WO2011020284A1 - 一种连铸连锻装置及方法 - Google Patents

一种连铸连锻装置及方法 Download PDF

Info

Publication number
WO2011020284A1
WO2011020284A1 PCT/CN2010/000499 CN2010000499W WO2011020284A1 WO 2011020284 A1 WO2011020284 A1 WO 2011020284A1 CN 2010000499 W CN2010000499 W CN 2010000499W WO 2011020284 A1 WO2011020284 A1 WO 2011020284A1
Authority
WO
WIPO (PCT)
Prior art keywords
forging
mold
sensor
continuous casting
acoustic wave
Prior art date
Application number
PCT/CN2010/000499
Other languages
English (en)
French (fr)
Inventor
韩德玮
Original Assignee
Hon David Tak-Wei
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hon David Tak-Wei filed Critical Hon David Tak-Wei
Publication of WO2011020284A1 publication Critical patent/WO2011020284A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/002Hybrid process, e.g. forging following casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21JFORGING; HAMMERING; PRESSING METAL; RIVETING; FORGE FURNACES
    • B21J5/00Methods for forging, hammering, or pressing; Special equipment or accessories therefor
    • B21J5/02Die forging; Trimming by making use of special dies ; Punching during forging

Definitions

  • the present invention relates to a continuous casting and forging device, and more particularly to a device for automatically adjusting the forging time after casting and improving the quality of the forged product.
  • the invention also relates to a method for continuous casting and forging, in particular to a continuous casting and forging method for automatically adjusting the forging time after casting and improving the quality of the forged product.
  • the present invention is directed to a continuous casting and forging device that is free from external environmental temperature, increases workpiece strength, reduces cost, and is highly automated.
  • Another object of the present invention is to provide a continuous casting and forging method which is not affected by the external environment temperature, improves the strength of the workpiece, and greatly increases the yield of the workpiece.
  • the device of the present invention is realized as follows: a continuous casting and forging device, comprising a mold, a table for fixing the mold, a mold opening and closing mechanism, and a shot crushing cylinder, and fixing one or more forging cylinders for applying force to the mold direction on the frame And a temperature control device, wherein the temperature control device is disposed in the mold for gradually increasing the temperature around the mold cavity from the sensor side to the forging side; the acoustic wave emitting device, the acoustic wave emitting device Is a device for emitting sound waves toward the cavity of the mold; a sensor, which is located on the same side of the acoustic wave transmitting device, is a device for receiving returning sound waves; and a connecting device, the front end of the connecting device extends into the mold, and the tail End
  • the control system is connected to the sensor for receiving a signal generated by the sensor and comparing with a preset value, and controlling the forging device to initiate a forging
  • a continuous casting and forging method of the present invention has a mold clamping step, a step of injecting molten metal into the mold cavity, a step of forging the casting, and a step of opening the mold, further comprising the following steps: a) being controlled by a temperature control device a step of gradually increasing the temperature from the sensor side to the forging side around the mold cavity; b) a step of emitting sound waves from the acoustic wave emitting device to the mold cavity; c) receiving the returned sound wave signal by the sensor, and then converting it into an electrical signal, And transmitting the signal to the control system MCU; d) recalling a predetermined value pre-stored in the memory by the control system MCU, and comparing the electrical signal value generated in step c) with the predetermined value Step; e) Comparison by step d) When the actual electrical signal value reaches a predetermined value, the control system initiates the step of forging.
  • FIG. 1 is a front view of a continuous casting and forging device of the present invention
  • FIG. 2 is a schematic view showing the working state of the continuous casting and forging device of the present invention
  • FIG. 3 is a schematic view of a continuous casting and forging device and a control system of the present invention
  • FIG. 5 is a schematic diagram showing the temperature profile of the temperature control device of the present invention.
  • Figure 6 is a flow chart of the continuous casting and forging method of the present invention.
  • the continuous casting and forging device and method of the present invention will be further described in detail below with reference to FIGS. 1 to 6.
  • the frame 1, the mold opening and closing mechanism 2, the table 4 of the fixed mold 3, the movable beam 5, and the shot sleeve 6 constitute a die casting machine, and a plurality of forging cylinders 7 capable of biasing the mold direction are fixed to the frame.
  • the forging cylinder 7 is fixed to the movable beam 5, and the insert 8 which is movable in the opening and closing direction of the mold can be forged.
  • Side pressure cylinders 9 can be installed on both sides of the mold. As shown in Fig.
  • the side pressure cylinders are used to press the mold from both sides, which can ensure the pressure when the liquid metal is cooled and the high temperature is broken after solidification.
  • the side pressure cylinder can be in the mold.
  • the two sides of the mold are symmetrically pressed to increase the strength of the die forging force and improve the service life of the die.
  • the side pressure cylinder can loosen the mold and facilitate the core pulling.
