WO2011024897A1 - 作業機械の遠隔管理システム - Google Patents

作業機械の遠隔管理システム Download PDF

Info

Publication number
WO2011024897A1
WO2011024897A1 PCT/JP2010/064485 JP2010064485W WO2011024897A1 WO 2011024897 A1 WO2011024897 A1 WO 2011024897A1 JP 2010064485 W JP2010064485 W JP 2010064485W WO 2011024897 A1 WO2011024897 A1 WO 2011024897A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
work mode
mode
command
base station
Prior art date
Application number
PCT/JP2010/064485
Other languages
English (en)
French (fr)
Inventor
勇樹 後藤
一浩 柴森
英信 束田
Original Assignee
日立建機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立建機株式会社 filed Critical 日立建機株式会社
Priority to CN201080038010.4A priority Critical patent/CN102575454B/zh
Priority to US13/392,426 priority patent/US9109347B2/en
Priority to KR1020127007774A priority patent/KR101298883B1/ko
Priority to EP10811946.2A priority patent/EP2472010A4/en
Publication of WO2011024897A1 publication Critical patent/WO2011024897A1/ja

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2246Control of prime movers, e.g. depending on the hydraulic load of work tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2054Fleet management

Definitions

  • the present invention relates to a remote management system for a work machine that remotely manages the work machine at a base station located away from the work machine.
  • Work machines such as hydraulic excavators are equipped with hydraulic pumps that supply pressure oil to hydraulic actuators (hydraulic cylinders, hydraulic motors).
  • This hydraulic pump uses an engine as a drive source.
  • This engine is electronically controlled.
  • the engine controller that performs the electronic control includes a storage unit that stores an upper limit of a target rotational speed of the engine set in advance and a work mode associated with each upper limit, and a target rotation stored by the storage unit Control means for selecting one of the upper limit of the number and controlling the engine speed.
  • a switch as work mode command means for commanding a work mode operated by an operator is provided in the cab of the work machine.
  • the engine controller selects an upper limit of the target rotational speed corresponding to the work mode in accordance with a command from the switch. In other words, by selecting the upper limit of the target engine speed from multiple types according to the engine output required for the work to be performed by the work machine, waste of engine output is reduced and the work machine is economically operated. It can be used.
  • a means has been devised for an administrator such as an owner of a work machine to restrict the selection of a work mode by an operator.
  • This means is provided in the driver's cab together with the switch as the work mode command means described above and is capable of inputting a personal identification number, and a state permitting the change of the operational mode triggered by the input of the personal identification number by the operation panel, And a change management unit that sets the controller to one of the states that restrict the change of the work mode.
  • Patent Document 1 Conventionally, some remote management systems for work machines manage a control program and data of a control device provided in a hydraulic excavator with a server of a base station via a communication line.
  • the control device of the hydraulic excavator has a communication device (hereinafter referred to as “machine side communication device”), and the base station has a server, the number of the hydraulic excavator, the model of each unit, and the standard for each model.
  • a storage device storing control programs and data, control programs corresponding to various attachments for each model, data, and the like.
  • the control device of the hydraulic excavator transmits information related to the replacement of the attachment by the machine side communication device to the communication device (hereinafter referred to as “base station side communication device”) provided in the server.
  • the server that has received this information uses the information stored in the storage device to identify the excavator number that is the transmission source of the information related to the attachment replacement, and corresponds to the attachment after the specified excavator replacement.
  • the control program and data are selected, and the control program and data are transmitted to the machine side communication device of the transmission excavator by the base station side communication device, and the control program and data are rewritten by the hydraulic excavator control device. . (See Patent Document 2)
  • An object of the present invention is to provide a remote management system for a work machine that can remotely manage the upper limit of the engine speed in preference to the setting of the upper limit by an operator.
  • the work machine remote management system is configured as follows.
  • a work machine remote management system including a work machine and a base station according to the present invention, wherein the work machine is an engine that is a drive source of a hydraulic pump that discharges pressure oil supplied to a plurality of hydraulic actuators.
  • control means for controlling the rotational speed of the engine, and machine-side work mode command means for selectively instructing the control means to a plurality of types of work modes, the control means comprising the plurality of types Target rotational speed storage means for storing in advance the upper limit of the target rotational speed of the engine associated with each of the work modes, and one of the upper limits of the target rotational speed stored by the target rotational speed storage means,
  • a target rotational speed calculation means for selecting a target rotational speed that is selected according to the work mode commanded by the side work mode command means and that is equal to or less than the selected upper limit, and a machine side communication device, Is a work mode storage means for storing in advance the type of work mode of the work machine, a base station side work mode command means for selecting a desired work
  • a desired work mode is selected using the machine-side work mode command means and the control means is used.
  • the target rotational speed calculation means of the control means selects one of the upper limits of the target rotational speed stored by the target rotational speed storage means according to the work mode commanded by the machine side work mode command means, Calculate the target speed below the selected upper limit.
  • a desired work mode is selected using the base station side work mode command means, and the work mode stored in the work mode storage means is stored. One of these is selected.
  • the work mode management means transmits the selected work mode to the machine side communication apparatus by the base station side communication apparatus, whereby the work mode is commanded to the control means.
  • the target rotational speed calculation means enters a state of calculating the target rotational speed based on the work mode commanded by the work mode management means on the base station side. Therefore, the upper limit of the engine speed can be remotely managed in preference to the upper limit setting by the operator.
  • the work machine remote management system is the work machine remote management system according to [[1]], in which the control means has a work mode commanded by the machine-side work mode command means.
  • Information is set to be transmitted to the base station side communication device by the machine side communication device, the base station is based on the information on the working mode of the control means received by the base station side communication device, Work mode suitability determining means for determining suitability of the work mode commanded to the control means, the work mode suitability determining means is more than the work mode commanded by the base station side work mode command means. It is determined whether or not the work mode of the control means is a work mode having a higher upper limit of the target rotational speed.
  • the work mode commanded to the control means by the means is determined to be inappropriate, and the work mode management means determines that the work mode of the control means is determined to be inappropriate by the work mode suitability determination means.
  • the operation mode commanded by the base station side work mode command means is set to command the control means.
  • the work mode of the control means has a higher upper limit of the target rotational speed than the work mode commanded by the base station side work mode command means.
  • the work mode management means controls the work mode commanded by the base station side work mode command means. Command to the means.
  • the upper limit of the engine speed can be reduced, and therefore the amount of fuel used per unit time in the engine can be reduced.
  • the work machine remote management system is the work machine remote management system according to “[2]”, wherein the control means calculates the fuel consumption of the engine per unit time.
  • the machine-side communication device further includes use amount calculation means, and information on the work mode instructed by the machine-side work mode instruction means and information on the fuel use amount calculated by the fuel use amount calculation means.
  • the fuel usage is set to transmit to the base station side communication device, and the base station stores the lower limit of the fuel usage per unit time that is set in advance in association with each of a plurality of types of work modes.
  • the work mode management means determines that the fuel use amount of the engine is inappropriate by the fuel use amount suitability judging means, and the work mode suitability judging means judges the work mode of the control means. Is determined so as to instruct the control means of the work mode instructed by the base station side work mode instructing means.
  • the fuel usage calculation means calculates the lower limit of the fuel usage corresponding to the work mode of the control means stored in the fuel usage storage means. It is determined by the fuel use amount suitability determining means that the amount of fuel used is small, that is, the fuel use amount is inappropriate, and the control means is more than the work mode commanded by the base station side work mode command means.
  • the work mode management is performed when it is determined by the work mode suitability determining means that the commanded work mode is a work mode having a higher upper limit of the target rotational speed, that is, the work mode of the control means is inappropriate.
  • the means instructs the control means of the work mode commanded by the base station side work mode command means. As a result, the amount of fuel used per unit time can be reliably reduced.
  • the work machine remote management system is the work machine remote management system according to “[2]”, in which the work machine includes load pressure detection means for detecting a load pressure of the hydraulic pump. And a plurality of operation command detection means for detecting an operation command for each of the plurality of hydraulic actuators, wherein the target rotational speed calculation means includes the load pressure detected by the load pressure detection means, Based on the motion command detected by each of the motion command detection means, is set to calculate a target rotational speed below the upper limit of the target rotational speed associated with the work mode, the control means, Information on the work mode commanded by the machine-side work mode command means, information on the load pressure, and information on the operation command are transmitted by the machine side communication device to the base station side communication.
  • the base station is configured to transmit to a device, and the base station stores a work load storage unit that stores a preset lower limit of the work load in association with each of a plurality of types of work modes, and the load from the control unit
  • a work load calculating means for calculating a work load based on pressure information and the operation command, and a work load suitability determining means for determining the suitability of the work load calculated by the work load calculating means
  • the workload suitability determination unit determines whether the workload calculated by the workload calculation unit is smaller than a lower limit of the workload corresponding to the work mode of the control unit stored by the workload storage unit.
  • the work mode management means determines that the work load is not appropriate by the work load suitability determination means, and the work mode management means When the mode suitability determining means determines that the work mode of the control means is inappropriate, it is set to instruct the control means of the work mode instructed by the base station side work mode instruction means. It is characterized by.
  • the work calculated by the work load calculation means is lower than the lower limit of the work load corresponding to the work mode of the control means stored by the work load storage means.
  • the work mode that is determined by the work load suitability determination means that the load is small, that is, the work load is inappropriate, and that is commanded to the control means rather than the work mode commanded by the base station side work mode command means Is the work mode with a high upper limit of the target rotational speed, that is, when the work mode suitability judging means determines that the work mode of the control means is inappropriate, the base station side work mode command means commanded The work mode is commanded to the control means.
  • the work machine remote management system is the work machine remote management system according to [[2]], in which the work machine includes load pressure detecting means for detecting a load pressure of the hydraulic pump. And a plurality of operation command detection means for detecting an operation command for each of the plurality of hydraulic actuators, wherein the target rotational speed calculation means includes the load pressure detected by the load pressure detection means, Based on the motion command detected by each of the motion command detection means, is set to calculate a target rotational speed below the upper limit of the target rotational speed associated with the work mode, the control means, A fuel usage amount calculating means for calculating a fuel usage amount of the engine per unit time, wherein the control means is a work mode commanded by the machine side work mode command means; Information on the load, information on the load pressure, information on the operation command, and information on the fuel usage calculated by the fuel usage calculation means are transmitted to the base station side communication device by the machine side communication device.
  • the base station is configured to store fuel use amount storage means for storing a predetermined lower limit of fuel use amount per unit time associated with each of a plurality of types of work modes, and fuel for the engine.
  • a fuel use amount suitability judging means for judging suitability of the use amount
  • a workload storage means for storing a preset lower limit of the work load associated with each of a plurality of types of work modes
  • the control means Workload calculating means for calculating the workload based on the information on the load pressure and the operation command, and the workload for determining the suitability of the workload calculated by the workload calculating means.
  • the fuel use amount suitability determining means further than the lower limit of the fuel use amount corresponding to the operation mode of the control means stored in the fuel use amount storage means.
  • the workload suitability determining means is configured to store the control stored in the workload storage means. It is determined whether the workload calculated by the workload calculation means is smaller than the lower limit of the workload corresponding to the work mode of the means, if not, the workload is inappropriate, the work mode management means, The fuel use amount suitability determining means determines that the engine fuel use amount is inappropriate, and the work load suitability determining means determines that the work load is inappropriate. If the work mode of the control means is determined to be inappropriate by the work mode suitability determination means, the work mode commanded by the base station side work mode command means is set to command the control means. It is characterized by being.
  • the fuel usage calculation means is more than the lower limit of the fuel usage associated with the work mode of the control means stored in the fuel usage storage means.
  • the fuel use amount calculated by the above is determined by the fuel use amount suitability judging means that the fuel use amount is inappropriate, and is associated with the work mode of the control means stored in the work load storage means.
  • the work load calculated by the work load calculating means is smaller than the lower limit of the work load, that is, the work load suitability determining means determines that the work load is inappropriate, and the base station side work mode command means.
