WO2011021392A1 - 変性ポリシロキサン化合物の製造方法 - Google Patents

変性ポリシロキサン化合物の製造方法 Download PDF

Info

Publication number
WO2011021392A1
WO2011021392A1 PCT/JP2010/005123 JP2010005123W WO2011021392A1 WO 2011021392 A1 WO2011021392 A1 WO 2011021392A1 JP 2010005123 W JP2010005123 W JP 2010005123W WO 2011021392 A1 WO2011021392 A1 WO 2011021392A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
group
compound
polysiloxane compound
molecular weight
Prior art date
Application number
PCT/JP2010/005123
Other languages
English (en)
French (fr)
Inventor
昭宏 白井
俊明 岡戸
霜鳥 武司
Original Assignee
日本曹達株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本曹達株式会社 filed Critical 日本曹達株式会社
Priority to EP10809738.7A priority Critical patent/EP2468799B1/en
Priority to JP2011527588A priority patent/JP5503654B2/ja
Priority to US13/389,169 priority patent/US8420744B2/en
Priority to KR1020127003609A priority patent/KR101375894B1/ko
Priority to CN201080036410.1A priority patent/CN102471491B/zh
Priority to ES10809738.7T priority patent/ES2478069T3/es
Publication of WO2011021392A1 publication Critical patent/WO2011021392A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F212/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F212/02Monomers containing only one unsaturated aliphatic radical
    • C08F212/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F212/14Monomers containing only one unsaturated aliphatic radical containing one ring substituted by heteroatoms or groups containing heteroatoms
    • C08F212/22Oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/12Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/10Block- or graft-copolymers containing polysiloxane sequences