  • the force can be applied to the mold direction, and the movable insert is set according to the shape of the workpiece in the cavity, and the forging pressure of the forging cylinder is applied.
  • the forging force is applied to the workpiece through the insert.
  • the pressing and casting process injects liquid metal into the cavity and maintains pressure to achieve solidification and feeding of the casting.
  • the forging cylinder is started, and the insert of the cavity is pushed to apply the forging force to the workpiece 12.
  • the forging cylinder can apply a static pressure to the insert, and can also be reciprocated for multiple times. Hit the workpiece.
  • the workpiece can be directly forged in the cavity to improve the quality of the workpiece.
  • the present embodiment uses the state detecting device, specifically, the piezoelectric crystal sensor 10 is used to detect the solidification time of the liquid metal, that is, the sensor 10 is disposed under the mold.
  • the acoustic wave emitting device 12 is arranged to emit sound waves from the bottom to the liquid metal, preferably longitudinal or transverse ultrasonic waves, so that the ultrasonic waves pass through the solid metal and the liquid metal, due to the difference in density and rigidity between the two (the liquid stiffness is zero), At the interface, a certain amount of sound energy is reflected back.
  • the liquid metal begins to solidify, the interface penetration is strengthened, and the energy returned by the sound wave is reduced.
  • the energy is returned and received by the piezoelectric crystal sensor 10, causing a slight pressure of the sensor. Change, and generate an electrical signal El.
  • the sensor 10 is connected to the system circuit, and a value E0 is pre-stored in the memory 14 connected to the MCU in the circuit.
  • the MCU retrieves E0 and compares the actual electrical signal value E1 with E0.
  • E1 is gradually lowered to reach E0, the liquid metal is indicated.
  • the solidification has started, and the MCU sends a command to control the action of the forging cylinder 7 and start forging. In this way, no matter how the ambient temperature changes, the forging time is well mastered.
  • the acoustic wave emitting device 12 and the sensor 10 may be an integral device.
  • a temperature adjustment control device 13 is disposed in the mold to This embodiment is an example in which the temperature in the vicinity of the mold cavity is gradually increased from the bottom to the top.
  • the temperature control device 13 can be a heated wire or can be realized with a flow rate and temperature of the cooling liquid, for example, a temperature difference of rC/cm. Taking the cooling liquid as an example, the flow rate is large near the lower side of the mold cavity, and the flow rate on the upper side is small, so that The bottom of the mold cavity is lower than the upper temperature, so that the bottom 121 of the workpiece 12 is first solidified.
  • the temperature can be a straight rise, such as a straight line A, or a curve rise, as shown by curves B and C.
  • the temperature change line is a one-way straight line or curve, that is, the temperature change may be uneven, but the temperature change trend must be consistent, that is, gradually rising from one side to the other side, and the temperature is relatively high.
  • the lower side is the side on which the sensor 10 is located.
  • the temperature rise line can be straight or parabolic like.
  • a groove 31 is formed under the mold 3, a threaded hole is formed at the top end of the groove 31, and a long metal rod 11 having a threaded end is inserted into the groove 31 and screwed into the threaded hole to be fixed.
  • the top end 111 of the metal bar 11 is disposed in parallel with the bottom side 121 of the workpiece 12 to facilitate return of sound waves.
  • the top end 111 of the metal bar 11 is adjacent to the bottom side of the mold cavity.
  • the other end of the metal rod 11, i.e., the lower end projects beyond the mold, and is provided with a sensor 10 and an acoustic wave emitting device 12.
  • the sensor 10 is connected to a system control circuit.
  • a pit is formed on the bottom side of the mold cavity, and the bottom side of the pit is parallel to the top end 111 of the metal rod 11 as much as possible.
  • the heat is small due to the small pit.
  • the temperature control device 13 makes the temperature of the bottom side of the cavity slightly lower, then the molten metal at the pit must first be condensed into the protrusion 122 of the workpiece.
  • the top end 111 of the metal bar 11 corresponds to the position of the projection 122.
  • the projection 122 of the workpiece is a relatively small portion relative to the workpiece 12 as a whole, and the projection 122 can be knocked or cut away after being forged, opened, and removed.
  • the above-described dimples are required to be narrow in size so that the projections 122 are narrow, so that the projections 122 can be separated from the workpiece later.
  • the forging pressure is from directly above, the sensor is disposed under the mold, and the temperature control device gradually raises the temperature of the mold from the lower side to the upper side.
  • the mold can also be placed laterally.
  • the forging pressure is applied from the left side, the sensor is placed on the right side of the mold, and the temperature control device gradually raises the temperature of the mold from the right side to the left side, the other is the same, no longer Narration.
  • FIG. 6 is a flow chart of the continuous casting and forging method of the present invention, and the step of gradually increasing the temperature around the mold cavity from the sensor side to the forging side by the temperature control device may be performed at the beginning or in the mold assembly. After the mold is carried out, it has no effect on the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Forging (AREA)