  • the work mode of the control means is a work mode in which the upper limit of the target rotational speed is higher than the work mode commanded by the control means, that is, the work mode of the control means is inappropriate. , And when it is determined by the work mode appropriateness determination means, commanding the work mode instructed by the base station-side work mode instruction means to the control means. As a result, it is possible to reliably reduce the amount of fuel used per unit time and to prevent the occurrence of a situation where work efficiency is reduced.
  • the work machine remote management system is the work machine remote management system according to any one of “[1]” to “[5]”, wherein the base station includes a plurality of work machines.
  • Registration information storage means for storing the registration information in advance, and search means for searching for a specific work machine using the registration information stored by the registration information storage means, the work mode management means, The operation mode is set to be instructed only to the work machine searched for by the search means.
  • the work mode management means commands the work mode only to the work machine found by the search means. Thereby, it is possible to determine whether to lower the upper limit of the target rotational speed individually for a plurality of work machines.
  • the work machine remote management system according to the present invention is the work machine remote management system according to [1], wherein the control means shifts to the work mode commanded by the work mode management means of the base station.
  • the timing to perform is set so that the work machine is stopped.
  • the remote management system for a work machine described in “[7]” can prevent a sudden decrease in the engine speed during the work of the work machine, and thus can safely lower the upper limit of the engine speed. .
  • the work machine remote management system is the work machine remote management system according to [[7]], in which the control means is the work mode management means of the base station when the control means is shut down. Further comprising command mode storage means for storing the work mode that has been commanded from the control mode, and is set to shift to the work mode stored by the command mode storage means at a timing when the control means is activated. And
  • the target rotation speed calculation means calculates the target rotation speed based on the work mode stored in the command mode storage means at the timing when the control means is activated. It shifts to the state to do. Since the control means is started before the engine is started or immediately after the engine is started, the work machine is stopped. That is, the control means can be shifted to the work mode stored by the command mode storage means while the work machine is stopped.
  • the work machine remote management system is the work machine remote management system according to [7], wherein the work machine is provided for each of the plurality of hydraulic actuators.
  • a hydraulic pilot control valve that controls the flow direction and flow rate of pressure oil supplied to the hydraulic actuator, a gate lock valve that can shut off the supply of pilot pressure to the hydraulic pilot control valve, and the gate lock
  • a gate lock detecting means for detecting whether the valve position of the valve is a closed position for shutting off the pilot pressure or an open position for releasing the pilot pressure, and the control means includes the gate lock detecting means.
  • Command mode storage means and is set to shift to the work mode stored by the command mode storage means at a timing when the gate lock detection means detects a change in the valve position from the closed position to the open position. It is characterized by being.
  • the target rotational speed calculation means is a command mode storage means at a timing when the gate lock detection means detects a change in the valve position from the closed position to the open position.
  • the process shifts to a state in which the target rotational speed is calculated based on the work mode stored by the above.
  • the timing at which the gate lock detection means detects the change in the valve position from the closed position to the open position is immediately after the pilot pressure can be supplied to the hydraulic pilot type control valve. Since the valve position of the control valve is not the valve position for guiding the discharge oil of the hydraulic pump to the hydraulic actuator, the work machine is stopped. That is, the control means can be shifted to the work mode stored by the command mode storage means while the work machine is stopped.
  • the work mode for setting the upper limit of the engine speed can be set not only from the work machine side but also from the base station side, and the setting from the base station side is given priority according to the conditions. Therefore, even when the work machine is away from the base station or when there are many work machines to be managed, the engine speed can be managed in an appropriate work mode.
  • FIG. 2 is a left side view of a hydraulic excavator that is a work machine remotely managed by the remote management system shown in FIG. 1. It is a block diagram which shows the detail of the structure of the control means with which the hydraulic excavator shown in FIG. 2 was equipped, and the structure of a base station.
  • a work machine remote management system 1 includes a base station 2.
  • the base station 2 is provided with a server 3.
  • This server 3 is connected to a hydraulic excavator 20-1 to 20-N, which is a work machine, via a communication network 7, and a company 5 (work machine rental company and lease company) that owns these excavators 20-1 to 20-N. It can be connected to a personal computer 6 of a company, a construction company, etc.
  • hydraulic excavators 20-1 to 20-N include a traveling body 21 that travels by driving a crawler belt, a revolving body 22 that is pivotably coupled to the traveling body 21, and a revolving body 22 And a front working device 23 provided substantially at the center of the front portion.
  • the swivel body 22 includes a cab 22a provided on the left side of the front working device 23, a counterweight 22b forming a rear end of the swivel body 22, and a counterweight 22b from the rear of the cab 22a. And a machine room 22c formed over the entire space.
  • the front working device 23 is a backhoe type, and a boom 23a that is pivotably coupled to the front portion of the revolving body 22 in the vertical direction, an arm 23b that is pivotally coupled to the boom 23a, and the arm And a bucket 23c rotatably coupled to 23b.
  • the hydraulic excavators 20-1 to 20-N are provided with a plurality of hydraulic actuators for driving the traveling body 21, the turning body 22, and the front working device 23, respectively.
  • the plurality of hydraulic actuators include a left traveling motor (not shown) and a right traveling motor (not shown) that respectively drive the left and right crawler belts of the traveling body 21, and a swing that drives the swing body 22.
  • These hydraulic actuators are supplied with oil discharged from a main pump 40 (variable displacement hydraulic pump) shown in FIG. The main pump 40 is driven by the engine 50.
  • each control valve controls the flow direction and flow rate of pressure oil supplied to hydraulic actuators such as a left travel motor, a right travel motor, a swing motor, a boom cylinder 23a, an arm cylinder 23b, and a bucket cylinder 23, respectively.
  • hydraulic actuators such as a left travel motor, a right travel motor, a swing motor, a boom cylinder 23a, an arm cylinder 23b, and a bucket cylinder 23, respectively.
  • FIG. 3 one of these control valves is depicted as a control valve 41 for the sake of simplicity.
  • the engine 50 drives a pilot pump 42 (fixed displacement hydraulic pump) together with the main pump 40.
  • a pilot pump 42 fixed displacement hydraulic pump
  • a plurality of operating lever devices that generate respective operating pressures (pilot pressures) of the plurality of control valves described above from pressure oil discharged from the pilot pump 42, that is, left travel
  • An operation lever device, a right traveling operation lever device, a turning / arm operation lever device, and a boom / bucket operation lever device are provided.
  • an operation lever device for operating the control valve 41 among these operation lever devices is drawn as an operation lever device 43.
  • a pilot pressure as an operation command to the hydraulic actuator is detected in the pilot pipes 44 and 45 for guiding the pilot pressure from the operation lever device 43 to the hydraulic pilot portions 41a and 41b of the control valve 41, and the pilot pressure corresponding to the pilot pressure is detected.
  • Pilot pressure sensors 61 and 62 are provided as operation command detection means for outputting a pilot pressure signal (electrical signal).
  • One pilot pressure sensor is provided for each hydraulic pilot section.
  • a pipe 46 that leads the pressure oil from the pilot pump 42 to the operation lever device 43 has a gate lock valve 47 that can collectively block the supply of pilot pressure to the control valve 41, and a valve position of the gate lock valve 47.
  • a gate lock switch 63 (for example, a limit switch) is provided as gate lock detection means for detecting whether the pilot pressure is closed or the open position where pilot pressure is released. The gate lock switch 63 is turned off at the closed position and turned on at the opened position to output an on signal (electric signal).
  • the valve position of the gate lock valve 47 is selectively switched between a closed position and an open position in conjunction with the posture of the gate lock lever 48 provided in the cab 22a.
  • the main pump 40 is provided with a load pressure sensor 60 (pressure sensor) that detects a load pressure of the main pump 40 and outputs a load pressure signal (electric signal) corresponding to the load pressure.
  • a load pressure sensor 60 pressure sensor
  • An EC dial device 14 is provided in the cab 22a.
  • the EC dial device 14 converts the rotation angle of the dial into a rotational speed command signal (electric signal) corresponding to a value within a preset target rotational speed range of the engine, and outputs it.
  • the upper limit of the target rotational speed that can be commanded by the EC dial device 14 is 1800 rpm, for example.
  • a command switch 13 is provided as a machine-side work mode command means for selectively commanding a plurality of types of work modes, for example, three types of work modes (economy mode, normal mode, and power mode).
  • the command switch 13 is a self-return type push switch, and outputs a work mode command signal (electric signal) when turned on after being pushed.
  • the main controller 11 is provided in each of the excavators 20-1 to 20-N.
  • the main controller 11 stores a program and data separately from a CPU (Central Processing Unit), a ROM (Read Only Memory) storing a program and data, a RAM (Random Access Memory) used as a work area of the CPU, and a ROM.
  • the auxiliary storage device 11b and the like are provided, and the CPU reads out the program and data stored in the ROM or the auxiliary storage device 11b, and executes processing related to calculation and command of the target rotational speed of the engine 50.
  • the engine 50 is provided with an engine controller 12 that performs electronic control of the engine speed.
  • the main controller 11 calculates the target rotational speed and gives it to the engine controller 12.
  • the engine controller 12 includes a CPU, a ROM that stores programs and data, a RAM that is used as a work area of the CPU, an auxiliary storage device that stores programs and data in addition to the ROM, and the like.
  • the CPU reads the program and data stored in the apparatus, and executes processing for controlling the rotational speed of the engine 50 in accordance with the target rotational speed commanded from the main controller 11.
  • the main controller 11 and the engine controller 12 constitute a control means 10 that controls the rotational speed of the engine 50.
  • the main controller 11 has a target rotational speed storage unit 11b1 that stores in advance the upper limit of the target rotational speed of the engine 50 associated with each of the above-described three types of work modes, that is, the eco mode, the normal mode, and the power mode. .
  • This target rotational speed storage means 11b1 is provided by using the auxiliary storage device 11b.
  • the upper limit of the target rotation speed associated with the eco mode is, for example, 1650 rpm set so that light load work such as leveling can be performed.
  • the upper limit of the target rotational speed associated with the normal mode is a rotational speed higher than that in the eco mode, for example, 1800 rpm, which is set so that a normal excavation work performed by dumping or the like can be performed.
  • the upper limit of the target rotational speed associated with the power mode is a rotational speed higher than that in the normal mode, for example, 2000 rpm, which is set so that heavy load work such as rooting and deep digging can be performed.
  • the main controller 11 further includes target rotation speed calculation means 11c for calculating the target rotation speed.
  • the target rotational speed calculation means 11c selects one of the upper limits of the target rotational speed stored by the target rotational speed storage means 11b1 according to the work mode commanded by the command switch 13 (machine side work mode command means).
  • the target rotational speed calculation means 11c calculates the target rotational speed using the upper limit of the target rotational speed associated with the work mode as the upper limit of the target rotational speed regardless of the target rotational speed commanded by the EC dial device 14. I do. That is, when the main controller 11 is set in the eco mode associated with 1650 rpm as the upper limit of the target rotational speed, even if the EC dial device 14 commands 1800 rpm as the target rotational speed, the target rotational speed calculating means 11c The upper limit of the calculated target rotational speed is 1650 rpm.
  • the target rotational speed calculating means 11c The upper limit of the calculated target rotational speed is 2000 rpm.
  • the main controller 11 is basically set to the normal mode when it is activated.
  • the main controller 11 shifts to the power mode, and when the work mode command signal of the command switch 13 is input to the main controller 11 again,
  • the mode returns to the normal mode. That is, when the work mode command signal of the command switch 13 is input to the main controller 11, the work mode that defines the upper limit of the target rotational speed is switched from the normal mode ⁇ the power mode ⁇ the eco mode ⁇ . It is set as follows. Note that the normal mode may not be set when the main controller 11 is activated. This case will be described later.
  • the main controller 11 further includes a machine side communication device 11a capable of communicating with an external communication device via the communication line network 7.
  • This machine side communication device 11a performs communication by radio.
  • the server 3 of the base station 2 includes a CPU, a ROM that stores programs and data, a RAM that is used as a work area for the CPU, an auxiliary storage device that stores programs and data separately from the ROM, and the like.
  • the CPU reads out the program and data stored in the auxiliary storage device 3f, and executes processing related to management of the work mode of each main controller 11 of the excavators 20-1 to 20-N.
  • the server 3 includes registration information storage means 3f1 that stores in advance the registration information of the hydraulic excavators 20-1 to 20-N, that is, the units (Nos. 1 to N) and the models of the units, and three types of work modes ( (Eco mode, normal mode, power mode) and the upper limit of the target rotational speed associated with each mode, the work mode storage means 3f2 that stores in advance, and the three types of work modes are set in advance.
  • a fuel use amount storage unit 3f3 that stores a lower limit of the fuel use amount per unit time
  • a work load storage unit 3f4 that stores a preset lower limit of the work load associated with each of the three types of work modes. It has further.
  • These storage units 3f1 to 3f4 are all provided by using the auxiliary storage device 3f.
  • the lower limit of the fuel consumption and the lower limit of the work load are set for each model in consideration of the specifications of the model.
  • the server 3 further includes a base station side communication device 3g capable of communicating with external communication devices including the machine side communication device 11a. Using this base station side communication device 3g, the excavators 20-1 to 20-N and the company 5 that owns these excavators 20-1 to 20-N via the communication line network 7 as described above. Can be connected to a personal computer 6 or the like.
  • the server 3 selects a work mode selected from the types of work modes stored in the work mode storage means 3f2 by communication with the control means 10 (main controller 11) using the base station side communication device 3g. This is work mode management means that can be instructed to the main controller 11.
  • the base station 2 uses the input device 4 (mouse, keyboard) as the base station side work mode command means for commanding the server 3 to select a work mode to be selected from the work mode types stored in the work mode storage means 3f2. ).
