WO2011024667A1 - 廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地 - Google Patents

廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地 Download PDF

Info

Publication number
WO2011024667A1
WO2011024667A1 PCT/JP2010/063838 JP2010063838W WO2011024667A1 WO 2011024667 A1 WO2011024667 A1 WO 2011024667A1 JP 2010063838 W JP2010063838 W JP 2010063838W WO 2011024667 A1 WO2011024667 A1 WO 2011024667A1
Authority
WO
WIPO (PCT)
Prior art keywords
glucanase
liquid medium
culture
xylanase
medium
Prior art date
Application number
PCT/JP2010/063838
Other languages
English (en)
French (fr)
Inventor
和郎 福田
Original Assignee
アサヒビール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アサヒビール株式会社 filed Critical アサヒビール株式会社
Priority to AU2010287761A priority Critical patent/AU2010287761A1/en
Priority to US13/391,990 priority patent/US20120190093A1/en
Priority to CN2010800371355A priority patent/CN102482654A/zh
Priority to EP10811717.7A priority patent/EP2471912A4/en
Priority to CA2771826A priority patent/CA2771826A1/en
Publication of WO2011024667A1 publication Critical patent/WO2011024667A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • C12N9/2437Cellulases (3.2.1.4; 3.2.1.74; 3.2.1.91; 3.2.1.150)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2477Hemicellulases not provided in a preceding group
    • C12N9/248Xylanases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01004Cellulase (3.2.1.4), i.e. endo-1,4-beta-glucanase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01008Endo-1,4-beta-xylanase (3.2.1.8)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a production method for producing ⁇ -glucanase and xylanase at the same time and a liquid medium useful for producing the enzyme.
  • cellulose is mainly degraded by microorganisms, and it is known that various microorganisms such as bacteria and filamentous fungi produce cellulose-degrading enzymes.
  • Cellulolytic enzymes are generally called cellulases.
  • Trichoderma When attempting to artificially produce cellulase, Trichoderma is known as a microorganism that secretes cellulase and is widely used. A method of culturing a microorganism belonging to the genus Trichoderma using a medium containing nutrients such as a carbon source and a nitrogen source to secrete cellulase is also known.
  • the conventional methods for producing cellulase have limitations on materials that can be used as a carbon source. Even if it is an expensive crystalline cellulose or an inexpensive cellulose resource, it can be used before heat treatment or alkali treatment. It is necessary to perform processing, which requires a relatively high cost.
  • Patent Document 1 discloses a cellulase production substrate capable of steaming used paper in a ferrous sulfate solution and inoculating cellulase producing bacteria.
  • Patent Document 2 discloses a method for producing a substrate for cellulase production in which finely pulverized bagasse is cooked with caustic, treated with a hypochlorite solution, and a cellulase-producing bacterium, Trichoderma reesei, can be ingested. is doing.
  • cellulases obtained by these conventional methods mainly contain ⁇ -glucanase, have low xylanase activity, and are inferior in decomposing ability of cellulose resources containing xylan such as bagasse and rice straw. Therefore, the effect is low for the purpose of effective utilization of various naturally occurring cellulose resources.
  • Patent Document 3 discloses a method for producing cellulase, which includes a step of subjecting a mutant strain belonging to Trichoderma reesei to liquid culture and collecting the obtained cellulase.
  • As the carbon source of the medium various materials having different chemical structures and properties such as cellulose powder, cellobiose, filter paper, general paper, sawdust, bran, rice bran, bagasse, soybean meal, and coffee meal are listed (No. 0011). Paragraph).
  • Example 1 Only cellobiose (Example 1) and Avicel (Example 2) are actually used in the culturing operation, and the production of cellulase has been confirmed for other materials, that is, natural cellulose materials. Absent.
  • Patent Document 4 manufactures xylanase by culturing microorganisms belonging to the genus Trichoderma using dilute alcohol distillate waste liquor that has been subjected to pretreatment such as removal of solid components, concentration of non-volatile components, and autoclaving of the concentrate. The method of doing is disclosed.
  • Patent Document 5 describes that waste cells after fermentation production by Propionibacter genus, Pseudomonas genus, etc. are reused as a mushroom fruit cultivation medium or culture medium.
  • waste cells as a medium for high production of ⁇ -glucanase and xylanase at the same time.
  • JP 2003-137901 A Japanese Patent Publication No. 5-33984 JP-A-9-163980 JP-A-11-113568 JP 2003-47338 A
  • the present invention solves the above-mentioned conventional problems, and an object of the present invention is to produce a cellulase excellent in decomposing ability of cellulose resources containing xylan at a low cost.
  • the inventors of the present invention have made extensive investigations on a method for producing an enzyme that simultaneously produces high production of ⁇ -glucanase and xylanase and decomposes (saccharifies) cellulose resources.
  • the present inventors have found a production method for producing ⁇ -glucanase and xylanase at the same time by culturing microorganisms belonging to the genus Trichoderma using waste bacterial cells, and a liquid medium useful for producing the enzyme.
  • the present invention provides a method for producing ⁇ -glucanase and xylanase including a step of culturing a microorganism belonging to the genus Trichoderma using a liquid medium containing waste cells as an organic nitrogen source.
  • concentration in the said liquid culture medium of the said waste microbial cell is 1% W / V or more.
  • the concentration of the waste cells in the liquid medium is 2 to 10% W / V.
  • the raw material of the waste cells is a microorganism belonging to the genus Trichoderma.
  • the microorganism belonging to the genus Trichoderma is Trichoderma reesei.
  • the liquid medium further contains a natural cellulose material as a carbon source and ammonia nitrogen or amino nitrogen as a nitrogen source.
  • the concentration of the natural cellulose material in the liquid medium is 2% W / V or more.
  • the natural cellulose material is at least one selected from the group consisting of pulp, beer lees, barley tea extract lees, wheat bran and apple pomace.
  • waste cells are added to the liquid medium during the culture process.
  • the present invention also provides a liquid medium containing waste cells as an organic nitrogen source and used for culturing microorganisms belonging to the genus Trichoderma.
  • the said waste microbial cell contains 1% W / V or more.
  • the present invention also provides ⁇ -glucanase and xylanase produced by any of the methods described above.
  • the present invention also provides a method for decomposing or saccharifying cellulose resources, characterized by using the ⁇ -glucanase and xylanase.
  • the present invention contributes to the solution of environmental problems because it effectively uses waste cells to reduce industrial waste.
  • ⁇ -glucanase and xylanase which are cellulolytic enzymes, are simultaneously produced at a high level, they are extremely useful for saccharification of natural cellulose resources such as bagasse and rice straw.
  • it is useful for biomass ethanol production in which ethanol is produced from cellulose resources.
  • the liquid medium of the present invention is a material containing nutrients for growing microorganisms belonging to the genus Trichoderma.
  • a liquid medium is prepared based on a liquid medium (generally called Mandel medium) in which nutrients of the medium are dissolved and suspended in 100 ml of water, and includes water as a medium and waste cells as an organic nitrogen source.
  • Mandel medium a liquid medium
  • it contains natural cellulose material as a carbon source, and if necessary, ammonia nitrogen or amino nitrogen as a nitrogen source.
  • An example of a preferable medium composition of the present invention is shown below.
  • Medium composition (Mandel medium): Polypeptone: 0.2 g, crystalline cellulose (trade name Avicel PH101, manufactured by Fluka BioChemika): 1 g, (NH 4 ) 2 SO 4 : 0.14 g, KH 2 PO 4 : 1.5 g, CaCl 2 .2H 2 O: 0 .03 g, MgSO 4 ⁇ 7H 2 O: 0.03 g, Tween 80: 0.1 mL, trace element solution (H 3 BO 4 6 mg, (NH 4 ) 6 Mo 7 O 24 ⁇ 4H 2 O 26 mg, FeCl 3 ⁇ 6H 2 O 100mg, CuSO 4 ⁇ 5H 2 O 40mg, MnCl 2 ⁇ 4H 2 O 8mg, ZnSO 4 ⁇ 7H 2 O 200mg solution): 0.1 mL, water: including 100 mL (to pH4.8 with phosphoric acid or sodium hydroxide Adjustment) Note that corn steep liquor may be used instead of polypeptone as the organic nitrogen
  • Waste bacteria refers to residues such as bacteria and culture media left after collecting the target components in the production of substances produced by growing microorganisms such as enzymes, or processed products thereof.
  • the microorganism used as the raw material for the waste cells is not particularly limited as long as it is of a type that has been confirmed to be safe for the human body.
  • microorganisms belonging to the genus Trichoderma can be used in the liquid medium of the present invention.
  • preferred microorganisms are microorganisms belonging to the genus Trichoderma.
  • a preferred microorganism belonging to the genus Trichoderma is Trichoderma reesei or Trichoderma viride. Particularly preferred is Trichoderma reesei.
  • microorganisms as raw materials are inoculated into an appropriate medium and cultured under appropriate conditions to obtain a culture solution.
  • the medium used for the culture is preferably a liquid medium such as Mandel medium. It is because it is easy to isolate
  • the culture performed for the production of waste cells is the same as the culture used in the method of the invention described herein.
  • the culture solution obtained as a result of the culture is separated into a supernatant and cells.
  • a normal method may be used as the separation method, and examples thereof include a filtration method and a centrifugal separation method.
  • the culture solution and the supernatant solution are killed by sterilization by heating at 121 ° C. for 15 minutes in an autoclave before or after the separation step.
  • This heat sterilization of the microorganism may be performed before addition to the medium, and after the addition to the medium, it can also be performed by heat sterilization of the medium.
  • the heating step and the separation step may be performed a plurality of times.
  • the wet cell residue separated from the culture solution can be used as it is as a waste cell.
  • the wet cells may be further dried to obtain dry cell residues, which may be used as waste cells.
  • a normal method may be used as the drying method, and examples thereof include a natural drying method, a hot air drying method, a reduced pressure drying method, and a spray drying method.
  • the concentration of the waste cells in the liquid medium is preferably 1% W / V or more. More preferably, the concentration of the waste cells in the liquid medium is 2 to 10% W / V, more preferably 2 to 8% W / V, and 3 to 6% W / V. When the concentration of waste cells is less than 1% W / V, the amount of cellulase, particularly xylanase, produced may not increase so much.
  • Natural cellulose material means water-insoluble cellulose that retains the molecular structure that exists in nature.
  • paper, pulp, beer lees, barley tea extract lees, wheat bran, fruit pomace such as apple pomace etc. correspond to natural cellulose materials.
  • crystalline cellulose such as cellobiose or Avicel is a pure compound obtained by decomposing cellulose with cellulase and purifying it to have a specific structure, and does not correspond to the natural cellulose material here.
  • Pulp is a fiber used as a raw material for paper production.
  • the kind of the pulp is preferably one having high cellulose purity such as chemical pulp and waste paper pulp.
  • a preferred pulp is a paper-derived pulp obtained by decomposing or cutting paper.
  • preferable papers include high-quality paper, reprint paper, copy paper, newspaper, and cardboard paper.
  • the papers only need to contain a preferable pulp, and may be printed or written or generally called waste paper.
  • old books, magazines and used notebook pages, flyers, envelopes, stationery, postcards, tissue paper, and the like can be used.
  • the concentration of the pulp in the liquid medium is preferably 2% W / V or more.
  • the concentration of the pulp in the liquid medium is 3% W / V or more, more preferably 4% W / V or more, 5% W / V or more, 6% W / V or more, 7% W / V or more. is there.
  • the paper is preferably cut and used with a shredder.
  • the beer koji is a by-product of the beer production process, and is a residue obtained by saccharifying the malt from which barley was germinated and then filtering off the wort. It is not restricted to the type of barley, the type of auxiliary material, and the like, and the residue produced as a by-product in the production process such as happoshu with reduced malt use ratio is also included in the beer lees of the present invention.