Description

一种连铸连锻装置及方法 技术领域 本发明涉及连铸连锻装置,特别涉及一种自动调节铸造后的锻造时间、提高锻 造产品质量的装置。 本发明还涉及连铸连锻的方法, 特别涉及一种自动调节铸造后 的锻造时间、 提高锻造产品质量的连铸连锻方法。 背景技术 早期低压铸造、 压力铸造、 液态金属模锻(或称挤压铸造)所使用的设备, 一 般没有专用的锻造机构, 即使是液态金属模锻设备, 也仅是在完成液态金属注入模 具型腔后, 其压射缸继续对工件施以较之浇注更大的压力, 以实现在工件冷却过程 中保持适当的压力, 但仍无法在模腔内直接实现锻打, 因此铸件的显微組织仍为铸 态组织, 工件的质量仍欠佳。 后来逐渐有了连铸连锻设备, 但是液态金属在铸造型 腔内的冷却时间不稳定, 受周围环境温度变化或外界各种因素的影响较大, 因而在 预定的锻打时间, 液态金属的凝固时间波动, 造成工件良品率下降。 发明内容 本发明旨在提供一种不受外界环境温度影响、 提高工件强度、 降低成本、 高自 动化的连铸连锻装置。 本发明另一个目的在于提供一种不受外界环境温度影响、提高工件强度、 大大 增加工件良品率的连铸连锻方法。 本发明装置是这样实现的: 一种连铸连锻装置, 包括模具、 固定模具的工作台、 开合模机构, 以及压射缸, 在机架上固定一个以上向模具方向施力的锻压缸, 还包 括, 温度控制装置, 所述温度控制装置是设置于模具内, 用于使模具型腔周围由传 感器一侧至锻压侧的温度逐渐升高的装置; 声波发射装置, 所述声波发射装置是用 于朝所述模具型腔方向发射声波的装置; 传感器, 所述传感器位于声波发射装置同 侧, 是用于接收返回声波的装置; 连接装置, 所述连接装置前端伸入模具内, 尾端 置于模具外并连接着所述传感器; 控制系统, 所述控制系统是连接着所述传感器, 用于接收传感器产生的信号与预设值比较, 并控制着锻压装置启动锻压动作的系 统。 本发明的一种连铸连锻方法, 具有模具合模步骤, 向模具型腔注入金属液的步 骤, 锻打铸件步骤, 开模取件步骤, 还包括以下步骤: a)由温度控制装置使模具型 腔周围由传感器一侧至锻压侧的温度逐渐升高的步骤; b)由声波发射装置向模具型 腔发射声波的步骤; c)由传感器接收返回的声波信号, 然后转换为电信号, 并将所 述信号传到控制系统 MCU的步骤; d)由控制系统 MCU调取预存储在存储器中的预定 值, 并将步骤 c)中所产生的电信号值与所述预定值进行比较的步骤; e)经步骤 d) 的比较当所述实际电信号值达到预定值时, 控制系统启动锻打的步骤。 本发明釆用的连铸连锻装置及相应的控制系统, 能够实时检测金属液的凝固状 态, 并且将信号传递给 MCU, MCU控制锻打的时间, 能够使工件的强度提高 30%。 同 时加工成本降氐 30%, 并且这种加工装置及方法, 不受周围环境温度的影响, 对当 今工业高自动化生产来说是很有价值的。 附图说明 图 1 为本发明的连铸连锻装置主视图;
图 2 为本发明的连铸连锻装置工作状态示意图;
图 3 为本发明的连铸连锻装置与控制系统示意图;
图 4 为本发明的电信号变化曲线示意图;
图 5 为本发明的温度控制装置温度曲线示意图;
图 6 为本发明连铸连锻方法的流程图。
具体实施方式
下面结合图 1至图 6对本发明连铸连锻装置及方法做进一步详细说明。 由机架 1、 开合模机构 2、 固定模具 3的工作台 4和活动梁 5以及压射缸 6构 成压铸机, 在机架上固定多个可向模具方向施力的锻压缸 7。 如图 2, 锻压缸 7固 定在活动梁 5上, 可对模具开合方向可移动的镶块 8施锻打力。 模具的两侧可安装侧压缸 9, 如图 1 , 侧压缸用于从两侧压紧模具, 其能保证 液态金属冷却时和凝固后高温断打时的压力, 侧压缸可在模具两侧对模具外壁对称 施压, 以提高模具耐锻打力的强度, 提高模具使用寿命; 同时, 在零件加工好后, 侧压缸可松开模具, 便于抽芯。
本发明所述的连铸连锻装置, 由于在机架上固定一个以上锻压缸, 可向模具方 向施力, 在模腔中根据工件的形状设置可移动的镶块, 锻压缸的锻造压力作用在镶 块上, 并通过镶块将锻打力作用于工件。 所述的连铸连锻机工作时, 按压铸工艺向 模腔内注入液态金属并保持压力, 以实现铸件的凝固补缩。 待铸坯结晶凝固尚处于 高温状态时, 启动锻压缸, 推动模腔的镶块将锻打力作用于工件 12上, 锻压缸可 对镶块施持续的静压力, 也可往复动作多次锻打工件。 使用所述设备, 可使工件在 模腔内直接实现锻打, 提高工件的质量。