Definitions

  • the present invention relates to a method for producing a modified polysiloxane compound, and more specifically, a method for producing a modified polysiloxane compound having a phenol skeleton introduced by block copolymerization using p-alkenylphenol units and organosiloxane units as essential constituent units.
  • This application claims priority to Japanese Patent Application No. 2009-192151 filed on August 21, 2009, the contents of which are incorporated herein by reference.
  • Organopolysiloxane compounds are widely used in various fields because of their excellent interface properties such as thermal stability, water repellency, defoaming properties, and releasability.
  • the use as a film-forming agent has been expanded by taking advantage of its unique interface characteristics, but a modifier for imparting the temperature characteristics and interface characteristics of organopolysiloxane compounds to various resins. As an application, it is being actively deployed.
  • dimethylpolysiloxane, methylphenylpolysiloxane, fatty acid-modified polysiloxane, polyether-modified polysiloxane, and the like have been used to improve the performance of synthetic resins such as paints and molded articles.
  • these materials have insufficient compatibility with the resin or have insufficient heat resistance, so the range of use has been limited.
  • thermosetting resins and thermoplastic resins such as mechanical properties, moisture resistance, surface properties, etc.
  • thermoplastic resins such as mechanical properties, moisture resistance, surface properties, etc.
  • a separation membrane or a biocompatible polymer material a polysiloxane compound having a controlled structure and having an arbitrary number of functional groups in the molecule is craved.
  • the method using a low-molecular-weight dimethylsiloxane compound having a group has a drawback in that the compatibility with other resins is not sufficient, resulting in a decrease in molding processability and mechanical strength.
  • the method using a reaction product of a polysiloxane having a functional group at the terminal and another resin easily causes undesirable phenomena such as abnormal thickening and gelation during the modification reaction, and unreacted components remain. As a result, there has been a problem that the compatibility is lowered.
  • Patent Document 4 requires the use of an acidic substance in order to remove a saturated aliphatic protecting group, but depending on the type of acid used and the reaction conditions, the molecular weight may change due to decomposition or condensation, There is concern about coloring.
  • Patent Document 4 a specific example in which a protecting group is eliminated by blowing hydrogen chloride gas is described, but the proper use conditions and the proper use amount of hydrogen chloride are unknown.
  • An object of the present invention is to provide conditions and amounts of hydrogen chloride that do not change molecular weight or cause coloration due to decomposition or condensation.
  • the present inventors have made hydrogen chloride react with a saturated aliphatic protective group in an approximately equivalent amount in a non-aqueous system in order to remove the saturated aliphatic protective group.
  • the present invention was completed.
  • the present invention provides a compound of formula (I) X (Y) n (I) [Wherein X is the formula (II)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Y is the formula (III)
  • R 3 and R 4 each represent a linear or branched alkyl group, cycloalkyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms. In the formula, R 3 and R 4 May be the same or different from each other.), And n is 1 or 2.
  • a modified polysiloxane compound having a weight ratio of X and Y of 1/99 ⁇ X / Y ⁇ 90/10 and a number average molecular weight of 1,000 to 100,000 is present in a non-aqueous solvent.
  • a polymer block having a repeating unit represented by the above definition, Y and n are as defined above, preferably a molecular weight distribution.
  • the present invention relates to a method for producing a modified polysiloxane compound having a ratio of 1.05 to 1.5.
  • the modified polysiloxane compound represented by the formula (I) is represented by the formula (VII) in the presence of an anionic polymerization initiator.
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms
  • a compound (VII) It is related with the manufacturing method of the modified
  • modified polysiloxane compound The modified polysiloxane compound used in the present invention is represented by the following formula (I). X (Y) n (I) [Wherein X is the formula (II)
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents a linear or branched alkyl group having 1 to 6 carbon atoms.
  • Y is the formula (III)
  • the modified polysiloxane compound has a weight ratio of X to Y of 1/99 ⁇ X / Y ⁇ 90/10 and a number average molecular weight of 1,000 to 100,000.
  • X is a polymer block having a repeating unit derived from one or more p-alkenylphenol derivatives, or a repeating unit derived from a p-alkenylphenol derivative and one or more conjugated dienes and / or one Or the block which consists of a random copolymer or a block copolymer which consists of a repeating unit of 2 or more types of vinyl compounds, and what is shown by following formula (VI) is also contained.
  • R 1 and R 2 have the same meaning as described above, and a and b are arbitrary natural numbers depending on the degree of polymerization.
  • Y in the above formula (I) of the present invention is a polymer block having an organosiloxane represented by the above formula (III) as a repeating unit.
  • the compound represented by the formula (I) is represented by XY or YXY.
  • the modified polysiloxane compound represented by X (Y) n of the present invention is not particularly limited in its production method, and a known method can be adopted. For example, it can be produced by the following method (patent) No. 3471010).
  • Formula (VII) in the presence of an anionic polymerization initiator is not particularly limited in its production method, and a known method can be adopted. For example, it can be produced by the following method (patent) No. 3471010).
  • R 5 represents a hydrogen atom or a methyl group
  • R 6 represents a linear or branched alkyl group having 1 to 6 carbon atoms
  • Polymerization Method for X Part A compound represented by the formula (VII) or a compound copolymerizable therewith can be converted into an alkali metal and / or organic in an organic solvent under vacuum or in an inert gas atmosphere such as nitrogen or argon.
  • Anionic polymerization is performed at a temperature of ⁇ 100 ° C. to 150 ° C. using an alkali metal compound as a polymerization initiator.
  • a polymer having a controlled molecular weight and a narrow molecular weight distribution can be obtained.
  • Examples of the compound represented by the formula (VII) used in the present invention include pn-butoxystyrene, p-sec-butoxystyrene, p-tert-butoxystyrene, p-tert-butoxy- ⁇ -methylstyrene, and the like. In particular, p-tert-butoxystyrene and p-tert-butoxy- ⁇ -methylstyrene are preferable.
  • the compound copolymerizable with the formula (VII) used in the present invention is preferably a conjugated diene or a vinyl compound.
  • conjugated diene or vinyl compound examples include 1,3-butadiene, isoprene, 2,3-dimethyl- Conjugated dienes such as 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene; styrene, p-methylstyrene, ⁇ -methylstyrene, p-tert-butylstyrene, vinylnaphthalene, divinylbenzene, 1, Vinyl aromatic compounds such as 1-diphenylethylene; (meth) acrylic esters such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate; 2-vinylpyridine, 4-vinylpyridine Vinyl pyridines such as; acrylonitrile and the like, and they are used as one kind or a mixture of two or more kinds. That.
  • Examples of the alkali metal used as the anion polymerization initiator include lithium, sodium, and potassium, and examples of the organic alkali metal compound include alkylated products, allylated products, and arylated products of the alkali metals.
  • Specific examples of organic alkali metal compounds include ethyl lithium, n-butyl lithium, sec-butyl lithium, tert-butyl lithium, ethyl sodium, butadienyl dilithium, butadienyl disodium, lithium biphenyl, lithium naphthalene, lithium fluorene.
  • organic solvent aliphatic hydrocarbons such as n-hexane and n-heptane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene and toluene; diethyl ether, dioxane, tetrahydrofuran and the like
  • organic solvents such as ethers usually used in anionic polymerization are used as one or two or more mixed solvents.
  • the form of the copolymer obtained by the anionic polymerization is such that a random copolymer is formed by adding a mixture of the compound represented by the formula (IV) and the monomer to the reaction system and polymerizing the mixture. Is then polymerized in advance, and then a mixture of both is added to continue the polymerization to obtain a partial block copolymer, and the compound represented by the formula (IV) and the monomer are sequentially added to the reaction system. A complete block copolymer is synthesized by polymerization.
  • a cyclic siloxane compound is added to the reaction system, and the anionic polymerization reaction is continued under the same conditions as exemplified above.
  • a block copolymer (hereinafter referred to as a precursor) composed of a chain composed of the compound represented by the formula (VII) alone or a compound copolymerizable therewith and a polysiloxane chain is produced.
  • the cyclic siloxane compound used here is a compound represented by the following formula (VIII).
  • R 7 and R 8 are each a linear or branched alkyl group, cycloalkyl group, aryl group or arylalkyl group having 1 to 20 carbon atoms, and c is a positive integer of 3 to 7) R 7 and R 8 may be the same or different from each other.
  • Specific examples of the compound represented by the formula (VIII) include, for example, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, hexaethylcyclotrisiloxane, and octaethylcyclohexane.
