上述的第二阻尼件40的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
实施例3
在实施例1和实施例2的基础上,提出实施例3,实施例3中,本申请实施例提供了一种声音采集结构,本申请实施例中的声音采集结构可执行实 施例1及实施例2所述的方法。具体如下:
图2为本申请一实施例提供的声音采集结构的结构示意图,参见图2所示。
本申请实施例提供了一种声音采集结构,包括:拾音通道、拾音组件20以及第一阻尼件30。
其中,所述拾音通道具有两端,一端为进声孔10。拾音组件20设置在所述拾音通道的另一端。第一阻尼件30设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
在本申请实施例中,第一阻尼件30的实现方式包括多种,例如,一种可实现的方式是,第一阻尼件30上具有多个微孔通道,通过微孔通道对声波施加第一阻力。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,降噪单元即为第一阻尼件30,通过降噪单元为声波提供第一阻力。
通过第一阻尼件30一方面可对进入拾音通道的声波起到缓冲的作用,防止声波直接被采集,可有效抑制风噪。另一方面通过第一阻尼件30可滤除声波中频率超出频率阈值的信号,以抑制声波中出现高频翘起的情况。
经过第一阻尼件30滤除后的声波中,保留了不受第一阻力作用的声波,如低频声波。而需要录制的声音,如无人机动力系统的声音、用户的声音即为低频声波,因此,通过拾音组件20采集到的声波即为需要录制的声音。
根据上述本申请实施例提供的技术方案,可执行实施例1中所述的方案,针对现有技术中录音存在的破音情况的现状,通过在拾音通道内的第一阻尼件30,可对在所述拾音通道内传播的声波施加第一阻力,通过第一阻力滤除声波中频率超出频率阈值的信号,解决了采集声音时存在破音及还原度较差等问题。通过形成的第一阻力可有效抑制声波中的高频翘起的影响,防止采集的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。
下面以具有多个微孔通道的第一阻尼件30为例对第一阻尼件30进行详细介绍。需要说明的是,以下或以上所述的技术方案,并不对第一阻尼件30通过降噪单元实现时构成不当限定,可以理解的是,第一阻尼件30通过降噪单元的设置方式可以参考第一阻尼件30具有多个微孔通道的设置方式,降噪 单元电气连接的部分可以通过与其应用的设备的主机进行电气连接,此处不做具体赘述。
在本申请的一种可实现的实施例中,所述第一阻尼件30上具有多个微孔通道,声波穿过所述微孔通道时,多个所述微孔通道滤除所述拾音通道内包含的频率超出频率阈值的信号。微孔通道对高频声波具有抑制作用,低频声波可通过微孔通道,因此,声波在经过第一阻尼件30时,经过微孔通道的过滤,高频声波从声波中滤除掉,低频声波穿过微孔通道被后续装置进行采集。同时,微孔通道还对风噪起到抑制作用,有效降低由于亥姆霍兹共振对声音采集造成的影响,以提高声音采集的还原度。
本申请实施例中,频率阈值可根据不同的滤除需求进行调整,根据不同的频率阈值调整第一阻力,本申请实施例中不做具体限定。
微孔通道的设置方式包括但不限于以下方式,一种可实现的方式是,多个所述微孔通道相互独立,并均匀或无规则布置在所述第一阻尼件30上。声波穿过所述微孔通道时,每个微孔通道均能单独施加第一阻力,即每个微孔通道均能单独起到滤除作用,并结合多个微孔通道共同作用将拾音通道内包含的频率超出频率阈值的信号滤除。其中,第一阻尼件30包括但不限于为通过泡棉或者海绵材料制成,微孔通道的孔径可为微米级、纳米级。当然,微孔通道的孔径可根据不同的滤除需求进行调整,此处不做具体限定。
