WO2011018829A1 - 薄膜光電変換素子と薄膜光電変換素子の製造方法 - Google Patents

薄膜光電変換素子と薄膜光電変換素子の製造方法 Download PDF

Info

Publication number
WO2011018829A1
WO2011018829A1 PCT/JP2009/004551 JP2009004551W WO2011018829A1 WO 2011018829 A1 WO2011018829 A1 WO 2011018829A1 JP 2009004551 W JP2009004551 W JP 2009004551W WO 2011018829 A1 WO2011018829 A1 WO 2011018829A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
metal
film layer
layer
silicon
Prior art date
Application number
PCT/JP2009/004551
Other languages
English (en)
French (fr)
Inventor
ブリセニョ穂世
Original Assignee
株式会社Si-Nano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US12/680,827 priority Critical patent/US20110215434A1/en
Application filed by 株式会社Si-Nano filed Critical 株式会社Si-Nano
Priority to EP09848248A priority patent/EP2466645A1/en
Priority to CA2769565A priority patent/CA2769565A1/en
Priority to CN2009801609527A priority patent/CN102598290A/zh
Publication of WO2011018829A1 publication Critical patent/WO2011018829A1/ja
Priority to IL217842A priority patent/IL217842A0/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/07Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a thin film type thin film photoelectric conversion element and a method for manufacturing the thin film photoelectric conversion element, and more particularly to a thin film photoelectric conversion element for generating photocarriers on the surface of the element and a method for manufacturing the thin film photoelectric conversion element.
  • FIG. 8 is a cross-sectional view of a pin-structure thin film solar cell 100 (Patent Document 1) using an a-Si film.
  • the thin film solar cell 100 is formed on a glass substrate 101.
  • the thin-film solar cell 100 includes an n-layer 104 of an a-Si film that forms a pin structure between a lower electrode 102 made of silver and a transparent upper electrode 103 made of indium tin oxide (ITO).
  • An i-layer 105 of a crystallized a-Si film and a p-layer 106 of an a-Si film are stacked.
  • the thickness of each layer is about 100 nm for the lower electrode 102, 70 nm for the upper electrode 103, 50 nm for the n layer 104, 2 ⁇ m for the i layer 105, and about 20 nm for the p layer 106.
  • the i layer 105 has a power generation function that receives light passing through the upper transparent upper electrode 103 and generates carriers by the photoelectric effect.
  • the n layer 104 and the p layer 106 apply an internal electric field to the layer 105.
  • the i layer 105 has a function of separating carriers.
  • the carriers that are separated by the i layer 105 upon receiving the light move to the n layer 104 or the p layer 106, which is the stacking direction, between the lower electrode 102 and the upper electrode 103. Is short-circuited, a photo-induced current flows between the lower electrode 102 and the upper electrode 103 in the stacking direction due to the movement of carriers.
  • the thickness is limited to about 1 ⁇ m, and it is necessary to further dispose the upper electrode 103 and the lower electrode 102 with the pin structure sandwiched in order to extract the photo-induced current flowing in the stacking direction. There was a limit to thinning.
  • the upper electrode 103 covering the entire upper surface thereof with a transparent conductive material such as ITO. Since light cannot be absorbed, the optical characteristics are controlled using surface texture or the like to increase the efficiency of use of incident light.
  • a-Si has a large forbidden bandwidth and responds to light having a relatively short wavelength of 700 nm or less, but cannot use long-wavelength light such as infrared light. For this reason, a microcrystalline silicon layer is added.
  • the present invention has been made in consideration of such conventional problems, and provides a thin film photoelectric conversion element capable of being thinned to a thickness of several tens of nm or less and a method for manufacturing the thin film photoelectric conversion element. Objective.
  • a thin film photoelectric conversion element that responds to broadband light from the visible region to the infrared region and a method for manufacturing the thin film photoelectric conversion device are provided through a simple annealing process without requiring complicated and precise semiconductor process control. The purpose is to do.
  • the invention according to claim 1 includes a first metal thin film layer made of a first metal and a second metal made of a second metal so as to overlap a part of the first metal thin film layer.
  • a silicon substrate on which a thin film layer is laminated is annealed to form a metal silicide layer formed by diffusing the first metal and silicon on the surface of the silicon substrate and a second metal thin film layer on the surface of the silicon substrate.
  • a light-induced current is generated between the metal silicide layer and the conductive thin film layer on the surface of the silicon substrate by irradiating light to the metal silicide layer or conductive thin film layer in which a Schottky interface is formed.
  • the first metal, the second metal, and silicon nanoparticles diffuse to each other in the conductive thin film layer, and in the metal silicide layer, the first metal and silicon nanoparticles diffuse to each other.
  • the activation energy of each element is high, and a phenomenon occurs in which the phase diagram departs from the bulk property.
  • a Schottky interface is formed along the surface of the silicon substrate between the silicon diffusion portion and the metal silicide layer and between the silicon diffusion portion and the conductive thin film layer.
  • the second metal thin film layer is stacked on the first metal thin film layer, and is thicker than the thickness of the first metal thin film layer on which the metal silicide is formed. It is considered that the barrier pinning is weakened and the height of the barrier between the silicon diffusion portion and the conductive thin film layer is low.
  • a diode having a forward direction from the metal silicide layer to the conductive thin film layer is formed along the surface of the silicon substrate by the Schottky barrier between the silicon diffusion portion and the metal silicide layer.
  • the metal silicide layer and the conductive thin film layer formed on the surface of the silicon substrate have conductivity, the conduction loss of photocarriers induced on the surface is suppressed.
  • the silicon particles become nano-sized, and the wave number selection rule becomes a direct transition different from the bulk, which corresponds to the energy gap from the Si valence band to the visible region. Interband excitation occurs.
  • photocarriers are generated by a Schottky barrier in the stacking direction for mainly light in the infrared region of a long wavelength, and silicon nanocrystals are mainly generated for light of short wavelength visible light. Photocarriers are generated by the excitation of particles, both are added, response sensitivity is high, and broadband response characteristics from visible light to infrared light can be obtained.
  • the invention according to claim 2 is characterized in that the thickness of the conductive thin film layer is less than 100 nm, and the thickness of the metal silicide layer is further thinner than that of the conductive thin film layer.
  • the amount of the first metal and the second metal used as the material for the conductive thin film layer and the metal silicide layer can be greatly reduced, and each of them is formed on the silicon substrate by a simple process of annealing after being deposited on the silicon substrate. Is done.
  • the invention according to claim 3 is characterized in that the first metal is any one of Co, Fe, W, Ni, Al, and Ti, and the second metal is Au.
  • Co, Fe, W, Ni, Al, and Ti have a high melting point and excellent mechanical properties at high temperatures, and are suitable for metal silicide materials.
  • Au also assists the diffusion of the first metal and silicon nanoparticles around it, facilitating the formation of a silicon diffusion between the metal silicide and the conductive thin film layer.
  • the first metal, the second metal, and silicon nanoparticles diffuse to each other in the conductive thin film layer, and in the metal silicide layer, the first metal and silicon nanoparticles diffuse to each other.