  • Beer lees are generated in large quantities in the beer manufacturing process and are easy to obtain. And since beer lees are a by-product of food production, quality inspection and production process management at the raw material stage are strictly performed, so that hygiene quality is excellent and safe. Examples of types of beer lees include raw beer lees, dehydrated beer lees, and dried beer lees.
  • the initial concentration of beer lees in the liquid medium is 2% W / V or more.
  • the concentration of beer lees is less than 2% W / V, the production amount of cellulase, particularly ⁇ -glucanase may not increase so much.
  • the concentration of beer lees in the liquid medium is 3% W / V or more, more preferably 4% W / V or more, 5% W / V or more, 6% W / V or more, 7% W / V or more. It is.
  • Barley tea extract cake is a residue left after extracting water-soluble components from roasted wheat grains with an extraction solvent such as water. Barley tea extract mash is produced in large quantities in the manufacturing process of barley tea and is easily available. And since barley tea extract is a by-product of food production, quality inspection and production process management at the raw material stage are strictly carried out, so that hygiene quality is excellent and safe.
  • barley used as the raw material for the barley tea extract is not particularly limited as long as it is suitable for the production of barley tea.
  • barley is used for the production of barley tea, and examples thereof include six-row barley, two-row barley, and bare barley. Among these, preferred are Rojo Barley and Nijo Barley. These may be used as a mixture.
  • roast barley grains such as barley are produced.
  • roasting methods generally include hot air roasting, sand roasting roasting, and far-infrared roasting.
  • the roasting temperature is 100 to 700 ° C., preferably 200 to 600 ° C.
  • the roasting time is 1 to 60 minutes, preferably 5 to 60 minutes.
  • the roasted wheat grains are immersed in an extraction solvent and preferably heated to 80 ° C. or higher.
  • an extraction solvent water is generally used.
  • water-soluble components contained in the wheat grains are extracted into water.
  • the water-soluble components extracted from the wheat grains include flavor components and starches.
  • the extraction time is not particularly limited, but it is preferable to perform the extraction within a range of 20 minutes to 1 hour.
  • the extract is separated as barley tea, and the remaining one becomes barley tea extract. Separation of the extract may be performed by a conventional method such as decantation, filtration, and centrifugation. In addition, the barley tea extract cake may be subjected to treatments such as washing, dehydration and drying, if necessary.
  • the concentration of barley tea extract in the liquid medium is preferably 3% W / V or more. If the concentration of barley tea extract is less than 3% W / V, the production amount of cellulase, particularly ⁇ -glucanase, may not increase so much. More preferably, the concentration of the barley tea extract in the liquid medium is 4% W / V or more, more preferably 5% W / V or more, 6% W / V or more, 7% W / V or more, 8% W / V. That's it.
  • Wheat bran is a mixture of wheat hull and germ.
  • wheat flour is obtained by removing wheat bran (ie, hulls and germs) from wheat.
  • Wheat bran for example, is produced in large quantities as a by-product of the milling process for industrially obtaining edible flour and can be easily obtained. And since such wheat bran is a by-product of food production, quality inspection and production process control at the raw material stage are strictly carried out, so it is safe and excellent in hygienic quality, and is used in the method of the present invention. preferable.
  • the kind of wheat used for preparing wheat bran is not particularly limited, and examples include Hokushin, Fusayaka, Norin 61, Nambu Wheat, Kitanokaori, Harutaka, and Spring Yo Koi.
  • wheat bran has a flake shape. Flaky wheat bran may be used as it is. Further, it can be used after being pulverized as appropriate to make the particles finer, or granulated to form a lump of particles. Examples of the wheat bran include large bran, small bran and powder. You may use what is marketed as a food raw material, health food, etc.
  • the concentration of wheat bran in the liquid medium is preferably 3% W / V or more.
  • the concentration of wheat bran in the liquid medium is 4% W / V or more, more preferably 5% W / V or more, 6% W / V or more, 7% W / V or more, 8% W / V or more. It is.
  • Fruit squeezed straw is a by-product of juice and other manufacturing processes, and is a residue obtained by filtering and removing fruit juice after squeezing the fruit. Fruit squeezes are generated in large quantities in the manufacturing process of juice and are easy to obtain. And since the fruit koji is a by-product of food production, quality inspection and production process management at the raw material stage are strictly carried out, so that hygiene quality is excellent and safe.
  • the fruit pomace is preferably a rosaceae fruit pomace such as apples, pears, peaches, cherries, strawberries and the like. Among these, apple pomace is preferable because the desired enzyme is produced at a high rate.
  • the apple varieties may be any apples that have been conventionally used to produce apple juice. For example, “Fuji”, “Tsugaru”, “Wang Lin”, “Jonagar”, “Star King Delicious”, “Miku” Etc.
  • the apple fruit may be ripe or unripe.
  • Berries are first squeezed out by washing the fruits. At this time, if there are unsuitable raw materials, they are removed. The washed fruit is sent to a crusher and crushed. The crushed fruit is sent to a hydraulic juicer with a pump and squeezed. The squeezed rice cake is then recovered from the juicer. Fruit squeezed rice cake is subjected to treatments such as washing, dehydration, and drying as needed.
  • the concentration of the fruit squeezed koji in the liquid medium is preferably 2% W / V or more.
  • the concentration of fruit pomace is less than 2% W / V, the production amount of cellulase, particularly ⁇ -glucanase may not increase so much.
  • the concentration of the fruit pomace in the liquid medium is 3% W / V or more, more preferably 3% W / V or more, 4% W / V or more, 5% W / V or more, 6% W / V. V or higher.
  • the upper limit is an amount that allows the liquid medium to be stirred and mixed. This is because if the liquid medium cannot be stirred, the microorganisms are not mixed uniformly in the liquid medium, and the culture does not proceed normally.
  • the upper limit of the concentration of the pulp in the liquid medium can be 20, 15, 10 or 8% W / V depending on the performance of the stirrer.
  • the natural cellulose materials materials other than paper and pulp, such as beer lees, barley tea extract lees, wheat bran, fruit squeeze, etc., are preferably pretreated when introduced into the liquid medium.
  • Preferred pretreatments are, for example, grinding treatment and delignification treatment. This is because, when lignin is removed from these natural cellulose materials, a strong cell wall is broken, cellulose can be easily used, and enzymes are easily produced. Moreover, delignification treatment can be performed more efficiently by pulverizing these natural cellulose materials.
  • the method of delignification treatment is not particularly limited, for example, a method of heating and decomposing in the presence of a strong alkaline substance such as sodium hydroxide or a strong acidic substance such as sulfuric acid or phosphoric acid, Examples thereof include a method of decomposing by microorganisms and a method of decomposing by hydrothermal treatment under high temperature and high pressure. Considering the load on the treatment equipment and the environment, a method of decomposing by hydrothermal treatment at high temperature and high pressure is preferable.
  • a pretreatment usually performed on the raw material of the liquid medium such as heat sterilization may be further performed.
  • Ammonia nitrogen means nitrogen contained in ammonia or ammonium salt derived from ammonia.
  • the amino nitrogen means nitrogen contained in an amine or an amine-derived amino compound.
  • the compound containing ammonia nitrogen or amino nitrogen is, for example, ammonium sulfate, ammonium nitrate, diammonium phosphate, ammonium chloride, aqueous ammonia, urea, amino acids and salts thereof (for example, leucine, sodium glutamate).
  • ammonium sulfate is a particularly preferred compound for use in the liquid medium of the present invention as a nitrogen source. The reason is that the cost is low and it is easy to obtain.
  • the concentration of ammonia nitrogen or amino nitrogen in the liquid medium is 30 to 660 mM in terms of moles of ammonium. Preferably, it is 40 to 580 mM. When the concentration is less than 30 mM, the production amount of cellulase, particularly ⁇ -glucanase may not increase so much. On the other hand, when the concentration exceeds 660 mM, the productivity of the enzyme decreases.
  • the concentration of ammonia nitrogen or amino nitrogen in the liquid medium is preferably increased or decreased according to the concentration of the natural cellulose material in the liquid medium. For example, the concentration of the natural cellulose material is 4% W / V. In some cases, 50 mM is preferable in consideration of cost and the like.
  • Trichoderma filamentous fungi Process for producing ⁇ -glucanase and xylanase Trichoderma filamentous fungi are known to produce cellulases necessary for saccharification of cellulose.
  • the microorganism belonging to the genus Trichoderma used in the present invention is not particularly limited as long as it produces cellulase.
  • a preferred microorganism belonging to the genus Trichoderma is Trichoderma reesei or Trichoderma viride. Particularly preferred is Trichoderma reesei.
  • the bacteriological properties of the filamentous fungi Trichoderma reesei and Trichoderma viride include, for example, EG Simmons, Abstract Second International Mycological Congress (EG Simmons, Abst. 2nd International Mycological Congress) Miami, Florida, USA (March 1977, p. 618).
  • a normal aeration and agitation culture apparatus is used for liquid culture, and culture is performed at a culture temperature of 20 to 33 ° C., preferably 28 to 30 ° C. and a culture pH of 4 to 6 using the liquid medium of the present invention for 4 to 10 days. To do.
  • the concentration of components for example, carbon source and nitrogen source
  • the concentration of components contained in the liquid medium corresponds to the initial concentration of the components in the culture method of the present invention.
  • waste cells may be added to the liquid medium. This is because the waste bacterial cells in the medium are decomposed as the culture progresses, so that the production efficiency of cellulase may be improved by supplementing the waste bacterial cells.
  • the Trichoderma filamentous fungus culture medium or culture supernatant contains a high concentration of the target cellulase, that is, ⁇ -glucanase and xylanase.
  • the ⁇ -glucanase activity of the obtained culture solution or culture supernatant is 30 U / ml or more, preferably 50 U / ml or more, more preferably 60 U / ml or more, and further preferably 70 U / ml or more.
  • the xylanase activity of this culture solution or culture supernatant is 25 U / ml or more, preferably 30 U / ml or more, more preferably 40 U / ml or more, and further preferably 50 U / ml or more.
  • the hemicellulase activity can be quantified by increasing the absorbance at 540 nm by reacting a reducing sugar produced by enzymatic hydrolysis using xylan derived from “oat spelts” as a substrate with DNS.
  • 1% xylan substrate solution (“Xylan, from oat spelts” manufactured by Sigma is dissolved in 200 nM acetate buffer (pH 4.5)) is added to 1.9 ml of culture solution or culture supernatant 0.1 ml. And an enzyme reaction at 40 ° C. for exactly 10 minutes, followed by DNS reagent (0.75% dinitrosalicylic acid, 1.2% sodium hydroxide, 22.5% potassium potassium tartrate tetrahydrate, 0.3% Add 4 ml (including% lactose monohydrate) and mix well to stop the reaction. In order to quantify the amount of reducing sugar contained in the reaction stop solution, the reaction stop solution is accurately heated in a boiling water bath for 15 minutes.
  • the amount of reducing sugar corresponding to xylose is quantified by measuring the absorbance at 540 nm.
  • One unit of hemicellulase activity is expressed as the amount of enzyme that produces reducing sugar corresponding to 1 ⁇ mol of xylose per minute under the reaction conditions of 40 ° C. and 10 minutes.
  • “culturing a microorganism belonging to the genus Trichoderma” refers to an operation for growing the microorganism according to common general technical knowledge. That is, in the method of performing liquid culture for the purpose of producing ⁇ -glucanase and xylanase, if there is a process in which a microorganism belonging to the genus Trichoderma exists in at least the liquid medium of the present invention, the culture method of the present invention can be used. Applicable to the method.
  • the nutrients in the liquid medium are reduced by consumption by microorganisms belonging to the genus Trichoderma. Therefore, at the end of the culture, the concentration of the carbon source and nitrogen source (including the organic nitrogen source) in the medium becomes lower than a predetermined concentration, and as a result, the genus Trichoderma in the medium not corresponding to the liquid medium of the present invention.