另一种可实现的微孔通道的设置方式是,多个所述微孔通道中部分连通,并均匀或无规则布置在所述第一阻尼件30上。声波穿过所述微孔通道时,部分独立的微孔通道均能单独起到滤除作用,部分连通的多个微孔通道共同起到滤波作用,并结合连通的和不连通的微孔通道共同作用将拾音通道内包含的频率超出频率阈值的信号滤除。
当然,上述的微孔通道的设置方式及第一阻尼件30的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
进一步地,继续参见图2,为进一步对声波中声压级超出声压级阈值的信号进行滤除,以防止声压级超出声压级阈值的信号影响录制的声音,防止录音失真以及破音的情况出现。本申请实施例中,声音采集结构还包括第二 阻尼件40。所述第二阻尼件40设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第二阻力,以滤除声压级超出声压级阈值的信号。
本申请实施例中,第二阻尼件40的实现方式包括但不限现有以下方式,一种可实现的方式是,第二阻尼件40为密度较大、不透气的材料制成,密度较大指的是第二阻尼件40的密度大于密度阈值,例如,第一阻尼件30具有微孔通道时,第二阻尼件40的密度大于第一阻尼件30的密度。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,通过降噪单元形成第二阻力。此处所述的降噪单元可以与上述中作为第一阻尼件30的降噪单元为同一个,即一个降噪单元同时实现滤除频率超出频率阈值的信号及滤除声压级超出声压级阈值的信号。或者,此处所述的降噪单元可以与上述中作为第一阻尼件30的降噪单元为不同的两个,其中一个降噪单元实现滤除频率超出频率阈值的信号,另一个降噪单元滤除声压级超出声压级阈值的信号。
进一步地,所述第二阻尼件40位于所述第一阻尼件30及所述拾音组件20之间。通过第二阻尼件40一方面可对进入拾音通道的声波起到二次缓冲的作用,防止声波直接被采集,可有效抑制风噪。另一方面是对进入拾音通道内的声波中声压级超出声压级阈值的信号形成声学损耗,即产生声阻,例如,声学损耗为10dB。声波产生损耗之后,以滤除所述声波中声压级超出声压级阈值的信号,且允许低声压级的声音通过。
本申请实施例中,声压级阈值可根据不同的滤除需求进行调整,根据不同的声压级阈值调整第二阻力,本申请实施例中不做具体限定。
经过第二阻尼件40滤除后的声波中,保留了不受第二阻力作用的声波,如低声压级的声波,而需要录制的声音,如无人机动力系统的声音、用户的声音即为低声压级的声波,因此,采集到的声波即为需要录制的声音。
在本申请实例中,声音采集结构中同时设置有第一阻尼件30和第二阻尼件40时,可执行实施例2中所述的方法,通过第一阻尼件30施加的第一阻力可有效抑制声波中的高频翘起的影响,通过第二阻尼件40施加的第二阻力可有效抑制声波中的高声压级的信号的影响,防止采集的声音出现破音的情况,提高声音的还原度,以实现较真实的采集用户所需的声音。
本申请的一种可实现的实施例中,为更好地实现第二阻尼件40滤除声波 中的高声压级的影响,第二阻尼件40采用密度大且不透气的材料制成。具体地,所述第二阻尼件40的密度大于或等于密度阈值。例如,所述第二阻尼件40的密度大于第一阻尼件30的密度。相比与第一阻尼件30,所述第二阻尼件40的密度使得第二阻尼件40具有高密度及不透气的特性,可对进入拾音通道的声波起到二次缓冲的作用,有效抑制风噪,同时对进入拾音通道内的声波中声压级超出声压级阈值的信号形成声学损耗,声波产生损耗之后,滤除所述声波中声压级超出声压级阈值的信号。同时,第二阻尼件40的特性允许低声压级的声音通过。当然,密度阈值可根据不同的滤除需求进行调整,本申请实施例中,不做具体限定。
本申请实施例中,第二阻尼件40包括但不限于为通过聚对苯二甲酸乙二醇酯(PET)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)制成。当然,上述的第二阻尼件40的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