  • the activation energy of each element is high, and a phenomenon occurs in which the phase diagram departs from the bulk property.
  • a Schottky interface is formed along the surface of the silicon substrate between the silicon diffusion portion and the metal silicide layer and between the silicon diffusion portion and the conductive thin film layer.
  • the second metal thin film layer is stacked on the first metal thin film layer, and is thicker than the thickness of the first metal thin film layer on which the metal silicide is formed. It is considered that the barrier pinning is weakened and the height of the barrier between the silicon diffusion portion and the conductive thin film layer is low.
  • a diode having a forward direction from the metal silicide layer to the conductive thin film layer is formed along the surface of the silicon substrate by the Schottky barrier between the silicon diffusion portion and the metal silicide layer.
  • the metal silicide layer and the conductive thin film layer formed on the surface of the silicon substrate have conductivity, the conduction loss of photocarriers induced on the surface is suppressed.
  • the silicon particles become nano-sized, and the wave number selection rule becomes a direct transition different from the bulk, which corresponds to the energy gap from the Si valence band to the visible region. Interband excitation occurs.
  • photocarriers are generated by a Schottky barrier in the stacking direction for mainly light in the infrared region of a long wavelength, and silicon nanocrystals are mainly generated for light of short wavelength visible light. Photocarriers are generated by the excitation of particles, both are added, response sensitivity is high, and broadband response characteristics from visible light to infrared light can be obtained.
  • the invention according to claim 5 is characterized in that the thickness of the conductive thin film layer is less than 100 nm, and the thickness of the metal silicide layer is thinner than that of the conductive thin film layer.
  • the amount of the first metal and the second metal used as the material for the conductive thin film layer and the metal silicide layer can be greatly reduced, and each of them is formed on the silicon substrate through a simple process of annealing after being deposited on the silicon substrate. Is done.
  • the invention according to claim 6 is characterized in that the first metal is any one of Co, Fe, W, Ni, Al, and Ti, and the second metal is Au.
  • Co, Fe, W, Ni, Al, and Ti have a high melting point and excellent mechanical properties at high temperatures, and are suitable for metal silicide materials.
  • Au also assists the diffusion of the first metal and silicon nanoparticles around it, facilitating the formation of a silicon diffusion between the metal silicide and the conductive thin film layer.
  • the light transmitted through the silicon substrate is not photoelectrically converted, but is photoelectrically converted by the surface layer of the substrate. Is obtained.
  • the thickness of the first metal, the second metal, silicon, and the like can be significantly reduced compared to a thin film photoelectric conversion element that is thinned by forming a pn junction photoelectric conversion element or a silicon thin film. It can be manufactured by using very small amounts of elements.
  • the pair of extraction electrodes are arranged separately in the stacking direction.
  • the thin film photoelectric conversion element can be further reduced in thickness.
  • a simple manufacturing process in which the silicon substrate having the first metal thin film layer laminated on the surface and the second metal thin film layer laminated on a part thereof is simply annealed.
  • the process can utilize a Si-based process for forming a metal silicide.
  • a photo-induced current is generated by the conductive thin film layer having a surface thickness of less than 100 nm and a thinner metal silicide layer of the silicon substrate.
  • the conductive thin film layer having a surface thickness of less than 100 nm and a thinner metal silicide layer of the silicon substrate.
  • it can be affixed to the casing of portable equipment such as buildings and automobile windows and mobile phones, and there are no restrictions on the installation location.
  • the first metal and the second metal which is a noble metal
  • a very small amount of rare metal is used. Can be produced from elements.
  • the first metal has a high melting point, excellent mechanical properties at high temperatures, and is suitable as a metal silicide material.
  • the metal silicide is CoSix used as an electrode base of a silicon device, and an existing process can be used.
  • FIG. 1 is a longitudinal cross-sectional view of the thin film photoelectric conversion element 1 which concerns on one embodiment of this invention.
  • 2 is an equivalent circuit diagram of the thin film photoelectric conversion element 1.
  • FIG. 3 is a process diagram showing a manufacturing process of the thin-film photoelectric conversion element 1.
  • FIG. 4 is an IV diagram showing a relationship between a bias voltage V applied between electrodes 4 and 5 of the thin film photoelectric conversion element 1 and currents I b , I b1 and I b2 flowing between the electrodes 4 and 5.
  • FIG. 4 is an IV diagram showing the relationship with the bias voltage V. 4 is an energy diagram showing the movement of photocarriers induced by irradiating the metal silicide layer 3 with light. 4 is an energy diagram showing photocarrier movement induced by irradiating light to a conductive thin film layer 9; It is sectional drawing of the conventional thin film solar cell 100.
  • FIG. 4 is an IV diagram showing the relationship with the bias voltage V. 4 is an energy diagram showing the movement of photocarriers induced by irradiating the metal silicide layer 3 with light. 4 is an energy diagram showing photocarrier movement induced by irradiating light to a conductive thin film layer 9; It is sectional drawing of the conventional thin film solar cell 100. FIG.
  • the thin-film photoelectric conversion element 1 is an n-Si substrate 2 made of n-type Si as a semiconductor substrate and self-organized on the surface of the n-Si substrate 2.
  • a window is used as a solar cell application. It is affixed on the glass plate 10 of glass. In this way, the pair of anode electrode 4 and cathode electrode 5 that draw the photoinduced current to the outside are formed on the same surface side of the n-Si substrate 2.
  • a Co thin film 7 having a thickness of 8 nm is sputtered on an n-Si substrate 2 made of substantially square n-type Si, as shown in the process chart of the manufacturing process of FIG.
  • mask printing is performed to form a conductive thin film layer 9 in a partial region on the square Co thin film 7.
  • the thin film 8 is formed by sputtering (c).
  • the temperature is raised to 400 to 800 ° C., preferably 600 ° C. in a temperature raising time of 3 minutes, and annealing treatment is performed at a temperature of 600 ° C.
  • the anode electrode 4 and the cathode electrode 5 are ohmically connected to the conductive thin film layer 9 respectively (e), and the thin film photoelectric conversion element 1 is manufactured.
  • the Si, Co, and Au to be laminated diffuse to each other by the annealing treatment, and the region where only the Co thin film 7 is formed is on the surface of the Si substrate 2.
  • the region where the self-organized CoSix layer 3 is formed and the Au thin film 8 is further formed on the Co thin film 7 Co, Au and Si-rich conductive thin film layers are diffused. 9 is formed.
  • a Schottky interface is formed between the n-Si substrate 2 in the stacking direction.
  • a Schottky interface is formed either between CoSix and Si or between Au and Si. Further, in the region where the diffusion is further advanced by the annealing treatment, a region that is in ohmic contact with the n-Si substrate 2 is formed. Therefore, as shown in FIG.
  • the diodes D2 and D3 are formed from the CoSix layer 3 and the conductive thin film layer 9 with the direction of the n-Si substrate 2 in the stacking direction as the forward direction.
  • an equivalent circuit in which the resistors R2 and R3 are connected in parallel with the diodes D2 and D3 is formed in the ohmic connection region.