如图 3、 图 4, 为了准确把握液态金属的凝固时间, 本实施例使用了状态检测 装置, 具体就是用压电晶体式传感器 10来检测液态金属的凝固时间, 即在模具下 方设置传感器 10, 同时设置声波发射装置 12由下向上对着液态金属发射声波, 优 选纵或横向超声波, 这样, 超声波穿过固态金属及液态金属, 由于二者密度和刚度 的差异(液体刚度为零), 在其分界面会有一定的声波能量被反射回来, 当液态金 属开始凝固时, 界面穿越性加强, 声波返回的能量会减小, 该能量返回并被压电晶 体式传感器 10接收, 造成传感器的微量压变, 并产生电信号 El。 该传感器 10联入 系统电路中,电路中 MCU连接的存储器 14中预先存储一个值 E0, MCU调取 E0并将 实际电信号值 E1与 E0进行比较, 当 E1逐渐降低达到 E0时, 表明液态金属已开始 凝固, MCU发送指令, 控制锻压缸 7动作, 开始锻打。 这样, 无论周围环境温度如 何变化, 都会对锻打时间掌握得很好, 只需人为设置初始值 E0, 以进行比较, 而在 设备作业过程中, 不需人为调整时间, 从而提高自动化程度的同时, 提高了工件 12 的质量。 所述声波发射装置 12与所述传感器 10可以为一体式装置。
另外, 为了使模具型腔中的液态金属在朝向传感器 10—侧先凝固以利于探测, 同时使其朝向锻打的一侧后凝固以易于锻打, 在模具中设置温度调节控制装置 13, 以本实施例为例, 使模具型腔附近的温度由下朝上逐渐升高。 该温度控制装置 13 可以为加热的金属丝, 或用冷却液体的流量和温度来实现, 例如实现 rC/cm的温 差。 以冷却液体为例, 在靠近模具型腔下侧附近流量大, 在上侧流量小, 这样就会 利于模具型腔底部比上部温度低, 从而使工件 12底部 121先凝固。 如图 5, 温度可 以是直线上升, 如直线 A, 也可以是曲线上升, 如曲线 B、 C所示。 总体来说, 温 度变化线为单向直线或曲线, 即该温度的变化可以是不均勾的, 但温度的变化趋势 必须是一致的, 即由一侧到另一侧逐渐上升, 并且温度较低的一侧是传感器 10所 在的一侧。 例如, 温度上升线可以为直线或类似抛物线形。
由于模具 3的型腔及附近温度较高, 压电晶体式传感器 10不能够直接放置于 模具内, 需要设置连接装置。 本方案中, 在模具 3下方开槽 31 , 该槽 31顶端开设 螺纹孔, 用一个顶端有螺纹的长形金属棒 11伸入槽 31并旋入螺紋孔内固定。 金属 棒 11的顶端 111与工件 12的底侧 121平行设置, 以利于返回声波的接收。 金属棒 11的顶端 111靠近模具型腔底侧。 金属棒 11的另一端, 即下端伸出于模具外, 设 置有传感器 10及声波发射装置 12。 该传感器 10连接入系统控制电路中。
第二实施例中, 在模具型腔的底侧开设凹坑, 该凹坑底侧尽量平行于金属棒 11的顶端 111 , 在型腔内注入加热的金属液体后, 由于凹坑小, 局部散热快, 并且 温度控制装置 13使型腔底侧温度稍低, 那么在凹坑处的金属液必定率先凝结成工 件的突出部 122。金属棒 11的顶端 111与突出部 122的位置相对应。 工件的突出部 122相对于工件 12整体来说, 是相当小的一部分, 在经锻打, 开模并取出工件后, 可以将突出部 122打掉或切割掉。 上述开设的凹坑要求尺寸较窄, 以使突出部 122 窄小, 便于后期将突出部 122从工件分离掉。
上述实施例中, 锻压压力来自于正上方, 传感器设置于模具下方, 温度控制装 置使模具的温度由下方向上方逐渐升高。 当然, 依据实际需要, 模具也可以横向放 置, 例如, 由左侧施加锻压力, 传感器设置于模具右侧, 温度控制装置使模具的温 度由右侧向左侧逐渐升高, 其它相同, 不再赘述。
如图 6, 为本发明连铸连锻方法的流程图, 由温度控制装置使模具型腔周围由 传感器一侧至锻压侧的温度逐渐升高的步骤可以在最开始进行, 也可以在模具合模 以后进行, 对本发明无影响。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本发明的保护范 围之内。