在本申请的一种可实现的实施例中,参见图2,声音采集结构包括外壳50,所述外壳50上具有所述进声孔10。所述拾音组件20与所述外壳50连接,所述进声孔10与所述拾音组件20之间具有所述拾音通道。其中,外壳50包括但不限于为机身壳、设备壳或结构壳,举例来说,声音采集结构在应用时,可内置在无人机的机身内部,此种情况下,机身壳即为声音采集结构的外壳50,外壳50上设置有至少一个进声孔10。声音采集结构还可内置于可悬挂在无人机上的录音录像设备内,此种情况下,录音录像设备的设备壳即为声音采集结构的外壳50。另外,声音采集结构可为以独立装置,拾音组件20、阻尼件及其他部件均设置在外壳50内,外壳50上设置有至少一个进声孔10。
所述拾音组件20与所述外壳50连接之后,所述进声孔10与所述拾音组件20之间形成拾音通道,同时所述拾音组件20还将位于拾音通道内的部件,如第一阻尼件30、第二阻尼件40挤压固定。声波从进声孔10进入拾音通道内,通过第一阻尼件30和第二阻尼件40滤除处理后,被拾音组件20采集。所述拾音组件20与所述外壳50连接的连接方式包括但不限于为粘接、紧固件连接、卡接等方式单独实现连接,或者以结合的方式进行连接,例如,通过螺丝连接之后,在通过胶水加以固定。
继续参见图2,本申请实施例中,拾音组件20的一种可实现的方式是,所述拾音组件20包括麦克风21及电路板22。所述麦克风21电气连接在所述电路板22上。所述电路板22与所述外壳50连接,所述电路板22具有第一过声孔23,所述第一过声孔23与所述拾音通道连通。麦克风21通过电路板22与外部设备进行电连接,外部设备包括但不限于为无人机的主机、录音录像设备的主机或其他具有音频处理功能的装置等。所述电路板22具有第一过声孔23,声波经滤除处理后,再经过第一过声孔23被麦克风21采集。
进一步地,为防止外部固体物质进入拾音通道内,对采集声音造成影响,声音采集结构还包括防尘布60,所述防尘布60与所述外壳50连接,并封盖所述进声孔10。防尘布60的一个作用是阻挡外部的颗粒物进入拾音通道内,若颗粒物进入到拾音通道内,随着气流有可能会发生共振现象,使得采集的声音中含有杂音,同时固体颗粒物还会影响第一阻尼件30及第二阻尼件40的滤除效果。防尘布60的另一个作用是对风噪起到抑制作用。本申请实施例中,防尘布60的一种可实现方式为网格布,通过设置网格布的网格大小,在阻挡外部物体物质进入拾音通道的同时,还对液体起到阻挡作用。例如,可防止滴水、淋水、溅水等。所述防尘布60与所述外壳50的连接方式可为多种,例如,所述防尘布60与所述外壳50通过粘接层连接。再例如,防尘布60位于外壳50与拾音组件20之间,拾音组件20与外壳50连接时,将防尘布60挤压固定。
为进一步提高拾音通道的密封性,继续参见2,本申请实施例中,声音采集结构还包括密封垫70。所述密封垫70设置在所述拾音通道内,并对所述拾音通道进行周向密封。所述密封垫70上设置有第二过声孔71,所述第二过声孔71与所述拾音通道连通,所述第一阻尼件30与所述密封垫70连接并封盖所述第二过声孔71。密封垫70可通过硅胶、橡胶等材料制成,具有一定的弹性。在拾音组件20的挤压下,密封垫70会发生形变,从而将拾音通道的周向位置进行密封。
所述密封垫70的位置可配合第一阻尼件30的位置进行设置,例如,所述密封垫70位于所述防尘布60与所述第一阻尼件30之间;或者所述密封垫70位于所述第一阻尼件30与所述拾音组件20之间。当然,所述密封垫70还可以设置在其他位置,只要通过密封垫70件将拾音通道进行周向密封即可,本申请实施例中不做具体限定。
在本申请的一种可实现实施例中,可将密封垫70的第二过声孔71作为拾音通道,第二过声孔71的一端为进声孔10。拾音组件20设置在第二过声孔71的另一端。第一阻尼件30设置在第二过声孔71内。声音采集结构具有第二阻尼件40时,第二阻尼件40也设置在第二过声孔71内。