  • Microorganisms belonging to may be nurtured. Even in such a case, for example, when the liquid medium to be used corresponds to the liquid medium of the present invention containing a carbon source or a nitrogen source at a predetermined concentration at the start of the culture, the present invention is at least in the initial stage of the culture. Since the microorganism belonging to the genus Trichoderma grows in the liquid medium, the culture method naturally corresponds to the method of the present invention.
  • the upper limit of the concentration of the carbon source or the nitrogen source is set to some extent in consideration of the convenience when the liquid medium is stirred and mixed as described above. It is preferable to limit.
  • the concentration of the carbon source or nitrogen source in the medium is lower than the predetermined concentration at the initial stage of the culture.
  • the concentration of the carbon source or nitrogen source in the medium becomes a predetermined concentration or more after that, the microorganism belonging to the genus Trichoderma grows in the liquid medium of the present invention. This corresponds to the method of the present invention.
  • the ⁇ -glucanase and xylanase obtained by the method of the present invention are useful for decomposing or saccharifying cellulose raw materials.
  • the cellulose raw material here may be either synthetic cellulose or natural cellulose resources. Synthetic cellulose represents what is circulated as cellulose powder. Examples of natural cellulose resources include bagasse, rice straw, wheat straw, beer lees, and wood. Since the present invention can produce ⁇ -glucanase and xylanase at the same time, it is particularly excellent in saccharification of natural cellulose resources such as bagasse, rice straw, straw and beer lees.
  • the method for decomposing or saccharifying the cellulose raw material may be a known method, and is not particularly limited.
  • the cellulose raw material is suspended in an aqueous medium as a substrate, and the above culture solution or culture medium is used.
  • a saccharification reaction is performed by adding a clear liquid and heating the mixture while stirring or shaking.
  • a dried product thereof or a solution obtained by dispersing or dissolving the dried product in water may be used.
  • the cellulose raw material is preferably delignified in advance.
  • the reaction conditions such as the suspension method, the stirring method, the method of adding the above mixed solution, the order of addition, and their concentrations are appropriately adjusted so that glucose can be obtained in a higher yield.
  • the pH and temperature of the reaction solution may be within the range where the enzyme is not inactivated.
  • the temperature is 30 to 70 ° C., and the pH is 3 to 7. Range may be sufficient.
  • the pressure, temperature, and pH are also adjusted as appropriate so that glucose can be obtained in a higher yield, as described above, but the temperature is 50-60 in acetic acid or phosphate buffer at normal pressure. It is preferably carried out in the range of 4 ° C. and pH 4-6.
  • the reaction time is generally 6 to 147 hours, preferably 24 to 72 hours.
  • An aqueous solution containing glucose is obtained by saccharification of cellulose.
  • the obtained aqueous solution can be subjected to purification treatment such as decolorization, desalting, enzyme removal, etc., as necessary.
  • the purification method is not particularly limited as long as it is a known method. For example, activated carbon treatment, ion exchange resin treatment, chromatography treatment, microfiltration, ultrafiltration, reverse osmosis filtration and other filtration treatments, crystallization treatment, etc. are used. These may be used alone or in combination of two or more.
  • the aqueous solution mainly composed of glucose purified by the above method can be used as it is, but may be solidified by drying as necessary.
  • the drying method is not particularly limited as long as it is a known method, but for example, spray drying, freeze drying, drum drying, thin film drying, shelf drying, airflow drying, vacuum drying, etc. may be used, and these may be used alone. You may use, or may combine 2 or more types.
  • Example 1 Trichoderma reesei QM9414 was inoculated into Mandel medium and cultured under the same conditions as described in this example to obtain a culture solution.
  • the obtained culture broth was collected using a centrifuge (“Avanti HP-25” manufactured by BECMAN COULTER).
  • the cell residue was dried at about 60 ° C. for about 24 hours to obtain a waste cell.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on potato dextrose agar at 28 ° C. for 7 days to sufficiently form spores.
  • 100 mM liquid medium added to 0.5%, 1.0%, 1.5%, 2.0%, 3.0% and adjusted to pH 4.8 with phosphoric acid or sodium hydroxide.
  • the enzyme activity of the culture solution obtained above was measured.
  • the ⁇ -glucanase activity was measured by measuring the absorbance of a stained fragment produced by enzymatic degradation using a dye-labeled ⁇ -glucan as a substrate using a ⁇ -glucanase measurement kit manufactured by Megazyme. Specifically, 0.1 mL of a culture solution was added to 0.1 mL of an azo barley glucan substrate solution, and an enzyme reaction was performed at 40 ° C. for exactly 10 minutes. % Zinc acetate and 80% methyl cellosolve (pH 5)] 0.6 mL was added and the mixture was allowed to stand for 5 minutes to stop the reaction.
  • ⁇ -glucanase activity was expressed as the amount of enzyme that produces a reducing sugar corresponding to 1 ⁇ mol of glucose per minute under the reaction conditions of 40 ° C. and 10 minutes.
  • the xylanase activity was quantified by increasing the absorbance at 540 nm by reacting a reducing sugar produced by enzymatic hydrolysis using xylan derived from “oat spells” as a substrate with DNS. More specifically, a 1% xylan substrate solution [Sigma's “Xylan, from salt spells” dissolved in 200 mM acetate buffer (pH 4.5)] was added to 1.9 mL of the culture solution at 40 ° C.
  • a DNS reagent (0.75% dinitrosalicylic acid, 1.2% sodium hydroxide, 22.5% sodium potassium tartrate tetrahydrate, 0.3% lactose / water) 4 mL (including Japanese product) was added and mixed well to stop the reaction.
  • the reaction stop solution was accurately heated in a boiling water bath for 15 minutes.
  • the amount of reducing sugar corresponding to xylose was quantified by measuring the absorbance at 540 nm.
  • One unit of xylanase activity was expressed as the amount of enzyme that produces a reducing sugar corresponding to 1 ⁇ mol of xylose per minute under the reaction conditions of 40 ° C. and 10 minutes. The results are shown in FIG.
  • Reference example 1 The concentration of crystalline cellulose (manufactured by Fluka BioChemika, trade name Avicel PH101) as the carbon source of the Mandel medium was set to 1%, and polypeptone as the organic nitrogen source was replaced with the waste cells obtained in the same manner as in Example 1.
  • a liquid medium was prepared in the same manner as in Example 1 by adding 0.5%, 1.0%, 1.5%, 2.0%, and 3.0%.
  • Trichoderma reesei QM9414 (NBRC 31329) is cultured on potato dextrose agar medium at 28 ° C. for 7 days to fully form spores. This platinum loop is inoculated into a liquid medium and shaken at 28 ° C., 180 rpm for 7 days. Cultured. On day 7, the culture broth was centrifuged, and ⁇ -glucanase activity and xylanase activity were measured in the same manner as in Example 1. The results are shown in FIG.
  • Example 2 The culture supernatant obtained in Example 1 (3% copy paper, 1.5% waste cells) and the culture supernatant obtained in Reference Example 1 (1% Avicel medium, 1.5% waste)
  • the saccharification test of the cellulose raw material was performed using the bacterial cells.
  • cellulose raw materials to be used for saccharification rice straw and cellulose “KC Flock” manufactured by Nippon Paper Chemicals Co., Ltd. were prepared. Rice straw was delignified by the following method.
  • Example 3 A beer koji was collected from the beer production process, lignin was removed by autoclaving at 121 ° C. for 15 minutes in a 0.3N aqueous sodium hydroxide solution, sufficiently washed with water, and then dried.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on potato dextrose agar at 28 ° C. for 7 days to sufficiently form spores.
  • the crystalline cellulose that is the carbon source of the Mandel medium is replaced with 3% (3 g / 100 mL) of the delignified beer lees, and 1% of ammonium sulfate that is the inorganic nitrogen source is added, and the organic nitrogen source is changed to polypeptone 0.2.
  • Example 4 Barley tea was boiled out using round wheat bar tea (manufactured by Asahi Beer Malt Co., Ltd.) and boiling water. The aqueous barley tea was removed, and the remaining koji was washed with water and dried to obtain a barley tea extract koji.
  • the obtained barley tea extract koji was pulverized, lignin was removed by autoclaving at 121 ° C. for 15 minutes in a 0.3N aqueous sodium hydroxide solution, sufficiently washed with water, and then dried.
  • the obtained barley tea extract cake was used after removing lignin by autoclaving at 121 ° C. for 15 minutes in a 0.3N aqueous sodium hydroxide solution, thoroughly washing with water, and then drying.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on potato dextrose agar at 28 ° C. for 7 days to sufficiently form spores.
  • the enzyme activity of the obtained culture broth was measured in the same manner as in Example 3 except that crystalline cellulose, which is the carbon source of the Mandel medium, was replaced with 5% (3 g / 100 mL) of barley tea cake treated with delignification. . The results are shown in FIG.
  • Wheat bran (manufactured by Showa Sangyo Co., Ltd.) was pulverized, lignin was removed by autoclaving at 121 ° C. for 15 minutes in a 0.3N sodium hydroxide aqueous solution, sufficiently washed with water, and dried.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on potato dextrose agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • crystalline cellulose that is the carbon source of Mandel's medium with 5% (5 g / 100 mL) of wheat bran that has been delignified, add 1% of ammonium sulfate that is the inorganic nitrogen source, and polypeptone that is the organic nitrogen source.
  • Example 6 Apple fruit (variety “Fuji”) was pulverized using a crusher (Amos “Hammer Mill”) and then squeezed using an apple juicer (Tsukishima-Andritz “Press Roll Filter”). . Squeeze cake was collected from the juicer, washed with water and dried.
  • the apple pomace obtained was removed from the lignin by autoclaving at 121 ° C for 15 minutes in a 0.3N sodium hydroxide aqueous solution, washed thoroughly with water, dried, and pulverized to make the size uniform. Used.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on potato dextrose agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • the crystalline cellulose which is the carbon source of the Mandel medium, is replaced with 4% (4 g / 100 mL) of the apples that have been delignified, and 1% of ammonium sulfate, which is an inorganic nitrogen source, is added.
  • Polypeptone was replaced with waste cells obtained in the same manner as in Example 1, and added to 0.5%, 1.0%, 2.0%, and 3.0%, respectively, and phosphoric acid or sodium hydroxide was added.
  • a 100 mM liquid medium adjusted to pH 4.8 was prepared in a 500 mL baffled Erlenmeyer flask.
  • One platinum loop of the cultured Trichoderma reesei was taken into this liquid medium and cultured with shaking at 28 ° C., 180 rpm for 7 days.
  • the culture broth was centrifuged, and ⁇ -glucanase activity and xylanase activity of the supernatant were measured in the same manner as in Example 1. The results are shown in FIG.
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on a potato dextrose agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • the crystalline cellulose which is the carbon source of Mandel's medium is replaced with 3% (3 g / 100 mL) of copy paper, 1% of ammonium sulfate which is an inorganic nitrogen source is added, and polypeptone which is an organic nitrogen source is added to corn steep liquor (CSL).
  • Trichoderma reesei QM9414 (NBRC 31329) was cultured on a potato dextrose agar medium at 28 ° C. for 7 days to sufficiently form spores.
  • crystalline cellulose which is the carbon source of Mandel's medium
  • 3% 3 g / 100 mL
  • copy paper add 1% of ammonium sulfate, which is an inorganic nitrogen source, and 0.5% each of polypeptone, which is an organic nitrogen source. , 1.0%, 2.0%, and 3.0%, and a 100 mM liquid medium adjusted to pH 4.8 with phosphoric acid or sodium hydroxide was prepared in a 500 mL baffled Erlenmeyer flask.
  • ⁇ -glucanase and xylanase which are extremely useful for saccharification of natural cellulose resources such as rice straw, can be produced at the same time, and can be used for biomass ethanol production to produce ethanol from cellulose resources.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Molecular Biology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Mycology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