  • Co, Au, and Si nanoparticles diffuse to each other by the annealing treatment, and in the CoSix layer 3, Co and Si nanoparticles diffuse to each other, and each has a depth of 20 nm or less at the maximum.
  • the activation energy of the element is high, and a phenomenon occurs in which the phase diagram departs from the bulk property.
  • the Si particle becomes nano-sized, and the wave number selection rule becomes a direct transition different from the bulk, which corresponds to the energy gap from the Si valence band to the visible region. Interband excitation occurs.
  • photocarriers are generated by the Schottky barrier in the stacking direction with respect to light in the long wavelength infrared region, and against visible light with short wavelength.
  • photocarriers are generated by excitation of silicon nanoparticles and respond to both, response sensitivity is high, and broadband response characteristics from visible light to infrared light can be obtained.
  • the annealing treatment makes it easy for the Si nanoparticles on the n-Si substrate 2 to diffuse near the surface around the Au thin film 8, and between the CoSix layer 3 and the conductive thin film layer 9.
  • a silicon diffusion part 6 in which a large number of silicon nanoparticles diffuse together with CoSix, Au, and Co is formed with a width within a maximum of 1 mm from the periphery of the Au thin film 8.
  • Schottky interfaces are also formed between the silicon diffusion portion 6 and the conductive thin film layer 9 made of a semiconductor, and between the silicon diffusion portion 6 and the CoSix layer 3.
  • the metal on the conductive thin film layer 9 side on which the Au thin film 8 is laminated on the Co thin film 7 is more excessive than the CoSix layer 3 side made of only the Co thin film 7 before the annealing treatment, the ohmicization is promoted. It is considered that the pinning of the barrier is weakened and the height of the barrier between the silicon diffusion portion 6 and the conductive thin film layer 9 is considered to be low. As a result, a diode D1 having a forward direction from the horizontal CoSix layer 3 to the conductive thin film layer 9 is formed by the Schottky barrier between the silicon diffusion portion 6 and the CoSix layer 3.
  • the thin film photoelectric conversion element 1 subjected to the annealing treatment has a circuit configuration shown in an equivalent circuit diagram shown in FIG.
  • these equivalent circuits are formed of a CoSix layer 3 having a thickness within 20 nm, a silicon diffusion portion 6, a conductive thin film layer 9, and an extremely shallow surface layer of the n-Si substrate 2.
  • the resistor R1 is a resistance in the CoSix layer 3 between the anode electrode 4 and the cathode electrode 5.
  • Light-induced current I is applied between the anode electrode 4 and the cathode electrode 5 formed on the same surface side that receives light from the surface side (upper side in FIG. 1) of the thin film photoelectric conversion element 1 configured as described above.
  • an excitation laser beam having a wavelength of 632 nm, an output of 1.68 mW, and an irradiation area of 0.4 / mm 2 while changing the bias voltage Vb of the anode electrode 4 and the cathode electrode 5 was irradiated in CoSix layer 3 and the conductive thin film layer 9, it was measured to be compared with the current I b flowing between the anode electrode 4 and the cathode electrode 5 when not irradiated with the excitation laser light.
  • FIG. 4 is an IV diagram showing the relationship between the currents I b , I b1 and I b2 generated between the anode electrode 4 and the cathode electrode 5 under each measurement condition and the bias voltage Vb, and is indicated by a broken line in the figure.
  • I b is a current value flowing between the anode electrode 4 and the cathode electrode 5 when the excitation laser beam is not irradiated
  • I b1 is a current value generated by irradiating the CoSix layer 3 with the excitation laser beam
  • I b2 is The current value generated by irradiating the conductive thin film layer 9 with the excitation laser beam.
  • the positive bias voltage waveform of the current I b shown in the drawing increases according to the increase in the direction of the conductive thin film layer 9
  • CoSix layer 3 is diode D1 to forward
  • the height of the Schottky barrier confirmed and estimated from the IV diagram is estimated to be 0.56 eV to 0.58 eV.
  • the light-induced current I 1, I 2 a bias voltage generated by only the excitation laser light It is an IV diagram represented by the relationship with Vb. That is, I 1 in the figure is I b1 -I b , I 2 is the current value calculated by I b2 -I b , and the numerical value (unit: mA) in the figure is the bias voltage represented by the left vertical axis. The current value when Vb is applied.
  • the photo-induced current I 1 generated by irradiating the CoSix layer 3 with the excitation laser beam has a current value of almost 0 and a negative value while the positive bias voltage Vb is applied.
  • the bias voltage Vb When the bias voltage Vb is applied, a current of about ⁇ 0.98 mA in the direction from the cathode electrode 5 to the anode electrode 4 flows.
  • photocarriers photo-induced electrons
  • the movement in the direction is blocked by the Schottky barrier therebetween, and is attracted in the direction of the anode electrode 4 having a positive side potential, and recombines with the holes of the n-Si substrate 2 below the resistor R2. Therefore, the current I 1 flowing between the anode electrode 4 and the cathode electrode 5 does not appear.
  • photocarriers photo-induced electrons
  • Vb negative bias voltage
  • the photoinduced current I 2 generated by irradiating the conductive thin film layer 9 with the excitation laser light is applied in the positive direction from the anode electrode 4 to the cathode electrode 5 when a positive bias voltage Vb is applied.
  • a current of about 0.35 mA flows and a negative bias voltage Vb is applied, so that almost no current value flows.
  • photocarriers photo-induced electrons
  • photo-induced electrons induced by receiving light from the n-Si substrate 2 under the conductive thin film layer 9 in a state where a positive bias voltage Vb is applied are n ⁇
  • Photocarriers (photo-induced electrons) induced from the Si substrate 2 to the CoSix layer 3 are attracted in the direction of the anode electrode 4 having a positive potential, and since a forward bias is applied to the diode D1, it passes through the diode D1.
  • the conductive CoSix layer 3 flows to the anode electrode 4 and recombines with the holes of the n-Si substrate 2 below the cathode electrode 5 and the resistor R3.
  • the above-described photo-induced currents I 1 and I 2 mainly flow through a surface conductive layer having a thickness of 20 nm or less on the n-Si substrate 2 and use Schottky that operates with majority carriers, so that the carriers move at high speed. It has high-speed response equivalent to HEMT (High Electron Mobility Transistor) in which the carrier moves and moves in the in-plane direction, and can be used for an optical sensor in the GHz to THz band.
  • HEMT High Electron Mobility Transistor
  • the thin film photoelectric conversion element 1 it has been verified that it responds to light having a wavelength (0.4 to 2 ⁇ m) from the visible region to the infrared region, and is used as a solar cell application.
  • the photoelectric conversion from visible light to infrared light can be performed, the conversion efficiency can be increased, and the thin film photoelectric conversion element 1 can be formed as a very thin film. It is also possible to generate electricity by sticking to the battery, and the installation space is not limited.
  • the CoSix layer 3, the silicon diffusion portion 6, and the conductive thin film layer 9 are simply formed on the n-Si substrate 2 as in the present embodiment, a simple Si-based process is used to create a solar cell or an image. Photoelectric conversion elements for applications such as sensors can be manufactured.
  • the Co thin film 7 formed on the n-Si substrate 2 on which the CoSix layer 3 is formed may be a thin film metal layer such as Fe, W, Ni, Al, Ti, etc. It may be a Si substrate.
  • the present invention is suitable for thin film photoelectric conversion elements used for solar cells and high-speed photosensors.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Light Receiving Elements (AREA)