  • the company 5 requests the base station 2 to designate a work mode as a work mode
  • the staff of the base station 2 operates the input device 4 so that the server 3 selects the designated work mode.
  • the server 3 is set so that the selected work mode is transmitted to the machine side communication device 11a by the base station side communication device 3g at a predetermined cycle.
  • the work mode is designated, for example, for some of the excavators 20-1 to 20-N, only light load work is scheduled to be performed on that day.
  • eco-mode is specified.
  • the work modes that can be selected are limited to the normal mode and the eco mode, that is, the life of the hydraulic excavator is prevented from being shortened by preventing heavy load work.
  • the target rotational speed calculation means 11c of the main controller 11 calculates the target rotational speed based on the work mode instructed by the server 3 when the work mode is instructed to the main controller 11 by the server 3 (work mode management means). It is set to calculate.
  • the main controller 11 is set to transmit the information on the work mode commanded by the command switch 13 to the base station side communication device 3g by the machine side communication device 11a at a predetermined cycle.
  • the server 3 further includes work mode suitability determination means 3a for judging suitability of the work mode of the main controller 11 based on the work mode information of the main controller 11 received by the base station side communication device 3g. Whether the work mode suitability determining means 3a is a work mode in which the upper limit of the target rotational speed is higher in the work mode of the main controller 11 than in the work mode commanded by the input device 4 (base station side work mode command means). In the case of a high work mode, the work mode of the main controller 11 is made inappropriate.
  • the engine controller 12 of the control means 10 has a fuel usage calculation means 12b for calculating the fuel usage of the engine per unit time.
  • the fuel usage calculation means 12 b gives the information on the calculated fuel usage to the main controller 11.
  • the main controller 11 is set to transmit the fuel usage information calculated by the fuel usage calculation means 12b to the base station side communication device 3g at a predetermined cycle by the machine side communication device 11a.
  • the server 3 further includes a fuel use amount suitability determination means 3b for judging the suitability of the fuel use amount of the engine.
  • the fuel use amount suitability determining unit 3b is configured so that the engine controller 12 sets the fuel use amount lower than the fuel use amount associated with the work mode of the main controller 11 out of the lower limit of the fuel use amount stored by the fuel use amount storage unit 3f3. It is determined whether or not the fuel usage calculated by the fuel usage calculation means 12b is small, and if it is small, the fuel usage is inappropriate.
  • the fuel use amount suitability determining unit 3b uses the fuel use amount in the normal mode corresponding to the model of the excavator 20-1. Is read from the fuel usage amount storage unit 3f3, and the lower limit of the read fuel usage amount is compared with the fuel usage amount calculated by the fuel usage amount calculation unit 12b. As a result of the comparison, if the calculated fuel usage is lower than the lower limit of the read fuel usage, the calculated fuel usage is less than the fuel usage in the normal mode, that is, the eco usage lower than the normal mode. It can be considered that the range of fuel usage in the mode is good, and is not appropriate because it is not the fuel usage in the normal mode.
  • the main controller 11 receives the information on the load pressure detected by the load pressure sensor 60, the pilot pressure detected by the pilot pressure sensors 61 and 62, that is, the information on the operation command for the hydraulic excavator 20 by the operation lever device 43.
  • the communication device 11a is set to transmit to the base station side communication device 3g at a predetermined cycle.
  • the server 3 calculates the workload based on the load pressure information from the main controller 11 and the operation command information, and determines whether the workload calculated by the workload calculation unit 3c is appropriate. It further has a work load suitability determination means 3c for determining.
  • the work load suitability determining means 3c is calculated by the work load calculating means 3c from the work load lower limit associated with the work mode of the main controller 11 among the work load lower limits stored by the work load storage means 3f4. It is determined whether the workload is small, and if it is small, the workload is inappropriate.
  • the work load suitability determining means 3c determines the lower limit of the work load in the normal mode corresponding to the model of the excavator 20-1. Is read from the fuel usage amount storage means 3f3, and the lower limit of the read work load is compared with the work load calculated by the work load calculation means 3c. As a result of the comparison, if the calculated workload is lower than the lower limit of the read workload, the calculated workload is within the range of the workload in the eco mode, and the workload in the normal mode. Because it is not, it is determined to be inappropriate.
  • the server 3 is inadequate in the work mode of the main controller 11 by the work mode suitability determination means 3a, that is, the work mode of the main controller 11 has a higher upper limit of the target rotational speed than the work mode instructed by the input device 4.
  • the fuel usage amount determination means 3b determines that the fuel usage amount of the engine 50 is inappropriate, that is, the fuel usage amount of the engine 50 is small, and the workload appropriateness determination means 3c determines that the workload is inappropriate.
  • the main controller 11 is set to command the work mode commanded by the input device 4.
  • the server 3 further includes search means 3e for searching for a specific work machine using the registration information stored by the registration information storage means 3f1.
  • the server 3 is set to instruct the work mode only to the work machine found by the search means 3e.
  • the search condition is input to the server 3 when the staff operates the input device 4.
  • the main controller 11 further includes command mode storage means 11b2 for storing a work mode commanded from the server 3.
  • This command mode storage means 11b2 is provided using the auxiliary storage device 11b.
  • the work mode stored in the command mode storage unit 11b2 of the main controller 11 is set to be rewritten sequentially to a new work mode every time a new work mode is commanded from the server 3.
  • the main controller 11 is set to shift to the work mode stored in the command mode storage means 11b2 at the timing when the gate lock switch 63 detects the change of the valve position from the closed position to the open position.
  • the main controller 11 is connected to a monitor 70 provided in the cab 22a.
  • the monitor 70 displays which work mode is set to one of the three kinds of work modes in response to a command from the main controller 11.
  • the monitor 70 indicates that the work mode is set according to the command of the command switch 13. Is displayed.
  • the monitor 70 has the set work mode and the work mode is set in accordance with an instruction from the server 3. A message is displayed.
  • the remote management system 1 configured in this way operates as follows, for example.
  • the operator of the hydraulic excavator 20-1 operates a key switch (not shown) to start the engine 50 and then turns it on. As a result, the main controller 11 and the engine controller 12 are activated. At startup, the main controller 11 is set to the normal mode. The operator of the excavator 20-1 leaves the setting of the main controller 11 in the normal mode and causes the excavator 20-1 to perform normal excavation work.
  • the operator of the hydraulic excavator 20-2 starts the engine 50 and starts the main controller 11 and the engine controller 12 in the same manner as the operator of the hydraulic excavator 20-1.
  • the operator of the excavator 20-2 leaves the setting of the main controller 11 in the normal mode and causes the excavator 20-2 to perform a light load operation.
  • An instruction to set the work mode of the hydraulic excavators 20-1 and 20-2 to the eco mode is transmitted from the personal computer 6 of the company 5 to the server 3 of the base station 2 via the communication line network 7.
  • the staff of the base station 2 operates the input device 4 to input the search condition, operates the search means 3e of the server 3, and operates the hydraulic excavator 20-1, stored in the registration information storage means 3f1. Search for 20-2 information.
  • the server 3 is selected to select the eco mode among the three types of work modes stored by the work mode storage means 3f2, and the eco mode is instructed to the hydraulic excavators 20-1 and 20-2.
  • the server 3 determines the suitability of the work mode based on the work mode information of the excavator 20-1 by the work mode suitability determining means 3a. In addition, the server 3 determines the propriety of the fuel usage amount based on the fuel usage amount information of the excavator 20-1 by the fuel usage amount appropriateness determination means 3b. Similarly to these, the server 3 also determines the suitability of the work mode and the fuel usage of the excavator 20-2.
  • the server 3 calculates the work load of the hydraulic excavator 20-1 based on the load pressure information and the operation command information in the hydraulic excavator 20-1 by the work load calculating means 3c. Based on the load pressure information and the operation command information, the work load of the excavator 20-2 is calculated. Then, the server 3 determines the suitability of the work loads of the excavators 20-1 and 20-2 by the work load suitability determining means 3c.
  • the server 3 is instructed to set both the excavators 20-1 and 20-2 to the eco mode, but both the excavators 20-1 and 20-2 are set to the normal mode. Therefore, the determination result by the work mode suitability determination means 3a is inappropriate for both the hydraulic excavators 20-1 and 20-2.
  • the excavator 20-1 performs normal excavation work in the normal mode. Accordingly, the determination results by the fuel use amount suitability determining means 3b and the work load suitability determining means 3c are appropriate.
  • the hydraulic excavator 20-2 performs light load work in the normal mode. Accordingly, the determination results of the fuel use amount suitability determining means 3b and the work load suitability determining means 3c are all inappropriate.
  • the determination result by the work mode suitability determination means 3a is inappropriate for the hydraulic excavator 20-1, but the determination results of the fuel use amount suitability determination means 3b and the work load suitability determination means 3c are both appropriate. Therefore, the main controller 11 of the excavator 20-1 is not instructed to switch to the eco mode.
  • the server 3 is not suitable for the hydraulic excavator 20-2 because the determination results of the work mode suitability judging means 3a, the fuel usage suitability judging means 3b and the work load suitability judging means 3c are all inappropriate.
  • the main controller 11 of 20-2 is instructed to switch to the eco mode by the base station side communication device 3g.
  • the main controller 11 of the excavator 20-2 receives the command for switching to the eco mode from the machine side communication device 11a during the operation of the excavator 20-2, and stores the command in the command mode storage unit 11b2.
  • the operator stops the excavator 20-2 for a break and operates the gate lock lever 48 to switch the valve position of the gate lock valve 47 from the open position to the closed position. As the valve position changes, the gate lock switch 63 is turned off.
  • the operator operates the gate lock lever 48 of the excavator 20-2 to switch the valve position of the gate lock valve 47 from the closed position to the open position.
  • the gate lock switch 63 is turned on.
  • the target revolution number calculating means 11c of the main controller 11 is the operation mode stored in the command mode storage means 11b2 during the operation of the hydraulic excavator 20-2 before the break at the timing when the ON signal from the gate lock switch 63 is input. That is, the target rotational speed is calculated based on the eco mode. As a result, the engine speed of the excavator 20-2 is lower than that in the normal mode selected by the operator.
  • the remote management system 1 since the work mode can be commanded by communication from the server 3 of the base station 2 to the main controller 11, the upper limit of the engine speed of the hydraulic excavators 20-1 to 20-N is set by the operator. Can be prioritized. Moreover, since it can be set by remote control from the base station 2, the engine speed can be appropriately managed even when there are many hydraulic excavators or when the manager is located away from the work machine.
  • the work mode of the main controller 11 is a work mode in which the upper limit of the target rotational speed is higher than the work mode commanded by the input device 4 of the base station 2, that is, the work of the main controller 11.
  • the server 3 instructs the main controller 11 in the work mode instructed by the input device 4.
  • the upper limit of the engine speed can be reduced, and therefore the amount of fuel used per unit time can be reduced.
  • the fuel usage calculation unit 12 b uses the lower limit of the fuel usage stored in the fuel usage storage 3 f 3 than the lower limit of the fuel usage associated with the work mode of the main controller 11.
  • the server 3 sets the work mode commanded by the input device 4 to the main controller. 11 to command. As a result, the amount of fuel used per unit time can be reliably reduced.
  • the work load calculated by the work load calculating means 3c is lower than the work load lower limit associated with the work mode of the main controller 11 among the work load lower limits stored by the work load storage means 3f4.
  • the work mode of the main controller 11 is more desirable than the work mode determined by the work load suitability determining means 3c, that is, that the work load is inappropriate, and instructed by the input device 4 of the base station 2.
  • the main controller 11 is commanded to the work mode commanded by the input device 4.
  • the server 3 commands the work mode only to the specific excavator searched by the search means 3e. As a result, it is possible to determine whether or not to lower the upper limit of the target rotational speed individually for the plurality of hydraulic excavators 20-1 to 20-N.
  • the search by the search means 3e can be performed under conditions such as the work mode, fuel consumption, load pressure, etc. set by the command switch 13.
  • the control means 10 main controller 11
  • the command mode storage means 11b2 at the timing when the gate lock switch 63 (gate lock detection means) detects the change of the valve position from the closed position to the open position.
  • the timing at which the gate lock switch 63 detects the valve position from the closed position to the open position is immediately after the pilot pressure can be supplied to the control valve 41, and the valve position of the control valve 41 is the oil discharged from the main pump.
  • the hydraulic excavator is stopped because it is not the valve position that leads to the hydraulic actuator. That is, the control means 10 shifts to the work mode stored by the command mode storage means 11b2 while the excavator is stopped. Thereby, it is possible to prevent the engine speed from suddenly decreasing during the operation of the hydraulic excavator, and thus it is possible to safely lower the upper limit of the engine speed.
  • the work mode management means controls the control means (main controller 11).
  • the present invention is not limited to this.
  • the command mode storage means stores the work mode commanded from the server 3. 11b2, and the control means 10 is set to shift to the work mode stored in the command mode storage means 11b2 at the timing when the gate lock switch 63 detects the change of the valve position from the closed position to the open position.
  • the command mode storage means and the target rotational speed calculation means in the present invention are not limited to them.
  • the command mode storage unit 11b2 stores the work mode commanded from the server 3 when the control unit 10 (main controller 11) is shut down.
  • the control unit 10 is stored by the command mode storage unit 11b2 at the start timing. It may be set to shift to the work mode.
  • the main controller 11 Since the main controller 11 is started before the engine 50 is started or immediately after the engine 50 is started, the hydraulic excavator is stopped. That is, the control means 10 shifts to the work mode stored by the command mode storage means 11b2 while the excavator is stopped. As a result, similar to the above-described embodiment, it is possible to prevent the engine speed from suddenly decreasing during the operation of the hydraulic excavator, and thus it is possible to safely lower the upper limit of the engine speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