キシランを含むセルロース資源の分解能力に優れたセルラーゼを低コストで製造すること。 有機窒素源として廃菌体を含む液体培地を用いて、トリコデルマ属に属する微生物を培養する工程を包含するβ-グルカナーゼ及びキシラナーゼの製造方法。

Description

廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地
 本発明は、β-グルカナーゼ及びキシラナーゼを同時に高生産する製造方法及びその酵素を製造するために有用な液体培地に関する。
 セルロース資源を有効利用するために、近年、セルロースを効率的に分解する方法が探索されている。自然界ではセルロースは主として微生物によって分解されており、細菌や糸状菌などの様々な微生物がセルロース分解酵素を生産することが知られている。
 これらの微生物は菌体外にセルロース分解酵素を分泌し、セルロースはその作用により、主に、セロオリゴ糖、セロビオースを経てグルコースへと分解される。セルロース分解酵素は、一般に、セルラーゼと呼ばれている。
 人工的にセルラーゼを製造しようとする場合、セルラーゼを分泌する微生物としては、トリコデルマ属が知られており、広く利用されている。そして、トリコデルマ属に属する微生物を炭素源及び窒素源などの栄養を含む培地を用いて培養し、セルラーゼを分泌させる方法も知られている。
 しかしながら、セルラーゼを製造するための従来の方法は、炭素源として使用できる材料に制限があり、高価な結晶セルロースであったり、仮に安価なセルロース資源であっても、加熱処理やアルカリ処理などの前処理を行う必要があり、比較的高いコストを要するものである。
 例えば、特許文献1は、古紙を硫酸第1鉄溶液中で蒸煮し、セルラーゼ生産菌を摂種可能なセルラーゼ生産用基質を開示している。また、特許文献2は、微粉砕したバガスを苛性アルカリで蒸煮し、次亜塩素酸塩溶液で処理し、セルラーゼ生産菌であるトリコデルマ・リーセイを摂種可能なセルラーゼ生産用基質の製造方法を開示している。
 また、これら従来の方法で得られるセルラーゼは主としてβ-グルカナーゼを含み、キシラナーゼ活性は低く、バガス及び稲わら等のような、キシランが含まれるセルロース資源の分解能力に劣っている。そのため、天然に存在する多様なセルロース資源の有効利用という目的のためには効果が低い。
 特許文献3は、トリコデルマ・リーセイに属する変異株を液体培養し、得られたセルラーゼを採取する工程を含むセルラーゼの製造方法を開示している。培地の炭素源としては、セルロースパウダー、セロビオース、濾紙、一般紙類、オガクズ、ふすま、もみがら、バガス、大豆粕、コーヒー粕等化学構造や性質が異なる種々の材料が羅列されている(第0011段落)。
 しかし、これらのうち培養操作に実際に使用されているものはセロビオース(実施例1)及びアビセル(実施例2)のみであり、その他の材料、即ち天然セルロース材料についてはセルラーゼの生成が確認されていない。
 特許文献4は、固形構成成分の除去や非揮発成分の濃縮、濃縮物のオートクレーブ処理等の予備処理を行ったライムギの希薄アルコール蒸留廃液を用い、トリコデルマ属に属する微生物を培養してキシラナーゼを製造する方法を開示している。
 しかし、本技術で炭素原として用いられるライムギは入手が困難であり、更に複雑な前処理が必要であるために高いコストを要し、また、この方法ではβ-グルカナーゼの生成量が却って低下してしまう。
 他方、微生物の培養による医薬品素材や栄養補助素材、健康訴求素材、嗜好性素材、食薬品の原料及び中間体などの生産において、目的とする成分を採取した後の菌体、培地などは廃棄処分されている。しかるに菌体や培地を廃棄するためには環境に悪影響を与えないように失活及び分離等の無害化処理をする必要があり、労力及び費用を要している。
 かかる問題を解決するために、例えば、特許文献5には、Propionibacter属やPseudomonas属等による発酵生産後の廃菌体をキノコ子実体栽培用培地又は培養基として再利用することが記載されている。
 しかしながら、β-グルカナーゼ及びキシラナーゼを同時に高生産するための培地として廃菌体を利用することは、今まで知られていない。
特開2003-137901 特公平5-33984号公報 特開平9-163980号公報 特開平11-113568号公報 特開2003-47338
 本発明は上記従来の問題を解決するものであり、その目的とするところは、キシランを含むセルロース資源の分解能力に優れたセルラーゼを低コストで製造することにある。
 本発明者らは、β-グルカナーゼ及びキシラナーゼを同時に高生産し、セルロース資源を分解(糖化)する酵素の製造方法及びその酵素を製造することを鋭意検討を重ねた結果、液体培地の栄養源として廃菌体を用い、トリコデルマ属に属する微生物を培養することによるβ-グルカナーゼ及びキシラナーゼを同時に高生産する製造方法及びその酵素を製造するのに有用な液体培地を見出した。
 本発明は、有機窒素源として廃菌体を含む液体培地を用いて、トリコデルマ属に属する微生物を培養する工程を包含するβ-グルカナーゼ及びキシラナーゼの製造方法を提供する。
 ある一形態においては、前記廃菌体の前記液体培地中における濃度が1%W/V以上である。
 ある一形態においては、前記廃菌体の前記液体培地中における濃度が2~10%W/Vである。
 ある一形態においては、前記廃菌体の原料がトリコデルマ属に属する微生物である。
 ある一形態においては、前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイである。
 ある一形態においては、前記液体培地が、炭素原として天然セルロース材料及び窒素源としてアンモニア態窒素又はアミノ態窒素を更に含む。
 ある一形態においては、前記天然セルロース材料の前記液体培地中における濃度が2%W/V以上である。
 ある一形態においては、前記天然セルロース材料が、パルプ、ビール粕、麦茶抽出粕、小麦ふすま及びリンゴ絞り粕からなる群から選択される少なくとも一種である。
 ある一形態においては、培養の過程において前記液体培地に対して廃菌体が追加される。
 また、本発明は、有機窒素源として廃菌体を含む液体培地であって、トリコデルマ属に属する微生物を培養するために用いられる液体培地を提供する。
 ある一形態においては、前記廃菌体は1%W/V以上含有される。
 また、本発明は、前記のいずれかに記載の方法により製造されたβ-グルカナーゼ及びキシラナーゼを提供する。
 また、本発明は、前記β-グルカナーゼ及びキシラナーゼを用いることを特徴とするセルロース資源の分解又は糖化方法を提供する。
 本発明は、廃菌体を有効利用して産業廃棄物を減少させるため、環境問題の解決に寄与する。また、セルロース分解酵素であるβ-グルカナーゼ及びキシラナーゼが同時に高生産されるため、バガスや稲わら等の天然セルロース資源の糖化に極めて有用である。特に、セルロース資源からエタノールを製造するバイオマスエタノール製造に有用である。
コピー紙を3%含む液体培地における、廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 結晶セルロースを1%含む液体培地における、廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 実施例1で得られた廃菌体1.5%の培地及び参考例1で得られた廃菌体1.5%の培地のそれぞれの上清液を用いて稲わらを糖化した場合に、生成したグルコースの濃度を比較したグラフである。 実施例1で得られた廃菌体1.5%の培地及び参考例1で得られた廃菌体1.5%の培地のそれぞれの上清液を用いてセルロース原料を糖化した場合に、生成したグルコースの濃度を比較したグラフである。 ビール粕を3%含む液体培地における、ポリペプトン0.2%により得られる酵素活性、及び廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 麦茶抽出粕を5%含む液体培地における、ポリペプトン0.2%により得られる酵素活性、及び廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 小麦ふすまを5%含む液体培地における、廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 リンゴの絞り粕を4%含む液体培地における、廃菌体の濃度に対する培養上清液の酵素活性の変化を表すグラフである。 コピー紙を3%含む液体培地における、コーンスティープリカーの濃度に対する培養上清液の酵素活性の変化を表すグラフである。 コピー紙を3%含む液体培地における、ポリペプトンの濃度に対する培養上清液の酵素活性の変化を表すグラフである
 液体培地
 本発明の液体培地はトリコデルマ属に属する微生物が生育する栄養を含む材料である。かかる液体培地は、培地の栄養分を水100mlに溶解及び懸濁した液体培地(一般に、マンデル培地と呼ばれる)を基に調整され、媒体として水、有機窒素源として廃菌体などを含み、要すれば、炭素源として天然セルロース材料など、要すれば、窒素源としてアンモニア態窒素又はアミノ態窒素などを含むものである。本発明の好ましい培地組成の一例を以下に示す。
 培地組成(本発明):
 廃菌体:1g、天然セルロース材料:3~5g、(NH)SO:0.14g、KHPO:1.5g、CaCl・2HO:0.03g、MgSO・7HO:0.03g、ツイーン80:0.1mL、微量元素液(HBO 6mg、(NH)Mo24・4HO 26mg、FeCl・6HO 100mg、CuSO・5HO 40mg、MnCl・4HO 8mg、ZnSO・7HO 200mg液):0.1mL、水:100mLを含む(燐酸又は水酸化ナトリウムでpH4.8に調整)
 また、参考として、マンデル培地の培地組成の典型例を以下に示す。
 培地組成(マンデル培地):
 ポリペプトン:0.2g、結晶セルロース(Fluka BioChemika製、商品名アビセルPH101):1g、(NH)SO:0.14g、KHPO:1.5g、CaCl・2HO:0.03g、MgSO・7HO:0.03g、ツイーン80:0.1mL、微量元素液(HBO 6mg、(NH)Mo24・4HO 26mg、FeCl・6HO 100mg、CuSO・5HO 40mg、MnCl・4HO 8mg、ZnSO・7HO 200mg液):0.1mL、水:100mLを含む(燐酸または水酸化ナトリウムでpH4.8に調整)