Abstract

 数10nm以下の厚さに薄型化が可能な薄膜光電変換素子と薄膜光電変換素子の製造方法を提供する。 シリコン基板の表面に第1金属とシリコンが拡散して形成される金属シリサイド層と、シリコン基板の表面の第2金属薄膜層の積層部位に形成される導電薄膜層と、前記金属シリサイド層と前記導電薄膜層との間のシリコン基板の表面付近にシリコンのナノ粒子が拡散して形成されるシリコン拡散部とを備え、シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層若しくは導電薄膜層へ光を照射し、シリコン基板の表面の金属シリサイド層と導電薄膜層間に光誘起電流を発生させる。

Description

薄膜光電変換素子と薄膜光電変換素子の製造方法
 本発明は、薄膜型の薄膜光電変換素子と薄膜光電変換素子の製造方法に関し、更に詳しくは、素子の表面にフォトキャリアを発生させる薄膜光電変換素子と薄膜光電変換素子の製造方法に関する。
 光電変換素子として太陽電池の用途では、薄型化して発電部となるシリコンの使用量を削減することが試みられているが、インゴットから切断するシリコンウエアの厚みは150μm程度までとするのが限界であり、また、薄肉とすると充分に光を吸収できないので光電変換効率の低下し、その為に反射防止膜等をを形成するので、素子全体の薄型化には限界があった。
 そこで、CVD法などでアモルフォスシリコン(以下、a-Siと記す)や微結晶シリコンの薄膜を製膜し、一般的なシリコン太陽電池の1%程度の厚さとした薄膜シリコン太陽電池が提供されている。図8は、a-Si膜を用いたpin構造の薄膜太陽電池100(特許文献1)の断面図であり、ガラス基板101上に薄膜太陽電池100が形成されている。
 薄膜太陽電池100は、同図に示すように、銀の下部電極102と酸化インジウム錫(ITO)の透明上部電極103との間に、pin構造を形成するa-Si膜のn層104、半結晶化a-Si膜のi層105、a-Si膜のp層106とが積層されている。ここで、各層の厚さは、下部電極102が100nm、上部電極103が70nm、n層104が50nm、i層105が2μm、p層106が20nm程度となっている。
 i層105は、上方の透明上部電極103を通過する光を受けて、光電効果によりキャリアを生成する発電機能を有し、n層104とp層106は、層105に内部電界を印加してi層105のキャリアを分離する機能を有している。
 従って、薄膜太陽電池100の上方から光を照射すると、光を受けてi層105で分離するキャリアは、積層方向であるn層104若しくはp層106に移動し、下部電極102と上部電極103間を短絡すれば、キャリアの移動によって、積層方向の下部電極102と上部電極103間に光誘起電流が流れる。
特開2000-349321号公報
 しかしながら、シリコン薄膜を製膜することにより薄型化した上記薄膜太陽電池100であっても、光の入射方向であるpin構造の各積層方向に光キャリアを流して発電するので、吸収係数が高いa-Siを用いてもその厚みを1μm程度とするのが限界であり、更に、積層方向に流れる光誘起電流を取り出すためにpin構造を挟み上部電極103と下部電極102を更に配置する必要があり、薄型化に限界があった。
 また、発電機能を有するi層105まで入射光を到達させるために、その上方の全面を覆う上部電極103をITOなどの透明導電材料で形成する必要があり、また、薄膜のままでは充分に入射光を吸収できないために、表面テクスチャなどを用いて光学的特性を制御し、入射光の利用効率を高める構造としていた。
 更に、a-Siは、禁制帯幅が大きく、700nm以下の比較的短波長の光に応答するが、赤外光等の長波長の光を利用できず、この為、微結晶シリコン層を加えたタンデム構造としたり、特許文献1に記載のようにi層105のアモルフォス及び微結晶の結晶分率を積層方向で変化させる構造として、広帯域の光に対して応答させているものであり、その為に複雑なプロセスを要していた。
 本発明は、このような従来の問題点を考慮してなされたものであり、数10nm以下の厚さに薄型化が可能な薄膜光電変換素子と薄膜光電変換素子の製造方法を提供することを目的とする。
 また、同一表面に光誘起電流を引き出す一対の電極を配置し、更に薄型化が可能な薄膜光電変換素子と薄膜光電変換素子の製造方法を提供することを目的とする。
 また、シリコン層の厚さを20nm以下として、シリコン材料の使用量を削減し、コストダウンが可能な薄膜光電変換素子と薄膜光電変換素子の製造方法を提供することを目的とする。
 また、複雑で精密な半導体プロセス制御を要することなく、アニール処理の単純な工程で、可視領域から赤外領域までの広帯域の光に応答する薄膜光電変換素子と薄膜光電変換素子の製造方法を提供することを目的とする。
 上述の目的を達成するため、請求項1に記載の発明は、第1金属からなる第1金属薄膜層と、第1金属薄膜層上の一部に重ねて、第2金属からなる第2金属薄膜層を積層させたシリコン基板をアニール処理し、シリコン基板の表面に第1金属とシリコンが拡散して形成される金属シリサイド層と、シリコン基板の表面の第2金属薄膜層の積層部位に形成される導電薄膜層と、前記金属シリサイド層と前記導電薄膜層との間のシリコン基板の表面付近にシリコンのナノ粒子が拡散して形成されるシリコン拡散部とを備え、シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層若しくは導電薄膜層へ光を照射し、シリコン基板の表面の金属シリサイド層と導電薄膜層間に光誘起電流を発生させることを特徴とする。
 アニール処理によって、導電薄膜層では、第1金属と第2金属とシリコンのナノ粒子が相互に拡散し、金属シリサイド層では、第1金属とシリコンのナノ粒子が相互に拡散し、最大20nm以下の深さで、各元素の活性化エネルギーが高く、状態図がバルクの性質から離れる現象が発生する。
 シリコン基板の表面に沿って、シリコン拡散部と金属シリサイド層間及びシリコン拡散部と導電薄膜層間にそれぞれショットキー界面が形成される。導電薄膜層の形成部位では、第1金属薄膜層に第2金属薄膜層が積層され、金属シリサイドが形成される第1金属薄膜層の厚みより厚いので、金属がより過剰な領域でありオーミック化が促進され、障壁のピンニングが弱まり、シリコン拡散部と導電薄膜層間の障壁の高さは低いと考えられる。その結果、シリコン拡散部と金属シリサイド層間のショットキー障壁により、シリコン基板の表面に沿って、金属シリサイド層から導電薄膜層の方向を順方向とするダイオードが形成される。
 シリコン基板との積層方向にショットキー界面が形成される導電薄膜層へ光を照射すると、導電薄膜層に多数のフォトキャリアが誘起し、シリコン基板の表面に沿った上記ダイオードによる順バイアス特性でシリコン基板の表面に沿って移動することにより、光誘起電流が表面に沿って流れる。
 同様に、シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層へ光を照射すると、金属シリサイド層に多数のフォトキャリアが誘起し、シリコン基板の表面に沿った上記ダイオードによる順バイアス特性でシリコン基板の表面に沿って移動することにより、光誘起電流が表面に沿って流れる。
 シリコン基板の表面に形成される金属シリサイド層と導電薄膜層は、導電性を有するので、表面に誘起したフォトキャリアの伝導ロスが抑制される。
 シリコンのナノ粒子が共存する金属シリサイド層と導電薄膜層では、シリコン粒子がナノサイズとなることで、波数選択則がバルクと異なる直接遷移となり、Si価電子帯から可視域のエネルギーギャップに相当するバンド間励起が発生する。その結果、この導電薄膜層では、主として長波長の赤外領域の光に対して、積層方向のショットキー障壁によりフォトキャリアが発生するとともに、主として短波長の可視光の光に対して、シリコンナノ粒子の励起によるフォトキャリアが発生し、双方が加わり、応答感度が高く、可視光から赤外光までの広帯域応答特性が得られる。
 また、請求項2に記載の発明は、導電薄膜層の厚さが100nm未満であり、金属シリサイド層の厚さは導電薄膜層より更に薄いことを特徴とする。
 導電薄膜層と金属シリサイド層の材料となる第1金属と第2金属の使用量を大幅に削減でき、それぞれ、シリコン基板上に蒸着させた後、アニール処理する簡単な工程でシリコン基板上に形成される。
 また、請求項3に記載の発明は、第1金属が、Co、Fe、W、Ni、Al、Tiのいずれかであり、第2金属が、Auであることを特徴とする。
 Co、Fe、W、Ni、Al、Tiは、融点が高く、高温における機械的性質が優れ、金属シリサイドの材料に適している。また、Auは、その周囲で第1金属とシリコンのナノ粒子の拡散を支援し、金属シリサイドと導電薄膜層との間のシリコン拡散部の形成を容易にする。
 また、請求項4に記載の発明は、シリコン基板上に第1金属からなる第1金属薄膜層を成膜する第1工程と、第1金属薄膜層上の一部に第2金属からなる第2金属薄膜層を成膜する第2工程と、シリコン基板上に積層された第1金属薄膜層と第2金属薄膜層をアニール処理し、基板上に第1金属とシリコンが拡散する金属シリサイド層と、第2金属薄膜層の積層部位の導電薄膜層と、前記金属シリサイド層と前記導電薄膜層との間でシリコン基板の表面付近にシリコンのナノ粒子が拡散するシリコン拡散部を形成する第3工程とを備え、シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層若しくは導電薄膜層へ光を照射し、シリコン基板の表面の金属シリサイド層と導電薄膜層間に光誘起電流を発生させることを特徴とする。