进一步地,本申请实施例中,第一阻尼件30与密封垫70之间的连接方式包括多种,一种可实现的方式是,所述第一阻尼件30位于所述第二过声孔71外部。第一阻尼件30可为片状结构,与密封垫70的端面连接,并封盖所述第二过声孔71。片状结构的第一阻尼件30与密封垫70的端面粘接,或者通过拾音组件20与外壳50挤压固定。
另一种可实现的方式是,所述第一阻尼件30填充在所述第二过声孔71内。第一阻尼件30可为柱状结构,伸入第二过声孔71内,与第二过声孔71过盈连接,并封盖所述第二过声孔71。
再一种可实现的方式是,结合上述两种实现方式,第一阻尼件30一部分位于第二过声孔71内,一部分位于第二过声孔71外。具体地,参见图2,所述第一阻尼件30包括阻尼帽31及设置在所述阻尼帽31上的阻尼柱32。所述阻尼柱32伸入并填充在所述第二过声孔71内。所述阻尼帽31位于所述第二过声孔71外,与所述密封垫70的端面连接。
当然,上述的第一阻尼件30的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
实施例4
在实施例1至实施例3的基础上,提出实施例4。与实施例1和实施例2的区别仅在于,实施例4提供的技术方案仅针对声波中声压级超出声压级阈值的信号进行滤除。具体方案如下:
图3为本申请一实施例提供的另一声音采集方法的流程示意图,如图3所示。
本申请实施例提供一种声音采集方法,包括:
步骤S201:对拾音通道内的声波施加第三阻力;
本申请实施例中可通过多种方式施加第三阻力,一种可实现的方式是,通过在拾音通道内设置第三阻尼件80,第三阻尼件80可参见图4中所示。第三阻尼件80为密度较大、不透气的材料制成,通过第三阻尼件80施加第三阻力。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,通过降噪单元形成第二阻力。第三阻尼件80的实现方式可参见实施例2和实施例3中第二阻尼件40的实现方式。
步骤S202:在所述第三阻力的作用下,滤除所述声波中声压级超出声压级阈值的信号;
第三阻力的作用一方面可对进入拾音通道的声波起到缓冲的作用,防止声波直接被采集,可有效抑制风噪。另一方面是对进入拾音通道内的声波中声压级超出声压级阈值的信号形成声学损耗,即产生声阻,声波产生损耗之后,以滤除所述声波中声压级超出声压级阈值的信号,且允许低声压级的声音通过。
步骤S203:采集经滤除处理后的所述声波。
经过步骤S202滤除后的声波中,保留了不受第三阻力作用的声波,即低声压级的声波,而需要录制的声音,如无人机动力系统的声音、用户的声音即为低声压级的声波,因此,采集到的声波即为需要录制的声音。
本申请实施例中,第三阻尼件80包括但不限于为通过聚对苯二甲酸乙二醇酯(PET)、丙烯腈-丁二烯-苯乙烯共聚物(ABS)、聚碳酸酯(PC)制成。当然,上述的第三阻尼件80的实现方式仅是示意性的实施例,本申请实施例中并不限于上述的实现方式,本领域技术人员可以根据实际情况而设计其他类似的可以实现相应功能的结构,此处不做限定,不再一一赘述。
实施例5
在实施例4的基础上,并结合上述实施例3,提出实施例5。实施例5与实施例3的区别仅在于在拾音通道内设置有第三阻尼件80。
图4为本申请一实施例提供的另一声音采集结构的结构示意图,如图4所示。
本申请实施例提供了一种声音采集结构,本申请实施例中的声音采集结 构可执行实施例4中所述的方法。具体如下:
本申请实施例提供了一种声音采集结构,包括:拾音通道、拾音组件20以及第三阻尼件80。
其中,所述拾音通道具有两端,一端为进声孔10。拾音组件20设置在所述拾音通道的另一端。第三阻尼件80设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