 なお、有機窒素源としてのポリペプトンに代えて、コーンスティプリカーが用いられる場合もある。
 廃菌体とは、酵素のように微生物を増殖させて生産する物質の生産において、目的とする成分を採取した後に残される菌体や培地などの残渣、あるいはその加工物をいう。廃菌体の原料となる微生物は、人体に対する安全性が確認されている種類のものであれば特に限定されない。
 例えば、トリコデルマ属、アスペルギルス属、アクレモニウム属、スポロトリクム属、ペニシリウム属、タラロマイセス属、フミコラ属、ネオカリマスチクス属、サーモマイセス属又はクロストリディウム属、ストレプトマイセス属に属する微生物は人体に対して安全であり、本発明の液体培地に用いることができる。その中でも好ましい微生物はトリコデルマ属に属する微生物である。好ましいトリコデルマ属に属する微生物はトリコデルマ・リーセイ又はトリコデルマ・ビリデである。特に好ましくは、トリコデルマ・リーセイである。
 廃菌体の製造方法は、まず、原料になる微生物を適切な培地に植菌し、適切な条件で培養して培養液を得る。培養に用いる培地はマンデル培地のような液体培地であることが好ましい。培養液から菌体を分離し易いからである。ある好ましい一形態では、廃菌体の製造のために行う培養は、本明細書に説明される本発明の方法で用いる培養と同一である。
 次いで、培養の結果得られる培養液を上清液と菌体に分離する。分離方法は通常の方法を用いればよく、例えば、濾過法及び遠心分離法などが挙げられる。培養液や上清液は分離工程の前又は後に微生物をオートクレーブで、例えば、121℃、15分間、加熱滅菌することにより死滅させる。この微生物の加熱滅菌は、培地へ添加前に行っても良く、また培地へ添加後は、培地を加熱滅菌することにより、行うこともできる。加熱工程や分離工程は複数回行われてよい。
 培養液から分離された湿菌体残渣はそのまま廃菌体として用いることができる。この湿菌体を更に乾燥させて乾燥菌体残渣とし、これを廃菌体として用いてもよい。乾燥方法は通常の方法を用いればよく、例えば、自然乾燥法、熱風乾燥法、減圧乾燥法及び噴霧乾燥法などが挙げられる。
 廃菌体の液体培地中における濃度は1%W/V以上であることが好ましい。より好ましくは、廃菌体の液体培地中における濃度は2~10%W/V、更に好ましくは2~8%W/V、3~6%W/Vである。廃菌体の濃度が1%W/V未満であるとセルラーゼ、特にキシラナーゼの生成量があまり増大しない場合がある。
 天然セルロース材料とは、天然に存在する分子構造をそのまま保持している非水溶性セルロースをいう。例えば、紙、パルプ、ビール粕、麦茶抽出粕、小麦ふすま、リンゴの絞り粕のような果実の絞り粕などは天然セルロース材料に該当する。逆に、例えば、セロビオースやアビセルのような結晶セルロースは、セルロースをセルラーゼによって分解し、特定構造を持つように精製して得られる純粋化合物であり、ここでいう天然セルロース材料には該当しない。
 パルプとは紙類の製造原料に用いられる繊維をいう。パルプの種類は化学パルプ及び古紙パルプのようなセルロース純度が高いものが好ましい。好ましいパルプは、紙類を分解、切断などして得られる紙類由来のパルプである。
 好ましい紙類の具体例としては、上質紙、更紙、コピー用紙、新聞紙及びダンボール紙などが挙げられる。紙類は好ましいパルプが含まれているものであればよく、印刷や筆記がなされたものや一般に古紙と呼ばれているものでもよい。例えば古書、雑誌及び使い古したノートの頁、チラシ、封筒、便箋、葉書、ティッシュ紙なども使用できる。
 パルプの液体培地中における濃度は2%W/V以上であることが好ましい。パルプの濃度が2%W/V未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。より好ましくは、パルプの液体培地中における濃度は3%W/V以上、更に好ましくは4%W/V以上、5%W/V以上、6%W/V以上、7%W/V以上である。なお、液体培地の攪拌混合を容易にするために、紙類はシュレッダーにより、裁断して用いることが好ましい。
 ビール粕とはビール製造工程で副生するものであり、大麦を発芽させた麦芽を糖化させた後、麦汁をろ過して取り除いた残渣である。大麦の種類、副原料の種類等々に制限されるものでなく、また、麦芽の使用比率を低下させた発泡酒等の製造工程で副生する残渣も本発明のビール粕に含まれる。
 ビール粕はビール製造工程で大量に発生し、入手が容易である。そして、ビール粕は食品の製造副産物であるため、原料段階での品質検査および製造工程管理が厳しく行なわれていることから衛生品質に優れ安全である。ビール粕の種類としては、例えば、生のビール粕、脱水ビール粕、乾燥ビール粕がある。
 ビール粕の液体培地中における初期濃度は2%W/V以上であることが好ましい。ビール粕の濃度が2%W/V未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。より好ましくは、ビール粕の液体培地中における濃度は3%W/V以上、更に好ましくは4%W/V以上、5%W/V以上、6%W/V以上、7%W/V以上である。
 麦茶抽出粕とは、焙煎した麦粒から水溶性成分を水等の抽出溶媒で抽出した後に残される残渣である。麦茶抽出粕は麦茶の製造工程で大量に発生し、入手が容易である。そして、麦茶抽出粕は食品の製造副産物であるため、原料段階での品質検査および製造工程管理が厳しく行なわれていることから衛生品質に優れ安全である。
 麦茶抽出粕の原料となる麦は、麦茶の製造に適するものであれば、その種類は特に限定されない。一般に、麦茶の製造には大麦が用いられ、例えば、六条大麦、二条大麦、裸麦はと麦、などを挙げることができる。これらの中でも好ましいものは六条大麦及び二条大麦である。これらは混合して用いてもよい。
 麦茶抽出粕の製造方法は、まず、大麦などの麦粒を焙煎する。焙煎方法として、一般的には熱風焙煎、砂炒焙煎、遠赤外焙煎等がある。焙煎時の温度は100~700℃、好ましくは200~600℃であり、焙煎時間は1~60分、好ましくは5~60分である。
 その後、焙煎された麦粒を抽出溶媒に浸漬し、好ましくは80℃以上に加熱する。抽出溶媒としては、一般には水が使用される。熱水で煮ることにより、麦粒に含まれる水溶性成分が水に抽出される。麦粒から抽出される水溶性成分には、風味成分及び澱粉質等が含まれる。
 抽出時間は特に限定されるものではないが、20分から1時間の範囲内で行うことが、好ましい。
 次いで、抽出液は麦茶として分離し、残されたものが麦茶抽出粕となる。抽出液の分離はデカンテーション、濾過、遠心分離など通常行われる方法で行なわれてよい。また麦茶抽出粕は、要すれば、洗浄、脱水、乾燥などの処理に供されてよい。
 麦茶抽出粕の液体培地中における濃度は3%W/V以上であることが好ましい。麦茶抽出粕の濃度が3%W/V未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。より好ましくは、麦茶抽出粕の液体培地中における濃度は4%W/V以上、更に好ましくは5%W/V以上、6%W/V以上、7%W/V以上、8%W/V以上である。
 小麦ふすまとは、小麦の外皮と胚芽の混合物をいう。他方、小麦から小麦ふすま(即ち、外皮及び胚芽)を取り除いて微細化したものが小麦粉である。小麦ふすまは、例えば、工業的に食用小麦粉を得る製粉工程の副産物として大量に発生し、容易に入手することができる。そして、このような小麦ふすまは食品の製造副産物であるため、原料段階での品質検査および製造工程管理が厳しく行なわれていることから衛生品質に優れ安全であり、本発明の方法に用いるのに好ましい。
 小麦ふすまを調製するために用いる小麦の種類としては、特に限定はないが、ホクシン、ふくさやか、農林61号、ナンブコムギ、キタノカオリ、ハルユタカ、春よ恋などを挙げることができる。
 一般に、小麦ふすまの粒子形状は薄片状である。薄片状の小麦ふすまはそのまま用いてよい。また、これを適宜粉砕して粒子を細かくして用いることも、造粒して粒子の塊を形成させてから用いることも可能である。小麦ふすまの形態には、例えば、大ぶすま、小ぶすま、末粉などがある。食品原料及び健康食品等として市販されているものを用いてもよい。
 小麦ふすまの液体培地中における濃度は3%W/V以上であることが好ましい。小麦ふすまの濃度が3%W/V未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。より好ましくは、小麦ふすまの液体培地中における濃度は4%W/V以上、更に好ましくは5%W/V以上、6%W/V以上、7%W/V以上、8%W/V以上である。
 果実の絞り粕とは、ジュースなどの製造工程で副生するものであり、果実を絞った後、果汁をろ過して取り除いた残渣である。果実の絞り粕はジュースなどの製造工程で大量に発生し、入手が容易である。そして、果実の絞り粕は食品の製造副産物であるため、原料段階での品質検査および製造工程管理が厳しく行なわれていることから衛生品質に優れ安全である。果実の絞り粕は、好ましくは、リンゴ、ナシ、モモ、サクランボ、イチゴ等のようなバラ科の果実の絞り粕である。中でもリンゴ絞り粕は、所期の酵素が高生産されるために、好ましい。
 リンゴの品種は、従来からリンゴ果汁を製造するために用いられるリンゴであればよく、例えば、「ふじ」、「つがる」、「王林」、「ジョナゴール」、「スターキングデリシャス」「陸奥」等が挙げられる。リンゴの実は完熟であっても未完熟であってもよい。
 果実の絞り粕の製造方法は、まず、果実を洗浄する。この際、原料不適果があれば、取り除く。洗浄した果実を破砕機に送り、破砕する。破砕した果実はポンプ等で油圧搾汁機に送り、搾汁する。次いで搾汁機から絞り粕を回収する。果実の絞り粕は、要すれば、洗浄、脱水、乾燥などの処理に供される。
 果実の絞り粕の液体培地中における濃度は2%W/V以上であることが好ましい。果実の絞り粕の濃度が2%W/V未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。より好ましくは、果実の絞り粕の液体培地中における濃度は3%W/V以上、更に好ましくは3%W/V以上、4%W/V以上、5%W/V以上、6%W/V以上である。