 アニール処理によって、導電薄膜層では、第1金属と第2金属とシリコンのナノ粒子が相互に拡散し、金属シリサイド層では、第1金属とシリコンのナノ粒子が相互に拡散し、最大20nm以下の深さで、各元素の活性化エネルギーが高く、状態図がバルクの性質から離れる現象が発生する。
 シリコン基板の表面に沿って、シリコン拡散部と金属シリサイド層間及びシリコン拡散部と導電薄膜層間にそれぞれショットキー界面が形成される。導電薄膜層の形成部位では、第1金属薄膜層に第2金属薄膜層が積層され、金属シリサイドが形成される第1金属薄膜層の厚みより厚いので、金属がより過剰な領域でありオーミック化が促進され、障壁のピンニングが弱まり、シリコン拡散部と導電薄膜層間の障壁の高さは低いと考えられる。その結果、シリコン拡散部と金属シリサイド層間のショットキー障壁により、シリコン基板の表面に沿って、金属シリサイド層から導電薄膜層の方向を順方向とするダイオードが形成される。
 シリコン基板との積層方向にショットキー界面が形成される導電薄膜層へ光を照射すると、導電薄膜層に多数のフォトキャリアが誘起し、シリコン基板の表面に沿った上記ダイオードによる順バイアス特性でシリコン基板の表面に沿って移動することにより、光誘起電流が表面に沿って流れる。
 同様に、シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層へ光を照射すると、金属シリサイド層に多数のフォトキャリアが誘起し、シリコン基板の表面に沿った上記ダイオードによる順バイアス特性でシリコン基板の表面に沿って移動することにより、光誘起電流が表面に沿って流れる。
 シリコン基板の表面に形成される金属シリサイド層と導電薄膜層は、導電性を有するので、表面に誘起したフォトキャリアの伝導ロスが抑制される。
 シリコンのナノ粒子が共存する金属シリサイド層と導電薄膜層では、シリコン粒子がナノサイズとなることで、波数選択則がバルクと異なる直接遷移となり、Si価電子帯から可視域のエネルギーギャップに相当するバンド間励起が発生する。その結果、この導電薄膜層では、主として長波長の赤外領域の光に対して、積層方向のショットキー障壁によりフォトキャリアが発生するとともに、主として短波長の可視光の光に対して、シリコンナノ粒子の励起によるフォトキャリアが発生し、双方が加わり、応答感度が高く、可視光から赤外光までの広帯域応答特性が得られる。
 また、請求項5に記載の発明は、導電薄膜層の厚さが100nm未満であり、金属シリサイド層の厚さは導電薄膜層より更に薄いことを特徴とする。
 導電薄膜層と金属シリサイド層の材料となる第1金属と第2金属の使用量を大幅に削減でき、それぞれ、シリコン基板上に蒸着させた後、アニール処理する簡単な工程でシリコン基板上に形成される。
 また、請求項6に記載の発明は、第1金属が、Co、Fe、W、Ni、Al、Tiのいずれかであり、第2金属が、Auであることを特徴とする。
 Co、Fe、W、Ni、Al、Tiは、融点が高く、高温における機械的性質が優れ、金属シリサイドの材料に適している。また、Auは、その周囲で第1金属とシリコンのナノ粒子の拡散を支援し、金属シリサイドと導電薄膜層との間のシリコン拡散部の形成を容易にする。
 請求項1と請求項4に記載の発明によれば、シリコン基板内を透過する光を光電変換するものではなく、基板の表層で光電変換するので、光損失が少なく、高い感度で光誘起電流が得られる。
 また、基板の表面に沿ってフォトキャリアが移動するので、移動速度約10cm/sの化合物半導体レベルの高速光誘起キャリアが発生する。従って、光検出センサーとして用いられる場合には、超高速イメージングセンサーや、GHz乃至THz帯の光変調波に対して応動する光電変換素子を実現できる。薄膜型であるので、アレー化が可能な表面検出型CCDセンサーとして用いることもできる。
 また、シリコンとのショットキー障壁の高さに依存せずに、可視領域から赤外領域までの広い波長帯域の光に対して応答して光誘起電流を発生させることができる。従って、光検出センサーとして用いられる場合には、優れた感度特性で広帯域の光を検出できる。また、太陽電池として用いられる場合には、幅広い帯域の太陽光を光電変換して電力に利用でき、特に、曇天時には、p-n接合のSi系光電変換素子を用いた太陽電池に対して、略2倍の太陽エネルギーを電力に利用できる。更に、日没後に大気中に散乱する赤外光を光電変換することにより、昼夜発電することが期待でき、熱変換される前に散乱する赤外光を光電変換するので、地球温暖化対策の手段としても期待できる。
 また、pn接合の光電変換素子やシリコン薄膜を製膜することにより薄型化した薄膜光電変換素子に比べて、飛躍的に薄型化することができ、第1金属、第2金属、シリコンなどの稀少元素を極少量使用するだけで製造できる。
 また、光誘起電流や光誘起電圧を、シリコン基板の同一表面側の金属シリサイド層と導電薄膜層に接続する一対の電極から取り出すことができるので、一対の引き出し電極を積層方向に分けて配置することがなく、薄膜光電変換素子を更に薄型化できる。
 更に、請求項4に記載の発明によれば、表面に第1金属薄膜層を積層させ、更にその一部に第2金属薄膜層を積層させたシリコン基板をアニール処理するだけの単純な製造プロセスで製造でき、そのプロセスは、金属シリサイドを形成するSiベースのプロセスを利用できる。
 請求項2と請求項5に記載の発明によれば、シリコン基板の表層の厚さが100nm未満の導電薄膜層と更に薄い金属シリサイド層とで、光誘起電流を発生させるので、薄膜化が可能で、太陽電池の用途では、ビルや自動車の窓、携帯電話機などポータブル機器の筐体などに貼り付けることができ、取り付け場所の制約がない。
 請求項3と請求項6に記載の発明によれば、第1金属と、貴金属である第2金属は、いずれも金属シリサイド層と導電薄膜層を形成する為に用いるだけなので、極少量の稀少元素から製造できる。
 第1金属は、融点が高く、高温における機械的性質が優れ、金属シリサイドの材料に適している。特に、第1金属がCoである場合には、金属シリサイドは、シリコンデバイスの電極下地に利用されているCoSixであり、既存のプロセスを利用できる。
本発明の一実施の形態に係る薄膜光電変換素子1の縦断面図である。 薄膜光電変換素子1の等価回路図である。 薄膜光電変換素子1の製造プロセスを示す工程図である。 薄膜光電変換素子1の電極4、5間に印加したバイアス電圧Vと、電極4、5間に流れる電流I、Ib1、Ib2との関係を示すI-V線図である。 金属シリサイド層3へ光を照射した際に電極4、5間に流れる光誘起電流Iと、導電薄膜層9へ光を照射した際に電極4、5間に流れる光誘起電流Iとを、バイアス電圧Vとの関係で示すI-V線図である。 金属シリサイド層3へ光を照射して誘起されたフォトキャリアの移動を示すエネルギーダイアグラムである。 導電薄膜層9へ光を照射して誘起されたフォトキャリアの移動を示すエネルギーダイアグラムである。 従来の薄膜太陽電池100の断面図である。
 以下、本発明の一実施の形態に係る薄膜光電変換素子1とその製造方法を、図1乃至図7を用いて説明する。本実施の形態に係る薄膜光電変換素子1は、図1に示すように、半導体基板であるn型のSiからなるn-Si基板2と、n-Si基板2の表面上に自己組織化した金属シリサイド層であるCoSix層3と、CoSix層3の一部にオーミック接続するアノード電極4と、n-Si基板2の表面上に形成される導電薄膜層9と、導電薄膜層9の一部にオーミック接続するカソード電極5と、CoSix層3と導電薄膜層9の間でシリコンのナノ粒子が表面に拡散するシリコン拡散部6とを備え、ここでは、太陽電池の用途として使用するものとして窓ガラスのガラス板10に貼り付けられる。このように、光誘起電流を外部へ引き出す一対のアノード電極4とカソード電極5は、n-Si基板2の同一表面側に形成される。
 かかる構成の薄膜光電変換素子1は、図3の製造プロセスを示す工程図に示すように、ほぼ正方形のn型のSiからなるn-Si基板2上にスパッタリングにより厚さ8nmのCo薄膜7を成膜し(イ)、5分間有機洗浄した後(ロ)、マスク印刷を行って正方形のCo薄膜7上の一部の領域に導電薄膜層9を形成することとなる厚さ約10nmのAu薄膜8をスパッタリングで形成する(ハ)。その後、昇温時間3分で400乃至800℃、好ましくは600℃まで昇温し、600℃の温度で3分間アニール処理を行い(ニ)、n-Si基板2上に形成されるCoSix層3と導電薄膜層9にそれぞれアノード電極4とカソード電極5とをオーミック接続し(ホ)、薄膜光電変換素子1が製造される。
 このプロセスを経て製造された薄膜光電変換素子1は、上記アニール処理により、積層するSi、Co及びAuが相互に拡散し、Co薄膜7のみが成膜された領域では、Si基板2の表面上に自己組織化したCoSix層3が形成されるとともに、Co薄膜7上に更にAu薄膜8が形成された領域には、CoとAuとSiのナノ粒子が拡散するCo、Auリッチな導電薄膜層9が形成される。