本申请实施例中,第三阻尼件80的实现方式包括但不限现有以下方式,一种可实现的方式是,第三阻尼件80为密度较大、不透气的材料制成,密度较大指的是第三阻尼件80的密度大于密度阈值,例如,第一阻尼件30具有微孔通道时,第三阻尼件80的密度大于第一阻尼件30的密度。另一种可实现的方式是,在拾音通道内设置有包括降噪麦克风及降噪芯片的降噪单元,通过降噪单元形成第三阻力。此处所述的降噪单元可以与上述中作为第一阻尼件30的降噪单元为同一个,即一个降噪单元同时实现滤除频率超出频率阈值的信号及滤除声压级超出声压级阈值的信号。或者,此处所述的降噪单元可以与上述中作为第一阻尼件30的降噪单元为不同的两个,其中一个降噪单元实现滤除频率超出频率阈值的信号,另一个降噪单元滤除声压级超出声压级阈值的信号。
第三阻尼件80的实现方式可参见实施例2和实施例3中第二阻尼件40的实现方式,此处不再赘述。
在本申请实施例中,通过第三阻尼件80施加的第三阻力可有效抑制声波中的高声压级的信号的影响,防止采集的声音出现破音的情况,提高声音的还原度。经过第三阻尼件80滤除后的声波中,保留了不受第三阻力作用的声波,如低声压级的声波,而需要录制的声音,如无人机动力系统的声音、用户的声音即为低声压级的声波,因此,采集到的声波即为需要录制的声音。
实施例6
在实施例3基础上,同时结合实施例1和实施例2中的任一实施例的基础,相应地,本申请实施例还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构。其中,声音采集结构可通过上述实施 例3中所述的声音采集结构实现。
具体地,无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构。
其中,所述声音采集结构,包括:拾音通道、拾音组件20以及第一阻尼件30。所述拾音通道具有两端,一端为进声孔10。拾音组件20设置在所述拾音通道的另一端。第一阻尼件30设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
进一步地,所述声音采集结构还包括第二阻尼件40。所述第二阻尼件40,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第二阻力,以滤除声压级超出声压级阈值的信号。
声音采集结构可内置在无人机的机身内部,机身壳即为声音采集结构的外壳50。声音采集结构还可内置于可悬挂在无人机上的录音录像设备内,录音录像设备的设备壳即为声音采集结构的外壳50。
实施例6中所记载的声音采集结构的技术方案与实施例3中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
实施例7
在实施例5的基础上,同时结合实施例4,相应地,本申请实施例还提供了一种无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构。其中,声音采集结构可通过上述实施例5中所述的声音采集结构实现。
具体地,无人机,包括:无人机本体及设置在所述无人机本体上的声音采集结构。
其中,所述声音采集结构,包括:拾音通道、拾音组件20以及第三阻尼件80。所述拾音通道具有两端,一端为进声孔10。拾音组件20,设置在所述拾音通道的另一端。第三阻尼件80设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
声音采集结构可内置在无人机的机身内部,机身壳即为声音采集结构的外壳50。声音采集结构还可内置于可悬挂在无人机上的录音录像设备内,录音录像设备的设备壳即为声音采集结构的外壳50。
实施例7中所记载的声音采集结构的技术方案与实施例4中所记载的技术方案可相互参考、借鉴,此处不再一一赘述。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (28)