 液体培地中の天然セルロース材料の濃度は高ければ高いほどよい。すなわち、その上限は、液体培地の撹拌混合を行なうことができる限度の量である。液体培地が撹拌できないと微生物は液体培地中に均一に混合されず、培養が正常に進行しないからである。液体培地中のパルプの濃度の上限は、攪拌装置の性能に応じて20、15、10又は8%W/Vでありうる。
 天然セルロース材料のうち、紙、パルプ以外の材料、例えば、ビール粕、麦茶抽出粕、小麦ふすま及び果実の絞り粕等は、液体培地に導入する際に前処理を行うのが好ましい。好ましい前処理は、例えば、粉砕処理及び脱リグニン処理である。これらの天然セルロース材料からリグニンが除去されると強固な細胞壁が崩れ、容易にセルロースが利用できるようになり、酵素が生産され易くなるからである。また、これらの天然セルロース材料を粉砕処理することにより、脱リグニン処理をより効率的に行うことができる。
 脱リグニン処理の方法は特に限定されないが、例えば、水酸化ナトリウムのような強アルカリ性物質の存在下で、または硫酸や燐酸のような強酸性物質の存在下で高温に加熱して分解させる方法、微生物により分解させる方法、高温・高圧下で水熱処理により分解させる方法が挙げられる。処理設備や環境への負荷を考慮すると、高温・高圧下で水熱処理により分解させる方法が好ましい。
 また、加熱殺菌など液体培地の原料に対して通常行われる前処理を更に行ってもよい。
 アンモニア態窒素とはアンモニア又はアンモニア由来のアンモニウム塩に含まれている窒素をいう。また、アミノ態窒素とはアミン又はアミン由来のアミノ化合物に含まれている窒素をいう。アンモニア態窒素又はアミノ態窒素を含む化合物は、例えば、硫酸アンモニウム、硝酸アンモニウム、燐酸二アンモニウム、塩化アンモニウム、アンモニア水、尿素、アミノ酸およびその塩(例えば、ロイシン、グルタミン酸ナトリウム)である。
 これらのうち、窒素源として本発明の液体培地に用いるのに特に好ましい化合物は、硫酸アンモニウムである。その理由は、コストが低く入手が容易だからである。
 アンモニア態窒素又はアミノ態窒素の液体培地中における濃度は、アンモニウムのモル数として30~660mMである。好ましくは、40~580mMである。濃度が30mM未満であるとセルラーゼ、特にβ-グルカナーゼの生成量があまり増大しない場合がある。また、この濃度が660mMを超えると酵素の生産性が低下する。また、アンモニア態窒素又はアミノ態窒素の液体培地中における濃度は、液体培地中の天然セルロース材料の濃度に応じて、増減させることが好ましく、例えば、天然セルロース材料の濃度が4%W/Vである場合は、コスト等を考慮すると50mMが好ましい。
 β-グルカナーゼ及びキシラナーゼの製造方法
 トリコデルマ属糸状菌はセルロースの糖化に必要なセルラーゼの生産菌として知られている。本発明に使用するトリコデルマ属に属する微生物はセルラーゼを生産するものであれば特に限定されない。好ましいトリコデルマ属に属する微生物はトリコデルマ・リーセイ又はトリコデルマ・ビリデである。特に好ましくは、トリコデルマ・リーセイである。
 糸状菌トリコデルマ・リーセイおよびトリコデルマ・ビリデの菌学的性質は、例えば、イー・ジー・シモンズ,アブストラクト・セカンド・インターナショナル・マイコロジカル・コングレス(E.G. Simmons, Abst. 2nd International Mycological Congress) 米国フロリダ州タンパ,1977年8月,618頁)に記載されている。
 液体培養には通常の通気撹拌培養装置が用いられ、上記本発明の液体培地を使用して、培養温度20~33℃好ましくは、28~30℃、培養pH4~6で、4~10日間培養する。培養の最初から上記液体培地を使用する場合は、液体培地に含まれる成分(例えば、炭素源及び窒素源)の濃度は、本発明の培養方法における上記成分の初期濃度に相当する。
 培養の過程において液体培地に対して廃菌体を追加してもよい。培養の進行と共に培地中の廃菌体は分解されるため、廃菌体を補うことによりセルラーゼの生成効率が向上する場合があるからである。
 廃菌体を追加する場合、培養の過程において、天然セルロース材料やアンモニア態窒素又はアミノ態窒素を必要に応じて、適宜追加してもよい。
 ついで、この培養液から遠心分離、濾過などの公知の方法によって菌体を除去して、トリコデルマ属糸状菌培養上清液が得られる。トリコデルマ属糸状菌培養液又は培養上清液には目的とするセルラーゼ、すなわちβ-グルカナーゼ及びキシラナーゼが高濃度で含まれている。
 得られる培養液又は培養上清液のβ-グルカナーゼ活性は30U/ml以上、好ましくは50U/ml以上、より好ましくは60U/ml以上、更に好ましくは70U/ml以上である。また、この培養液又は培養上清液のキシラナーゼ活性は25U/ml以上、好ましくは30U/ml以上、より好ましくは40U/ml以上、更に好ましくは50U/ml以上である。培養液又は培養上清液のβ-グルカナーゼ活性、キシラナーゼ活性のいずれかが上記下限より低下すると、天然に存在する多様なセルロース資源の有効利用という目的に対する効果が低くなる。
 尚、上記ヘミセルラーゼ活性は、「oat spelts」由来のキシランを基質とした酵素加水分解により生成した還元糖をDNSと反応させ、540nmの吸光度の増加で定量することができる。
 より具体的には1%キシラン基質溶液(シグマ社製「Xylan, from oat spelts」を200nM酢酸緩衝液(pH4.5)に溶解)1.9mlに培養液又は培養上清液0.1mlを加えて、40℃にて正確に10分間酵素反応を行なわせた後、DNS試薬(0.75%ジニトロサリチル酸、1.2%水酸化ナトリウム、22.5%酒石酸ナトリウムカリウム4水和物、0.3%乳糖1水和物を含む)4mlを加えてよく混合し、反応を停止する。反応停止液に含まれる還元糖量を定量するために、反応停止液を沸騰水浴中で15分間正確に加熱する。続いて、室温まで冷却した後、540nmの吸光度を測定することでキシロースに相当する還元糖量として定量する。1単位のヘミセルラーゼ活性は、40℃、10分間の反応条件下で、1分間に1μmolのキシロースに相当する還元糖を生成する酵素量として表す。
 本発明でいう「トリコデルマ属に属する微生物を培養する」とは、技術常識のとおり当該微生物を育成する操作をいう。つまり、β-グルカナーゼ及びキシラナーゼの製造を目的として液体培養を行う方法において、少なくとも上記本発明の液体培地の中でトリコデルマ属に属する微生物が育成する過程が存在すれば、その培養方法は本発明の方法に該当する。
 培養を行うと、液体培地の栄養はトリコデルマ属に属する微生物が消費するために減少する。それゆえ、培養の終期には培地中の炭素源や窒素源(有機窒素源を含む)の濃度が所定の濃度未満になって、結果として本発明の液体培地に該当しない培地の中でトリコデルマ属に属する微生物が育成するかもしれない。かかる場合でも、例えば培養を開始した時点で、使用する液体培地が炭素源や窒素源を所定の濃度で含有する本発明の液体培地に該当しているときは、少なくとも培養の初期には本発明の液体培地の中でトリコデルマ属に属する微生物が育成するのであるから、その培養方法は当然本発明の方法に該当する。
 尚、このように特に培養の開始時点から炭素源を高含有させる場合は、上述のとおり、液体培地を攪拌混合する際の利便性を考慮して、炭素源や窒素源の濃度の上限をある程度制限することが好ましい。
 反対に、培養の初期には培地中の炭素源又は窒素源の濃度が所定の濃度より低く、本発明の液体培地に該当しない培地を用いて培養が行われていても、例えば、その後これらが追加されて培地中の炭素源又は窒素源の濃度が所定の濃度以上になった場合は、その後は本発明の液体培地の中でトリコデルマ属に属する微生物が育成するのであるから、その培養方法は本発明の方法に該当する。
 セルロース原料の分解又は糖化方法
 本発明の方法により得られたβ-グルカナーゼ及びキシラナーゼは、セルロース原料を分解又は糖化するのに有用である。ここでいうセルロース原料は、合成セルロースもしくは天然セルロース資源のどちらでも良い。合成セルロースとは、セルロース粉末として、流通しているものを表す。天然セルロース資源とは、バガス、稲わら、麦わら、ビール粕、木材などが挙げられる。本発明は、β-グルカナーゼおよびキシラナーゼを同時に高生産できるため、特に、バガス、稲わら、麦わら、ビール粕などの天然セルロース資源の糖化に優れている。
 セルロース原料の分解又は糖化方法は、公知の方法を使用すればよく、特に制限されるものではないが、一例としては、基質としてセルロース原料を水性媒体中に懸濁させ、上記培養液又は培養上清液を添加し、攪拌又は振とうしながら、加温して糖化反応を行う方法が挙げられる。セルロース分解活性を示す上記培養液又は培養上清液の代わりにその乾燥物、又は乾燥物を水に分散もしくは溶解した液を用いてもよい。
 セルロース原料は、予め脱リグニンしておくことが好ましい。懸濁方法、攪拌方法、上記混合液の添加方法、添加順序、それらの濃度等の反応条件は、グルコースがより高収率で得られるよう適宜調整される。
 その際の、反応液のpH及び温度は、酵素が失活しない範囲内であればよく、一般的には、常圧で反応を行う場合、温度は30~70℃、pHは3~7の範囲でよい。また、この圧力、温度、pHについても、上記同様、グルコースがより高収率で得られるよう適宜調整されるものであるが、常圧で、酢酸又はリン酸緩衝液中で、温度50~60℃、pH4~6の範囲で行うことが好ましい。反応時間は一般に6~147時間、好ましくは24~72時間である。
 セルロースの糖化により、グルコースを含有する水溶液が得られる。得られた水溶液は、必要に応じて、脱色、脱塩、酵素除去等の精製処理を施すことができる。精製方法は、公知の方法であれば特に制限されないが、例えば、活性炭処理、イオン交換樹脂処理、クロマトグラフィー処理、精密ろ過、限外ろ過、逆浸透ろ過等の濾過処理、晶析処理等を使用してもよく、これらを単独で使用しても、2種以上を組み合わせてもよい。
 上記の方法で精製されたグルコースを主成分とする水溶液は、そのまま使用することができるが、必要に応じて、乾燥により固化させてもよい。乾燥方法は、公知の方法であれば特に制限されないが、例えば、噴霧乾燥、凍結乾燥、ドラム乾燥、薄膜乾燥、棚段乾燥、気流乾燥、真空乾燥等を使用してもよく、これらを単独で使用しても、2種以上を組み合わせてもよい。
 以下、本発明を実施例によってより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