【課題】エンジン回転数の上限をオペレータによるその上限の設定よりも優先して遠隔管理できる作業機械の遠隔管理システムを提供すること。 【解決手段】油圧ショベルは制御手段10と、3種類の作業モードを選択的に指令する指令スイッチ13とを有し、制御手段10は各作業モードに対応付けられた目標回転数の上限を記憶した目標回転数記憶手段11b1と、記憶された目標回転数の上限のうちの1つを指令スイッチ13による指令に応じ選択し、その上限以下の範囲の目標回転数を演算する目標回転数演算手段11cと、通信装置11aとを有する。基地局2のサーバ3は、作業モード記憶手段3f2により記憶された作業モードの中から1つを入力装置4による指令に応じて選択し通信装置3gを用いて制御手段10に指令する。目標回転数演算手段11cはサーバ3から作業モードを指令された場合、その作業モードに基づき目標回転数を演算する。

Description

作業機械の遠隔管理システム
 本発明は、作業機械から離れて位置する基地局において作業機械を遠隔管理する作業機械の遠隔管理システムに関する。
 油圧ショベル等の作業機械は、油圧アクチュエータ(油圧シリンダ、油圧モータ)に圧油を供給する油圧ポンプを備えている。この油圧ポンプはエンジンを駆動源としている。このエンジンは電子制御されるものである。その電子制御を行うエンジンコントローラは、予め複数種類設定されたエンジンの目標回転数の上限と、各上限に対応付けられた作業モードとを記憶した記憶手段と、この記憶手段により記憶された目標回転数の上限の1つを選択してエンジン回転数を制御する制御手段とを有する。作業機械の運転室内には、オペレータにより操作されて作業モードを指令する作業モード指令手段としてのスイッチが設けられている。エンジンコントローラは、そのスイッチからの指令に応じて、作業モードに対応する目標回転数の上限を選択する。つまり、作業機械で行おうとしている作業に必要なエンジン出力に応じてエンジンの目標回転数の上限を複数種類の中から選択することにより、エンジン出力の無駄を低減し、経済的に作業機械を使用できるようになっている。
 しかし、作業内容が変更される度に作業モードを変更することはオペレータにとって煩わしい。このため、オペレータは必要なエンジン回転数よりも高い上限の目標回転数が選択される作業モードをエンジンコントローラに指令したまま放置する傾向にあり、目標回転数の上限の変更が適切に行われないという問題が生じた。
 そこで、従来、作業機械の所有者等の管理者がオペレータによる作業モードの選択を制限する手段が考案されている。この手段は、前出の作業モード指令手段としてのスイッチとともに運転室に設けられ暗証番号を入力可能な操作パネルと、この操作パネルによる暗証番号の入力を契機に作業モードの変更を許可する状態、および作業モードの変更を制限する状態の一方の状態にコントローラを設定する変更管理部とを有する。(特許文献1参照)
 また、従来、作業機械の遠隔管理システムには、油圧ショベルに備えられた制御装置の制御プログラムおよびデータを、通信回線を介して基地局のサーバで管理するものがある。この種の遠隔管理システムには、油圧ショベルのフロント作業装置のアタッチメントを交換した場合に、すなわち、標準サイズのバケットを幅広バケットまたはブレーカに交換したり、標準サイズのアームをロングアームに交換したりした場合に、制御装置に記憶された標準サイズのバケットを有するフロント作業装置の制御に対応した制御プログラムおよびデータを、幅広バケットまたはブレーカを有するフロント作業装置の制御に対応した内容に書き換えたり、標準サイズのアームを有するフロント作業装置の制御に対応した制御プログラムおよびデータを、ロングアームを有するフロント作業装置の制御に対応した内容に書き換えたりするものがある。
 その遠隔管理システムにおいて、油圧ショベルの制御装置は通信装置(以下「機械側通信装置」という)を有し、基地局は、サーバと、油圧ショベルの号機、各号機の機種、機種ごとの標準の制御プログラムおよびデータ、機種ごとの各種アタッチメント対応した制御プログラムおよびデータ等を記憶した記憶装置とを有する。サーバに備えられた通信装置(以下「基地局側通信装置」という)に対して、油圧ショベルの制御装置が機械側通信装置によりアタッチメントの交換に係る情報を送信する。この情報を受信したサーバは記憶装置により記憶された情報を用いて、アタッチメントの交換に係る情報の送信元である油圧ショベルの号機の特定し、特定された油圧ショベルの交換後のアタッチメントに対応する制御プログラムおよびデータを選択し、これらの制御プログラムおよびデータを基地局側通信装置により送信元の油圧ショベルの機械側通信装置に送信して、その油圧ショベルの制御装置に制御プログラムおよびデータを書き換えさせる。(特許文献2参照)
国際公開第01/073218号パンフレット 特開2006-226255号公報
 特許文献1に開示されているような作業機械においては、作業機械の運転室内において作業モードを制限するための入力作業を行う必要がある。このため、作業機械が多数ある場合、作業機械が離れた場所にある場合には、その入力作業は煩わしい。そこで、特許文献2に開示されたような作業機械の遠隔管理システムのように、基地局から通信により作業モードを管理することが要望されている。
 本発明の目的は、エンジン回転数の上限をオペレータによるその上限の設定よりも優先して遠隔管理できる作業機械の遠隔管理システムを提供することにある。
 前述の目的を達成するために本発明に係る作業機械の遠隔管理システムは次のように構成されている。
〔1〕 本発明に係る作業機械と基地局とを備えた作業機械の遠隔管理システムは、前記作業機械は、複数の油圧アクチュエータに供給される圧油を吐出する油圧ポンプの駆動源であるエンジンと、このエンジンの回転数の制御を行う制御手段と、前記制御手段に対し複数種類の作業モードを選択的に指令する機械側作業モード指令手段とを有し、前記制御手段は、前記複数種類の作業モードのそれぞれに対応付けられたエンジンの目標回転数の上限を予め記憶した目標回転数記憶手段と、前記目標回転数記憶手段により記憶された目標回転数の上限の1つを、前記機械側作業モード指令手段により指令された作業モードに応じて選択し、選択した上限以下の目標回転数を演算する目標回転数演算手段と、機械側通信装置とを有し、前記基地局は、前記作業機械の作業モードの種類を予め記憶した作業モード記憶手段と、前記作業モード記憶手段に記憶された作業モードの中から所望の作業モードを選択する基地局側作業モード指令手段と、前記機械側通信装置と通信可能な基地局側通信装置と、前記基地局側作業モード指令手段によって選択された作業モードを、前記基地局側通信装置を介して前記制御手段に対して指令可能な作業モード管理手段とを有し、前記作業機械の前記目標回転数演算手段は、前記基地局の前記作業モード管理手段により前記制御手段に対し作業モードが指令された場合に、前記作業モード管理手段により指令された作業モードに基づいて目標回転数を演算するよう設定されていることを特徴とする。
 この「〔1〕」に記載の作業機械の遠隔管理システムにおいて、作業機械側では目標回転数の上限を設定する際、機械側作業モード指令手段を用いて所望の作業モードを選択し制御手段に指令する。これにより、制御手段の目標回転数演算手段は、目標回転数記憶手段により記憶された目標回転数の上限の1つを、機械側作業モード指令手段により指令された作業モードに応じて選択し、選択した上限以下の目標回転数を演算する。一方、基地局側では、作業機械の所有者等の管理者の依頼に応じ、基地局側作業モード指令手段を用いて、所望の作業モードを選択し、作業モード記憶手段により記憶された作業モードの1つを選択させる。そして、作業モード管理手段は、選択された作業モードを基地局側通信装置により機械側通信装置に送信し、これにより制御手段に対して作業モードが指令される。この結果、目標回転数演算手段は、基地局側の作業モード管理手段により指令された作業モードに基づいて目標回転数を演算する状態になる。したがって、エンジン回転数の上限をオペレータによるその上限の設定よりも優先して遠隔管理できる。
〔2〕 本発明に係る作業機械の遠隔管理システムは、「〔1〕」に記載の作業機械の遠隔管理システムにおいて、前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報を、前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、前記基地局側通信装置により受信した前記制御手段の作業モードの情報に基づいて、前記制御手段に指令されている作業モードの適否を判定する作業モード適否判定手段をさらに有し、この作業モード適否判定手段は、前記基地局側作業モード指令手段により指令された作業モードよりも前記制御手段の作業モードの方が目標回転数の上限が高い作業モードであるかどうかを判定し、高い作業モードである場合に、前記機械側作業モード指令手段によって前記制御手段に指令されている作業モードを不適当と判定し、前記作業モード管理手段は、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする。
 この「〔2〕」に記載の作業機械の遠隔管理システムにおいては、基地局側作業モード指令手段により指令された作業モードよりも制御手段の作業モードの方が目標回転数の上限が高い作業モードである、すなわち、制御手段の作業モードは不適当である、と作業モード適否判定手段により判定された場合に、作業モード管理手段は、基地局側作業モード指令手段により指令された作業モードを制御手段に対して指令する。これにより、エンジン回転数の上限を低下させることができ、したがってエンジンにおける単位時間当たりの燃料使用量を減少させることができる。
〔3〕 本発明に係る作業機械の遠隔管理システムは、「〔2〕」に記載の作業機械の遠隔管理システムにおいて、前記制御手段は、単位時間当たりの前記エンジンの燃料使用量を演算する燃料使用量演算手段をさらに有し、前記機械側作業モード指令手段により指令された作業モードの情報と、前記燃料使用量演算手段により算出された燃料使用量の情報とを前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けられて予め設定された単位時間当たりの燃料使用量の下限を記憶した燃料使用量記憶手段と、前記エンジンの燃料使用量の適否を判定する燃料使用量適否判定手段とをさらに有し、前記燃料使用量適否判定手段は、前記燃料使用量記憶手段に記憶されている前記制御手段の作業モードに対応する燃料使用量の下限よりも、前記制御手段の前記燃料使用量演算手段により算出された燃料使用量が少ないかどうかを判定し、少ない場合に燃料使用量を不適当とし、前記作業モード管理手段は、前記燃料使用量適否判定手段により前記エンジンの燃料使用量が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする。
 この「〔3〕」に記載の作業機械の遠隔管理システムにおいては、燃料使用量記憶手段により記憶された制御手段の作業モードに対応する燃料使用量の下限よりも、燃料使用量演算手段により算出された燃料使用量が少ないこと、すなわち燃料使用量が不適当であることが燃料使用量適否判定手段により判定され、かつ、基地局側作業モード指令手段により指令された作業モードよりも制御手段に指令されている作業モードの方が目標回転数の上限が高い作業モードである、すなわち、制御手段の作業モードは不適当である、と作業モード適否判定手段により判定された場合に、作業モード管理手段は、基地局側作業モード指令手段により指令された作業モードを制御手段に対して指令する。これにより、単位時間当たりの燃料使用量を確実に減少させることができる。
〔4〕 本発明に係る作業機械の遠隔管理システムは、「〔2〕」に記載の作業機械の遠隔管理システムにおいて、前記作業機械は、前記油圧ポンプの負荷圧を検出する負荷圧検出手段と、前記複数の油圧アクチュエータのそれぞれに対する動作の指令を検出する複数の動作指令検出手段とをさらに有し、前記目標回転数演算手段は、前記負荷圧検出手段により検出された負荷圧と、前記複数の動作指令検出手段のそれぞれにより検出された動作の指令とに基づいて、作業モードに対応付けられた目標回転数の上限以下の目標回転数を算出するよう設定されており、前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報、前記負荷圧の情報、前記動作の指令の情報を、前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けて予め設定された作業負荷の下限を記憶した作業負荷記憶手段と、前記制御手段からの前記負荷圧の情報と前記動作の指令とに基づいて作業負荷を演算する作業負荷演算手段と、この作業負荷演算手段により算出された作業負荷の適否を判定する作業負荷適否判定手段とをさらに有し、前記作業負荷適否判定手段は、前記作業負荷記憶手段により記憶された前記制御手段の作業モードに対応する作業負荷の下限よりも、前記作業負荷演算手段により算出された作業負荷が小さいかどうかを判定し、小さい場合に作業負荷を不適当とし、前記作業モード管理手段は、前記作業負荷適否判定手段により作業負荷が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする。
 この「〔4〕」に記載の作業機械の遠隔管理システムにおいては、作業負荷記憶手段により記憶された制御手段の作業モードに対応する作業負荷の下限よりも、作業負荷演算手段により算出された作業負荷が小さい、すなわち作業負荷が不適当である、と作業負荷適否判定手段により判定され、かつ、基地局側作業モード指令手段により指令された作業モードよりも制御手段に指令された作業モードの方が目標回転数の上限が高い作業モードである、すなわち、制御手段の作業モードは不適当である、と作業モード適否判定手段により判定された場合に、基地局側作業モード指令手段により指令された作業モードを制御手段に対して指令する。これにより、基地局から制御手段に対して指令しようとしている作業モードに対して過大な作業負荷が作業機械に与えられる場合には、目標回転数の上限を下げる作業モードが指令されることがなく、作業機械の作業効率が低下するという事態の発生を防止できる。
〔5〕 本発明に係る作業機械の遠隔管理システムは、「〔2〕」に記載の作業機械の遠隔管理システムにおいて、前記作業機械は、前記油圧ポンプの負荷圧を検出する負荷圧検出手段と、前記複数の油圧アクチュエータのそれぞれに対する動作の指令を検出する複数の動作指令検出手段とをさらに有し、前記目標回転数演算手段は、前記負荷圧検出手段により検出された負荷圧と、前記複数の動作指令検出手段のそれぞれにより検出された動作の指令とに基づいて、作業モードに対応付けられた目標回転数の上限以下の目標回転数を算出するよう設定されており、前記制御手段は、単位時間当たりの前記エンジンの燃料使用量を演算する燃料使用量演算手段を有し、前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報、前記負荷圧の情報、前記動作の指令の情報、および前記燃料使用量演算手段により算出された燃料使用量の情報とを前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けられて予め設定された単位時間当たりの燃料使用量の下限を記憶した燃料使用量記憶手段と、前記エンジンの燃料使用量の適否を判定する燃料使用量適否判定手段と、複数種類の作業モードのそれぞれに対応付けられて予め設定された作業負荷の下限を記憶した作業負荷記憶手段と、前記制御手段からの前記負荷圧の情報と前記動作の指令とに基づいて作業負荷を演算する作業負荷演算手段と、この作業負荷演算手段により算出された作業負荷の適否を判定する作業負荷適否判定手段とをさらに有し、前記燃料使用量適否判定手段は、前記燃料使用量記憶手段に記憶された前記制御手段の作業モードに対応する燃料使用量の下限よりも、前記制御手段の前記燃料使用量演算手段により算出された燃料使用量が少ないかどうかを判定し、少ない場合に燃料使用量を不適当とし、前記作業負荷適否判定手段は、前記作業負荷記憶手段に記憶された前記制御手段の作業モードに対応する作業負荷の下限よりも、前記作業負荷演算手段により算出された作業負荷が小さいかどうかを判定し、小さい場合に作業負荷を不適当とし、前記作業モード管理手段は、前記燃料使用量適否判定手段により前記エンジンの燃料使用量が不適当と判定され、かつ、前記作業負荷適否判定手段により作業負荷が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする。
 この「〔5〕」に記載の作業機械の遠隔管理システムにおいては、燃料使用量記憶手段に記憶された制御手段の作業モードに対応付けられた燃料使用量の下限よりも、燃料使用量演算手段により算出された燃料使用量が少ない、すなわち燃料使用量が不適当である、と燃料使用量適否判定手段により判定され、かつ、作業負荷記憶手段に記憶された制御手段の作業モードに対応付けられた作業負荷の下限よりも、作業負荷演算手段により算出された作業負荷が小さい、すなわち、作業負荷が不適当である、と作業負荷適否判定手段により判定され、かつ、基地局側作業モード指令手段により指令された作業モードよりも制御手段の作業モードの方が目標回転数の上限が高い作業モードである、すなわち、制御手段の作業モードは不適当である、と作業モード適否判定手段により判定された場合に、基地局側作業モード指令手段により指令された作業モードを制御手段に対して指令する。これにより、単位時間当たりの燃料使用量を確実に減少させることができるとともに作業効率が低下するという事態の発生を防止することができる。
〔6〕 本発明に係る作業機械の遠隔管理システムは、「〔1〕」~「〔5〕」のいずれか1に記載の作業機械の遠隔管理システムにおいて、前記基地局は、複数の作業機械の登録情報を予め記憶した登録情報記憶手段と、この登録情報記憶手段により記憶された登録情報を用いて、特定の作業機械を検索する検索手段とをさらに有し、前記作業モード管理手段は、前記検索手段により探し出された作業機械のみに対して作業モードを指令するよう設定されていることを特徴とする。