  • Examples thereof include tetrasiloxane and hexaphenylcyclotrisiloxane, and these can be used as one kind or a mixture of two or more kinds.
  • polymerization conditions such as reaction temperature and reaction solvent can be appropriately changed within a set range.
  • the modified polysiloxane compound of the present invention is a compound other than the above-described method, for example, a compound that can be copolymerized with the compound represented by (VII) after the homopolymerization of the compound represented by (VII).
  • an organosiloxane compound having a functional group capable of reacting with the growth terminal of the polymer is added to the reaction system, and a coupling reaction is performed under the same conditions as exemplified above, whereby the above formula ( A copolymer comprising a chain of the compound represented by VII) or a chain of a compound copolymerizable with the compound represented by (VII) and a polysiloxane chain is produced.
  • the organosiloxane compound used here is not particularly limited as long as it has a functional group capable of coupling reaction with the growth terminal of the polymer. Specific examples include the following formulas (IX) and (X And the like are used.
  • R 9 and R 10 are each a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group or an aralkyl group, and X 1 and X 2 are halogen atoms.
  • R 9 , R 10 , X 1 and d represent the same meaning as described above, and R 11 represents a linear or branched alkyl group having 1 to 20 carbon atoms, a cycloalkyl group, an aryl group, or Represents an aralkyl group.
  • Specific examples of the compound represented by the formula (IX) or (X) include, for example, commercially available ⁇ , ⁇ -bis (chloromethyl) polydimethylsiloxane, 1- (3-chloropropyl) -1,1,3. , 3,3-pentamethyldisiloxane, ⁇ , ⁇ -bis (3-glycidoxypropyl) polydimethylsiloxane, ⁇ , ⁇ -dichloropolydimethylsiloxane, and the like.
  • conditions such as reaction temperature and reaction solvent can be appropriately changed within a set range.
  • the reaction for removing the hydroxyl-protecting group present in the repeating unit of the formula (II) from the modified polysiloxane compound represented by the formula (I) to form a p-alkenylphenol skeleton is a non-aqueous solvent, for example, aliphatic hydrocarbons such as n-hexane and n-heptane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene and toluene; ethers such as diethyl ether, dioxane and tetrahydrofuran; Chlorinated solvents such as carbon chloride; alcohols such as methanol, ethanol and 2-propanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethyl acetate, butyl acetate, ethyl
  • the polymerization reaction crude liquid produced by the above method may be used as it is.
  • a non-aqueous solution containing hydrogen chloride can be prepared by blowing hydrogen chloride gas into a dehydrated solvent and dissolving it. Or you may purchase a commercial item. When dissolved, the concentration can be defined by neutralization titration.
  • the amount of hydrogen chloride used is 0.9 to 1.3 equivalents, preferably 0.95 to 1.1 equivalents of hydrogen chloride per equivalent of repeating unit represented by formula (II). .
  • the reaction temperature is 0 to 100 ° C., preferably room temperature to 70 ° C.
  • Ethers such as tetrahydrofuran and a dioxane
  • the solvent of the solution containing hydrogen chloride include aliphatic hydrocarbons such as n-hexane and n-heptane; alicyclic hydrocarbons such as cyclohexane and cyclopentane; aromatic hydrocarbons such as benzene and toluene.
  • Ethers such as diethyl ether, dioxane and tetrahydrofuran; chlorinated solvents such as carbon tetrachloride; alcohols such as methanol, ethanol and 2-propanol; ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone; ethyl acetate and butyl acetate , Esters such as ethyl propionate and propylene glycol monomethyl ether acetate; organic acids such as formic acid, acetic acid, propionic acid, and butyric acid may be used alone or in combination of two or more.
  • Preferred are ethers such as tetrahydrofuran and dioxane.
  • the modified polysiloxane compound deprotected by the above production method has a number average molecular weight of 2,000 to 20,000, more preferably 4,000 to 12,000.
  • the molecular weight distribution is 1.05 to 1.5, preferably 1.1 to 1.3.
  • composition of the deprotected modified polysiloxane compound is not limited as long as the respective characteristics of p-hydroxystyrene and dimethylsiloxane are not impaired.
  • a copolymer considering the balance between the amount of hydroxyl groups, alkali solubility, etc. and the heat resistance, weather resistance, flame retardancy, dielectric properties, electrical insulation, water repellency, releasability, etc. of the dimethylsiloxane part
  • the composition ratio at which a characteristic performance is exhibited is 10/90 to 90/10, preferably 30/70 to 70/30, in terms of p-hydroxystyrene / dimethylsiloxane (mole% ratio of each unit).
  • PTBST means p-tert butoxystyrene
  • Mn number average molecular weight
  • PTBST / dimethylsiloxane 50/50, mol%.
  • Example 1 To 20 g of a 35 wt% concentration THF solution of the precursor polymer (PTBST-dimethylsiloxane) obtained in the Reference Example, 8.1 g of a 4M hydrogen chloride-dioxane solution was added. The amount of hydrogen chloride added corresponds to 1.1 equivalents relative to PTBST in the precursor polymer. The mixture was heated to 50 ° C. and sampled every hour. Confirmation of debutylation reaction progress was carried out by IR spectrum measurement, and the end point of the reaction was judged by disappearance of the 899 cm ⁇ 1 peak derived from PTBST aromatic ring CH out-of-plane bending vibration. As a result, since the peak at 899 cm ⁇ 1 disappeared 6 hours after the start of the reaction, it was confirmed that the reaction was completed.
  • Example 1 The same operation as in Example 1 was conducted except that the amount of the 4M hydrogen chloride-dioxane solution added was 3.8 g. The amount of hydrogen chloride added corresponds to 0.5 equivalent with respect to PTBST in the precursor polymer. As a result, since the 899 cm ⁇ 1 peak derived from PTBST aromatic ring C—H out-of-plane bending vibration did not disappear even 48 hours after the start of the reaction, it was confirmed that the reaction was not completed with 0.5 equivalent.
  • Example 2 The same procedure as in Example 1 was conducted except that the amount of the 4M hydrogen chloride-dioxane solution added was 7.3 g in 10 g of a 35 wt% THF solution of the precursor polymer. The amount of hydrogen chloride added corresponds to 2 equivalents relative to PTBST in the precursor polymer. As a result, it was confirmed that the debutylation reaction was completed since the 899 cm ⁇ 1 peak derived from the PTBST aromatic ring C—H out-of-plane bending vibration disappeared 2 hours after the start of the reaction. It became clear that the shape of the curve was degraded and the polymer was decomposed.
  • Example 3 The same procedure as in Example 1 was performed, except that the amount of sulfuric acid added was changed to 6.0 g in 40 g of a 35 wt% THF solution of the precursor polymer.
  • the amount of sulfuric acid added corresponds to 1.1 equivalents relative to PTBST in the precursor polymer.
  • sulfuric acid when sulfuric acid was used, it turned brown immediately after the start of the reaction. Further, since the 899 cm ⁇ 1 peak derived from PTBST aromatic ring CH out-of-plane bending vibration disappeared in 1 hour, it was confirmed that the debutylation reaction was completed, but the shape of the GPC elution curve is It was found that the polymer was degraded and the polymer was decomposed.
  • Example 4 The same operation as in Example 2 was conducted except that the amount of the 4M hydrogen chloride-dioxane solution added was 7.3 g. The amount of hydrogen chloride added corresponds to 2 equivalents relative to PTBST in the precursor polymer. As a result, the peak of 899 cm ⁇ 1 derived from PTBST aromatic ring CH out-of-plane bending vibration disappeared after 24 hours at room temperature and 1 hour at 50 ° C. It was confirmed that the GPC elution curve had deteriorated in shape and the polymer was decomposed.
  • Example 3 After adding 87 g of n-butyllithium (15.36 wt% hexane solution) to a mixed solution of 1320 g of toluene and 707 g of THF while stirring at ⁇ 40 ° C. over 30 minutes, the reaction was continued for another 30 minutes. Then, 1190 g of a THF solution containing 0.22 mol of hexamethylcyclotrisiloxane was added to this reaction solution over 1 hour, and the reaction temperature was kept at 40 ° C., followed by stirring for 4 hours and further stirring at room temperature overnight. Subsequently, 25 g of trimethylsilyl chloride was added to the reaction solution to stop the reaction to obtain a precursor polymer.
  • n-butyllithium 15.36 wt% hexane solution
  • the p-hydroxystyrene-dimethylsiloxane copolymer obtained by debutylation was measured by GPC.
  • the number average molecular weight (Mn) was 5800, the molecular weight distribution was 1.17, and the butyl group was eliminated. A decrease in molecular weight was confirmed, and the shape of the GPC elution curve was almost the same as that before the reaction, indicating that no polymer degradation occurred.
  • a modified polysiloxane compound in which a phenol skeleton having a narrow molecular weight distribution and a molecular weight and a structure are introduced is synthesized without causing a molecular weight change or coloring due to decomposition or condensation. Can do. Therefore, the modified polysiloxane compound is used as a resist material having a submicron resolution necessary for the production of VLSI, as a modifier for various thermosetting resins and thermoplastic resins, and as a separation membrane. It is expected to be used in a wide range of fields as biocompatible materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Silicon Polymers (AREA)