 実施例1
 トリコデルマ・リーセイQM9414をマンデル培地に植菌し、本実施例に説明するのと同様の条件で培養して、培養液を得た。得られた培養液を遠心分離機(BECMAN COULTER社製「Avanti HP-25」)にかけて集菌した。この菌体残渣を約60℃で約24時間乾燥させて廃菌体を得た。
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースをコピー紙3%(3g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、また有機窒素源であるポリペプトンを上記廃菌体に置き換えてそれぞれ0.5%、1.0%、1.5%、2.0%、3.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意し、オートクレーブで、121℃、15分間、加熱滅菌した。次いで、培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を測定した。
 (酵素活性の測定)
 前記で得られた培養液について酵素活性を測定した。
 β-グルカナーゼ活性は、メガザイム社製のβ‐グルカナーゼ測定キットを用い、色素標識したβ-グルカンを基質とした酵素分解によって生じた染色断片を吸光度測定した。具体的には、アゾ大麦グルカン基質溶液0.1mLに培養液0.1mLを加えて、40℃にて正確に10分間酵素反応を行なわせた後、停止液〔4%酢酸ナトリウム、0.4%酢酸亜鉛、80%メチルセルソルブを含む(pH5)〕0.6mLを加えて5分放置し、反応を停止した。続いて遠心分離した後、上澄液を590nmの吸光度測定した。1単位のβ-グルカナーゼ活性は、40℃、10分間の反応条件下で、1分間に1μmolのグルコースに相当する還元糖を生成する酵素量として表した。
 次に、キシラナーゼ活性は、「oat spelts」由来のキシランを基質とした酵素加水分解により生成した還元糖をDNSと反応させ、540nmの吸光度の増加で定量した。より具体的には1%キシラン基質溶液[シグマ社製「Xylan,from oat spelts」を200mM酢酸緩衝液(pH4.5)に溶解]1.9mLに培養液0.1mLを加えて、40℃にて正確に10分間酵素反応を行なわせた後、DNS試薬(0.75%ジニトロサリチル酸、1.2%水酸化ナトリウム、22.5%酒石酸ナトリウムカリウム4水和物、0.3%乳糖1水和物を含む)4mLを加えてよく混合し、反応を停止した。反応停止液に含まれる還元糖量を定量するために、反応停止液を沸騰水浴中で15分間正確に加熱した。続いて、室温まで冷却した後、540nmの吸光度を測定することでキシロースに相当する還元糖量として定量した。1単位のキシラナーゼ活性は、40℃、10分間の反応条件下で、1分間に1μmolのキシロースに相当する還元糖を生成する酵素量として表した。結果を図1に示す。
 参考例1
 マンデル培地の炭素源である結晶セルロース(Fluka BioChemika製、商品名アビセルPH101)の濃度を1%とし、また有機窒素源であるポリペプトンを実施例1と同様にして得た廃菌体に置き換えてそれぞれ0.5%、1.0%、1.5%、2.0%、3.0%になるように添加して実施例1と同様に液体培地を用意した。トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させ、この1白金耳を液体培地に接種して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、実施例1と同様にしてβ-グルカナーゼ活性およびキシラナーゼ活性を測定した。結果を図2に示す。
 実施例2
 実施例1で得られた培養上清液(3%コピー紙、1.5%の廃菌体)および参考例1で得られた培養上清液(1%アビセル培地、1.5%の廃菌体)を用いて、セルロース原料の糖化試験を行った。糖化に供するセルロース原料としては、稲わら及び日本製紙ケミカル社製セルロース「KCフロック」を準備した。稲わらは、以下の方法で脱リグニン処理を行った。
 稲わらを微粉砕し、0.3NのNaOHに懸濁して、120℃、15分間処理し、水で充分に洗浄後、乾燥した。セルロース原料の糖化は、セルロース原料:0.8g、培養上清液:9.0mL、1M酢酸バッファー(pH4.8):0.2mLからなる液(セルロース原料8%液)を50℃、pH4.8、48時間、振とうさせて糖化し、生成したグルコースをグルコースCII-テストワコー(和光純薬工業)で測定した。結果を図3および図4に示す。
 実施例3
 ビールの製造過程からビール粕を採取し、0.3N水酸化ナトリウム水溶液中で121℃、15分のオートクレーブ処理によるリグニンを除去し、充分水洗いした後、乾燥させた。
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースを上記脱リグニン処理したビール粕3%(3g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、有機窒素源をポリペプトン0.2%、または実施例1と同様にして得た廃菌体に置き換えてそれぞれ0.5%、1.0%、2.0%、3.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意した。培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を実施例1と同様の方法で測定した。結果を図5に示す。
 実施例4
 丸つぶ麦茶(アサヒビールモルト社製)及び沸騰させた湯を用いて、麦茶を煮出した。水溶液である麦茶を除去し、残された粕を水洗し乾燥させて、麦茶抽出粕を得た。
 得られた麦茶抽出粕を粉砕処理し、0.3N水酸化ナトリウム水溶液中で121℃、15分のオートクレーブ処理によるリグニンを除去し、充分水洗いした後、乾燥させた。
 得られた麦茶抽出粕は、0.3N水酸化ナトリウム水溶液中で121℃、15分のオートクレーブ処理によるリグニンを除去し、充分水洗いした後、乾燥させて使用した。
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースを上記脱リグニン処理した麦茶粕5%(3g/100mL)に置き換えて、他は実施例3と同様の方法で、得られた培養液について酵素活性を測定した。結果を図6に示す。
 実施例5
 小麦ふすま(昭和産業社製)を粉砕処理し、0.3N水酸化ナトリウム水溶液中で121℃、15分のオートクレーブ処理によるリグニンを除去し、充分水洗いした後、乾燥させた。
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースを上記脱リグニン処理した小麦ふすま5%(5g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、また有機窒素源であるポリペプトンを実施例1と同様にして得た廃菌体に置き換えてそれぞれ0.5%、1.0%、2.0%、3.0%、4.0%、5.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意した。培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を実施例1と同様の方法で測定した。結果を図7に示す。
 実施例6
 粉砕装置(アモス社製 「ハンマーミル」)を用いてリンゴ果実(品種「ふじ」)を粉砕し、引き続きリンゴ搾汁装置(月島-アンドリッツ製 「プレスロールフィルター」)を用いて、搾汁した。搾汁機から絞り粕を回収し、水洗し乾燥させた。
 得られたリンゴの絞り粕は、0.3N水酸化ナトリウム水溶液中で121℃、15分のオートクレーブ処理によるリグニンを除去し、充分水洗いした後、乾燥し、粉砕処理を施して大きさを均一にして使用した。
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースを上記脱リグニン処理したリンゴの搾り粕4%(4g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、また有機窒素源であるポリペプトンを実施例1と同様にして得た廃菌体に置き換えてそれぞれ0.5%、1.0%、2.0%、3.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意した。培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を実施例1と同様の方法で測定した。結果を図8に示す。
 参考例2
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースをコピー紙3%(3g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、また有機窒素源であるポリペプトンをコーンスティープリカー(CSL)に置き換えてそれぞれ0.5%、1.0%、2.0%、3.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意した。培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を実施例1と同様の方法で測定した。結果を図9に示す。
 参考例3
 トリコデルマ・リーセイQM9414(NBRC 31329)をポテトデキストロース寒天培地上で28℃、7日間培養して胞子を充分形成させた。マンデル培地の炭素源である結晶セルロースをコピー紙3%(3g/100mL)に置き換えて、また無機窒素源である硫酸アンモニウムを1%添加して、また有機窒素源であるポリペプトンをそれぞれ0.5%、1.0%、2.0%、3.0%になるように添加して燐酸または水酸化ナトリウムでpH4.8に調整した100mMの液体培地を500mL容バッフル付三角フラスコに用意した。培養したトリコデルマ・リーセイの1白金耳をこの液体培地に摂取して、28℃、180rpm、7日間振とう培養した。7日目に培養液を遠心分離し、上清液のβ-グルカナーゼ活性およびキシラナーゼ活性を実施例1と同様の方法で測定した。結果を図10に示す。
 稲わら等の天然セルロース資源の糖化に極めて有用なβ-グルカナーゼ及びキシラナーゼを同時に高生産でき、セルロース資源からエタノールを製造するバイオマスエタノール製造に利用できる。