Claims

权利 要 求 、 一种连铸连锻装置, 包括模具、 固定模具的工作台、 开合模机构, 以及压射缸, 在机架上固定一个以上向模具方向施力的锻压缸, 其特征在于, 还包括:
温度控制装置, 所述温度控制装置是设置于模具内, 用于使模具型腔周围 由传感器一侧至锻压侧的温度逐渐升高的装置;
声波发射装置, 所述声波发射装置是用于朝所述模具型腔方向发射声波的 装置;
传感器, 所述传感器位于声波发射装置同侧, 是用于接收返回声波的装置; 连接装置, 所述连接装置前端伸入模具内, 尾端置于模具外并连接着所述 传感器;
控制系统, 所述控制系统是连接着所述传感器, 用于接收传感器产生的信 号与预设值比较, 并控制着锻压装置启动锻压动作的系统。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述温度控制装置的温度 上升线为单向线。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述传感器为压电晶体式 传感器。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述声波发射装置发射的 声波为超声波。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述连接装置前端面平行 于其靠近的模具型腔底侧。 、 根据权利要求 1所述的连铸连锻装置, 其特征在于, 所述控制系统包括 MCU与 存储器, 所述存储器中存储有预设定值。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述模具型腔的底侧开设 凹坑, 所述凹坑与所述连接装置前端位置相对应。 、 根据权利要求 1 所述的连铸连锻装置, 其特征在于, 所述声波发射装置与所述 传感器为一体式装置。 ' ' 、 一种连铸连锻方法, 具有模具合模步骤, 向模具型腔注入金属液的步骤, 锻打 铸件步骤, 开模取件步骤, 其特征在于, 还包括以下步骤:
a)由温度控制装置使模具型腔周围由传感器一侧至锻压侧的温度逐渐升高的步 骤;
b)由声波发射装置向模具型腔发射声波的步骤;
c)由传感器接收返回的声波信号, 然后转换为电信号, 并将所述信号传到控制 系统 MCU的步骤;
d)由控制系统 MCU调取预存储在存储器中的预定值, 并将步骤 c)中所产生的电 信号值与所述预定值进行比较的步骤;
e)经步骤 d)的比较当所述实际电信号值达到预定值时, 控制系统启动锻打的步 骤。 、 根据权利要求 9所述的连铸连锻方法, 其特征在于, 还包括步骤,
d0) 在控制系统的存储器中预设初始值的步骤。
PCT/CN2010/000499 2009-08-18 2010-04-15 一种连铸连锻装置及方法 WO2011020284A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910109356.8 2009-08-18
CN200910109356 2009-08-18