Abstract

 本発明は、p-アルケニルフェノール単位とオルガノシロキサン単位とを必須構成単位としてブロック共重合させて得られるフェノール骨格導入の変性ポリシロキサン化合物の製造方法において、分解や縮合により、分子量が変化したり、着色などを起こさない塩化水素の使用条件を提供することを課題とする。 本発明は、式(I) X(Y)n (I)[式中、Xは式(II)で表される繰り返し単位を有する重合体ブロック、Yは式(III)で表される繰り返し単位を有する重合体ブロックであり、nは1又は2である。]で表され、XとYとの重量比が1/99≦X/Y≦90/10、数平均分子量が、1,000~100,000である変性ポリシロキサン化合物を、非水系溶媒の存在下、塩化水素を含有する非水溶液を式(II)で表される繰り返し単位1当量に対して塩化水素として0.9~1.3当量となるように加えて水酸基の保護基の脱離処理をする。

Description

変性ポリシロキサン化合物の製造方法
 本発明は、変性ポリシロキサン化合物の製造方法に係り、詳しくは、p-アルケニルフェノール単位とオルガノシロキサン単位とを必須構成単位としてブロック共重合させて得られるフェノール骨格導入の変性ポリシロキサン化合物の製造方法に関する。
 本願は、2009年8月21日に出願された日本国特許出願第2009-192151号に対し優先権を主張し、その内容をここに援用する。
 オルガノポリシロキサン化合物は、熱安定性、撥水性、消泡性、離型性等の界面特性に優れているため、種々の分野で多用されている。特に、近年においては、その特異な界面特性を生かして皮膜形成剤としての用途が拡大する半面、各種の樹脂に対してオルガノポリシロキサン化合物が有する温度特性や界面特性を付与するための改質剤としての応用も積極的に展開されている。
 すなわち、従来から塗料、成形品等の合成樹脂の性能改良のため、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、脂肪酸変性ポリシロキサン、ポリエーテル変性ポリシロキサン等が使用されている。しかしながら、これらは樹脂との相溶性が不十分であったり、耐熱性が不十分であるために使用範囲が限定されていた。
 これらの欠点を改良するために、各種の反応性ポリシロキサン化合物、例えば、分子末端にエポキシ基、アミノ基、ヒドロキシル基、(メタ)アクリル基等の官能基を有する低分子量ジメチルシロキサン化合物が市販されている。また、それらと他の樹脂との反応物、例えば、末端エポキシ基含有ポリシロキサンとフェノール樹脂との反応物(特許文献1、特許文献2等)、末端ハイドロジエン基含有ポリシロキサンとアルケニル基含有エポキシ樹脂との反応物(特許文献3等)が提案されている。
 近年、超LSIの製造に必要なサブミクロンの解像能力を有するレジスト材料として、種々の熱硬化性樹脂や熱可塑性樹脂の機械的特性、耐湿性、表面特性等の改質剤として、また、分離膜や生体適合性高分子材料として、構造が制御されかつ分子内に任意の数の官能基を有するポリシロキサン化合物が渇望されているが、前記した方法において、市販されている分子内に官能基を有する低分子量ジメチルシロキサン化合物を用いる方法は、他樹脂との相溶性が十分でないため、成形加工性や機械的強度の低下をもたらす欠点を有する。また、末端に官能基を有するポリシロキサンと他の樹脂との反応物を用いる方法は、変性反応中に異常な増粘やゲル化等の好ましくない現象を起こし易く、かつ未反応成分が残留し、結果として相溶性の低下をもたらすこと等の問題があった。
 そのため、分子量、構造が制御され、かつ分子量分布の狭いフェノール骨格を導入した変性ポリシロキサン化合物を製造することを目的として、出願人は、p-アルケニルフェノールのフェノール性水酸基を飽和脂肪族系保護基により保護した化合物をアニオン重合法により重合し、次いで環状シロキサン化合物を加えて共重合した後、飽和脂肪族系保護基を脱離させる方法を開発した(特許文献4)。
特開昭61-73725号公報 特開昭62-174222号公報 特開昭62-212417号公報 特許3471010号公報
 特許文献4における方法は、飽和脂肪族系保護基を脱離させるため、酸性物質を使用する必要があるが、用いる酸の種類や反応条件によっては、分解や縮合により、分子量が変化したり、着色などの懸念がある。特許文献4においては塩化水素ガスの吹込みにより保護基の脱離を行った具体例が記載されているが、塩化水素の適正な使用条件及び適正な使用量について不明であった。
 本発明は、分解や縮合により、分子量が変化したり、着色などを起こさない塩化水素の使用条件及び使用量を提供することが目的である。
 本発明者らは、前記目的を達成すべく鋭意検討した結果、飽和脂肪族系保護基を脱離させるために、非水系において塩化水素を飽和脂肪族系保護基に対してほぼ当量反応させることにより目的を達成できることが分かり、本発明を完成した。
 すなわち、本発明は、式(I)
X(Y)n   (I)
[式中、Xは式(II)
Figure JPOXMLDOC01-appb-C000001
(式中、Rは、水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す。)で表される繰り返し単位を有する重合体ブロック、Yは式(III)
Figure JPOXMLDOC01-appb-C000002
(式中、R及びRは、それぞれ炭素数1~20の直鎖状又は分枝状のアルキル基、シクロアルキル基、アリール基又はアリールアルキル基を表す。式中、R及びRは互いに同一又は異なっていてもよい。)で表される繰り返し単位を有する重合体ブロックであり、nは1又は2である。]で表され、XとYとの重量比が1/99≦X/Y≦90/10、数平均分子量が、1,000~100,000である変性ポリシロキサン化合物を、非水系溶媒の存在下、塩化水素を含有する非水溶液を式(II)で表される繰り返し単位1当量に対して塩化水素として0.9~1.3当量となるように加えて水酸基の保護基の脱離処理をすることを特徴とする、式(IV)
X’(Y)n (IV)
〔式中、X’は式(V)
Figure JPOXMLDOC01-appb-C000003
(式中Rは前記定義と同じ)で表される繰り返し単位を有する重合体ブロック、Y及びnは前記定義と同じ〕で表される変性ポリシロキサン化合物の製造方法に関し、好ましくは、分子量分布が1.05~1.5である変性ポリシロキサン化合物の製造方法に関する。
 さらに、本発明は、式(I)で表される変性ポリシロキサン化合物が、アニオン重合開始剤の存在下、式(VII)
Figure JPOXMLDOC01-appb-C000004
(式中、Rは水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す)で表される化合物を単独重合、又は式(VII)で表される化合物と共重合可能な化合物を共重合させ、次いで環状シロキサン化合物を加えて共重合させて得たものであることを特徴とする変性ポリシロキサン化合物の製造方法に関する。
(変性ポリシロキサン化合物)
 本発明において使用する変性ポリシロキサン化合物は、以下の式(I)で表される。
X(Y)n     (I)
[式中、Xは式(II)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す。)で表される繰り返し単位を有する重合体ブロック、Yは式(III)
Figure JPOXMLDOC01-appb-C000006
(式中、R及びRは、それぞれ炭素数1~20の直鎖状又は分枝状のアルキル基、シクロアルキル基、アリール基又はアリールアルキル基を表す。式中、R及びRは互いに同一又は異なっていてもよい。)で表される繰り返し単位を有する重合体ブロックであり、nは1又は2である。]
 上記変性ポリシロキサン化合物は、XとYとの重量比が1/99≦X/Y≦90/10、数平均分子量が、1,000~100,000である。
 Xは、一種又は二種以上のp-アルケニルフェノール誘導体に由来する繰り返し単位を有する重合体ブロック、又は、p-アルケニルフェノール誘導体に由来する繰り返し単位と一種又は二種以上の共役ジエン及び/又は一種又は二種以上のビニル化合物の繰り返し単位からなるランダム共重合体又はブロック共重合体からなるブロックであり、また、下記式(VI)で示されるものも含まれる。
Figure JPOXMLDOC01-appb-C000007
(式中、R、Rは前出と同じ意味を表し、a及びbは重合度に応じた任意の自然数である。)
 本発明の上記の式(I)中のYは、前記式(III)で表されるオルガノシロキサンを繰り返し単位とする重合体ブロックである。
 式(I)で表される化合物は、X-Y又はY-X-Yで表される。
(変性ポリシロキサン化合物の製法)
 本発明のX(Y)nで表される変性ポリシロキサン化合物は、その製法に特に制限はなく、公知の方法を採用することができるが、例えば、以下の方法で製造することができる(特許3471010号公報参照)。