 この「〔6〕」に記載の作業機械の遠隔管理システムにおいては、作業モード管理手段は、検索手段により探し出された作業機械のみに対して作業モードを指令する。これにより、複数の作業機械に対し個別に目標回転数の上限を下げるかどうかを決定することができる。
〔7〕 本発明に係る作業機械の遠隔管理システムは、「〔1〕」に記載の作業機械の遠隔管理システムにおいて、前記制御手段が基地局の作業モード管理手段により指令された作業モードに移行するタイミングは、前記作業機械の停止中になるよう設定されていることを特徴とする。
 この「〔7〕」に記載の作業機械の遠隔管理システムは、作業機械の作業中に突然にエンジン回転数が低下することを防止でき、したがって、エンジン回転数の上限を安全に下げることができる。
〔8〕 本発明に係る作業機械の遠隔管理システムは、「〔7〕」に記載の作業機械の遠隔管理システムにおいて、前記制御手段は、この制御手段のシャットダウン時に基地局の前記作業モード管理手段から指令されていた作業モードを記憶する指令モード記憶手段をさらに有し、前記制御手段の起動するタイミングで、前記指令モード記憶手段により記憶された作業モードに移行するよう設定されていることを特徴とする。
 この「〔8〕」に記載の作業機械の遠隔管理システムにおいて、目標回転数演算手段は、制御手段の起動するタイミングで、指令モード記憶手段により記憶された作業モードに基づいて目標回転数を演算する状態に移行する。制御手段の起動時は、エンジンの始動前、またはエンジンの始動直後であるから、作業機械は停止中である。つまり、制御手段を、作業機械の停止中に、指令モード記憶手段により記憶された作業モードに移行させることができる。
〔9〕 本発明に係る作業機械の遠隔管理システムは、「〔7〕」に記載の作業機械の遠隔管理システムにおいて、前記作業機械は、前記複数の油圧アクチュエータのそれぞれに対して設けられ、対応する油圧アクチュエータに供給される圧油の流れの方向および流量を制御する油圧パイロット式制御弁と、これらの油圧パイロット式制御弁へのパイロット圧の供給を遮断可能なゲートロック弁と、このゲートロック弁の弁位置がパイロット圧を遮断する閉位置であるのか、パイロット圧を開放する開位置であるのかを検知するゲートロック検知手段とをさらに有し、前記制御手段は、前記ゲートロック検知手段が開位置から閉位置への弁位置の変化を検知したときに基地局の前記作業モード管理手段から指令されていた作業モードを記憶する指令モード記憶手段をさらに有し、前記ゲートロック検知手段が閉位置から開位置への弁位置の変化を検知したタイミングで、前記指令モード記憶手段により記憶された作業モードに移行するよう設定されていることを特徴とする。
 この「〔9〕」に記載の作業機械の遠隔管理システムにおいて、目標回転数演算手段は、ゲートロック検知手段が閉位置から開位置への弁位置の変化を検知したタイミングで、指令モード記憶手段により記憶された作業モードに基づいて目標回転数を演算する状態に移行する。ゲートロック検知手段が閉位置から開位置への弁位置の変化を検知したタイミングは、油圧パイロット式制御弁へのパイロット圧の供給が可能になった直後のときであり、このとき、油圧パイロット式制御弁の弁位置は油圧ポンプの吐出油を油圧アクチュエータに導く弁位置ではないから、作業機械は停止中である。つまり、制御手段を、作業機械の停止中に、指令モード記憶手段により記憶された作業モードに移行させることができる。
 本発明によれば、エンジン回転数の上限を設定する作業モードを作業機械側のみでなく、基地局側からも設定可能とし、しかも条件に応じて基地局側からの設定を優先するようにしたので作業機械が基地局から離れている場合や管理すべき作業機械が多数ある場合でもエンジンの回転数を適切な作業モードに管理することができる。
本発明の一実施形態に係る遠隔管理システムの全体構成を示すブロック図である。 図1に示した遠隔管理システムにより遠隔管理される作業機械である油圧ショベルの左側面図である。 図2に示した油圧ショベルに備えられた制御手段の構成、および、基地局の構成の詳細を示すブロック図である。
 本発明の一実施形態について図1~図3を用いて説明する。
 図1に示すように、本実施形態に係る作業機械の遠隔管理システム1は、基地局2を有する。この基地局2には、サーバ3が設けられている。このサーバ3は通信回線網7を介して作業機械である油圧ショベル20-1~20-Nと、これらの油圧ショベル20-1~20-Nを所有する会社5(作業機械のレンタル会社およびリース会社、建設会社など)のパソコン6とに接続可能である。
 図2に示すように、油圧ショベル20-1~20-Nは、履帯を駆動して走行する走行体21と、走行体21に旋回自在に結合している旋回体22と、旋回体22の前部の略中央に設けられたフロント作業装置23とを有する。旋回体22は、フロント作業装置23の左側方に設けられた運転室22aと、旋回体22の後端部を形成しているカウンタウェイト22bと、運転室22aの後方からカウンタウェイト22bの間に亘って形成された機械室22cとを有する。フロント作業装置23はバックホウタイプであり、旋回体22の前部に上下方向に回動自在に結合しているブーム23aと、このブーム23aに回動自在に結合しているアーム23bと、このアーム23bに回動自在に結合しているバケット23cとを有する。
 油圧ショベル20-1~20-Nは、走行体21、旋回体22、フロント作業装置23をそれぞれ駆動するための複数の油圧アクチュエータを備えている。それら複数の油圧アクチュエータは、具体的には、走行体21の左右の履帯をそれぞれ駆動する左走行モータ(図示してない)および右走行モータ(図示してない)、旋回体22を駆動する旋回モータ(図示してない)、ブーム23aを駆動するブームシリンダ31、アーム23bを駆動するアームシリンダ32、バケット23cを駆動するバケットシリンダ33である。これらの油圧アクチュエータには、図3に示すメインポンプ40(可変容量型油圧ポンプ)の吐出油が供給される。このメインポンプ40はエンジン50により駆動される。
 メインポンプ40と左走行モータとの間、メインポンプ40と右走行モータとの間、メインポンプ40と旋回モータとの間、メインポンプ40とブームシリンダ23aとの間、メインポンプ40とアームシリンダ23bとの間、メインポンプ40とバケットシリンダ23cとの間のそれぞれにはそれらの油圧アクチュエータの動作を制御する油圧パイロット式制御弁が設けられている。各制御弁は、それぞれ左走行モータ、右走行モータ、旋回モータ、ブームシリンダ23a、アームシリンダ23bおよびバケットシリンダ23などの油圧アクチュエータに供給される圧油の流れの方向と流量を制御するものである。図3には、図の簡略化のため、それらの制御弁のうちの1つを制御弁41として描いたものである。
 エンジン50はメインポンプ40とともにパイロットポンプ42(固定容量型油圧ポンプ)も駆動している。運転室22a内には、図示してないが、パイロットポンプ42から吐出される圧油から前述した複数の制御弁のそれぞれの操作圧(パイロット圧)を生成する複数の操作レバー装置、すなわち左走行操作レバー装置、右走行操作レバー装置、旋回・アーム操作レバー装置、ブーム・バケット操作レバー装置が設けられている。
 図3には、図の簡略化のため、それらの操作レバー装置のうち、制御弁41を操作する操作レバー装置を操作レバー装置43として描くものとする。この操作レバー装置43から制御弁41の油圧パイロット部41a,41bにパイロット圧を導くパイロット管路44,45には、油圧アクチュエータへの動作の指令としてのパイロット圧を検出し、そのパイロット圧に相応するパイロット圧信号(電気信号)を出力する動作指令検出手段としてのパイロット圧センサ61,62(圧力センサ)が設けられている。1つの油圧パイロット部につき1つのパイロット圧センサが設けられている。
 パイロットポンプ42から操作レバー装置43に圧油を導く管路46には、制御弁41へのパイロット圧の供給を一括して遮断可能なゲートロック弁47と、このゲートロック弁47の弁位置がパイロット圧を遮断する閉位置であるのか、パイロット圧を開放する開位置であるのかを検知するゲートロック検知手段としてのゲートロックスイッチ63(例えばリミットスイッチ)とが設けられている。ゲートロックスイッチ63は閉位置でオフし開位置でオンしてオン信号(電気信号)を出力する。ゲートロック弁47の弁位置は、運転室22a内に設けられたゲートロックレバー48の姿勢に連動して、閉位置および開位置に選択的に切り換わる。
 メインポンプ40には、このメインポンプ40の負荷圧を検出し、その負荷圧に相応する負荷圧信号(電気信号)を出力する負荷圧センサ60(圧力センサ)が設けられている。
 運転室22a内にはECダイヤル装置14が設けられている。このECダイヤル装置14はダイヤルの回動角度を、予め設定されたエンジンの目標回転数の範囲内の値に相応する回転数指令信号(電気信号)に変換して出力する。このECダイヤル装置14により指令可能な目標回転数の上限は例えば1800rpmである。
 運転室22a内には複数種類の作業モード、例えば3種類の作業モード(エコノミーモード、通常モード、パワーモード)を選択的に指令する機械側作業モード指令手段としての指令スイッチ13を備えている。この指令スイッチ13は、セルフリターンタイプのプッシュスイッチであり、プッシュ操作されてオンすると作業モード指令信号(電気信号)を出力する。
 パイロット圧センサ61,62から出力されるパイロット圧信号、ゲートロックスイッチ63から出力されるオン信号、負荷圧センサ60から出力される負荷圧信号、および、ECダイヤル装置14から出力される回転数指令信号、指令スイッチ13から出力される作業モード指令信号はすべてメインコントローラ11に入力される。
 メインコントローラ11は油圧ショベル20-1~20-Nのそれぞれに設けられている。メインコントローラ11は、CPU(Central Processing Unit)、プログラムおよびデータを記憶したROM(Read Only Memory)、CPUの作業領域として利用されるRAM(Random Access Memory)、ROMとは別にプログラムおよびデータを記憶した補助記憶装置11b等を備えたものであり、ROMまたは補助記憶装置11bに記憶されたプログラムおよびデータをCPUが読み出して、エンジン50の目標回転数の演算および指令に関する処理を実行するものである。
 エンジン50には、エンジン回転数の電子制御を行うエンジンコントローラ12が付設されている。メインコントローラ11は目標回転数を算出して、エンジンコントローラ12に与える。エンジンコントローラ12は、CPU、プログラムおよびデータを記憶したROM、CPUの作業領域として利用されるRAM、ROMとは別にプログラムおよびデータを記憶した補助記憶装置等を備えたものであり、ROMまたは補助記憶装置に記憶されたプログラムおよびデータをCPUが読み出し、メインコントローラ11から指令される目標回転数に応じてエンジン50の回転数の制御のための処理を実行するものである。
 メインコントローラ11とエンジンコントローラ12は、エンジン50の回転数を制御する制御手段10を構成している。
 基地局2および制御手段10の構成の詳細について次に説明する。
 メインコントローラ11は、前出の3種類の作業モード、すなわちエコモード、通常モード、パワーモードのそれぞれに対応付けられたエンジン50の目標回転数の上限を予め記憶した目標回転数記憶手段11b1を有する。この目標回転数記憶手段11b1は補助記憶装置11bを利用して設けられたものである。エコモードに対応付けられた目標回転数の上限は、地均しなどの軽負荷作業が行えるよう設定された例えば1650rpmである。通常モードに対応付けられた目標回転数の上限は、ダンプ積みなどで行う通常の掘削作業が行えるよう設定された、エコモードよりも高い回転数、例えば1800rpmである。パワーモードに対応付けられた目標回転数の上限は、根起しや深堀りなどの重負荷作業が行えるよう設定された、通常モードよりも高い回転数、例えば2000rmpである。
 メインコントローラ11は、目標回転数を演算する目標回転数演算手段11cをさらに有する。この目標回転数演算手段11cは、目標回転数記憶手段11b1により記憶された目標回転数の上限の1つを、指令スイッチ13(機械側作業モード指令手段)により指令された作業モードに応じて選択し、選択した上限以下の範囲で、負荷圧センサ60(負荷圧検出手段)により検出された負荷圧と、パイロット圧力センサ61,62(動作指令検出手段)により検出されたパイロット圧(動作の指令)とに基づいて、作業モードに対応付けられた目標回転数を算出するよう設定されている。
 なお、目標回転数演算手段11cは、ECダイヤル装置14により指令された目標回転数に関係なく、作業モードに対応付けられた目標回転数の上限を、目標回転数の上限として目標回転数の演算を行う。つまり、目標回転数の上限として1650rpmが対応付けられたエコモードにメインコントローラ11が設定された場合、ECダイヤル装置14が目標回転数として1800rpmを指令していても、目標回転数演算手段11cにより算出される目標回転数の上限は1650rpmとなる。また、目標回転数の上限として2000rpmが対応付けられたパワーモードにメインコントローラ11が設定された場合、ECダイヤル装置14が目標回転数として1800rpmを指令していても、目標回転数演算手段11cにより算出される目標回転数の上限は2000rpmとなる。
 メインコントローラ11は、基本的には起動時に、通常モードに設定される。この状態で指令スイッチ13の作業モード指令信号がメインコントローラ11に入力されると、メインコントローラ11はパワーモードに移行し、再度指令スイッチ13の作業モード指令信号がメインコントローラ11に入力されると、エコモードに移行し、再々度指令スイッチ13の作業モード指令信号がメインコントローラ11に入力されると、通常モードに戻る。つまり、指令スイッチ13の作業モード指令信号がメインコントローラ11に入力されることを契機に、目標回転数の上限を規定する作業モードが、通常モード→パワーモード→エコモード→・・・と切り換わるよう設定されている。なお、メインコントローラ11の起動時に通常モードに設定されない場合もある。この場合については後述する。
 メインコントローラ11は、通信回線網7を介して外部の通信装置と通信可能な機械側通信装置11aをさらに有する。この機械側通信装置11aは、無線により通信を行うものである。
 基地局2のサーバ3は、CPU、プログラムおよびデータを記憶したROM、CPUの作業領域として利用されるRAM、ROMとは別にプログラムおよびデータを記憶した補助記憶装置等を備えたものであり、ROMまたは補助記憶装置3fに記憶されたプログラムおよびデータをCPUが読み出して、油圧ショベル20-1~20-Nのそれぞれのメインコントローラ11の作業モードの管理に関する処理を実行するものである。
 サーバ3は、油圧ショベル20-1~20-Nのそれぞれの登録情報、すなわち号機(1号~N号)および各号機の機種を予め記憶した登録情報記憶手段3f1と、3種の作業モード(エコモード、通常モード、パワーモード)と、各モードに対応付けられた目標回転数の上限とを予め記憶した作業モード記憶手段3f2と、3種類の作業モードのそれぞれに対応付けられて予め設定された単位時間当たりの燃料使用量の下限を記憶した燃料使用量記憶手段3f3と、3種類の作業モードのそれぞれに対応付けられて予め設定された作業負荷の下限を記憶した作業負荷記憶手段3f4とをさらに有する。これらの記憶手段3f1~3f4はいずれも、補助記憶装置3fを利用して設けられている。なお、燃料使用量の下限および作業負荷の下限は、機種ごとに、その機種のスペックを考慮して設定されたものである。
 サーバ3は、機械側通信装置11aを含む外部の通信装置と通信可能な基地局側通信装置3gをさらに有する。この基地局側通信装置3gを用いて、前述したように通信回線網7を介して油圧ショベル20-1~20-N、および、これらの油圧ショベル20-1~20-Nを所有する会社5のパソコン6などに接続可能である。サーバ3は、基地局側通信装置3gを用いた制御手段10(メインコントローラ11)との間の通信により、作業モード記憶手段3f2に記憶された作業モードの種類の中から選択した作業モードを、メインコントローラ11に対して指令することが可能な作業モード管理手段である。
 基地局2は、作業モード記憶手段3f2により記憶された作業モードの種類の中から選択させる作業モードを、サーバ3に対して指令する基地局側作業モード指令手段としての入力装置4(マウス、キーボード)をさらに有する。基地局2に対し会社5から作業モードをある作業モードに指定するよう依頼があった場合、基地局2のスタッフが入力装置4を操作して、指定された作業モードをサーバ3が選択するように設定する。サーバ3は選択した作業モードを、基地局側通信装置3gにより機械側通信装置11aに対して所定周期で送信するように設定されている。
 作業モードが指定されるケースとしては、例えば、油圧ショベル20-1~20-Nのうちの数機については、その日に軽負荷作業のみを行う予定であるため、会社5から基地局2に対してエコモードが指定されるというケースがある。また、選択可能な作業モードを通常モードとエコモードに制限して、すなわち重負荷作業を行わせないようにして油圧ショベルの寿命が縮むことを防止するというケースもある。
 メインコントローラ11の目標回転数演算手段11cは、サーバ3(作業モード管理手段)によりメインコントローラ11に対し作業モードが指令された場合に、サーバ3により指令された作業モードに基づいて目標回転数を演算するよう設定されている。
 メインコントローラ11は、指令スイッチ13により指令された作業モードの情報を、機械側通信装置11aにより基地局側通信装置3gに所定周期で送信するよう設定されている。