  1. 一种声音采集方法,其特征在于,包括:
    对拾音通道内的声波施加第一阻力;
    在所述第一阻力的作用下,滤除所述声波中频率超出频率阈值的信号;以及
    采集经滤除处理后的所述声波。
  2. 根据权利要求1所述的声音采集方法,其特征在于,所述拾音通道内设有第一阻尼件,所述第一阻尼件上具有多个微孔通道;以及
    所述滤除所述声波中频率超出频率阈值的信号,包括:
    通过所述多个微孔通道对所述声波施加所述第一阻力,以滤除所述声波中频率超出频率阈值的信号。
  3. 根据权利要求2所述的声音采集方法,其特征在于,多个所述微孔通道相互独立,并均匀或无规则布置在所述第一阻尼件上;或者
    多个所述微孔通道中部分连通,并均匀或无规则布置在所述第一阻尼件上。
  4. 根据权利要求1至3中任一项所述的声音采集方法,其特征在于,所述采集经滤除处理后的所述声波之前,还包括:
    对所述拾音通道内的所述声波施加第二阻力;
    在所述第二阻力的作用下,滤除所述声波中声压级超出声压级阈值的信号。
  5. 根据权利要求4所述的声音采集方法,其特征在于,所述拾音通道内设置有第二阻尼件,所述第二阻尼件的密度大于或等于密度阈值;
    滤除所述声波中声压级超出声压级阈值的信号,包括:
    通过所述第二阻尼件对所述声波施加所述第二阻力,以滤除所述声波中声压级超出声压级阈值的信号。
  6. 根据权利要求1至3中任一项所述的声音采集方法,其特征在于,所述声波进入所述拾音通道之前,还包括:
    对进入所述拾音通道内的传音介质进行过滤。
  7. 一种声音采集结构,其特征在于,包括:
    拾音通道,所述拾音通道具有两端,一端为进声孔;
    拾音组件,设置在所述拾音通道的另一端;
    第一阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
  8. 根据权利要求7所述的声音采集结构,其特征在于,所述第一阻尼件上具有多个微孔通道,声波穿过所述微孔通道时,多个所述微孔通道滤除所述拾音通道内包含的频率超出频率阈值的信号。
  9. 根据权利要求8所述的声音采集结构,其特征在于,多个所述微孔通道相互独立,并均匀或无规则布置在所述第一阻尼件上。
  10. 根据权利要求8所述的声音采集结构,其特征在于,多个所述微孔通道中部分连通,并均匀或无规则布置在所述第一阻尼件上。
  11. 根据权利要求8所述的声音采集结构,其特征在于,所述第一阻尼件为泡棉或海绵材料制成。
  12. 根据权利要求7至11中任一项所述的声音采集结构,其特征在于,还包括第二阻尼件;
    所述第二阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第二阻力,以滤除声压级超出声压级阈值的信号。
  13. 根据权利要求12所述的声音采集结构,其特征在于,所述第二阻尼件位于所述第一阻尼件及所述拾音组件之间。
  14. 根据权利要求12所述的声音采集结构,其特征在于,所述第二阻尼件的密度大于所述第一阻尼件的密度。
  15. 根据权利要求12所述的声音采集结构,其特征在于,所述第二阻尼件为聚对苯二甲酸乙二醇酯、丙烯腈-丁二烯-苯乙烯共聚物、聚碳酸酯制成。
  16. 根据权利要求7至11中任一项所述的声音采集结构,其特征在于,包括外壳,所述外壳上具有所述进声孔;
    所述拾音组件与所述外壳连接,所述进声孔与所述拾音组件之间具有所 述拾音通道。
  17. 根据权利要求16所述的声音采集结构,其特征在于,所述拾音组件包括麦克风及电路板;
    所述麦克风电气连接在所述电路板上;
    所述电路板与所述外壳连接,所述电路板具有第一过声孔,所述第一过声孔与所述拾音通道连通。
  18. 根据权利要求16所述的声音采集结构,其特征在于,还包括防尘布;
    所述防尘布与所述外壳连接,并封盖所述进声孔。
  19. 根据权利要求18所述的声音采集结构,其特征在于,所述防尘布与所述外壳通过粘接层连接。
  20. 根据权利要求18所述的声音采集结构,其特征在于,还包括密封垫;
    所述密封垫设置在所述拾音通道内,并对所述拾音通道进行周向密封;
    所述密封垫上设置有第二过声孔,所述第二过声孔与所述拾音通道连通,所述第一阻尼件与所述密封垫连接并封盖所述第二过声孔。
  21. 根据权利要求20所述的声音采集结构,其特征在于,所述密封垫位于所述防尘布与所述第一阻尼件之间;或者
    所述密封垫位于所述第一阻尼件与所述拾音组件之间。
  22. 根据权利要求20所述的声音采集结构,其特征在于,所述第一阻尼件填充在所述第二过声孔内。
  23. 根据权利要求20所述的声音采集结构,其特征在于,所述第一阻尼件包括阻尼帽及设置在所述阻尼帽上的阻尼柱;
    所述阻尼柱伸入并填充在所述第二过声孔内;
    所述阻尼帽位于所述第二过声孔外,与所述密封垫的端面连接。
  24. 一种声音采集方法,其特征在于,包括:
    对拾音通道内的声波施加第三阻力;
    在所述第三阻力的作用下,滤除所述声波中声压级超出声压级阈值的信号;以及
    采集经滤除处理后的所述声波。
  25. 一种声音采集结构,其特征在于,包括:
    拾音通道,所述拾音通道具有两端,一端为进声孔;
    拾音组件,设置在所述拾音通道的另一端;
    第三阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
  26. 一种无人机,其特征在于,包括:无人机本体及设置在所述无人机本体上的声音采集结构;其中,
    所述声音采集结构,包括:
    拾音通道,所述拾音通道具有两端,一端为进声孔;
    拾音组件,设置在所述拾音通道的另一端;
    第一阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第一阻力,以滤除频率超出频率阈值的信号。
  27. 根据权利要求26所述的无人机,其特征在于,所述声音采集结构还包括第二阻尼件;
    所述第二阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第二阻力,以滤除声压级超出声压级阈值的信号。
  28. 一种无人机,其特征在于,包括:无人机本体及设置在所述无人机本体上的声音采集结构;其中,
    所述声音采集结构,包括:
    拾音通道,所述拾音通道具有两端,一端为进声孔;
    拾音组件,设置在所述拾音通道的另一端;
    第三阻尼件,设置在所述拾音通道内,用于对在所述拾音通道内传播的声波施加第三阻力,以滤除声压级超出声压级阈值的信号。
PCT/CN2019/108585 2019-09-27 2019-09-27 声音采集方法、声音采集结构及无人机 WO2021056426A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980032114.5A CN112205001A (zh) 2019-09-27 2019-09-27 声音采集方法、声音采集结构及无人机
PCT/CN2019/108585 WO2021056426A1 (zh) 2019-09-27 2019-09-27 声音采集方法、声音采集结构及无人机