 アニール処理によって、CoSix層3と導電薄膜層9が形成された領域では、積層方向のn-Si基板2との間にショットキー界面が形成される。導電薄膜層9が形成された領域では、CoSixとSiの間若しくはAuとSiの間のいずれかでショットキー界面が形成される。また、アニール処理により拡散が更に進んだ領域では、n-Si基板2とオーミック接続する領域が形成される。従って、図2に示すように、ショットキー界面が形成される領域では、CoSix層3及び導電薄膜層9からそれぞれ積層方向のn-Si基板2の方向を順方向とするダイオードD2、D3が形成されるとともに、オーミック接続する領域では、ダイオードD2、D3と並列に抵抗R2、R3が接続する等価回路が形成される。
 アニール処理によって、導電薄膜層9では、Co、Au、Siのナノ粒子が相互に拡散し、CoSix層3では、Co、Siのナノ粒子が相互に拡散し、最大20nm以下の深さで、各元素の活性化エネルギーが高く、状態図がバルクの性質から離れる現象が発生する。Siナノ粒子が共存するCoSix層3と導電薄膜層9では、Si粒子がナノサイズとなることで、波数選択則がバルクと異なる直接遷移となり、Si価電子帯から可視域のエネルギーギャップに相当するバンド間励起が発生する。その結果、このCoSix層3や導電薄膜層9では、長波長の赤外領域の光に対して、積層方向のショットキー障壁によりフォトキャリアが発生するとともに、短波長の可視光の光に対しても、シリコンナノ粒子の励起によるフォトキャリアが発生し、双方に応答することによって、応答感度が高く、可視光から赤外光までの広帯域応答特性が得られる。
 同時に、アニール処理によって、Au薄膜8の周囲では、Auの支援を受けてn-Si基板2のSiナノ粒子が表面付近に拡散しやすくなり、CoSix層3と導電薄膜層9との間には、CoSix、Au、Coとともに多数のシリコンナノ粒子が拡散するシリコン拡散部6がここではAu薄膜8の周囲から最大1mm以内の幅で形成される。n-Si基板2の表面に沿った水平方向で、理論的には、半導体からなるシリコン拡散部6と導電薄膜層9間、及びシリコン拡散部6とCoSix層3間にもショットキー界面が形成されるが、アニール処理前にCo薄膜7のみからなるCoSix層3側より、Co薄膜7にAu薄膜8を積層する導電薄膜層9側の金属がより過剰な領域となるので、オーミック化が促進されていると考えられ、障壁のピンニングが弱まり、シリコン拡散部6と導電薄膜層9間の障壁の高さが低いと考えられる。その結果、シリコン拡散部6とCoSix層3間のショットキー障壁により、水平方向のCoSix層3から導電薄膜層9の方向を順方向とするダイオードD1が形成される。
 従って、アニール処理を行った薄膜光電変換素子1は、図2に示す等価回路図で示される回路構成となる。しかしながら、これらの等価回路は、20nm内の厚さの薄膜のCoSix層3、シリコン拡散部6、導電薄膜層9とn-Si基板2の極浅い表層で形成される。尚、抵抗R1は、アノード電極4とカソード電極5間のCoSix層3での抵抗である。
 上述のように構成された薄膜光電変換素子1の表面側(図1において上方)から光を照射し、光を受ける同一表面側に形成されたアノード電極4とカソード電極5間に光誘起電流I、Iが発生することを確認するため、アノード電極4とカソード電極5のバイアス電圧Vbを変化させながら、波長632nm、出力1.68mW、照射面積0.4/mmの励起用レーザー光をCoSix層3と導電薄膜層9に照射し、励起用レーザー光を照射しない場合にアノード電極4とカソード電極5間に流れる電流Iと比較する測定を行った。
 図4は、各測定条件でアノード電極4とカソード電極5間に発生する電流I、Ib1、Ib2とバイアス電圧Vbとの関係を示すI-V線図であり、図中破線で表すIは、励起用レーザー光を照射しない場合にアノード電極4とカソード電極5間に流れる電流値、Ib1は、CoSix層3へ励起用レーザー光を照射して発生した電流値、Ib2は、導電薄膜層9へ励起用レーザー光を照射して発生した電流値である。
 負のバイアス電圧でほぼ0であり、正のバイアス電圧の上昇に応じて上昇する同図に示す電流Iの波形から、CoSix層3から導電薄膜層9の方向を順方向とするダイオードD1が確認され、I-V線図から見積もったそのショットキー障壁の高さは、0.56eVから0.58eVと推定される。
 図5は、図4に示す測定結果からバイアス電圧によってアノード電極4とカソード電極5間に流れる電流Iを除いて、励起用レーザー光のみにより発生する光誘起電流I、Iをバイアス電圧Vbとの関係で表したI-V線図である。すなわち、図中Iは、Ib1-I、Iは、Ib2-Iで算定した電流値であり、図中の数値(単位mA)は、その左側の縦軸で表わすバイアス電圧Vbを印加した際の電流値である。
 CoSix層3へ励起用レーザー光を照射して発生する光誘起電流Iは、図5に示すように、正のバイアス電圧Vbが加わっている間は、ほぼ電流値が0であり、負のバイアス電圧Vbが加わると、カソード電極5からアノード電極4の方向の-0.98mA程度の電流が流れる。
 図6に示すように、正のバイアス電圧Vbが印加された状態で、CoSix層3の下層のn-Si基板2から光を受けて誘起されたフォトキャリア(光誘起電子)は、カソード電極5方向への移動は、その間のショットキー障壁で阻止され、+側電位のアノード電極4の方向へ引きつけられ、抵抗R2を介してその下方のn-Si基板2の正孔と再結合する。従って、アノード電極4とカソード電極5間を流れる電流Iとしては表れない。一方、負のバイアス電圧Vbが印加された状態で、n-Si基板2からCoSix層3へ誘起されたフォトキャリア(光誘起電子)は、ダイオードD1に逆バイアスが加わっているが、+側電位のカソード電極5の方向に引きつけられ、ダイオードD1をバイパス若しくはトンネル効果で通過して、導電薄膜層9をカソード電極5まで流れ、アノード電極4と抵抗R2を介してその下方のn-Si基板2の正孔と再結合する。従って、薄膜光電変換素子1の表面に沿って、負の光誘起電流Iが流れる。
 又、導電薄膜層9へ励起用レーザー光を照射して発生する光誘起電流Iは、図5に示すように、正のバイアス電圧Vbが加わると、アノード電極4からカソード電極5の正方向に0.35mA程度の電流が流れ、負のバイアス電圧Vbが加わっている間は、ほぼ電流値が流れない。
 図7に示すように、正のバイアス電圧Vbが印加された状態で、導電薄膜層9の下層のn-Si基板2から光を受けて誘起されたフォトキャリア(光誘起電子)は、n-Si基板2からCoSix層3へ誘起されたフォトキャリア(光誘起電子)は、+側電位のアノード電極4の方向に引きつけられ、ダイオードD1に順バイアスが加わっているので、ダイオードD1を通過し、導電性のCoSix層3をアノード電極4まで流れ、カソード電極5と抵抗R3を介してその下方のn-Si基板2の正孔と再結合する。従って、薄膜光電変換素子1の表面に沿って、正の光誘起電流Iが流れる。一方、負のバイアス電圧Vbが印加された状態で、n-Si基板2から導電薄膜層9へ誘起されたフォトキャリア(光誘起電子)は、逆バイアスが加わったダイオードD1の障壁でカソード電極5の方向への移動が阻止されるとともに、+側電位のカソード電極5の方向へ引きつけられ、抵抗R3を介してその下方のn-Si基板2の正孔と再結合する。従って、アノード電極4とカソード電極5間を流れる電流Iに表れない。
 上述の光誘起電流I、Iは、主としてn-Si基板2上の20nm以下の厚さの表面導電層を流れ、また、多数キャリアで動作するショットキーを利用するので、キャリアが高速に移動し、面内方向でキャリアが移動するHEMT(High Electron Mobility Transistor)に相当する高速応答性があり、GHz乃至THz帯の光センサーに利用することが可能となる。
 また、本実施の形態に係る薄膜光電変換素子1では、可視領域から赤外領域までの波長(0.4乃至2μm)の光に応答することが検証され、太陽電池の用途として用いる場合には、可視光から赤外光まで光電変換することができ、変換効率が上昇するとともに、極薄膜で可撓性の薄膜光電変換素子1とすることができるので、ビルの壁面やポータブル機器のケース表面に貼り付けて、発電することも可能であり、その取り付けスペースが制約されない。
 更に、本実施の形態のようにn-Si基板2上にCoSix層3、シリコン拡散部6、導電薄膜層9を形成するだけなので、シンプルなSiベースのプロセスを利用して、太陽電池やイメージセンサーなどの用途の光電変換素子を製造できる。
 また、CoSix層3を形成するn-Si基板2上に成膜するCo薄膜7は、Fe、W、Ni、Al、Ti等の薄膜金属層であってもよく、シリコン基板2は、p-Si基板であってもよい。
 本発明は、太陽電池や高速光センサーに用いる薄膜光電変換素子に適している。
 1 薄膜光電変換素子
 2 n-Si基板(シリコン基板)
 3 CoSix層(金属シリサイド層)
 4 アノード電極
 5 カソード電極
 6 シリコン拡散部
 7 Co薄膜(第1金属薄膜層)
 8 Au薄膜(第2金属薄膜層)
 9 導電薄膜層