 アニオン重合開始剤の存在下、式(VII)
Figure JPOXMLDOC01-appb-C000008
(式中、Rは水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す)で表される化合物を単独重合、又はそれと共重合可能な化合物を共重合させ、次いで環状シロキサン化合物を加えて共重合させる。
1.X部分の重合法
 式(VII)で表される化合物、又はそれと共重合可能な化合物とを、真空下又は窒素、アルゴン等の不活性ガス雰囲気下、有機溶媒中において、アルカリ金属及び/又は有機アルカリ金属化合物を重合開始剤とし、-100℃~150℃の温度でアニオン重合を行う。当該方法により、分子量が制御され、かつ分子量分布の狭い重合体を得ることができる。
 本発明に用いる前記式(VII)で示される化合物としては、例えば、p-n-ブトキシスチレン、p-sec-ブトキシスチレン、p-tert-ブトキシスチレン、p-tert-ブトキシ-α-メチルスチレン等が例示され、特にp-tert-ブトキシスチレン及びp-tert-ブトキシ-α-メチルスチレンが好ましい。
 本発明に用いる前記式(VII)と共重合可能な化合物は、好ましくは、共役ジエン又はビニル化合物であり、共役ジエン又はビニル化合物としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、1,3-ヘキサジエン等の共役ジエン類;スチレン、p-メチルスチレン、α-メチルスチレン、p-tert-ブチルスチレン、ビニルナフタリン、ジビニルベンゼン、1,1-ジフェニルエチレン等のビニル芳香族化合物;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチル等の(メタ)アクリル酸エステル類;2-ビニルピリジン、4-ビニルピリジン等のビニルピリジン類;アクリルニトリル等が挙げられ、それらは一種又は二種以上の混合物として使用される。
 アニオン重合開始剤のアルカリ金属としては、リチウム、ナトリウム、カリウム等であり、また有機アルカリ金属化合物として、前記アルカリ金属のアルキル化物、アリル化物、アリール化物等が使用される。有機アルカリ金属化合物の具体例として、エチルリチウム、n-ブチルリチウム、sec-ブチルリチウム、tert-ブチルリチウム、エチルナトリウム、ブタジエニルジリチウム、ブタジエニルジナトリウム、リチウムビフェニル、リチウムナフタレン、リチウムフルオレン、ナトリウムビフェニル、ナトリウムナフタレン、ナトリウムトリフェニル、α-メチルスチレンナトリウムジアニオン等が挙げられ、これらは一種又は二種以上の混合物として使用される。
 有機溶媒として、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環族炭化水素類;ベンゼン、トルエン等の芳香族炭化水素類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類等の通常アニオン重合において使用される有機溶媒が一種又は二種以上の混合溶媒として使用される。
 前記アニオン重合によって得られる共重合体の形態は、前記式(IV)で示される化合物と前記モノマーとの混合物を反応系に加えて重合することによりランダム共重合体が、どちらか一方の一部を予め重合しておき、その後両者の混合物を加えて重合を継続することにより部分ブロック共重合体を得、また前記式(IV)で示される化合物と前記モノマーとを反応系に逐次添加して重合を行うことにより完全ブロック共重合体が合成される。
2.Y部分の製法
 前記X部分の重合反応後、反応系に環状シロキサン化合物を加え、前記例示したと同様の条件下においてアニオン重合反応を継続する。
 最終的に、前記式(VII)で示される化合物単独又はそれと共重合可能な化合物とからなる連鎖と、ポリシロキサン連鎖とからなるブロック共重合体(以下、前駆体と記す)が製造される。
 ここで用いられる前記環状シロキサン化合物としては、下記式(VIII)で示される化合物である。
Figure JPOXMLDOC01-appb-C000009
(ここに、R、Rは、それぞれ炭素数1~20の直鎖又は分枝のアルキル基、シクロアルキル基、アリール基又はアリールアルキル基であり、cは3~7の正整数である。又、R、Rは互いに同一又は異なっていてもよい。)
 前記式(VIII)で示される化合物の具体例としては、例えば、ヘキサメチルシクロトリシロキサン、オクタメチルシクロテトラシロキサン、デカメチルシクロペンタシロキサン、ドデカメチルシクロヘキサシロキサン、ヘキサエチルシクロトリシロキサン、オクタエチルシクロテトラシロキサン、ヘキサフェニルシクロトリシロキサン等であり、これらは一種又は二種以上の混合物として使用することができる。
 この逐次的に行なれるアニオン重合反応において、反応温度、反応溶媒等の重合条件は、設定した範囲内で適宜変更して行うことができる。
 また、本発明の変性ポリシロキサン化合物は、前記した方法以外の方法、例えば、前記(VII)で表される化合物の単独重合後、又は、(VII)で表される化合物と共重合可能な化合物との共重合反応後、反応系に前記重合体の成長末端と反応し得る官能基を有するオルガノシロキサン化合物を加え、前記例示したと同様の条件下においてカップリング反応を行うことにより、前記式(VII)で示される化合物の連鎖、又は、(VII)で示される化合物と共重合可能な化合物との連鎖と、ポリシロキサン連鎖とからなる共重合体が製造される。
 ここで用いられるオルガノシロキサン化合物としては、前記重合体の成長末端とカップリング反応可能な官能基を有するものであれば特に構造に制限はなく、具体例を挙げると下記式(IX)や(X)で示される化合物等が用いられる。
Figure JPOXMLDOC01-appb-C000010
(式中、R、R10は、それぞれ炭素数1~20の直鎖状又は分枝状のアルキル基、シクロアルキル基、アリール基又はアラルキル基であり、X、Xは、ハロゲン原子、エポキシ基、カルボニル基、クロロカルボニル基、又は、ハロゲン原子、エポキシ基、カルボニル基、クロロカルボニル基等を含有する炭素数1~20の炭化水素基を表し、但し、dは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000011
(式中、R,R10,X及びdは前記と同じ意味を表し、R11は、炭素数1~20の直鎖状又は分枝状のアルキル基、シクロアルキル基、アリール基又はアラルキル基を示す。)
 前記式(IX)や(X)で示される化合物の具体例としては、例えば、市販のα,ω-ビス(クロロメチル)ポリジメチルシロキサン、1-(3-クロロプロピル)-1,1,3,3,3-ペンタメチルジシロキサン、α,ω-ビス(3-グリシドキシプロピル)ポリジメチルシロキサン、α,ω-ジクロロポリジメチルシロキサン等が挙げられる。
 この逐次的に行われる重合反応及びカップリング反応において、反応温度、反応溶媒等の条件は、設定した範囲内で適宜変更して行うことができる。
(水酸基の保護基の脱離処理)
 上記式(I)で表される変性ポリシロキサン化合物から式(II)の繰り返し単位に存在する水酸基の保護基を脱離させ、p-アルケニルフェノール骨格を生成せしめる反応は、非水系溶媒、例えば、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環族炭化水素;ベンゼン、トルエン等の芳香族炭化水素類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;四塩化炭素等の塩素系溶媒;メタノール、エタノール、2-プロパノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート、乳酸エチル等のエステル類;ギ酸、酢酸、プロピオン酸、酪酸等の有機酸類の溶媒存在下、塩化水素を含有する非水系溶液を加えることにより行うことができ、分子量、構造が制御され、かつ分子量分布の狭いフェノール骨格を導入した変性ポリシロキサン化合物が製造される。
 (I)で表される変性ポリシロキサン化合物の、脱保護処理を行う場合、前記方法により製造した重合反応粗液をそのまま用いても良い。
 塩化水素を含有する非水系溶液は、塩化水素ガスを脱水溶媒に吹き込み、溶解させる事により作製することができる。あるいは市販品を購入しても良い。溶解させた場合、中和滴定により、その濃度を規定することができる。
 塩化水素の使用量は、式(II)で表される繰り返し単位1当量に対して塩化水素として0.9~1.3当量、好ましくは、0.95~1.1当量となるように加える。反応温度は、0~100℃、好ましくは室温~70℃である。
 反応時の有機溶媒としては、上記の1種単独又は2種以上の混合溶媒を使用することができるが、好ましくは、テトラヒドロフラン、ジオキサン等のエーテル類である。