Claims (13)

  1.  有機窒素源として廃菌体を含む液体培地を用いて、トリコデルマ属に属する微生物を培養する工程を包含するβ-グルカナーゼ及びキシラナーゼの製造方法。
  2.  前記廃菌体の前記液体培地中における濃度が1%W/V以上である請求項1に記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  3.  前記廃菌体の前記液体培地中における濃度が2~10%W/Vである請求項1又は2に記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  4.  前記廃菌体の原料がトリコデルマ属に属する微生物である請求項1~3のいずれかに記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  5.  前記トリコデルマ属に属する微生物が、トリコデルマ・リーセイである請求項1~4のいずれかに記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  6.  前記液体培地が、炭素原として天然セルロース材料及び窒素源としてアンモニア態窒素又はアミノ態窒素を更に含む請求項1~5のいずれかに記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  7.  前記天然セルロース材料の前記液体培地中における濃度が2%W/V以上である請求項1~6のいずれかに記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  8.  前記天然セルロース材料が、パルプ、ビール粕、麦茶抽出粕、小麦ふすま及びリンゴ絞り粕からなる群から選択される少なくとも一種である請求項6又は7記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  9.  培養の過程において前記液体培地に対して廃菌体を追加する請求項1~8のいずれかに記載のβ-グルカナーゼ及びキシラナーゼの製造方法。
  10.  有機窒素源として廃菌体を含む液体培地であって、トリコデルマ属に属する微生物を培養するために用いられる液体培地。
  11.  前記廃菌体を1%W/V以上含有する請求項10に記載の液体培地。
  12.  請求項1~9のいずれか1項に記載の方法により製造されたβ-グルカナーゼ及びキシラナーゼ。
  13.  請求項12記載のβ-グルカナーゼ及びキシラナーゼを用いることを特徴とするセルロース資源の分解又は糖化方法。
PCT/JP2010/063838 2009-08-24 2010-08-17 廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地 WO2011024667A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2010287761A AU2010287761A1 (en) 2009-08-24 2010-08-17 Beta-glucanase and xylanase preparation method using waste fungi, and liquid culture medium
US13/391,990 US20120190093A1 (en) 2009-08-24 2010-08-17 Method for producing b-glucanase and xylanase using fungus body debris, and liquid culture medium
CN2010800371355A CN102482654A (zh) 2009-08-24 2010-08-17 利用废菌体的β-葡聚糖酶和木聚糖酶的制造方法以及液体培养基
EP10811717.7A EP2471912A4 (en) 2009-08-24 2010-08-17 PROCESS FOR THE PREPARATION OF BETA-GLUCANASE AND XYLANASE FROM MUSHROOMS AND LIQUID CULTURE MEDIUM THEREFOR
CA2771826A CA2771826A1 (en) 2009-08-24 2010-08-17 Method for producing .beta.-glucanase and xylanase using fungus body debris, and liquid culture medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-192993 2009-08-24
JP2009192993A JP2011041540A (ja) 2009-08-24 2009-08-24 廃菌体を用いたβ−グルカナーゼ及びキシラナーゼの製造方法及び液体培地

Publications (1)

Publication Number Publication Date
WO2011024667A1 true WO2011024667A1 (ja) 2011-03-03

Family

ID=43627772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063838 WO2011024667A1 (ja) 2009-08-24 2010-08-17 廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地

Country Status (7)

Country Link
US (1) US20120190093A1 (ja)
EP (1) EP2471912A4 (ja)
JP (1) JP2011041540A (ja)
CN (1) CN102482654A (ja)
AU (1) AU2010287761A1 (ja)
CA (1) CA2771826A1 (ja)
WO (1) WO2011024667A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6086280B2 (ja) * 2012-06-21 2017-03-01 月島機械株式会社 バイオマスの処理方法
US10231469B2 (en) 2014-03-15 2019-03-19 Mycotechnology, Inc. Myceliated products and methods for making myceliated products from cacao and other agricultural substrates
US10709157B2 (en) 2014-08-26 2020-07-14 Mycotechnology, Inc. Methods for the production and use of mycelial liquid tissue culture
WO2016033241A1 (en) * 2014-08-26 2016-03-03 Mycotechnology, Inc. Methods for the production and use of mycelial liquid tissue culture
US9572364B2 (en) * 2014-08-26 2017-02-21 Mycotechnology, Inc. Methods for the production and use of mycelial liquid tissue culture
WO2016138476A1 (en) 2015-02-26 2016-09-01 Mycotechnology, Inc. Methods for lowering gluten content using fungal cultures
US11166477B2 (en) 2016-04-14 2021-11-09 Mycotechnology, Inc. Myceliated vegetable protein and food compositions comprising same
US10806101B2 (en) 2016-04-14 2020-10-20 Mycotechnology, Inc. Methods for the production and use of myceliated high protein food compositions
MX2018012324A (es) 2016-04-14 2019-05-22 Mycotechnology Inc Metodos para la produccion y uso de composiciones alimenticias con alta proteina micelizada.
WO2020061502A1 (en) 2018-09-20 2020-03-26 The Better Meat Company Enhanced aerobic fermentation methods for producing edible fungal mycelium blended meats and meat analogue compositions

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533984A (ja) 1991-07-24 1993-02-09 Mitsubishi Electric Corp 空気調和機の換気システム
JPH09163980A (ja) 1996-10-25 1997-06-24 Kyowa Hakko Kogyo Co Ltd セルラーゼの製造方法
JPH11113568A (ja) 1997-08-21 1999-04-27 F Hoffmann La Roche Ag 酵素複合体
JP2001292790A (ja) * 2000-04-11 2001-10-23 Daicel Chem Ind Ltd 新規な4−ハロゲン化−3−ヒドロキシ酪酸エステルの製造方法
JP2003047338A (ja) 2001-08-03 2003-02-18 Mori Sangyo Kk キノコ子実体栽培用培地又は培養基、およびキノコ菌糸体増殖用培地又は培養基、それを用いたキノコ子実体栽培方法およびキノコ菌糸体培養方法
JP2003137901A (ja) 2001-11-02 2003-05-14 National Institute Of Advanced Industrial & Technology セルラーゼ生産用基質
WO2006126589A1 (ja) * 2005-05-26 2006-11-30 Kyowa Concrete Industry Co., Ltd. アワビ・マンナナーゼの遺伝子

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1383075A (fr) * 1963-11-12 1964-12-24 Royal Champignon Sa Procédé de préparation de blanc de champignon sous forme liquide et blanc de champignon liquide obtenu par ce procédé
CN1185336C (zh) * 2002-04-19 2005-01-19 浙江大学 里氏木霉菌株及其用途
CN101400776B (zh) * 2006-03-07 2012-09-26 诺维信公司 啤酒酿造方法
WO2009043012A1 (en) * 2007-09-27 2009-04-02 Mascoma Corporation Progressive fermentation of lignocellulosis biomass
CN101402973B (zh) * 2008-11-17 2012-05-02 华东理工大学 2,3-丁二醇生产过程与微生物生物质循环利用的集成化方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533984A (ja) 1991-07-24 1993-02-09 Mitsubishi Electric Corp 空気調和機の換気システム
JPH09163980A (ja) 1996-10-25 1997-06-24 Kyowa Hakko Kogyo Co Ltd セルラーゼの製造方法
JPH11113568A (ja) 1997-08-21 1999-04-27 F Hoffmann La Roche Ag 酵素複合体
JP2001292790A (ja) * 2000-04-11 2001-10-23 Daicel Chem Ind Ltd 新規な4−ハロゲン化−3−ヒドロキシ酪酸エステルの製造方法
JP2003047338A (ja) 2001-08-03 2003-02-18 Mori Sangyo Kk キノコ子実体栽培用培地又は培養基、およびキノコ菌糸体増殖用培地又は培養基、それを用いたキノコ子実体栽培方法およびキノコ菌糸体培養方法
JP2003137901A (ja) 2001-11-02 2003-05-14 National Institute Of Advanced Industrial & Technology セルラーゼ生産用基質
WO2006126589A1 (ja) * 2005-05-26 2006-11-30 Kyowa Concrete Industry Co., Ltd. アワビ・マンナナーゼの遺伝子

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
E.G. SIMMONS, ABST. 2ND INTERNATIONAL MYCOLOGICAL CONGRESS, August 1977 (1977-08-01), pages 618
NAPOLITANO A. ET AL.: "Treatment of cereal products with a tailored preparation of Trichoderma enzymes increases the amount of soluble dietary fiber", J. AGRIC. FOOD CHEM., vol. 54, no. 20, 2006, pages 7863 - 7869, XP002517935 *
OSTRIKOVA NA. ET AL.: "Effect of nitrogen sources on cellulase biosynthesis by a mutant strain of Trichoderma viride 44", PRIKL. BIOKHIM. MIKROBIOL., vol. 19, no. 4, 1983, pages 498 - 502, XP008151151 *
SEYIS I. ET AL.: "Effect of carbon and nitrogen sources on xylanase production by Trichoderma harzianum 1073 D3", INT. BIODETERIOR. BIODEGRADATION, vol. 55, no. 2, 2005, pages 115 - 119, XP027868454 *

Also Published As

Publication number Publication date
EP2471912A1 (en) 2012-07-04
EP2471912A4 (en) 2013-09-18
US20120190093A1 (en) 2012-07-26
CN102482654A (zh) 2012-05-30
JP2011041540A (ja) 2011-03-03
CA2771826A1 (en) 2011-03-03
AU2010287761A1 (en) 2012-03-29

Similar Documents

Publication Publication Date Title
WO2011024667A1 (ja) 廃菌体を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地
KR100894374B1 (ko) 셀로올리고당의 제조 방법
US10954276B2 (en) Enzyme-based protein separation and enrichment from soy meal, wheat meal, and other protein-rich materials derived from plant seeds, fruits and other biomass
CN107075542A (zh) 糖液及低聚木糖的制造方法
JP5243435B2 (ja) セルラーゼ及びセロオリゴ糖の製造法
CN109913388B (zh) 提高玉米浸泡效果的复合菌剂及其应用
CN102356882B (zh) 利用啤酒糟生产生物膳食纤维素的方法及其产品
WO2014098277A1 (ko) 주박으로부터 효소분해와 유산균발효의 연속 공정에 의한 조미 소재의 제조 방법
TWI429748B (zh) Cellulase and fiber oligosaccharide production method
WO2011021612A1 (ja) 小麦ふすまを用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地
JP5069576B2 (ja) 高濃度のセロビオースを蓄積できる酵素組成物、及びそれを用いたセロオリゴ糖の製造方法
JP5599991B2 (ja) 果実の絞り粕を用いたβ−グルカナーゼ及びキシラナーゼの製造方法及び液体培地
WO2009119252A1 (ja) セルロース分解活性を示す糸状菌培養物混合物またはその乾燥物、及びそれらを用いるグルコースの製造方法
JP5502388B2 (ja) 麦茶抽出粕を用いたβ−グルカナーゼ及びキシラナーゼの製造方法及び液体培地
WO2010116545A1 (ja) ビール粕を用いたβ-グルカナーゼ及びキシラナーゼの製造方法及び液体培地
JP2010081826A (ja) セルラーゼ生産菌用培地、セルラーゼ生産菌の培養方法、及びセルロースの糖化方法
JP6325214B2 (ja) セルラーゼの製造方法及び液体培地
ANJANA ISOLATION OF CELLULASE ENZYME BY ASPERGILLUS NIGER FROM SUGARCANE BAGASSE
JP2010142221A (ja) β−グルカナーゼ及びキシラナーゼの製造方法及び液体培地

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080037135.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10811717

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010811717

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2771826

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1734/CHENP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010287761

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2010287761

Country of ref document: AU

Date of ref document: 20100817

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13391990

Country of ref document: US