Claims (6)

  1.  第1金属からなる第1金属薄膜層と、第1金属薄膜層上の一部に重ねて、第2金属からなる第2金属薄膜層を積層させたシリコン基板をアニール処理し、
     シリコン基板の表面に第1金属とシリコンが拡散して形成される金属シリサイド層と、
     シリコン基板の表面の第2金属薄膜層の積層部位に形成される導電薄膜層と、
     前記金属シリサイド層と前記導電薄膜層との間のシリコン基板の表面付近にシリコンのナノ粒子が拡散して形成されるシリコン拡散部とを備え、
     シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層若しくは導電薄膜層へ光を照射し、シリコン基板の表面の金属シリサイド層と導電薄膜層間に光誘起電流を発生させることを特徴とする薄膜光電変換素子。
  2.  導電薄膜層の厚さが100nm未満であり、金属シリサイド層の厚さは導電薄膜層より更に薄いことを特徴とする薄膜光電変換素子。
  3.  第1金属が、Co、Fe、W、Ni、Al、Tiのいずれかであり、第2金属が、Auであることを特徴とする請求項1又は請求項2に記載の薄膜光電変換素子。
  4.  シリコン基板上に第1金属からなる第1金属薄膜層を成膜する第1工程と、
     第1金属薄膜層上の一部に第2金属からなる第2金属薄膜層を成膜する第2工程と、
     シリコン基板上に積層された第1金属薄膜層と第2金属薄膜層をアニール処理し、基板上に第1金属とシリコンが拡散する金属シリサイド層と、第2金属薄膜層の積層部位の導電薄膜層と、前記金属シリサイド層と前記導電薄膜層との間でシリコン基板の表面付近にシリコンのナノ粒子が拡散するシリコン拡散部を形成する第3工程とを備え、
     シリコン基板との積層方向にショットキー界面が形成される金属シリサイド層若しくは導電薄膜層へ光を照射し、シリコン基板の表面の金属シリサイド層と導電薄膜層間に光誘起電流を発生させることを特徴とする薄膜光電変換素子の製造方法。
  5.  導電薄膜層の厚さが100nm未満であり、金属シリサイド層の厚さは導電薄膜層より更に薄いことを特徴とする請求項4に記載の薄膜光電変換素子の製造方法。
  6.  第1金属が、Co、Fe、W、Ni、Al、Tiのいずれかであり、第2金属が、Auであることを特徴とする請求項4又は請求項5に記載の薄膜光電変換素子の製造方法。
PCT/JP2009/004551 2009-08-11 2009-09-14 薄膜光電変換素子と薄膜光電変換素子の製造方法 WO2011018829A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US12/680,827 US20110215434A1 (en) 2009-08-11 2008-09-14 Thin-film photoelectric conversion device and method of manufacturing thin-film photoelectric conversion device
EP09848248A EP2466645A1 (en) 2009-08-11 2009-09-14 Thin-film photoelectric conversion element and method for manufacturing thin-film photoelectric conversion element
CA2769565A CA2769565A1 (en) 2009-08-11 2009-09-14 Thin-film photoelectric conversion device and method of manufacturing thin-film photoelectric conversion device
CN2009801609527A CN102598290A (zh) 2009-08-11 2009-09-14 薄膜光电转换元件及薄膜光电转换元件的制造方法
IL217842A IL217842A0 (en) 2009-08-11 2012-01-30 Thin-film photoelectric conversion device and method of manufacturing thin-film photoelectric conversion device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-186248 2009-08-11
JP2009186248A JP5147795B2 (ja) 2009-08-11 2009-08-11 薄膜光電変換素子と薄膜光電変換素子の製造方法