Publications (1)

Publication Number Publication Date
WO2011020284A1 true WO2011020284A1 (zh) 2011-02-24

Family

ID=43606574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000499 WO2011020284A1 (zh) 2009-08-18 2010-04-15 一种连铸连锻装置及方法

Country Status (1)

Country Link
WO (1) WO2011020284A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248755A (ja) * 1990-02-26 1991-11-06 Kawasaki Steel Corp 連鋳ストランドの鍛圧加工用金型の保護具
CN2114521U (zh) * 1991-12-05 1992-09-02 贾振玉 重力浇注顺序结晶活塞金属模
US6896035B2 (en) * 2001-04-25 2005-05-24 Nkk Corporation Manufacturing method for continuously cast product of steel
CN1647871A (zh) * 2004-12-03 2005-08-03 李远发 金属液态压铸锻造双控一次成型的方法
CN2788958Y (zh) * 2005-04-22 2006-06-21 李远发 金属液态压铸锻造双控一次成型压铸锻造机
CN201201027Y (zh) * 2008-05-20 2009-03-04 久大油压铸机有限公司 挤出锻压装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03248755A (ja) * 1990-02-26 1991-11-06 Kawasaki Steel Corp 連鋳ストランドの鍛圧加工用金型の保護具
CN2114521U (zh) * 1991-12-05 1992-09-02 贾振玉 重力浇注顺序结晶活塞金属模
US6896035B2 (en) * 2001-04-25 2005-05-24 Nkk Corporation Manufacturing method for continuously cast product of steel
CN1647871A (zh) * 2004-12-03 2005-08-03 李远发 金属液态压铸锻造双控一次成型的方法
CN2788958Y (zh) * 2005-04-22 2006-06-21 李远发 金属液态压铸锻造双控一次成型压铸锻造机
CN201201027Y (zh) * 2008-05-20 2009-03-04 久大油压铸机有限公司 挤出锻压装置

Similar Documents

Publication Publication Date Title
US10493521B2 (en) Die casting machine
WO2011161899A1 (ja) 射出成形機の成形方法
JP4671294B2 (ja) 射出成形機の射出圧縮成形方法
JP2007533499A (ja) 成形システムにおいて活性材料素子を利用するための制御システム
JP6608168B2 (ja) 開閉装置および成形装置
JP2017177737A (ja) 射出成形機及びその成形方法
WO2011020284A1 (zh) 一种连铸连锻装置及方法
JP5808850B1 (ja) 型締装置、成形装置および成形方法
CN101817074B (zh) 一种连铸连锻装置及方法
JP2009208412A (ja) 射出成形機の制御方法
JP3033876B2 (ja) 加圧鋳造機における加圧プランジャのかじり検出方法
JP5093809B2 (ja) ディスク基板成形機およびディスク基板成形方法
JP6472053B2 (ja) ダイカストマシン及び固液共存金属の成形方法
JP2009000788A (ja) 押切り切断装置
JPS59165634A (ja) 射出成形方法
JPH11300462A (ja) 金属射出成形機のノズル温度制御方法及びノズル温度制御装置並びにスプルブッシュ温度制御方法及びスプルブッシュ温度制御装置
JPH02207960A (ja) シリンダの位置制御方法
JP2792580B2 (ja) 加圧鋳造における加圧ストローク制御方法
JP2009255463A (ja) 射出成形機および射出成形方法
JP5942415B2 (ja) 射出成形方法およびその装置
US20220088716A1 (en) Method of removal of heat checking
JP5368931B2 (ja) トグル式型締機構を有する射出成形機の制御装置
JP2010234584A (ja) 射出成形機
JP2017100364A (ja) 射出成形機の可動盤傾き補正方法及び射出成形機
JP2935092B2 (ja) 射出成形機の制御方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10809418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10809418

Country of ref document: EP

Kind code of ref document: A1