 サーバ3は、基地局側通信装置3gにより受信したメインコントローラ11の作業モードの情報に基づいて、メインコントローラ11の作業モードの適否を判定する作業モード適否判定手段3aをさらに有する。この作業モード適否判定手段3aは、入力装置4(基地局側作業モード指令手段)により指令された作業モードよりもメインコントローラ11の作業モードの方が目標回転数の上限が高い作業モードであるかどうかを判定し、高い作業モードである場合に、メインコントローラ11の作業モードを不適当とする。
 制御手段10のエンジンコントローラ12は、単位時間当たりのエンジンの燃料使用量を演算する燃料使用量演算手段12bを有する。この燃料使用量演算手段12bは、算出した燃料使用量の情報をメインコントローラ11に与える。メインコントローラ11は、その燃料使用量演算手段12bにより算出された燃料使用量の情報を、機械側通信装置11aにより基地局側通信装置3gに所定周期で送信するよう設定されている。
 サーバ3は、エンジンの燃料使用量の適否を判定する燃料使用量適否判定手段3bをさらに有する。この燃料使用量適否判定手段3bは、燃料使用量記憶手段3f3により記憶された燃料使用量の下限のうちメインコントローラ11の作業モードに対応付けられた燃料使用量の下限よりも、エンジンコントローラ12の燃料使用量演算手段12bにより算出された燃料使用量が少ないかどうかを判定し、少ない場合に燃料使用量を不適当とする。
 例えば、油圧ショベル20-1のメインコントローラ11の作業モードの情報が通常モードであった場合、燃料使用量適否判定手段3bは、油圧ショベル20-1の機種に対応する通常モードでの燃料使用量の下限を燃料使用量記憶手段3f3から読み出し、読み出した燃料使用量の下限と、燃料使用量演算手段12bにより算出された燃料使用量とを対比する。対比の結果、算出された燃料使用量が、読み出した燃料使用量の下限よりも低い場合、その算出された燃料使用量は通常モードでの燃料使用量に満たない、つまり通常モードよりも低いエコモードでの燃料使用量の範囲で良いとみなすことができ、通常モードでの燃料使用量ではないので、不適当と判定される。
 メインコントローラ11は、負荷圧センサ60により検出された負荷圧の情報、パイロット圧センサ61,62により検出されたパイロット圧、すなわち操作レバー装置43による油圧ショベル20に対する動作の指令の情報を、機械側通信装置11aにより基地局側通信装置3gに所定周期で送信するよう設定されている。
 サーバ3は、メインコントローラ11からの負荷圧の情報と動作の指令の情報とに基づいて作業負荷を演算する作業負荷演算手段3cと、この作業負荷演算手段3cにより算出された作業負荷の適否を判定する作業負荷適否判定手段3cとをさらに有する。作業負荷適否判定手段3cは、作業負荷記憶手段3f4により記憶された作業負荷の下限のうちメインコントローラ11の作業モードに対応付けられた作業負荷の下限よりも、作業負荷演算手段3cにより算出された作業負荷が小さいかどうかを判定し、小さい場合に作業負荷を不適当とする。
 例えば、油圧ショベル20-1のメインコントローラ11の作業モードの情報が通常モードであった場合、作業負荷適否判定手段3cは、油圧ショベル20-1の機種に対応する通常モードでの作業負荷の下限を燃料使用量記憶手段3f3から読み出し、読み出した作業負荷の下限と、作業負荷演算手段3cにより算出された作業負荷とを対比する。対比の結果、算出された作業負荷が、読み出した作業負荷の下限よりも低い場合、その算出された作業負荷はエコモードでの作業負荷の範囲内にあることになり、通常モードでの作業負荷ではないので、不適当と判定される。
 サーバ3は、作業モード適否判定手段3aによりメインコントローラ11の作業モードが不適当、すなわち入力装置4により指令された作業モードよりもメインコントローラ11の作業モードの方が目標回転数の上限が高いと判定され、燃料使用量適否判定手段3bによりエンジン50の燃料使用量が不適当、すなわちエンジン50の燃料使用量が少ないと判定され、かつ、作業負荷適否判定手段3cにより作業負荷が不適当、すなわち作業負荷が小さいと判定された場合に、入力装置4により指令された作業モードをメインコントローラ11に対して指令するよう設定されている。
 サーバ3は、登録情報記憶手段3f1により記憶された登録情報を用いて、特定の作業機械を検索する検索手段3eをさらに有する。サーバ3は、検索手段3eにより探し出された作業機械のみに対して作業モードを指令するよう設定されている。検索条件は、スタッフが入力装置4を操作することによりサーバ3に入力される。
 メインコントローラ11は、サーバ3から指令される作業モードを記憶する指令モード記憶手段11b2をさらに有する。この指令モード記憶手段11b2は補助記憶装置11bを利用して設けられるものである。メインコントローラ11の指令モード記憶手段11b2に記憶される作業モードは、サーバ3から新たに作業モードが指令される度に、順次新たな作業モードに書き換えられるよう設定されている。メインコントローラ11は、ゲートロックスイッチ63が閉位置から開位置への弁位置の変化を検知したタイミングで、指令モード記憶手段11b2に記憶されている作業モードに移行するよう設定されている。
 さらにメインコントローラ11は、運転室22a内に設けられたモニタ70に接続されている。モニタ70は、メインコントローラ11からの指令により、メインコントローラ11が3種類の作業モードのうちいずれの作業モードに設定されているかを表示する。指令スイッチ13により指令された作業モードにメインコントローラ11が設定されている場合は、モニタ70には、その作業モードと、その作業モードが指令スイッチ13の指令よって設定されているものである旨とを表示する。また、サーバ3から指令された作業モードにメインコントローラ11が設定されている場合、モニタ70は、その設定された作業モードと、その作業モードがサーバ3からの指令によって設定されているものである旨を表示する。
 このように構成された遠隔管理システム1は例えば次のように動作する。
 例えば油圧ショベル20-1~20-Nのうち、油圧ショベル20-1,20-2を稼動させるとする。
 油圧ショベル20-1のオペレータはキースイッチ(図示してない)を操作してエンジン50を始動させた後、オン状態にする。これによりメインコントローラ11およびエンジンコントローラ12は起動する。起動時、メインコントローラ11は通常モードに設定される。油圧ショベル20-1のオペレータは、メインコントローラ11の設定を通常モードに放置して、油圧ショベル20-1に通常の掘削作業を行わせる。
 油圧ショベル20-2のオペレータも油圧ショベル20-1のオペレータと同様にして、エンジン50を始動させ、かつ、メインコントローラ11およびエンジンコントローラ12を起動させる。油圧ショベル20-2のオペレータは、メインコントローラ11の設定を通常モードに放置して、油圧ショベル20-2に軽負荷作業を行わせる。
 油圧ショベル20-1,20-2の作業モードをエコモードに設定する指示が、会社5のパソコン6から基地局2のサーバ3に対し通信回線網7を介して送信される。その指示を受け、基地局2のスタッフは、入力装置4を操作して検索条件を入力し、サーバ3の検索手段3eを作動させ、登録情報記憶手段3f1に記憶された油圧ショベル20-1,20-2の情報を探し出す。そして、作業モード記憶手段3f2により記憶された3種類の作業モードのうちエコモードをサーバ3に選択させ、油圧ショベル20-1,20-2に対してそのエコモードを指令するよう設定する。
 なお、会社5のパソコン6でサーバ3を直接操作することも可能である。
 基地局側通信装置3gに対しては、油圧ショベル20-1,20-2のそれぞれの機械側通信装置11aからは、メインコントローラ11が設定されている作業モードの情報、メインポンプ40の負荷圧の情報、および、操作レバー装置43から出力された動作の指令(パイロット圧)の情報およびエンジンコントローラ12の燃料使用量演算手段12bで演算された燃料使用量の情報が所定周期で送信される。サーバ3は作業モード適否判定手段3aにより、油圧ショベル20-1の作業モードの情報に基づいて、その作業モードの適否を判定する。また、サーバ3は燃料使用量適否判定手段3bにより、油圧ショベル20-1の燃料使用量の情報に基づいて、その燃料使用量の適否を判定する。これらと同様に、サーバ3は油圧ショベル20-2の作業モードおよび燃料使用量のそれぞれの適否も判定する。
 さらに、サーバ3は作業負荷演算手段3cにより、油圧ショベル20-1における負荷圧の情報と動作の指令の情報とに基づいて油圧ショベル20-1の作業負荷を算出し、油圧ショベル20-2における負荷圧の情報と動作の指令の情報とに基づいて油圧ショベル20-2の作業負荷を算出する。そして、サーバ3は作業負荷適否判定手段3cにより、油圧ショベル20-1,20-2のそれぞれの作業負荷の適否を判定する。
 今回、サーバ3は油圧ショベル20-1,20-2のどちらについてもエコモードに設定するよう指令されているが、油圧ショベル20-1,20-2はいずれも通常モードに設定されている。したがって、油圧ショベル20-1,20-2のいずれについても作業モード適否判定手段3aによる判定結果は不適当である。
 また、油圧ショベル20-1は通常モードで通常の掘削作業を行っている。したがって、燃料使用量適否判定手段3bおよび作業負荷適否判定手段3cのそれぞれによる判定結果はいずれも適当となる。
 一方、油圧ショベル20-2は通常モードで軽負荷作業を行っている。したがって、燃料使用量適否判定手段3bおよび作業負荷適否判定手段3cのそれぞれの判定結果はいずれも不適当となる。
 サーバ3は、油圧ショベル20-1については作業モード適否判定手段3aによる判定結果が不適当であるが、燃料使用量適否判定手段3bおよび作業負荷適否判定手段3cのそれぞれの判定結果はいずれも適当であるので、油圧ショベル20-1のメインコントローラ11に対してエコモードへの切換えを指令しない。
 一方、サーバ3は、油圧ショベル20-2については作業モード適否判定手段3a、燃料使用量適否判定手段3bおよび作業負荷適否判定手段3cのそれぞれの判定結果はいずれも不適当であるので、油圧ショベル20-2のメインコントローラ11に対して基地局側通信装置3gによりエコモードへの切換えを指令する。
 油圧ショベル20-2のメインコントローラ11は、油圧ショベル20-2の動作中、機械側通信装置11aによりエコモードへの切換えの指令を受信すると、その指令を指令モード記憶手段11b2により記憶する。オペレータが休憩のため油圧ショベル20-2を停止させ、ゲートロックレバー48を操作してゲートロック弁47の弁位置を開位置から閉位置に切り換える。この弁位置の変化に伴いゲートロックスイッチ63はオフする。
 休憩の終了後、オペレータが油圧ショベル20-2のゲートロックレバー48を操作してゲートロック弁47の弁位置を閉位置から開位置に切り換える。この弁位置の変化に伴い、ゲートロックスイッチ63はオンする。メインコントローラ11の目標回転数演算手段11cは、ゲートロックスイッチ63からのオン信号を入力したタイミングで、休憩前の油圧ショベル20-2の動作中に指令モード記憶手段11b2により記憶された作業モード、すなわちエコモードに基づいて目標回転数を演算する状態になる。これにより、油圧ショベル20-2のエンジン回転数は、オペレータが選択した通常モードの場合よりも下がる。
 本実施形態に係る遠隔管理システム1によれば次の効果を得られる。
 遠隔管理システム1によれば、基地局2のサーバ3からメインコントローラ11に通信により作業モードを指令できるので、油圧ショベル20-1~20-Nのエンジン回転数の上限をオペレータによるその上限の設定よりも優先させることができる。しかも基地局2から遠隔操作で設定できるので、油圧ショベルが多数ある場合や管理者のいる場所が作業機械から離れた場所である場合であってもエンジン回転数を適切に管理することができる。
 遠隔管理システム1においては、基地局2の入力装置4により指令された作業モードよりもメインコントローラ11の作業モードの方が目標回転数の上限が高い作業モードである、すなわち、メインコントローラ11の作業モードは不適当である、と作業モード適否判定手段3aにより判定された場合に、サーバ3は、入力装置4により指令された作業モードをメインコントローラ11に対して指令する。これにより、エンジン回転数の上限を低下させることができ、したがって単位時間当たりの燃料使用量を減少させることができる。
 遠隔管理システム1においては、燃料使用量記憶手段3f3により記憶された燃料使用量の下限のうちメインコントローラ11の作業モードに対応付けられた燃料使用量の下限よりも、燃料使用量演算手段12bにより算出された燃料使用量が少ない、すなわち燃料使用量が不適当である、と燃料使用量適否判定手段3bにより判定された場合に、サーバ3は、入力装置4により指令された作業モードをメインコントローラ11に対して指令する。これにより、単位時間当たりの燃料使用量を確実に減少させることができる。
 遠隔管理システム1においては、作業負荷記憶手段3f4により記憶された作業負荷の下限のうちメインコントローラ11の作業モードに対応付けられた作業負荷の下限よりも作業負荷演算手段3cにより算出された作業負荷が小さい、すなわち作業負荷が不適当である、と作業負荷適否判定手段3cにより判定され、かつ、基地局2の入力装置4により指令された作業モードよりもメインコントローラ11の作業モードの方が目標回転数の上限が高い場合に、入力装置4により指令された作業モードをメインコントローラ11に対して指令する。これにより、基地局2からメインコントローラ11に対して指令しようとしている作業モードに対して過大な作業負荷が油圧ショベルに与えられる場合には、目標回転数の上限を下げる作業モードが指令されないようにすることができる。したがって、目標回転数の上限を下げたために油圧ショベルの作業効率が低下するという事態の発生を防止できる。
 遠隔管理システム1においては、サーバ3は、検索手段3eにより検索された特定の油圧ショベルのみに対して作業モードを指令する。これにより、複数の油圧ショベル20-1~20-Nに対し個別に目標回転数の上限を下げるかどうかを決定することができる。
 この検索手段3eによる検索は指令スイッチ13によって設定されている作業モード、燃料使用量、負荷圧等の条件で検索することもできる。
 遠隔管理システム1においては、制御手段10(メインコントローラ11)は、ゲートロックスイッチ63(ゲートロック検知手段)が閉位置から開位置への弁位置の変化を検知したタイミングで、指令モード記憶手段11b2により記憶された作業モードに移行する。ゲートロックスイッチ63が閉位置から開位置への弁位置を検知したタイミングは、制御弁41へのパイロット圧の供給が可能になった直後であり、制御弁41の弁位置はメインポンプの吐出油を油圧アクチュエータに導く弁位置ではないから、油圧ショベルは停止中である。つまり、制御手段10は、油圧ショベルの停止中に、指令モード記憶手段11b2により記憶された作業モードに移行する。これにより、油圧ショベルの作業中に突然にエンジン回転数が低下することを防止でき、したがって、エンジン回転数の上限を安全に下げることができる。
 なお、前述の実施形態に係る遠隔管理システムにおいては、作業モード、燃料使用量、作業負荷のすべてが不適当と判定された場合に作業モード管理手段(サーバ3)から制御手段(メインコントローラ11)に作業モードを指令したが、本発明は、これに限定されるものではなく、作業モード、燃料使用量および作業負荷のいずれか1つまたは2つが不敵である場合に、作業モード管理手段から制御手段に作業モードを指令するようにしてもよい。
 前述の実施形態に係る遠隔管理システムにおいては、ゲートロックスイッチ63が開位置から閉位置への弁位置の変化を検知したときに、サーバ3から指令されていた作業モードを記憶する指令モード記憶手段11b2を有し、制御手段10は、ゲートロックスイッチ63が閉位置から開位置への弁位置の変化を検知したタイミングで、指令モード記憶手段11b2により記憶された作業モードに移行するよう設定されている。本発明における指令モード記憶手段および目標回転数演算手段はそれらに限定されるものではない。指令モード記憶手段11b2は制御手段10(メインコントローラ11)のシャットダウンのときにサーバ3から指令されていた作業モードを記憶し、制御手段10は起動のタイミングで、指令モード記憶手段11b2により記憶された作業モードに移行するよう設定されていてもよい。
 メインコントローラ11の起動時は、エンジン50の始動前、またはエンジン50の始動直後であるから、油圧ショベルは停止中である。つまり、制御手段10は、油圧ショベルの停止中に、指令モード記憶手段11b2により記憶された作業モードに移行する。これにより、前述の実施形態と同じく、油圧ショベルの作業中に突然にエンジン回転数が低下することを防止でき、したがって、エンジン回転数の上限を安全に下げることができる。
1 遠隔管理システム
2 基地局
3 サーバ(作業モード管理手段)
3a 作業モード適否判定手段
3b 燃料使用量適否判定手段
3c 作業負荷演算手段
3d 作業負荷適否判定手段
3e 検索手段
3f 補助記憶装置
3f1 登録情報記憶手段
3f2 作業モード記憶手段
3f3 燃料使用量記憶手段
3f4 作業負荷記憶手段
3g 基地局側通信装置
4 入力装置(基地局側作業モード指令手段)
10 制御手段
11 メインコントローラ
11a 機械側通信装置
11b 補助記憶装置
11d1 目標回転数記憶手段
11b2 指令モード記憶手段
11c 目標回転数演算手段
12 エンジンコントローラ
12b 燃料使用量演算手段
13 指令スイッチ(機械側作業モード指令手段)
14 ECダイヤル装置
40 メインポンプ(油圧ポンプ)
50 エンジン
47 ゲートロック弁
60 負荷圧センサ(負荷圧検出手段)
61,62 パイロット圧センサ(動作指令検出手段)
63 ゲートロックスイッチ(ゲートロック検知手段)