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/108585 WO2021056426A1 (zh) 2019-09-27 2019-09-27 声音采集方法、声音采集结构及无人机

Publications (1)

Publication Number Publication Date
WO2021056426A1 true WO2021056426A1 (zh) 2021-04-01

Family

ID=74004767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108585 WO2021056426A1 (zh) 2019-09-27 2019-09-27 声音采集方法、声音采集结构及无人机

Country Status (2)

Country Link
CN (1) CN112205001A (zh)
WO (1) WO2021056426A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310998A (ja) * 1986-07-02 1988-01-18 Toutsuu Denshi Service Kk 耐騒音マイク
CN105228054A (zh) * 2015-10-15 2016-01-06 深圳市大疆创新科技有限公司 飞行装置、拍摄装置及其录音降噪装置和方法
CN205051857U (zh) * 2015-10-15 2016-02-24 深圳市大疆创新科技有限公司 飞行装置、拍摄装置及其录音降噪装置
CN206212218U (zh) * 2016-11-15 2017-05-31 北京酷智科技有限公司 一种拾音设备和耳麦
CN107493526A (zh) * 2016-11-15 2017-12-19 北京酷智科技有限公司 一种拾音设备和耳麦
CN207117878U (zh) * 2017-05-18 2018-03-16 中山市天键通讯技术有限公司 采用声导管结构有效控制声音泄漏的反馈式降噪耳机
CN109889967A (zh) * 2019-03-28 2019-06-14 百度在线网络技术(北京)有限公司 麦克风和智能语音设备