Publications (1)

Publication Number Publication Date
WO2011018829A1 true WO2011018829A1 (ja) 2011-02-17

Family

ID=43586015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004551 WO2011018829A1 (ja) 2009-08-11 2009-09-14 薄膜光電変換素子と薄膜光電変換素子の製造方法

Country Status (8)

Country Link
US (1) US20110215434A1 (ja)
EP (1) EP2466645A1 (ja)
JP (1) JP5147795B2 (ja)
KR (1) KR20120038999A (ja)
CN (1) CN102598290A (ja)
CA (1) CA2769565A1 (ja)
IL (1) IL217842A0 (ja)
WO (1) WO2011018829A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2523226A1 (en) * 2010-06-10 2012-11-14 Nusola Inc. Light power generation device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5437486B2 (ja) * 2010-06-03 2014-03-12 nusola株式会社 光電変換素子
JP5443602B2 (ja) * 2010-06-03 2014-03-19 nusola株式会社 光電変換素子及びその製造方法
JP5803419B2 (ja) 2011-08-19 2015-11-04 セイコーエプソン株式会社 傾斜構造体、傾斜構造体の製造方法、及び分光センサー

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442858A (en) * 1987-08-11 1989-02-15 Nec Corp Metal semiconductor junction diode and manufacture thereof
JPH06151809A (ja) * 1992-10-30 1994-05-31 Toshiba Corp 半導体装置
JPH09510832A (ja) * 1994-03-29 1997-10-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ダイオードおよびそのような素子を含む部品
JP2000349321A (ja) 1999-06-09 2000-12-15 Fuji Electric Co Ltd 薄膜太陽電池とその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06147993A (ja) * 1991-09-30 1994-05-27 Terumo Corp 赤外線センサ素子およびその製造方法
JP4948778B2 (ja) * 2005-03-30 2012-06-06 Tdk株式会社 太陽電池およびその色調整方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6442858A (en) * 1987-08-11 1989-02-15 Nec Corp Metal semiconductor junction diode and manufacture thereof
JPH06151809A (ja) * 1992-10-30 1994-05-31 Toshiba Corp 半導体装置
JPH09510832A (ja) * 1994-03-29 1997-10-28 フォルシュングスツェントルム・ユーリッヒ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング ダイオードおよびそのような素子を含む部品
JP2000349321A (ja) 1999-06-09 2000-12-15 Fuji Electric Co Ltd 薄膜太陽電池とその製造方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2523226A1 (en) * 2010-06-10 2012-11-14 Nusola Inc. Light power generation device
EP2523226A4 (en) * 2010-06-10 2014-04-09 Nusola Inc LIGHT POWER GENERATION DEVICE
US9035170B2 (en) 2010-06-10 2015-05-19 Nusola, Inc. Light power generation device

Also Published As

Publication number Publication date
JP2011040553A (ja) 2011-02-24
IL217842A0 (en) 2012-03-29
CA2769565A1 (en) 2011-02-17
CN102598290A (zh) 2012-07-18
KR20120038999A (ko) 2012-04-24
JP5147795B2 (ja) 2013-02-20
US20110215434A1 (en) 2011-09-08
EP2466645A1 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
Dhyani et al. High-speed scalable silicon-MoS2 PN heterojunction photodetectors
JP6689456B2 (ja) 透明トンネル接合を有する光起電力デバイス
Morales-Acevedo Can we improve the record efficiency of CdS/CdTe solar cells?
Kim et al. High-performing ITO/CuO/n-Si photodetector with ultrafast photoresponse
US20150295099A1 (en) High work-function buffer layers for silicon-based photovoltaic devices
US9691927B2 (en) Solar cell apparatus and method of fabricating the same
JP5147795B2 (ja) 薄膜光電変換素子と薄膜光電変換素子の製造方法
US9024367B2 (en) Field-effect P-N junction
WO2011155373A1 (ja) 光発電装置
KR101264368B1 (ko) 다층 구조의 쇼트키 접합층을 갖는 태양 전지
Banerjee High efficiency CdTe/CdS thin film solar cell
CN101964373A (zh) 一种宽谱光伏效应的双结太阳电池及其制备方法
JP5147935B2 (ja) 薄膜光電変換素子と薄膜光電変換素子の製造方法
Sabbar et al. A fabricated solar cell from ZnO/a-Si/polymers
Le Thi et al. Doping-Free High-Performance Photovoltaic Effect in a WSe2 Lateral pn Homojunction Formed by Contact Engineering
KR101370554B1 (ko) 박막 태양전지
KR101846337B1 (ko) 태양전지 및 이의 제조방법
TWI455329B (zh) 太陽能電池及其製作方法
KR101372026B1 (ko) 태양전지 및 이의 제조방법
KR101349417B1 (ko) 태양전지 및 이의 제조방법
TW201327855A (zh) 太陽能電池
CN118352413A (zh) 具有本征CdSeTe薄膜的太阳能电池及其生产方法
KR101382943B1 (ko) 태양전지 및 이의 제조방법
KR101699313B1 (ko) 태양 전지 제조 방법
Guo et al. Ultraviolet photodetectors based on ZnO nanostructures

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980160952.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 12680827

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09848248

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 217842

Country of ref document: IL

Ref document number: 2769565

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20127003195

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009848248

Country of ref document: EP