 また、塩化水素を含有する溶液の溶媒としては、n-ヘキサン、n-ヘプタン等の脂肪族炭化水素類;シクロヘキサン、シクロペンタン等の脂環族炭化水素;ベンゼン、トルエン等の芳香族炭化水素類;ジエチルエーテル、ジオキサン、テトラヒドロフラン等のエーテル類;四塩化炭素等の塩素系溶媒;メタノール、エタノール、2-プロパノール等のアルコール類;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類;酢酸エチル、酢酸ブチル、プロピオン酸エチル、プロピレングリコールモノメチルエーテルアセテート等のエステル類;ギ酸、酢酸、プロピオン酸、酪酸等の有機酸類の一種単独又は二種以上の混合溶媒を使用することができる。好ましくはテトラヒドロフラン、ジオキサン等のエーテル類である。
 上記製法により脱保護された変性ポリシロキサン化合物は、数平均分子量で2,000~20,000であり、さらに好ましくは4,000~12,000である。また、分子量分布は1.05~1.5、好ましくは1.1~1.3である。
 アルカリ現像液によるパターン形成プロセスを含む用途(例えばフォトレジストなど)においては、分子量が小さすぎる(分子量<4,000)とパターンの保持が十分ではなく、分子量が大きすぎる(分子量>20,000)とアルカリ現像液に対する溶解速度が遅くなり、解像性が悪くなってしまう。また、数平均分子量が10,000以上では、溶液とした場合にチキソトロピー性が発現するため、塗料や接着剤の用途に好適である。
 脱保護された変性ポリシロキサン化合物の組成は、p-ヒドロキシスチレン、およびジメチルシロキサンのそれぞれの特性が損なわれない限り、限定されるものではないが、p-ヒドロキシスチレン部分の耐熱性、架橋反応部位としての水酸基量、アルカリ溶解性などと、ジメチルシロキサン部分の耐熱性、耐候性、難燃性、誘電特性、電気絶縁性、撥水性、離型性などとのバランスを考慮し、共重合体として特長ある性能が発現する組成比としては、p-ヒドロキシスチレン/ジメチルシロキサン(各ユニットのモル%の比率)で10/90から90/10であり、好ましくは30/70から70/30である。
 本発明を実施例及び比較例により、更に具体的に説明する。ただし、本発明の範囲は、下記実施例により何ら制限を受けるものではない。
 なお、以下の例中において、「PTBST」は、p-tertブトキシスチレンを意味する。
[参考例]
前駆体ポリマー(PTBST-ジメチルシロキサン)の調製
 n-ブチルリチウム(15.36重量%濃度ヘキサン溶液)87gを、トルエン1320gとTHF707gの混合溶液に、-40℃で攪拌しながらPTBST707gを30分かけて添加し、さらに30分反応を継続した後、この反応溶液にヘキサメチルシクロトリシロキサン0.22モルを含むTHF溶液1190gを1時間かけて添加し、更に反応温度を40℃に保ち4時間攪拌後、さらに室温で一晩攪拌した。続いて、反応液にトリメチルシリルクロリド25gを加えて反応を停止し前駆体ポリマーを得た。前駆体ポリマーのPTBST-ジメチルシロキサンは数平均分子量(Mn)=6200、分子量分布=1.14、組成比:PTBST/ジメチルシロキサン=50/50、モル%であった。この重合粗液を水洗し有機層を濃縮した後、35重量%濃度のTHF溶液に調製した。
[実施例1]
 参考例において得られた前駆体ポリマー(PTBST-ジメチルシロキサン)の35重量%濃度のTHF溶液20gに、4M塩化水素-ジオキサン溶液8.1gを添加した。塩化水素の添加量は前駆体ポリマー中のPTBSTに対し1.1当量に相当する。この混合液を50℃に加温し、1時間毎にサンプリングした。脱ブチル化の反応進行確認はIRスペクトル測定で行い、反応終点はPTBST芳香環C-H面外変角振動に由来する899cm-1のピークの消失で判定した。
 結果、反応開始後6時間で899cm-1のピークは消失したため、反応が終了したことを確認した。
[比較例1]
 4M塩化水素-ジオキサン溶液の添加量を3.8gとする以外は、実施例1と同様に行った。この塩化水素の添加量は前駆体ポリマー中のPTBSTに対し0.5当量に相当する。
 結果、反応開始後48時間でもPTBST芳香環C-H面外変角振動に由来する899cm-1のピークは消失していないため、0.5当量では反応が終了しないことを確認した。
[比較例2]
 前駆体ポリマーの35重量%濃度のTHF溶液10gに、4M塩化水素-ジオキサン溶液の添加量を7.3gとする以外は、実施例1と同様に行った。この塩化水素の添加量は前駆体ポリマー中のPTBSTに対し2当量に相当する。
 結果、反応開始後2時間でPTBST芳香環C-H面外変角振動に由来する899cm-1のピークは消失していることから、脱ブチル化反応は終了することを確認したが、GPC溶出曲線の形状が劣化しており、ポリマーが分解してしまうことが明らかとなった。
[比較例3]
 前駆体ポリマーの35重量%濃度のTHF溶液40gに、硫酸の添加量を6.0gとする以外は、実施例1と同様に行った。この硫酸の添加量は前駆体ポリマー中のPTBSTに対し1.1当量に相当する。
 結果、硫酸を使用すると反応開始後すぐに褐色になった。また1時間でPTBST芳香環C-H面外変角振動に由来する899cm-1のピークは消失していることから、脱ブチル化反応は終了することを確認したが、GPC溶出曲線の形状が劣化しており、ポリマーが分解してしまうことが明らかとなった。
[実施例2]
 前駆体ポリマー(PTBST-ジメチルシロキサン、数平均分子量(Mn)=6200、分子量分布=1.14、組成比:PTBST/ジメチルシロキサン=50/50モル%)の35重量%濃度のジオキサン溶液10gに、4M塩化水素-ジオキサン溶液4.0gを添加した。塩化水素の添加量は前駆体ポリマー中のPTBSTに対し1.1当量に相当する。この混合液をそれぞれ室温、40℃、50℃、60℃、70℃で反応させ、1時間毎にサンプリングした。脱ブチル化の反応進行確認はIRスペクトル測定で行い、反応終点はPTBST芳香環C-H面外変角振動に由来する899cm-1のピークの消失で判定した。
 結果、反応開始後、室温では48時間、40℃では6時間、50℃では3時間、60℃では2時間、70℃では2時間で899cm-1のピークの消失していることから、ジオキサン溶液に溶媒置換して、さらに温度を変えても脱ブチル化反応は終了することを確認した。
[比較例4]
 4M塩化水素-ジオキサン溶液の添加量を7.3gとする以外は、実施例2と同様に行った。この塩化水素の添加量は前駆体ポリマー中のPTBSTに対し2当量に相当する。
 結果、反応開始後、室温では24時間、50℃では1時間でPTBST芳香環C-H面外変角振動に由来する899cm-1のピークの消失していることから、脱ブチル化反応は終了することを確認したが、GPC溶出曲線が形状劣化しており、ポリマーが分解してしまうことが明らかとなった。
[実施例3]
 n-ブチルリチウム(15.36重量%濃度ヘキサン溶液)87gを、トルエン1320gとTHF707gの混合溶液に、-40℃で攪拌しながらPTBST707gを30分かけて添加し、さらに30分反応を継続した後、この反応溶液にヘキサメチルシクロトリシロキサン0.22モルを含むTHF溶液1190gを1時間かけて添加し、更に反応温度を40℃に保ち4時間攪拌後、さらに室温で一晩攪拌した。続いて、反応液にトリメチルシリルクロリド25gを加えて反応を停止し前駆体ポリマーを得た。前駆体ポリマーのPTBST-ジメチルシロキサンは数平均分子量(Mn)=6200、分子量分布=1.14、組成比:PTBST/ジメチルシロキサン=50/50、モル%であった。
 この前駆体ポリマーの重合反応粗液10gに、4M塩化水素-ジオキサン溶液3.2gを添加した。塩化水素の添加量は前駆体ポリマー中のPTBSTに対し1.1当量に相当する。この混合液を50℃で反応させ、1時間毎にサンプリングした。脱ブチル化の反応進行確認はIRスペクトル測定で行い、反応終点はPTBST芳香環C-H面外変角振動に由来する899cm-1のピークの消失で判定した。
 結果、反応開始後2時間で899cm-1のピークの消失していることから、重合反応粗液を用いても反応は終了することを確認した。
 この脱ブチル化して得られたp-ヒドロキシスチレン-ジメチルシロキサン共重合体をGPC測定したところ、数平均分子量(Mn)=5800、分子量分布=1.17であり、ブチル基が脱離した分の分子量低下が確認され、また、GPC溶出曲線の形状は反応前とほぼ同一であり、ポリマーの分解は起こっていないことが示された。
 本発明の方法によれば、分解や縮合により、分子量が変化したり、着色などを起こさないで、分子量、構造が制御され、分子量分布の狭いフェノール骨格を導入した変性ポリシロキサン化合物を合成することができる。
 従って、該変性ポリシロキサン化合物は、超LSIの製造に必要なサブミクロンの解像能力を有するレジスト材料として、また、種々の熱硬化性樹脂や熱可塑性樹脂の改質剤として、さらには分離膜や生体適合性材料として広範な分野での利用が期待される。