Claims (9)

  1.  作業機械と基地局とを備えた作業機械の遠隔管理システムにおいて、
     前記作業機械は、複数の油圧アクチュエータに供給される圧油を吐出する油圧ポンプの駆動源であるエンジンと、このエンジンの回転数の制御を行う制御手段と、前記制御手段に対し複数種類の作業モードを選択的に指令する機械側作業モード指令手段とを有し、
     前記制御手段は、前記複数種類の作業モードのそれぞれに対応付けられたエンジンの目標回転数の上限を予め記憶した目標回転数記憶手段と、前記目標回転数記憶手段により記憶された目標回転数の上限の1つを、前記機械側作業モード指令手段により指令された作業モードに応じて選択し、選択した上限以下の目標回転数を演算する目標回転数演算手段と、機械側通信装置とを有し、
     前記基地局は、前記作業機械の作業モードの種類を予め記憶した作業モード記憶手段と、前記作業モード記憶手段に記憶された作業モードの中から所望の作業モードを選択する基地局側作業モード指令手段と、前記機械側通信装置と通信可能な基地局側通信装置と、前記基地局側作業モード指令手段によって選択された作業モードを、前記基地局側通信装置を介して前記制御手段に対して指令可能な作業モード管理手段とを有し、
     前記作業機械の前記目標回転数演算手段は、前記基地局の前記作業モード管理手段により前記制御手段に対し作業モードが指令された場合に、前記作業モード管理手段により指令された作業モードに基づいて目標回転数を演算するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  2.  請求項1に記載の作業機械の遠隔管理システムにおいて、
     前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報を、前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、
     前記基地局は、前記基地局側通信装置により受信した前記制御手段の作業モードの情報に基づいて、前記制御手段に指令されている作業モードの適否を判定する作業モード適否判定手段をさらに有し、
     この作業モード適否判定手段は、前記基地局側作業モード指令手段により指令された作業モードよりも前記制御手段の作業モードの方が目標回転数の上限が高い作業モードであるかどうかを判定し、高い作業モードである場合に、前記機械側作業モード指令手段によって前記制御手段に指令されている作業モードを不適当と判定し、前記作業モード管理手段は、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  3.  請求項2に記載の作業機械の遠隔管理システムにおいて、
     前記制御手段は、単位時間当たりの前記エンジンの燃料使用量を演算する燃料使用量演算手段をさらに有し、前記機械側作業モード指令手段により指令された作業モードの情報と、前記燃料使用量演算手段により算出された燃料使用量の情報とを前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けられて予め設定された単位時間当たりの燃料使用量の下限を記憶した燃料使用量記憶手段と、前記エンジンの燃料使用量の適否を判定する燃料使用量適否判定手段とをさらに有し、前記燃料使用量適否判定手段は、前記燃料使用量記憶手段に記憶されている前記制御手段の作業モードに対応する燃料使用量の下限よりも、前記制御手段の前記燃料使用量演算手段により算出された燃料使用量が少ないかどうかを判定し、少ない場合に燃料使用量を不適当とし、前記作業モード管理手段は、前記燃料使用量適否判定手段により前記エンジンの燃料使用量が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  4.  請求項2に記載の作業機械の遠隔管理システムにおいて、
     前記作業機械は、前記油圧ポンプの負荷圧を検出する負荷圧検出手段と、前記複数の油圧アクチュエータのそれぞれに対する動作の指令を検出する複数の動作指令検出手段とをさらに有し、前記目標回転数演算手段は、前記負荷圧検出手段により検出された負荷圧と、前記複数の動作指令検出手段のそれぞれにより検出された動作の指令とに基づいて、作業モードに対応付けられた目標回転数の上限以下の目標回転数を算出するよう設定されており、前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報、前記負荷圧の情報、前記動作の指令の情報を、前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けて予め設定された作業負荷の下限を記憶した作業負荷記憶手段と、前記制御手段からの前記負荷圧の情報と前記動作の指令とに基づいて作業負荷を演算する作業負荷演算手段と、この作業負荷演算手段により算出された作業負荷の適否を判定する作業負荷適否判定手段とをさらに有し、前記作業負荷適否判定手段は、前記作業負荷記憶手段により記憶された前記制御手段の作業モードに対応する作業負荷の下限よりも、前記作業負荷演算手段により算出された作業負荷が小さいかどうかを判定し、小さい場合に作業負荷を不適当とし、前記作業モード管理手段は、前記作業負荷適否判定手段により作業負荷が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  5.  請求項2に記載の作業機械の遠隔管理システムにおいて、
     前記作業機械は、前記油圧ポンプの負荷圧を検出する負荷圧検出手段と、前記複数の油圧アクチュエータのそれぞれに対する動作の指令を検出する複数の動作指令検出手段とをさらに有し、前記目標回転数演算手段は、前記負荷圧検出手段により検出された負荷圧と、前記複数の動作指令検出手段のそれぞれにより検出された動作の指令とに基づいて、作業モードに対応付けられた目標回転数の上限以下の目標回転数を算出するよう設定されており、前記制御手段は、単位時間当たりの前記エンジンの燃料使用量を演算する燃料使用量演算手段を有し、前記制御手段は、前記機械側作業モード指令手段により指令された作業モードの情報、前記負荷圧の情報、前記動作の指令の情報、および前記燃料使用量演算手段により算出された燃料使用量の情報とを前記機械側通信装置により前記基地局側通信装置に送信するよう設定されており、前記基地局は、複数種類の作業モードのそれぞれに対応付けられて予め設定された単位時間当たりの燃料使用量の下限を記憶した燃料使用量記憶手段と、前記エンジンの燃料使用量の適否を判定する燃料使用量適否判定手段と、複数種類の作業モードのそれぞれに対応付けられて予め設定された作業負荷の下限を記憶した作業負荷記憶手段と、前記制御手段からの前記負荷圧の情報と前記動作の指令とに基づいて作業負荷を演算する作業負荷演算手段と、この作業負荷演算手段により算出された作業負荷の適否を判定する作業負荷適否判定手段とをさらに有し、前記燃料使用量適否判定手段は、前記燃料使用量記憶手段に記憶された前記制御手段の作業モードに対応する燃料使用量の下限よりも、前記制御手段の前記燃料使用量演算手段により算出された燃料使用量が少ないかどうかを判定し、少ない場合に燃料使用量を不適当とし、前記作業負荷適否判定手段は、前記作業負荷記憶手段に記憶された前記制御手段の作業モードに対応する作業負荷の下限よりも、前記作業負荷演算手段により算出された作業負荷が小さいかどうかを判定し、小さい場合に作業負荷を不適当とし、前記作業モード管理手段は、前記燃料使用量適否判定手段により前記エンジンの燃料使用量が不適当と判定され、かつ、前記作業負荷適否判定手段により作業負荷が不適当と判定され、かつ、前記作業モード適否判定手段により前記制御手段の作業モードが不適当と判定された場合に、前記基地局側作業モード指令手段により指令された作業モードを前記制御手段に対して指令するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  6.  請求項1~5のいずれか1項に記載の作業機械の遠隔管理システムにおいて、
     前記基地局は、複数の作業機械の登録情報を予め記憶した登録情報記憶手段と、この登録情報記憶手段により記憶された登録情報を用いて、特定の作業機械を検索する検索手段とをさらに有し、
     前記作業モード管理手段は、前記検索手段により探し出された作業機械のみに対して作業モードを指令するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  7.  請求項1に記載の作業機械の遠隔管理システムにおいて、
     前記制御手段が前記基地局の前記作業モード管理手段により指令された作業モードに移行するタイミングは、前記作業機械の停止中になるよう設定されていることを特徴とする作業機械の遠隔管理システム。
  8.  請求項7に記載の作業機械の遠隔管理システムにおいて、
     前記制御手段は、この制御手段のシャットダウン時に前記基地局の前記作業モード管理手段から指令されていた作業モードを記憶する指令モード記憶手段をさらに有し、前記制御手段の起動するタイミングで、前記指令モード記憶手段により記憶された作業モードに移行するよう設定されていることを特徴とする作業機械の遠隔管理システム。
  9.  請求項7に記載の作業機械の遠隔管理システムにおいて、
     前記作業機械は、前記複数の油圧アクチュエータのそれぞれに対して設けられ、対応する油圧アクチュエータに供給される圧油の流れの方向および流量を制御する油圧パイロット式制御弁と、これらの油圧パイロット式制御弁へのパイロット圧の供給を遮断可能なゲートロック弁と、このゲートロック弁の弁位置がパイロット圧を遮断する閉位置であるのか、パイロット圧を開放する開位置であるのかを検知するゲートロック検知手段とをさらに有し、
     前記制御手段は、前記ゲートロック検知手段が開位置から閉位置への弁位置の変化を検知したときに前記作業モード管理手段から指令されていた作業モードを記憶する指令モード記憶手段をさらに有し、前記ゲートロック検知手段が閉位置から開位置への弁位置の変化を検知したタイミングで、前記指令モード記憶手段により記憶された作業モードに移行するよう設定されていることを特徴とする作業機械の遠隔管理システム。
PCT/JP2010/064485 2009-08-27 2010-08-26 作業機械の遠隔管理システム WO2011024897A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080038010.4A CN102575454B (zh) 2009-08-27 2010-08-26 作业机械的远程管理系统
US13/392,426 US9109347B2 (en) 2009-08-27 2010-08-26 Remote management system for work machinery
KR1020127007774A KR101298883B1 (ko) 2009-08-27 2010-08-26 작업 기계의 원격 관리 시스템
EP10811946.2A EP2472010A4 (en) 2009-08-27 2010-08-26 Remote management system for work machinery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009197197A JP5208074B2 (ja) 2009-08-27 2009-08-27 作業機械の遠隔管理システム
JP2009-197197 2009-08-27