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2249586A3 (en) * 2003-03-03 2012-06-20 Phonak AG Method for manufacturing acoustical devices and for reducing wind disturbances
US20130259263A1 (en) * 2009-07-10 2013-10-03 Alon Konchitsky Removal of Wind Noise from Communication Signals
CN105307064A (zh) * 2009-09-04 2016-02-03 日东电工株式会社 话筒用透声膜以及具备其的话筒用透声膜部件、话筒及具备话筒的电子设备
CN203301692U (zh) * 2013-06-05 2013-11-20 歌尔声学股份有限公司 降低麦克风拾音风噪的声腔结构
CN103533489B (zh) * 2013-10-24 2017-01-25 安徽江淮汽车股份有限公司 一种车载降噪模块
CN105959837B (zh) * 2016-05-30 2020-01-03 歌尔股份有限公司 防风噪麦克风以及耳机线控装置
CN108235163A (zh) * 2016-12-15 2018-06-29 北京小米移动软件有限公司 麦克风收音组件及移动终端
CN207603917U (zh) * 2017-12-21 2018-07-10 歌尔科技有限公司 麦克风的密封结构及电子设备
CN207910956U (zh) * 2017-12-25 2018-09-25 歌尔科技有限公司 电子装置
CN207968911U (zh) * 2018-01-26 2018-10-12 维沃移动通信有限公司 一种电子设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6310998A (ja) * 1986-07-02 1988-01-18 Toutsuu Denshi Service Kk 耐騒音マイク
CN105228054A (zh) * 2015-10-15 2016-01-06 深圳市大疆创新科技有限公司 飞行装置、拍摄装置及其录音降噪装置和方法
CN205051857U (zh) * 2015-10-15 2016-02-24 深圳市大疆创新科技有限公司 飞行装置、拍摄装置及其录音降噪装置
CN206212218U (zh) * 2016-11-15 2017-05-31 北京酷智科技有限公司 一种拾音设备和耳麦
CN107493526A (zh) * 2016-11-15 2017-12-19 北京酷智科技有限公司 一种拾音设备和耳麦
CN207117878U (zh) * 2017-05-18 2018-03-16 中山市天键通讯技术有限公司 采用声导管结构有效控制声音泄漏的反馈式降噪耳机
CN109889967A (zh) * 2019-03-28 2019-06-14 百度在线网络技术(北京)有限公司 麦克风和智能语音设备

Also Published As

Publication number Publication date
CN112205001A (zh) 2021-01-08

Similar Documents

Publication Publication Date Title
CN106792389A (zh) 发声装置的吸音件及其制备方法和发声装置模组
WO2021056426A1 (zh) 声音采集方法、声音采集结构及无人机
WO2022021238A1 (zh) 导音降噪组件及无人飞行器
CN207603917U (zh) 麦克风的密封结构及电子设备
CN104066022B (zh) 一种新型单指向麦克风
JP2015084522A (ja) 薄型ラウドスピーカ変換器
CN203896502U (zh) 压电型扬声器
CN106341770A (zh) 一种扬声器用吸音材料的制备方法
CN206118015U (zh) 一种球顶式扬声器
CN213960312U (zh) 一种扬声器及音响系统
CN206136286U (zh) 一种防尘扬声器
CN106028241A (zh) 扬声器
CN204350297U (zh) 压电扬声器
TWI707590B (zh) 可提升低音音質之音膜結構
CN208836357U (zh) 一种橡胶喇叭防尘网
CN206575547U (zh) 一种环保型b壳喇叭防尘网
CN207732960U (zh) 一种超薄喇叭
CN208174980U (zh) 一种基于扬声器阵列的主动降噪装置
CN206820987U (zh) 一种高刚性pe音盆
CN204836565U (zh) 一种便于固定的扬声器
CN205726389U (zh) 扬声器及电子设备
CN204598305U (zh) 振膜及设有该振膜的微型扬声器
CN207543328U (zh) 一种书架式一主动一被动扬声器系统
CN208609186U (zh) 一种双中低音的动圈式扬声器
CN204518053U (zh) 扬声器振膜的球顶结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946338

Country of ref document: EP

Kind code of ref document: A1