Claims (3)

  1. 式(I)
    X(Y)n  (I)
    [式中、Xは式(II)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Rは、水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す。)で表される繰り返し単位を有する重合体ブロック、Yは式(III)
    Figure JPOXMLDOC01-appb-C000013
    (式中、R及びRは、それぞれ炭素数1~20の直鎖状又は分枝状のアルキル基、シクロアルキル基、アリール基又はアリールアルキル基を表す。式中、R及びRは互いに同一又は異なっていてもよい。)で表される繰り返し単位を有する重合体ブロックであり、nは1又は2である。]で表され、XとYとの重量比が1/99≦X/Y≦90/10、数平均分子量が、1,000~100,000である変性ポリシロキサン化合物を、非水系溶媒の存在下、塩化水素を含有する非水溶液を式(II)で表される繰り返し単位1当量に対して塩化水素として0.9~1.3当量となるように加えて水酸基の保護基の脱離処理をすることを特徴とする、式(IV)
    X’(Y)n (IV)
    〔式中、X’は式(V)
    Figure JPOXMLDOC01-appb-C000014
    (式中Rは前記定義と同じ)で表される繰り返し単位を有する重合体ブロック、Y及びnは前記定義と同じ〕で表される変性ポリシロキサン化合物の製造方法。
  2. 分子量分布が1.05~1.5である請求項1記載の変性ポリシロキサン化合物の製造方法。
  3. 式(I)で表される変性ポリシロキサン化合物が、アニオン重合開始剤の存在下、式(VII)
    Figure JPOXMLDOC01-appb-C000015
    (式中、Rは水素原子又はメチル基を表し、Rは炭素数1~6の直鎖状又は分枝状のアルキル基を表す)で表される化合物を単独重合、又は式(VII)で表される化合物と共重合可能な化合物を共重合させ、次いで環状シロキサン化合物を加えて共重合させて得たものであることを特徴とする、請求項1又は2記載の変性ポリシロキサン化合物の製造方法。
PCT/JP2010/005123 2009-08-21 2010-08-19 変性ポリシロキサン化合物の製造方法 WO2011021392A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10809738.7A EP2468799B1 (en) 2009-08-21 2010-08-19 Process for production of modified polysiloxane compound
JP2011527588A JP5503654B2 (ja) 2009-08-21 2010-08-19 変性ポリシロキサン化合物の製造方法
US13/389,169 US8420744B2 (en) 2009-08-21 2010-08-19 Process for the production of modified polysiloxanes
KR1020127003609A KR101375894B1 (ko) 2009-08-21 2010-08-19 변성 폴리실록산 화합물의 제조 방법
CN201080036410.1A CN102471491B (zh) 2009-08-21 2010-08-19 改性聚硅氧烷化合物的制备方法
ES10809738.7T ES2478069T3 (es) 2009-08-21 2010-08-19 Proceso para la producción de compuesto de polisiloxano modificado

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-192151 2009-08-21
JP2009192151 2009-08-21

Publications (1)

Publication Number Publication Date
WO2011021392A1 true WO2011021392A1 (ja) 2011-02-24

Family

ID=43606851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/005123 WO2011021392A1 (ja) 2009-08-21 2010-08-19 変性ポリシロキサン化合物の製造方法

Country Status (7)

Country Link
US (1) US8420744B2 (ja)
EP (1) EP2468799B1 (ja)
JP (1) JP5503654B2 (ja)
KR (1) KR101375894B1 (ja)
CN (1) CN102471491B (ja)
ES (1) ES2478069T3 (ja)
WO (1) WO2011021392A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9587136B2 (en) * 2013-10-08 2017-03-07 Wisconsin Alumni Research Foundation Block copolymers with high Flory-Huggins interaction parameters for block copolymer lithography
TWI524150B (zh) * 2014-06-27 2016-03-01 奇美實業股份有限公司 感光性樹脂組成物、保護膜及具有保護膜之元件
KR101674305B1 (ko) 2014-11-27 2016-11-08 주식회사 엘지화학 말단 기능성 공액 디엔계 중합체 및 이의 제조 방법
CN116589800A (zh) * 2023-06-15 2023-08-15 佛山市德联邦盛光电科技股份有限公司 一种阻燃型ps扩散板及其生产工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199705A (ja) * 1983-04-28 1984-11-12 Toyo Soda Mfg Co Ltd フエノ−ル残基を有する狭分散高分子の製造方法
JPH0247109A (ja) * 1988-08-08 1990-02-16 Hoechst Celanese Corp ポリ(アセトキシスチレン)の酸触媒エステル交換によるポリ(ビニルフェノール)の製造方法
JPH04279608A (ja) * 1990-06-29 1992-10-05 Hoechst Celanese Corp フォトレジスト用低光学密度ポリマー及びコポリマーの製造方法
JPH05170920A (ja) * 1991-12-20 1993-07-09 Nippon Soda Co Ltd 変性ポリシロキサン化合物の製造方法
JPH06298862A (ja) * 1993-01-07 1994-10-25 Basf Ag p−ヒドロキシスチレン重合体の製造方法
JP2000026536A (ja) * 1998-07-14 2000-01-25 Nippon Soda Co Ltd アルケニルフェノール系重合体の製造方法
WO2001018084A1 (fr) * 1999-09-08 2001-03-15 Nippon Soda Co., Ltd. Copolymere alcenylphenolique de type a-b-a
WO2001018083A1 (fr) * 1999-09-03 2001-03-15 Nippon Soda Co., Ltd. Copolymere d'alkylphenol et son procede de production
JP3471010B2 (ja) * 1991-05-31 2003-11-25 日本曹達株式会社 変性ポリシロキサン化合物及びその製造方法
JP2009235132A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp アルケニルフェノール系重合体の製造方法、この製造方法によって製造されたアルケニルフェノール系重合体、このアルケニルフェノール系重合体を含有するポジ型レジスト組成物及びこのポジ型レジスト組成物を用いたパターン形成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6173725A (ja) 1984-09-20 1986-04-15 Denki Kagaku Kogyo Kk エポキシ樹脂組成物
JPS62174222A (ja) 1986-01-28 1987-07-31 Hitachi Chem Co Ltd 電子部品封止用エポキシ樹脂成形材料
JPS62212417A (ja) 1986-03-13 1987-09-18 Shin Etsu Chem Co Ltd エポキシ樹脂組成物
US4775730A (en) * 1987-03-23 1988-10-04 Hoechst Celanese Corporation Copolymers of p-acetoxystyrene with any of certain polyunsaturated compounds
US4877843A (en) * 1987-09-11 1989-10-31 Hoechst Celanese Corporation Selective hydrolysis of copolymers of para-acetoxy styrene and allyl esters of ethylenically unsaturated acids
US4857601A (en) * 1987-09-11 1989-08-15 Hoechst Celanese Corp. Selective hydrolysis of copolymers of para-acetoxy styrene and dialkyl muconates or alkyl sorbates
US5274175A (en) * 1988-07-19 1993-12-28 Hoechst Celanese Corporation Process for the preparation of 4-acetoxyphenylmethyl carbinol
US6051659A (en) * 1992-08-20 2000-04-18 International Business Machines Corporation Highly sensitive positive photoresist composition
US5239015A (en) 1990-06-29 1993-08-24 Hoechst Celanese Corporation Process for making low optical density polymers and copolymers for photoresists and optical applications
JP3060153B2 (ja) * 1994-09-30 2000-07-10 信越化学工業株式会社 部分tert−ブトキシ化ポリ(p−ヒドロキシスチレン)の製造方法
ATE296321T1 (de) * 2001-01-26 2005-06-15 Nippon Soda Co Verfahren zur herstellung von teilgeschützten poly(hydroxystryolen)