Publications (1)

Publication Number Publication Date
WO2011024897A1 true WO2011024897A1 (ja) 2011-03-03

Family

ID=43627997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/064485 WO2011024897A1 (ja) 2009-08-27 2010-08-26 作業機械の遠隔管理システム

Country Status (6)

Country Link
US (1) US9109347B2 (ja)
EP (1) EP2472010A4 (ja)
JP (1) JP5208074B2 (ja)
KR (1) KR101298883B1 (ja)
CN (1) CN102575454B (ja)
WO (1) WO2011024897A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294026A (zh) * 2012-10-24 2013-09-11 山河智能装备股份有限公司 一种基于电子计数的土方机械施工现场监控系统及方法

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2514872B1 (de) * 2011-04-18 2015-07-22 Joseph Vögele AG Strassenfertiger zum Einbauen eines Strassenbelags
JP2013186740A (ja) * 2012-03-08 2013-09-19 Fanuc Ltd 機械の管理システム
US9286264B2 (en) 2012-04-30 2016-03-15 Arctic Cat Inc. Vehicle speed limiter via gauge interface
US8818570B2 (en) * 2012-04-30 2014-08-26 Arctic Cat Inc. Electronic control unit limiter with coded release
PL2672008T3 (pl) * 2012-06-05 2018-07-31 Joseph Vögele AG Układarka i sposób układania materiału poddawanego mieszaniu za pomocą układarki
CN102817393B (zh) * 2012-09-07 2015-06-17 三一重机有限公司 一种挖掘机参数修调装置及修调方法
JP6059027B2 (ja) * 2013-01-21 2017-01-11 株式会社クボタ 農作業機と農作業管理プログラム
US9110468B2 (en) * 2013-01-31 2015-08-18 Caterpillar Inc. Universal remote operator station
WO2014159117A2 (en) * 2013-03-14 2014-10-02 Arctic Cat Inc. Vehicle speed limiter via gauge interface
CN103217948B (zh) * 2013-03-15 2015-01-28 中汽商用汽车有限公司(杭州) 电缆敷设远程控制系统
JP6073170B2 (ja) * 2013-03-27 2017-02-01 住友建機株式会社 ショベル
WO2016147522A1 (ja) * 2015-03-16 2016-09-22 株式会社クボタ 穀粒管理システム及びコンバイン
JP6495729B2 (ja) * 2015-04-28 2019-04-03 日立建機株式会社 建設機械の制御装置
KR102547626B1 (ko) 2015-09-16 2023-06-23 스미도모쥬기가이고교 가부시키가이샤 쇼벨
KR101953051B1 (ko) * 2016-03-31 2019-02-27 히다찌 겐끼 가부시키가이샤 건설 기계의 출력 특성 변경 시스템
KR102494968B1 (ko) * 2017-01-17 2023-02-06 현대두산인프라코어(주) 건설 기계
KR101994132B1 (ko) * 2017-03-29 2019-06-28 가부시키가이샤 고마쓰 세이사쿠쇼 작업 기계의 관리 장치
EP3666584B1 (en) * 2018-09-28 2023-09-27 Hitachi Construction Machinery Tierra Co., Ltd. Electric-powered construction machine
JP7247769B2 (ja) * 2019-06-10 2023-03-29 コベルコ建機株式会社 遠隔操作システム
CN110397108A (zh) * 2019-06-28 2019-11-01 三一重机有限公司 挖掘机控制方法、装置、服务器、车载设备及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073218A1 (en) 2000-03-31 2001-10-04 Hitachi Construction Machinery Co., Ltd. System for changing function of work machine and base station
JP2005083457A (ja) * 2003-09-08 2005-03-31 Komatsu Ltd ハイブリッド作業機械の駆動制御装置
JP2006226255A (ja) 2005-02-21 2006-08-31 Shin Caterpillar Mitsubishi Ltd 作業機械の制御装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1183467C (zh) * 1998-08-31 2005-01-05 株式会社神户制钢所 建筑机械管理系统
US6493616B1 (en) * 1999-08-13 2002-12-10 Clark Equipment Company Diagnostic and control unit for power machine
KR20040010512A (ko) * 2000-07-21 2004-01-31 히다치 겡키 가부시키 가이샤 건설기계의 정보송신장치
US7092803B2 (en) * 2000-08-18 2006-08-15 Idsc Holdings, Llc Remote monitoring, configuring, programming and diagnostic system and method for vehicles and vehicle components
US6427107B1 (en) * 2001-06-28 2002-07-30 Caterpillar Inc. Power management system and method
US7062368B2 (en) * 2002-06-11 2006-06-13 Cnh America Llc Combine having a system estimator to automatically estimate and dynamically change a target control parameter in a control algorithm
JP4322807B2 (ja) * 2002-08-26 2009-09-02 日立建機株式会社 建設機械の信号処理装置
JP4026495B2 (ja) * 2002-12-19 2007-12-26 株式会社小松製作所 サーバの切り換え制御装置
US7246001B2 (en) * 2003-12-16 2007-07-17 Caterpillar Inc Method for controlling the ground speed of a work machine
US7113839B2 (en) * 2004-05-27 2006-09-26 Caterpillar Inc. System for providing indexed machine utilization metrics
US7454273B2 (en) * 2004-08-20 2008-11-18 Harman International Industries, Incorporated Informed memory access for vehicle electronic modules
US8494561B2 (en) * 2007-05-30 2013-07-23 Trimble Ab Radio network list for vehicle control and real time position data
CN201198575Y (zh) * 2007-11-16 2009-02-25 中冶宝钢技术服务有限公司 遥控装载机
US8326954B2 (en) * 2008-07-23 2012-12-04 Caterpillar Inc. System and method for synchronizing configurations in a controller network

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001073218A1 (en) 2000-03-31 2001-10-04 Hitachi Construction Machinery Co., Ltd. System for changing function of work machine and base station
JP2005083457A (ja) * 2003-09-08 2005-03-31 Komatsu Ltd ハイブリッド作業機械の駆動制御装置
JP2006226255A (ja) 2005-02-21 2006-08-31 Shin Caterpillar Mitsubishi Ltd 作業機械の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2472010A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103294026A (zh) * 2012-10-24 2013-09-11 山河智能装备股份有限公司 一种基于电子计数的土方机械施工现场监控系统及方法

Also Published As

Publication number Publication date
KR20120063497A (ko) 2012-06-15
KR101298883B1 (ko) 2013-08-21
EP2472010A4 (en) 2017-01-04
EP2472010A1 (en) 2012-07-04
US20120197465A1 (en) 2012-08-02
CN102575454B (zh) 2014-10-15
US9109347B2 (en) 2015-08-18
JP2011047214A (ja) 2011-03-10
JP5208074B2 (ja) 2013-06-12
CN102575454A (zh) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5208074B2 (ja) 作業機械の遠隔管理システム
KR102496324B1 (ko) 배터리식 작업 기계
JP6860519B2 (ja) 建設機械
JP2010242375A (ja) 油圧ショベルの油圧回路装置
JP6013389B2 (ja) 作業機械の油圧システム
US20200385953A1 (en) Shovel
KR20160015164A (ko) 건설 기계의 선회 구동 장치
KR20200036897A (ko) 전동식 유압 작업 기계의 유압 구동 장치
JP2010230039A (ja) 流体圧回路
KR20140048114A (ko) 건설 기계의 제어 시스템
EP3365513B1 (en) Adaptive control of hydraulic tool on remote controlled demolition robot
JP4977722B2 (ja) 作業機械のエンジン回転数制御装置
JP2009256988A (ja) 電動式作業機械
JP2008039063A (ja) 建設機械の油圧制御回路
CN105473874A (zh) 工程机械
JP6418081B2 (ja) 建設機械及びこれを備えたプログラム書き換えシステム
WO2022210989A1 (ja) ショベル
JP2013147886A (ja) 建設機械
WO2021241727A1 (ja) ショベル
JP2003083113A (ja) 作業機のエンジン性能確認方法および装置並びにポンプ制御装置
WO2020194730A1 (ja) 建設機械
JP4691806B2 (ja) 建設機械の運転制御装置
JP2020122270A (ja) 建設機械
JP5819265B2 (ja) 建設機械
WO2023190031A1 (ja) ショベル、ショベルの制御システム、及び、ショベルの遠隔操作システム

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080038010.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811946

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13392426

Country of ref document: US

Ref document number: 425/KOLNP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010811946

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127007774

Country of ref document: KR

Kind code of ref document: A