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59199705A (ja) * 1983-04-28 1984-11-12 Toyo Soda Mfg Co Ltd フエノ−ル残基を有する狭分散高分子の製造方法
JPH0247109A (ja) * 1988-08-08 1990-02-16 Hoechst Celanese Corp ポリ(アセトキシスチレン)の酸触媒エステル交換によるポリ(ビニルフェノール)の製造方法
JPH04279608A (ja) * 1990-06-29 1992-10-05 Hoechst Celanese Corp フォトレジスト用低光学密度ポリマー及びコポリマーの製造方法
JP3471010B2 (ja) * 1991-05-31 2003-11-25 日本曹達株式会社 変性ポリシロキサン化合物及びその製造方法
JPH05170920A (ja) * 1991-12-20 1993-07-09 Nippon Soda Co Ltd 変性ポリシロキサン化合物の製造方法
JPH06298862A (ja) * 1993-01-07 1994-10-25 Basf Ag p−ヒドロキシスチレン重合体の製造方法
JP2000026536A (ja) * 1998-07-14 2000-01-25 Nippon Soda Co Ltd アルケニルフェノール系重合体の製造方法
WO2001018083A1 (fr) * 1999-09-03 2001-03-15 Nippon Soda Co., Ltd. Copolymere d'alkylphenol et son procede de production
WO2001018084A1 (fr) * 1999-09-08 2001-03-15 Nippon Soda Co., Ltd. Copolymere alcenylphenolique de type a-b-a
JP2009235132A (ja) * 2008-03-25 2009-10-15 Fujifilm Corp アルケニルフェノール系重合体の製造方法、この製造方法によって製造されたアルケニルフェノール系重合体、このアルケニルフェノール系重合体を含有するポジ型レジスト組成物及びこのポジ型レジスト組成物を用いたパターン形成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2468799A4 *

Also Published As

Publication number Publication date
CN102471491A (zh) 2012-05-23
EP2468799B1 (en) 2014-04-30
EP2468799A1 (en) 2012-06-27
KR20120042958A (ko) 2012-05-03
EP2468799A4 (en) 2013-02-27
US20120136122A1 (en) 2012-05-31
JP5503654B2 (ja) 2014-05-28
JPWO2011021392A1 (ja) 2013-01-17
ES2478069T3 (es) 2014-07-18
KR101375894B1 (ko) 2014-03-18
US8420744B2 (en) 2013-04-16
CN102471491B (zh) 2014-04-02

Similar Documents

Publication Publication Date Title
Li et al. Synthesis of amphiphilic copolymer brushes: Poly (ethylene oxide)‐graft‐polystyrene
JP5503654B2 (ja) 変性ポリシロキサン化合物の製造方法
JP2014527089A (ja) リソグラフィーに利用するためのオリゴ糖/ケイ素含有ブロックコポリマー
CN116194514A (zh) 低硅氧烷环含量、特定聚合度的官能化q-t-硅氧烷基聚合物材料和制备方法
JP3054132B1 (ja) カップルポリマーおよびその調製方法
EP1757631B1 (en) Amphiphilic triblock copolymers comprising poly(2-vinyl pyridine) block and poly(alkyl isocyanate) block, and the preparation method thereof
JPH11116682A (ja) 光カチオン硬化性樹脂組成物
WO1997007164A1 (fr) Composition de polymethylsilsesquioxane durcissable
EP4032915A1 (en) Conjugated diene-based graft polymer, and method for producing same
Sato et al. Precise synthesis of α, ω-chain-end functionalized poly (dimethylsiloxane) with azide groups based on metal-free ring-opening polymerization and a quantitative azidation reaction
KR20070100887A (ko) 고도 정제된 다면체 올리고머 실세스퀴옥산 단량체의 처리
JPH11199673A (ja) 光カチオン硬化性樹脂組成物
JP3427852B2 (ja) グラフト化ブロツクコポリマー類の脱色方法
JP2012500310A5 (ja)
JPS586732B2 (ja) ポリスチレン−ジオルガノポリシロキサン熱可塑性エラストマ−
JPH05170920A (ja) 変性ポリシロキサン化合物の製造方法
JP3471010B2 (ja) 変性ポリシロキサン化合物及びその製造方法
JP2006199957A (ja) 光カチオン硬化性樹脂組成物、並びに該光カチオン硬化性樹脂組成物を含有する耐汚染性塗料、コーティング材料、樹脂改質剤、レジスト材料及び光造型剤
US6555644B2 (en) Multi-reactive silicon compound having polyalkyleneglycol substituents and synthetic method thereof
CN115141486B (zh) 一种增韧耐高温硅树脂的制备方法及增韧耐高温硅树脂
TW577898B (en) Method for producing poly (p-t-butoxystyrene)
JP3667074B2 (ja) 狭分散性のポリ{1−(1−アルコキシエトキシ)−4−(1−メチルエテニル)ベンゼン}およびその製造方法
JP7168200B2 (ja) 官能基化シクロオレフィンポリマー
JP3729599B2 (ja) 狭分散性のポリ(p−ヒドロキシ−α−メチルスチレン)およびその製造方法
JP3057758B2 (ja) 熱可塑性グラフト共重合体およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080036410.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809738

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011527588

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2010809738

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13389169

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127003609

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1360/CHENP/2012

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE