WO2011017930A1 - 一种肝细胞特异性大孔微载体及其制备方法和用途 - Google Patents

一种肝细胞特异性大孔微载体及其制备方法和用途 Download PDF

Info

Publication number
WO2011017930A1
WO2011017930A1 PCT/CN2010/071860 CN2010071860W WO2011017930A1 WO 2011017930 A1 WO2011017930 A1 WO 2011017930A1 CN 2010071860 W CN2010071860 W CN 2010071860W WO 2011017930 A1 WO2011017930 A1 WO 2011017930A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
silk fibroin
macroporous
microcarrier
solution
Prior art date
Application number
PCT/CN2010/071860
Other languages
English (en)
French (fr)
Inventor
高毅
潘明新
龚独辉
张志�
周焕城
胡志伟
Original Assignee
南方医科大学珠江医院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN200910041770A external-priority patent/CN101624473B/zh
Priority claimed from CN2009100417678A external-priority patent/CN102010601B/zh
Application filed by 南方医科大学珠江医院 filed Critical 南方医科大学珠江医院
Priority to US13/389,595 priority Critical patent/US20120190113A1/en
Publication of WO2011017930A1 publication Critical patent/WO2011017930A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08HDERIVATIVES OF NATURAL MACROMOLECULAR COMPOUNDS
    • C08H1/00Macromolecular products derived from proteins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0061Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof characterized by the use of several polymeric components
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • C08J9/286Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum the liquid phase being a solvent for the monomers but not for the resulting macromolecular composition, i.e. macroporous or macroreticular polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • C08L5/08Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L89/00Compositions of proteins; Compositions of derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • C12N5/0075General culture methods using substrates using microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/067Hepatocytes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2389/00Characterised by the use of proteins; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2405/00Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2401/00 or C08J2403/00
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2531/00Microcarriers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/50Proteins
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan

Definitions

  • Hepatocyte-specific macroporous microcarrier preparation method and use thereof
  • the present invention relates to a macroporous microcarrier for cell culture, a preparation method and use thereof, and particularly to a hepatocyte-specific macroporous microcarrier using silk fibroin and galactosylated chitosan as main raw materials and Its preparation method and use. Background technique
  • the bioartificial liver is an in vitro artificial liver support system developed in the late 1980s.
  • the core part of the bioreactor is a combination of hepatocytes and biosynthetic materials. How to establish a bioreactor culture system with high quality, sufficient quantity and safety is the most important and most difficult core technical problem in the field of bioartificial liver research.
  • Hepatocytes are polar anchor-dependent cells that require an insoluble extracellular matrix to survive, recombine, proliferate, and function.
  • the liver cells in the body are in a three-dimensional environment, and the interaction between cells helps regulate cell growth and functional differentiation. If it is cultured in vitro, it can provide a three-dimensional environment similar to the body for hepatocytes, which is beneficial to promote the growth and function maintenance of hepatocytes. Therefore, the preparation of a three-dimensional porous network structure scaffold for the culture of hepatocytes by simulating the in vivo environment may solve the above problem of tissue culture of hepatocytes.
  • the macroporous microcarriers have fully interconnected furrows that maximize the specific surface area. It fixes cells in the pores and grows, thus providing sufficient growth space and larger attachment area for the cells, and facilitating the entry of nutrients and the discharge of metabolites without causing cell growth inhibition, and enhancing cells. Culture density and metabolic activity.
  • macroporous microcarriers Compared with other carriers, macroporous microcarriers have a series of advantages, such as: large specific surface area, several times or even several times that of solid microcarriers; cells grow in the pores, protected, and shear damage is small; Growth, cell density is more than 10 times that of solid microcarriers, and some can reach 10 8 /ml; the concentration of microcarriers is high, when the concentration of solid microcarriers increases in the culture solution, the cell density decreases, while the macropores Microcarriers at a higher concentration, surface contact Increased collision can promote cell growth in the pore; suitable for long-term maintenance culture, long-term culture of cells is still good; suitable for protein production and product secretion.
  • One of the objects of the present invention is to overcome the deficiencies of the prior art and provide a novel macroporous microcarrier which has hepatocyte affinity, contributes to cell adhesion and proliferation, and supports a large number of cells. Growth, long-term maintenance of cell activity and cell function, and low cost, can be used for macroporous microcarriers for large-scale culture of hepatocytes.
  • Another object of the present invention is to provide a method for preparing the macroporous microcarrier.
  • the raw materials used in this method are simple and easy to obtain, and the price is low, and the steps are simple.
  • Another object of the present invention is to provide a method for large-scale culture of hepatocytes in vitro, which uses the novel microcarrier and microgravity rotary culture system in combination to achieve large-scale culture with strong hepatocyte function and high density.
  • an aspect of the present invention provides a macroporous microcarrier having a high affinity for hepatocytes, which is crosslinked by silk fibroin and galactosylated chitosan a sphere prepared by the action of the agent, wherein the silk fibroin content (% by weight) accounts for 50%-80%, and the galactosylated chitosan content (% by weight) accounts for 15%-40% (in the present invention, silk
  • the content of the protein and the content of galactosylated chitosan are determined by first measuring the respective concentrations of silk fibroin and galactosylated chitosan, and then calculating the required amount (volume) according to a predetermined ratio. Blended with). Scanning electron microscopy shows that the diameter of the support is 200-500 ⁇ , pore size of 40-80 ⁇ , a porosity of 95% 0
  • the macroporous microcarrier can be prepared by the following method, the method Includes:
  • step (c) adding the white emulsion in the step (b) to a stirred polar solvent having a pH of 9-10, and stirring for 40-60 minutes, and filtering to obtain non-adhesive microspheres;
  • the emulsifier is Siban 80 and the oil phase is liquid paraffin.
  • the crosslinking agent is preferably glutaraldehyde.
  • the polar solvent is preferably isopropanol, ethanol and/or acetone.
  • step (e) the step of soaking the microspheres with a high concentration of sucrose solution is also included prior to the freeze drying in step (e).
  • the step of disinfecting is further included after said step (e).
  • the disinfecting step is preferably autoclaved by cobalt 60- ⁇ ray irradiation or immersion in distilled water or PBS solution.
  • Another aspect of the invention provides a method of large-scale culture of hepatocytes in vitro, the method comprising: (a) providing the macroporous microcarrier;
  • the macroporous microcarrier is soaked with 0.1 mol/L of pH 7.0-free calcium-free magnesium brick S-magnesium buffer (PBS) overnight and serum-containing medium is used. Soak for at least 10 hours.
  • the microgravity rotary culture system inoculates cells using a concentrated static inoculation method.
  • the amount of cells inoculated in the concentrated static inoculation method is 2 x 107 ml ⁇ lx 107 ml o
  • the amount of starting medium in the concentrated static inoculation method is 40% to 90% of the volume of the culture flask.
  • the resting time used in the concentrated static inoculation method is from 12 h to 24 h. 5 ⁇ rpm ⁇ The initial rotation speed is 7. 6 ⁇ 9rpm.
  • the serum used in the concentrated static inoculation method has a serum concentration of 10% to 15%.
  • the medium is DMEN or PRMI 1640; preferably, the medium contains HEPES at a concentration of 20 mmo l/L to 50 mmol/L.
  • the invention has the advantages that a novel hepatocyte-specific silk fibroin-galactosylated chitosan macroporous microcarrier is used for hepatocyte culture under simulated microgravity rotation culture conditions, and a simple Reliable high-density, well-differentiated large-scale culture method for hepatocytes in vitro.
  • Silk fibroin-galactosylated chitosan macroporous microcarriers are highly similar to hepatic sinusoids in vivo. The sinus structure not only has the function of specific hepatocyte adsorption, but also provides a large space for growth of hepatocytes.
  • Culture generally up to 10 7 /ml; 2) cultured hepatocytes have strong function, continuous microgravity environment under microgravity rotation culture is conducive to hepatocyte proliferation and differentiation, which is conducive to cell-cell contact, forming three-dimensional structure-like tissue , further enhance the function of hepatocytes cultured in vitro; 3) small damage to hepatocytes, membrane-type oxygen and gas exchange using microgravity rotation culture, Bubbles and eddy currents produce less shearing force; 4) Cell inoculation efficiency is high, hepatocytes are high-oxygenated cells, especially in the initial stage of culture, the oxygen demand is the largest, and the shear force is correct.
  • Figure 2 is a FITR spectrum of the macroporous microcarrier of the present invention.
  • Figure 3 is a morphological observation of a macroporous microcarrier of the present invention under an inverted microscope (40 X );
  • Figures 4a and 4b are SEM images of the macroporous microcarrier of the present invention.
  • Figure 5 is a SEM picture of the internal structure of the macroporous microcarrier of the present invention.
  • Figure 6 shows images observed under an inverted microscope on day 6 of co-culture of CL-1 cells with SF/GC macroporous microcarriers
  • Figure 7 shows images observed under scanning electron microscopy (SEM) on day 8 of co-culture of CL-1 cells with SF/GC macroporous microcarriers;
  • Figure 8 shows a further enlarged view of the image observed under scanning electron microscopy (SEM) on day 8 of co-culture of CL-1 cells with SF/GC macroporous microcarriers;
  • Figure 9a is a photograph of a CL-1 cell (sixth day) statically cultured using the silk fibroin/galactosylated chitosan macroporous microcarrier of the present invention under an electron microscope;
  • Figure 9b is a photograph of a CL-1 cell (sixth day) cultured under the electron microscopy using the silk fibroin/galactosylated chitosan macroporous microcarrier of the present invention under an electron microscope;
  • Figure 10 is a supernatant urea concentration of silk fibroin/galactosylated chitosan macroporous microcarrier cultured CL-1 cells under static and microgravity;
  • Figure 11a is a photograph of a CL-1 cell (sixth day) cultured under micro-gravity using a solid microcarrier (cytodex) under an electron microscope;
  • Figure 1 lb is a picture of a CL-1 cell (sixth day) cultured in microgravity using the macroporous microcarrier (silk/galactosylated chitosan) of the present invention under an electron microscope;
  • Figure 12 is a comparison of the supernatant urea concentration of CL-1 cells cultured in microgravity using the vectors in Figures 11a and ib;
  • Figure 13a is a photograph of a CL-1 cell (sixth day) cultured under micro-gravity using a porous microcarrier (cytodpore) under an electron microscope
  • Figure 1 3b is a picture of a CL-1 cell (sixth day) cultured using a macroporous microcarrier (silk/galactosylated chitosan) microgravity of the present invention under an electron microscope;
  • Figure 14 is a comparison of the concentration of urea in the supernatant of CL-1 cells cultured using the vector of Figures 13a and 13b.
  • DETAILED DESCRIPTION OF THE INVENTION For a better understanding of the method of the present invention, the present invention and its advantages are further illustrated by the examples and the actual evidence. Before describing the following examples and experiments in detail, it is first necessary to define and clarify some terms.
  • Silk fibroin is a physiologically inactive natural structural protein consisting mainly of three simple amino acids: glycine, alanine and serine, which account for approximately 85 % of the total protein.
  • glycine a simple amino acids
  • alanine alanine
  • serine a simple amino acid
  • Chitosan is a natural biopolymer widely used in biomedicine and tissue engineering in recent years. It not only has biological functions, biocompatibility, low toxicity and almost no allergenicity, but also has high chemical reaction. Active, easily modified by some chemical agents, can be modified by various methods, and galactosyl is a specific ligand for heparan glycoprotein receptor on the surface of hepatocytes, which induces and enhances hepatocytes outside the cell. Adhesion properties on matrix scaffold materials. Under the activation of EDC and NHS, the galactosyl group was introduced into the structure of chitosan to prepare galactosylated chitosan, the surface of the material was modified, and it was combined with silk fibroin to form silk.
  • Macroporous/galactosylated chitosan macroporous microcarriers not only provide large three-dimensional growth space for in vitro hepatocyte culture, but also significantly enhance hepatocyte function and increase cell viability. It is an ideal hepatocyte specificity. Novel porous microcarriers.
  • Bioreactor is the key to bio-artificial liver device and the most influential treatment of liver failure section.
  • bioreactors should mimic the normal liver tissue structure to provide a similar living and metabolic environment for cultured liver cells. Therefore, the ideal bioreactor should have the following functions: Cell density up to 1 X 10 7 cells / ml level; reaction device can be arbitrarily increased as needed, cell culture can reach several liters; continuous perfusion culture to achieve effective nutrients , two-way substance transport of oxygen and metabolites; automatic detection and regulation of on-line cell status, pH value of culture medium, oxygen concentration, etc., to facilitate supervision and operation of medical personnel; liver cell metabolism function at least level of monolayer culture , and kept for at least 2 weeks; easy to transport and assemble.
  • the commonly used bioreactors are as follows: hollow fiber bioreactor, rotary bottle culture reactor, stirred suspension culture reactor, air lift culture reactor and microgravity rotary culture reactor.
  • the hollow fiber bioreactor is the most widely used, and its advantage is that the heterologous protein can be isolated, and at the same time prevent the killing effect of the pre-existing antibody against the heterologous cell antigen on the loaded cell in the human body, so it is suitable for the heterogeneous cell type (such as pig liver cell). Bioreactor.
  • bioreactors have the following problems: (1) limited volume and small cell loading; (2) limited exchange area between culture medium and hepatocytes, which is not conducive to functional maintenance and expansion of hepatocytes; (3) semipermeable membrane The side holes are easily blocked by cell clusters, affecting the exchange efficiency; (4) Because hollow fibers cannot withstand deep low temperatures, they are not suitable for large-scale cryopreservation.
  • Other types of reactors such as spinner flask culture, stirred culture, etc., due to the large shear force, etc., are currently unable to achieve efficient and uniform cell planting, transportation of oxygen nutrients and cellular metabolites, and high-density, large-capacity scale. Culture cells, and long-term maintenance of cell function.
  • the Rotary Culture System originally designed by NASA and used in the field of microgravity life sciences, has been used in many tissue engineering bioreactors for more than two decades.
  • the device has a continuous simulation of microgravity environment, which is beneficial to cell proliferation and differentiation, facilitates cell-cell contact, and forms three-dimensional structure-like tissue; membrane oxygen and gas exchange, no bubble and eddy current generation, low shear force and other mechanical damage to cells It has been widely used in rabbit corneal cells, skeletal muscle cells, osteoblasts, embryonic stem cells, cortical neurons, adipose tissue and other tissue engineering fields. It is a biological reaction with broad application prospects. Device.
  • the invention provides a novel macroporous microcarrier which can be used for large scale culture of hepatocytes in vitro.
  • Another aspect of the present invention provides a method for large-scale in vitro hepatocyte culture using the macroporous microcarrier.
  • the silk fibroin and galactosylated chitosan used in the examples are commercially available, respectively, or can be obtained by the following method.
  • the various reagents, materials and instruments used are commercially available.
  • Abbreviations, names used herein have the meanings known to those skilled in the art.
  • the sieved microspheres are immersed in a 5 g/L glycine solution for 3 hours to remove unreacted glutaraldehyde; then washed with a large amount of distilled water; the washed microspheres are soaked in a 40% sucrose solution 3- 5 minutes, then pour off the excess sucrose solution; the above microspheres soaked in sucrose solution were placed in -2 (TC refrigerator, frozen for 48 hours, and then freeze-dried for 48 hours to obtain macroporous microcarriers; macroporous microcarriers After disassembly, cobalt 60- ⁇ radiation is irradiated and disinfected.
  • the sieved microspheres are immersed in a 5 g/L glycine solution for 2 hours to remove unreacted glutaraldehyde; then washed with a large amount of distilled water; the washed microspheres are soaked in a 40% sucrose solution 3- 5 minutes, then pour off the excess sucrose solution; place the above soaked sucrose solution in -2 (TC refrigerator, freeze for 48 hours, then freeze-dry for 48 hours to obtain macroporous microcarriers; After the carrier is dispensed, the cobalt 60- ⁇ ray is irradiated and disinfected, and it is reserved.
  • the sieved microspheres are immersed in a 5 g/L glycine solution for 4 hours to remove unreacted Glutaraldehyde; washed with a large amount of distilled water; soaked washed microspheres with 40% sucrose solution for 3-5 minutes, then pour off excess sucrose solution; put the above-mentioned soaked sucrose solution in -2 ( In the TC refrigerator, it was frozen for 48 hours, and then freeze-dried for 48 hours to obtain a macroporous microcarrier; after the macroporous microcarriers were dispensed, the cobalt 60- ⁇ -ray was irradiated and disinfected, and used.
  • the macroporous microcarriers obtained in the above examples were subjected to R-analysis and infrared analysis to obtain Li R spectra and FI TR spectra as shown in FIGS. 1 and 2, respectively.
  • the above macroporous microcarriers were observed under an inverted microscope and a scanning electron microscope to obtain an image as shown in Figs.
  • Figure 1 shows the galactosylation of galactosylated chitosan (GC), and the arrow shows the characteristic peak of galactosyl group.
  • the Li 1 of GC belongs to the following: 1 IWMR (300MHz , D 2 0/F 3 CC00H ⁇ : 1. 952 (—H in C0CH 3 ), 4. 755 (HI), 4.
  • FIG. 3 is an observation of SF/GC macroporous microcarriers under an inverted microscope: the macroporous microcarriers are white or pale yellow, and are translucent in spherical shape; the interior is loose and porous, and the pore structure is evenly distributed; it can be clearly observed when gently shaking To its three-dimensional structure.
  • the porous porous structure of the macroporous microcarrier expands the specific surface area and provides a large empty volume, can fix the cells in the pores, and is easy to observe, and is suitable for high density culture of hepatocytes; Fig. 4a, 4b As a result of scanning electron microscopy, it can be seen that the surface of the microcarrier has a porous structure, the opening is outward, and it has a trumpet shape, and the pore structure is uniformly distributed.
  • the microcarriers Compared with commercially available macroporous microcarriers, the microcarriers have larger pore size and outward opening; facilitate cell adhesion growth, and have sufficient pores to allow cells to grow into the interior of the microcarrier;
  • Figure 5 is a larger SF/ GC macroporous microcarrier The cross-sectional view shows that the interior is also a loose porous structure, and the pores and the pores communicate with each other, and the cells can migrate and grow inside, which facilitates the internal material exchange.
  • the macroporous microcarrier of the present invention After sterilizing the macroporous microcarrier of the present invention, it was washed 3 times with PBS, and then soaked overnight using a basal medium to sufficiently swell; then, the macroporous microcarrier was added to a 48-well culture plate, and then the liver cell CL- was added dropwise. 1 suspension, CL-1 cells were co-cultured with the above-mentioned macroporous microcarrier material, and the cells were changed every other day. The changes of adhesion, proliferation and hepatocyte morphology of the hepatocytes were observed during the exchange.
  • Figure 6 shows the images observed under an inverted microscope on the 6th day of co-culture of CL-1 cells and SF/GC macroporous microcarriers in a multi-well culture plate.
  • the cells can grow into the macroporous microcarriers and form a multicellular cluster.
  • the cells were spheroidally grown and attached well to the support;
  • Figure 7 shows the images observed by scanning electron microscopy (SEM) on day 8 of co-culture of CL-1 cells with SF/GC macroporous microcarriers.
  • the cells are spherical, and the cells can adhere to the macroporous microcarriers to grow, which is a mass of multicellular aggregates.
  • the cells adhere firmly due to the molecular recognition function between the ASGPR on the surface of the hepatocytes and the galactosyl group on the scaffold.
  • FIG. 8 shows that CL-1 cells were co-cultured with SF/GC macroporous microcarriers on the 8th day under scanning electron microscopy. Further enlargement of the image observed under (SEM) shows that the cells are spherical, and a large amount of microvilli structure can be seen on the surface, and the cells can enter the microcarriers to aggregate and grow.
  • the molybdenum galactosylated chitosan macroporous microcarriers were prepared in a 50 ml plastic centrifuge tube with 0. lmo l / L, pH was 7.0. After soaking overnight without calcium magnesium magnesium silicate buffer (PBS), PBS was aspirated, washed with PBS three times, autoclaved at 121 °C for 30 minutes, and then PBS was aspirated. The medium is washed twice, and finally immersed in serum-containing medium for more than 10 hours, and used;
  • Discharge (there is no air bubble in the container during the culture process to avoid the formation of eddy currents).
  • the initial rotation speed is set to 7.6 ⁇ 9 rpm.
  • Example 5 Culture of human liver cell line CL-1 cells under silk fibroin/galactosylated chitosan under static/microgravity rotation culture;
  • microgravity rotation culture group concentrated static inoculation method to inoculate cells
  • digestion and collection plate culture Human liver cell strain (CL-1) suspension, a total of 2 x 107 CL-1 cell suspension was placed in the above microcarriers, gently mixed, and 50 ml sterile high cross section was taken under sterile conditions.
  • Rotate the flask with microgravity open the cap and the two-hole valve, and slowly inject the hepatocyte suspension containing the silk fibroin/galactosylated chitosan macroporous microcarrier into the microgravity rotating flask by injection.
  • the rotation speed of the container is adjusted on the culture device according to the amount of the microcarriers and cells to be inoculated, and it is preferred that the microcarriers are not attached to the inner and outer walls of the container during the rotation. 6rpm ⁇ The initial rotation speed was set to 7.6 rpm. Change the amount of liquid 30ml per day and adjust the rotation speed once.
  • the present invention uses microgravity silk fibroin/galactoside chitosan macroporous microcarriers as a large-scale hepatocyte culture mode in vitro, which is more conducive to hepatocyte proliferation and differentiation and cell-cell contact than conventional static three-dimensional culture.
  • the formation of dense three-dimensional structure-like tissue to achieve large-scale high-density culture of hepatocytes in vitro; can further enhance the function of hepatocytes (see Figure 9a, Figure 9b and Figure 10).
  • Example 6 Micro-culture of human liver cell line CL-1 cells under microgravity rotation culture (silk/galactosylated chitosan macroporous microcarrier SF/GC, solid microcarrier: cytodex 3);
  • solid ⁇ carrier (cytodex 3 ) pretreatment 0. 25g solid ⁇ carrier (cytodex 3 ) Placed in a 50 ml plastic centrifuge tube, immersed in PBS with 0. lmol / L, pH of 8.0 calcium-free magnesium magnesium silicate buffer (PBS), then washed with PBS, and then washed 3 times with PBS, after 121 ° C After autoclaving for 30 minutes, the PBS was aspirated, washed twice with medium, and finally immersed in complete medium of 1) for more than 10 hours, and set aside;
  • PBS calcium-free magnesium magnesium silicate buffer
  • Micro-gravity solid microcarrier cytodex 3) cultured human liver cells (CL-1): Digested and collected plate cultured human liver cell strain (CL-1) suspension, totaling 2 x 107 CL-1 cells Place the suspension in the above microcarriers, mix gently, and remove 50 ml sterile high cross section microgravity rotation under sterile conditions. The flask is opened, the cap and the two-hole valve are opened, and the hepatocyte suspension containing the cytodex 3 microcarrier is slowly injected into the microgravity rotating flask by syringe, and the complete medium containing 1) is continuously added to 30 ml.
  • cytodex 3 microcarrier Digested and collected plate cultured human liver cell strain (CL-1) suspension, totaling 2 x 107 CL-1 cells Place the suspension in the above microcarriers, mix gently, and remove 50 ml sterile high cross section microgravity rotation under sterile conditions. The flask is opened, the cap and the two-hole valve are opened, and the
  • the present invention uses silk fibroin/galactoside chitosan macroporous microcarriers as a scaffold material for large-scale hepatocyte culture in vitro, which has larger surface area/volume than the conventional solid scaffold material (cytodex 3).
  • the sinus structure is similar to the structure of the liver sinus in the body, which is more conducive to the mutual contact between cells and the transmission of oxygen and nutrients and the excretion of metabolites, thereby further increasing the density and function of hepatocyte culture in vitro (see Figure l la, Figure 1 Ib and Figure 12).
  • Example 7 Microcarrier culture of human liver cell line CL-1 cells under microgravity rotation culture (silk/ Galactosylated chitosan macroporous microcarrier SF/GC, porous microcarrier: cytopore);
  • the silk fibroin / galactosylated chitosan macroporous microcarrier pretreatment Q. 2g silk fibroin / galactosylated chitosan macroporous microcarriers in a 50ml plastic centrifuge tube, with 0. lmol /L, pH 7.0 without calcium magnesium magnesium silicate buffer (PBS) after soaking overnight, aspirate PBS, wash with PBS 3 times, autoclave at 1 °C for 30 minutes, aspirate PBS, wash with medium 2 times, finally immersed in the complete medium configured with 1) for more than 10 hours, and set aside;
  • PBS calcium magnesium magnesium silicate buffer
  • porous microcarrier (cytopore) pretreatment 0.2g of porous microcarriers (cytopore) in a 50ml plastic centrifuge tube, with 0. lmol / L, PH of 7.0 calcium-free magnesium magnesium silicate buffer (PBS) After soaking overnight, PBS was aspirated and washed three times with PBS. After autoclaving at 121 °C for 30 minutes, PBS was aspirated, washed twice with medium, and finally immersed in complete medium of 1) for more than 10 hours. Standby
  • the hepatocyte suspension containing the silk fibroin/galactosylated chitosan macroporous microcarrier was slowly injected into the microgravity rotating flask by injection, and the complete medium containing 1) was continuously added to 30 ml, and two syringes were taken out. , Cap the cap and loosen it slightly, and place it horizontally in a carbon dioxide incubator at a temperature of 37 ° C and a carbon dioxide concentration of 5%. Remove every 8 hours and gently shake for 1 minute. After 24 hours, remove the microgravity rotating culture flask and place it in the ultra-cleaned table after UV disinfection.
  • the initial rotation speed was set to 7.6 rpm. Change the amount of liquid 30ml per day and adjust the rotation speed once.
  • Microgravity porous microcarrier (cytopore) cultured human hepatocytes (CL-1): Digested and collected plate cultured human hepatocyte cell line (CL-1) suspension, totaling 2 x 107 CL-1 cell suspension The solution is placed in the above microcarriers, gently mixed, and 50 ml of sterile high-cross-section microgravity rotating culture flask is taken out under aseptic conditions, the cap and the two-hole valve are opened, and the porous microcarrier (cytopore) is filled with a syringe. The hepatocyte suspension was slowly injected into the microgravity rotating flask via injection, and the complete medium containing 1) was continuously added to 30 ml.
  • Galactosyl group is a specific ligand for the asialoglycoprotein receptor on the surface of hepatocytes, and the silk fibroin/galactoside chitosan macroporous microcarrier used in the present invention is activated by EDC and Li S
  • the galactosylation modification is more conducive to the adhesion of hepatocytes on the scaffold material than the conventional porous microcarrier (cytopore), which can further promote the culture density of hepatocytes and the function of hepatocytes in vitro (see Fig. 1 3a, Fig. 1 3b and Figure 14).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

一种肝细胞特异性大孔微载体及其制备方法和用途
技术领域 本发明涉及一种细胞培养用大孔微载体、 其制备方法和用途, 具体涉及一 种以丝素蛋白、 半乳糖基化壳聚糖为主要原料的肝细胞特异性大孔微载体及 其制备方法和用途。 背景技术
生物人工肝是 20世纪 80年代后期发展起来的体外人工肝支持系统, 其 核心部分生物反应器是由肝细胞与生物合成材料组合而成。 如何建立具有质 量高、 数量足、 安全性强的生物反应器培养系统是目前生物型人工肝研究领 域最重要、 也是最困难的核心技术问题。
肝细胞是具有极性的锚定依赖性细胞, 需要一种不溶的细胞外基质才能 获得生存、 重组、 增殖并发挥功能。 体内肝细胞是处于一种三维环境之中, 细胞间的相互作用有助于调节细胞的生长和功能分化。 如果在体外培养时能 为肝细胞提供一个类似于体内的三维环境, 有利于促进肝细胞的生长和功能 维持。 因此模拟体内环境制备三维多孔网状结构支架用于肝细胞的培养, 则 有可能解决上述肝细胞组织化培养的问题。
大孔微载体具有完全连通的沟回, 能最大限度地扩大比表面积。 它将细 胞固定在孔内生长, 因而可为细胞提供了足够的生长空间和更大的附着面积, 同时有利于营养成分的进入和代谢产物的排出, 而不致引起细胞的生长抑制 作用, 提高细胞培养密度和代谢活性。 与其他载体相比, 大孔微载体具有一 系列的优点, 例如: 比表面积大, 是实心微载体的几倍甚至几十倍; 细胞在 孔内生长, 受到保护, 剪切损伤小; 细胞三维生长, 细胞密度是实心微载体 的 10倍以上, 有的可达 108个 /ml ; 微载体浓度高, 实心微载体在培养液中浓 度增大到一定时, 细胞密度反而下降, 而大孔微载体在浓度较高时, 表面碰 撞增加, 能促使细胞在孔内生长; 适用于长期维持培养, 长期培养的细胞生 长情况依然良好; 适合于蛋白质生产和产物分泌。
但在肝细胞培养中, 现存的大孔微载体均不具有肝细胞特异性, 不能诱 导和提高肝细胞在微载体上黏附性能, 放大培养时细胞容易脱落, 因而寻求 一种理想的具有肝细胞特异性的大孔微载体对目前实现肝细胞体外规模化培 养具有重要意义。 发明内容 本发明的目的之一在于克服现有技术存在的缺陷, 提供一种新型大孔微 载体, 该大孔微载体既具有肝细胞亲和性, 有助于细胞黏附、 增殖, 支持大 量细胞生长, 又能长期维持细胞活性和细胞功能且成本低廉, 能够用于大规 模培养肝细胞的大孔微载体。
本发明的另一目的在于提供一种所述大孔微载体的制备方法。 该方法所 用原料简单易得, 且价格便宜, 步驟简单。
本发明的另一目的在于提供一种体外规模化培养肝细胞的方法, 该方法 结合使用所述新型微载体和微重力旋转培养系统, 以实现肝细胞功能强、 密 度高的规模化培养。
为实现上述目的, 本发明的一个方面提供一种大孔微载体, 其对肝细胞 具有高度的亲和性, 该大孔微载体是由丝素蛋白和半乳糖基化壳聚糖在交联 剂的作用下制得的球体, 其中丝素蛋白含量(重量%) 占 50%-80% , 半乳糖基 化壳聚糖含量(重量%) 占 15%-40% (在本发明中, 丝素蛋白含量以及半乳糖 基化壳聚糖含量的测定是通过首先测得丝素蛋白、 半乳糖基化壳聚糖各自的 浓度, 然后按照预定的比例计算出需要的量(体积), 再进行共混而进行的)。 扫描电镜观察显示, 所述载体的直径为 200-500 μηι, 孔径为 40-80 μηι, 孔隙 率可达 95% 0
在本发明的实施方式中, 可通过下述方法制备所述大孔微载体, 该方法 包括:
( a )将丝素蛋白溶液与半乳糖基化壳聚糖溶液按比例混合,使得产生终 浓度为 4-7 w/v»/。的丝素-半乳糖基化壳聚糖混合溶液;
( b )将上述丝素-半乳糖基化壳聚糖混合溶液滴入正在搅拌中的含乳化 剂的油相中, 得到白色乳液; 并向该白色乳液中緩慢加入交联剂, 充分搅拌 使水相交联固化;
( c )将步驟( b ) 中的白色乳液加入搅拌状态的 pH为 9-10的极性溶剂 中, 并继续搅拌 40-60分钟, 过滤得到互不粘连的微球;
(d) 固化所述微球并除去表面的油相, 筛滤得到 200-500μηι的微球;
(e) 除去微球中的残留的交联剂, 并冷冻干燥, 得到所述大孔微载体。 优选地, 所述乳化剂为司班 80, 油相为液体石蜡。 所述交联剂优选为戊 二醛。 所述极性溶剂优选为异丙醇、 乙醇和 /或丙酮。
在本发明的另一个实施方式中, 在所述步驟(e)中的冷冻干燥之前还包 括用高浓度蔗糖溶液浸泡所述微球的步驟。
在本发明的另一个实施方式中, 在所述步驟(e)之后还包括消毒步驟。 所述消毒步驟优选为以钴 60- γ射线辐照或浸泡在蒸馏水、 PBS溶液中高压蒸 汽灭菌。
本发明的另一方面提供一种体外大规模培养肝细胞的方法,该方法包括: ( a )提供所述大孔微载体;
(b)将所述大孔微载体用于微重力旋转培养系统中。
在本发明的一个实施方式中, 在步驟(b)之前还包括用 0.1mol/L、 pH 为 7.0的无钙镁磚 S史镁緩沖液( PBS )浸泡大孔微载体过夜并用含血清培养基 浸泡至少 10个小时的步驟。
在本发明的实施方式中 , 所述微重力旋转培养系统使用浓缩静止接种法 接种细胞。 优选地, 所述浓缩静止接种法中的细胞接种量为 2 x l07ml ~ l x 107ml o 优选地, 所述浓缩静止接种法中起始培养基量为培养瓶容积的 40% ~ 90%。 优选地, 所述浓缩静止接种法中使用的静止时间为 12h ~ 24h。 优选地, 所述浓缩静止接种法使用的初始旋转速度为 7. 6 ~ 9rpm。
在优选的实施方式中, 所述浓缩静止接种法中使用的培养基的血清浓度 为 10% ~ 15%。 优选地, 所述培养基为 DMEN或 PRMI 1640; 优选地, 所述培养 基含有浓度为 20 mmo l/L ~ 50 mmol/L的 HEPES。
本发明的优点在于利用一种新型的具有肝细胞特异性的丝素-半乳糖基 化壳聚糖大孔微载体在模拟微重力旋转培养条件下进行肝细胞培养, 建立了 一种简单的、 可靠的体外肝细胞高密度、 高分化规模化培养方法, 采用该方 法 1 )可高密度培养肝细胞, 丝素-半乳糖基化壳聚糖大孔微载体具有高度类 似于体内肝血窦样的窦隙结构, 不仅具有特异性肝细胞吸附的作用, 为肝细 胞生长提供广大的生长空间, 还可实现有效的肝细胞与培养基间营养、 氧气 和代谢产物的有效流通, 实现体外高密度培养, 一般可达 107/ml ; 2 )培养肝 细胞功能强, 在微重力旋转培养下持续的模拟微重力环境有利于肝细胞增值 分化, 有利于细胞与细胞间接触, 形成三维结构样组织, 进一步增强体外培 养肝细胞功能; 3 )对肝细胞损伤小,微重力旋转培养采用膜式氧和气体交换, 无气泡与涡流产生, 产生的剪切力较小; 4 ) 细胞接种效率高, 肝细胞是高耗 氧量细胞, 特别是在培养起始贴壁期, 需氧量最大, 且对的剪切力都非常地 敏感; 5 )通过浓缩接种期细胞与微载体悬液, 不仅提高了细胞与微载体的相 对浓度, 增加了细胞与微载体间的接触机会, 还在旋转培养瓶内产生了气液 平面, 缩短了细胞与气液平面的距离, 并通过扭开阀门和瓶盖, 可与外界(即 孵箱)进行有效的气体交换。 因而, 该方法更有利于肝细胞在支架材料上的 黏附、 更有利于细胞间的相互接触及氧气、 营养成分的传送和代谢产物的排 出, 从而进一步提高体外肝细胞的培养密度和肝细胞功能。 附图说明 图 1是本发明的大孔微载体的 丽 R谱图;
图 2是本发明的大孔微载体的 FITR谱图;
图 3是本发明的大孔微载体在倒置显微镜下的形态学观察(40 X );
图 4a和 4b是本发明的大孔微载体的 SEM图片;
图 5是本发明的大孔微载体的内部结构的 SEM图片;
图 6显示 CL-1细胞与 SF/GC大孔微载体共培养第 6天时在倒置显微镜下 观察到的图像;
图 7显示 CL-1细胞与 SF/GC大孔微载体共培养第 8天时在扫描电镜( SEM ) 下观察到的图像;
图 8显示 CL-1细胞与 SF/GC大孔微载体共培养第 8天时在扫描电镜( SEM ) 下观察到的图像的进一步放大图;
图 9a 是利用本发明的丝素 /半乳糖基化壳聚糖大孔微载体静止培养的 CL-1细胞(第六天)在电子显微镜下的图片;
图 9b是利用本发明的丝素 /半乳糖基化壳聚糖大孔微载体微重力培养的 CL-1细胞(第六天)在电子显微镜下的图片;
图 10是在静止和微重力下丝素 /半乳糖基化壳聚糖大孔微载体培养 CL-1 细胞的上清尿素浓度;
图 11a是利用实心微载体( cytodex )微重力培养的 CL-1细胞(第六天) 在电子显微镜下的图片;
图 1 lb是利用本发明的大孔微载体 (丝素 /半乳糖基化壳聚糖 )微重力培 养的 CL-1细胞(第六天)在电子显微镜下的图片;
图 12是在利用图 11a和图 l ib中的载体进行微重力培养的 CL-1细胞上 清尿素浓度的比较;
图 13a是利用多孔微载体( cytodpore )微重力培养的 CL-1细胞(第六 天)在电子显敖镜下的图片; 图 1 3b是利用本发明的大孔微载体 (丝素 /半乳糖基化壳聚糖 )微重力培 养的 CL-1细胞(第六天)在电子显微镜下的图片;
图 14是利用图 1 3a和图 1 3b中的载体进行微重力培养的 CL-1细胞上清 尿素浓度的比较。 具体实施方式 为了更好地理解本发明的方法, 下面将通过实施例和实险证据进一步阐 述本发明及其优势。 在详细描述以下实施例和实验之前, 首先需要定义和澄 清一些术语。
丝素蛋白是一种无生理活性的天然结构性蛋白, 主要由三种简单的氨基 酸: 甘氨酸、 丙氨酸和丝氨酸组成, 它们在蛋白总量中大概占 85 %。 目前研 究表明丝素蛋白不仅具有良好的生物相容性、 无毒、 无刺激性, 还具有促进 细胞吸附和增殖的特性, 因而在生物医用领域得到了日益广泛的应用。 而将 其用于细胞培养的基质, 或对一些生物高分子进行修饰, 改善它们的生物性 能, 使其适用于组织工程, 更是近年来丝素蛋白研究的热点。
壳聚糖是近年来在生物医药、 组织工程领域得到广泛应用的一种天然生 物高分子, 不仅具有生物功能性、 生物相容性、 低毒性及几乎无过敏性等特 性而且还具有高化学反应活性, 易于被一些化学试剂修饰, 可通过各种方法 对其进行性质改良, 而半乳糖基是肝细胞表面去唾液酸糖蛋白受体的特异性 配体,具有诱导和提高肝细胞在细胞外基质支架材料上的黏附性能。在 EDC 和 NHS 的活化作用下, 将半乳糖基引入到壳聚糖的结构中制备半乳糖基化壳聚 糖, 对其材料表面进行改性, 并将其与丝素蛋白进行复合制备形成丝素 /半乳 糖基化壳聚糖大孔微载体 , 不仅可为体外肝细胞培养提供较大三维生长空间 还可显著增强肝细胞的功能和提高细胞活力, 是一种理想的具有肝细胞特异 性新型多孔微载体。
生物反应器是生物人工肝装置及对肝功能衰竭治疗效果最有影响的关键 部分。 理论上, 生物反应器应最大限度地模仿正常肝脏的组织结构, 为培养 肝细胞提供类似于体内的生存及代谢环境。 因此, 理想的生物反应器应具备 以下功能: 细胞密度达 1 X 107个细胞 / ml水平; 反应装置能根据需要任意增 容, 细胞培养量可达数升; 连续灌注培养实现有效的营养物质、 氧气及代谢 产物双向物质传输; 可进行自动化在线细胞状态、 培养液 PH值、 氧浓度等方 面检测和调节功能, 以便于医护人员的监督和操作; 肝细胞代谢功能至少达 单层培养的水平, 并至少保持 2 周以上; 便于运输和装配。 现在常用的生物 反应器有以下几类: 中空纤维生物反应器、 转瓶培养反应器、 搅拌悬浮培养 反应器、 空气升液培养反应器和微重力旋转培养反应器等。 其中中空纤维生 物反应器的应用最为广泛的, 其优点是异种蛋白可以隔离, 同时防止人体内 针对异种细胞抗原的预存抗体对装载细胞的杀伤作用, 因而比较适合异种细 胞类 (如猪肝细胞)生物反应器。 但这类生物反应器存在以下问题: (1 )容 积有限, 细胞装载量小; (2 )培养液与肝细胞交换面积有限, 不利于肝细胞 的功能维持和扩增; (3 )半透膜的侧孔易被细胞团堵塞, 影响交换效率; (4 ) 因为中空纤维不能耐受深低温, 不适合大规模冻存。 其它类型的反应器如转 瓶培养、 搅拌培养等由于剪切力较大等缺点目前亦无法实现高效均一的细胞 种植, 氧气营养物质及细胞代谢产物的运输, 达到高密度、 大容量地规模化 培养细胞, 及细胞功能的长期维持。 而最初由美国航空航天局设计并应用于 微重力生命科学领域的旋转培养系统(RCCS) 在目前的众多组织工程生物反 应器中, 经过近二十几年的相关研究表明其较其它组织工程反应器具有持续 模拟微重力环境有利于细胞增值分化, 有利于细胞与细胞间接触, 形成三维 结构样组织; 膜式氧和气体交换, 无气泡与涡流产生, 低剪切力等对细胞机 械损伤小等优点, 目前已成功广泛运用于兔角膜细胞、 骨骼肌细胞、 成骨细 胞、 胚胎干细胞、 皮层神经元细胞、 脂肪组织等多种组织工程领域中, 是一 种具有较广应用前景的生物反应器。 本发明一方面提供一种新型的大孔微载体, 其可以用于体外肝细胞规模 化培养。 本发明的另一方面提供一种利用该大孔微载体进行体外肝细胞规模 化培养的方法。 实施例中使用的丝素蛋白和半乳糖基化壳聚糖分别可从市场 上购买得到, 或者可通过下述方法制备而得。 所使用的各种试剂、 材料和仪 器都可从市场上购买得到。 本文中所使用的缩写、 名称具有本领域技术人员 所知的意义。
一、 大孔微载体的制备
实施例 1
1 )丝素蛋白的制备:将 75g生蚕丝在 2L的 5g/L的碳酸钠溶液中煮沸 0. 5 小时, 重复 2次, 然后用大量蒸馏水清洗以去除丝胶蛋白, 60-70°C下烘干, 获丝素蛋白。 将适量丝素蛋白在 80 ± 2 °C下溶解在氯化钙 /水 /乙醇(摩尔比 1: 8: 2)三元溶液中, 在室温条件下蒸馏水透析 3天, 去除溶液中的盐和乙醇, 过滤去除不溶的杂质, 制备出丝素蛋白的水溶液。 将丝素蛋白水溶液在 50士 2 °C、 50-60转 /分搅拌浓缩, 获得浓度约 7-1 Ow/Vy。的丝素蛋白溶液;
2 )半乳糖基化壳聚糖 ( GC )的制备:称取 2. 2g壳聚糖,溶于 30-40ml 2. 0 % 的醋酸水溶液中, 再加适量 TEMED/ HC 1的緩沖溶液(pH 4. 7)将壳聚糖溶液稀 释至 4 w/v % , 再分别加入 0. 14g NHS , 0. 6 g EDC 和 2. 2 g 乳糖酸(LA ), 在室温下搅拌反应 72 h后, 蒸馏水透析 4天, 即得到半乳糖基化壳聚糖 (GC) 溶液, 蒸发部分水分浓缩至 4 w/v%0
3 )配制 40ml丝素-半乳糖基化壳聚糖混合溶液, 丝素蛋白、 半乳糖基化 壳聚糖质量比为 6: 4 , 终浓度为 4 w/v%; 在加入油相之前以 4ml 0. 5%戊二醛 溶液预交联 15-30分钟;
4 )取一定量 160ml的液体石蜡加入至 500ml烧杯中, 然后加入 6. 4ml司 班 80, 混合均匀后以 250转 /分恒速搅拌, 将上述预交联后的丝素-半乳糖基 化壳聚糖混合溶液緩慢滴加到油相中, 在室温下继续维持原转速搅拌约 30分 钟, 得到白色乳液, 向上述乳液中緩慢加入 3ml 2.5%戊二醛溶液, 继续搅拌 3小时, 使水相交联固化;
5 )取 100ml的异丙醇溶液,往其中加入相同体积的去离子水,再滴加 NaOH 稀溶液, 调节 PH至 9-10;
6)将 5) 中溶液以 250转 /分搅拌, 将 4) 中的白色乳液緩慢加入其中, 继续搅拌 45分钟。 然后过滤, 得到互不粘连的微球, 将微球置于 4°C冰箱中 6小时, 使微球充分固化;
7)将微球用如 5)所述稀释过的异丙醇溶液、 石油醚、 去离子水洗涤, 去除表面的油相; 然后筛分出 200-500 μηι的微球;
8)将筛分后的微球, 用 5g/L的甘氨酸溶液浸泡 3小时, 除去未反应的 戊二醛; 再用大量蒸馏水洗涤; 将洗涤干净后的微球用 40%蔗糖溶液浸泡 3-5 分钟, 然后倒去多余的蔗糖溶液; 将上述浸泡过蔗糖溶液的微球置于 -2(TC冰 箱中, 冷冻 48小时, 然后冷冻干燥 48小时, 得到大孔微载体; 将大孔微载 体分装后, 钴 60-γ射线辐照消毒, 备用。
实施例 2:
1 )丝素蛋白的制备:将 75g生蚕丝在 4L的 5g/L的碳酸钠溶液中煮沸 0.5 小时, 重复 2次, 然后用大量蒸馏水清洗以去除丝胶蛋白, 60-70°C下烘干, 获丝素蛋白。将适量丝素蛋白在 80°C下溶解在氯化钙 /水 /乙醇 (摩尔比 1: 8: 2) 三元溶液中, 在室温条件下蒸馏水透析 3 天, 去除溶液中的盐、 乙醇以及其 他小分子, 再过滤去除不溶的杂质, 制备出丝素蛋白的水溶液。 将丝素蛋白 水溶液在 50±2°C、 50-60转 /分搅拌浓缩, 获得浓度约 7-10w/v»/。的丝素蛋白 溶液;
2 )半乳糖基化壳聚糖( GC )的制备:称取 1. lg壳聚糖,溶于 15-20ml 2.0 % 的醋酸水溶液中, 再加适量 TEMED/ HC1的緩沖溶液(pH4. 7)将壳聚糖溶液稀 释至 4 w/v %, 再分别加入 0. 07g NHS, 0. 3g EDC 和 1. 1 g 乳糖酸(LA), 在室温下搅拌反应 72 h后, 蒸馏水透析 3天, 即得到半乳糖基化壳聚糖 (GC) 溶液, 蒸发部分水分浓缩至 4 w/v%0
3 ) 配制 40ml 丝素 -半乳糖基化壳聚糖 -壳聚糖混合溶液, 丝素蛋白、 半 乳糖基化壳聚糖、 壳聚糖质量比为 3: 1: 1 , 混合溶液终浓度为 4 w/v% , 搅 拌均匀;
4 )取一定量 160ml的液体石蜡加入至 500ml烧杯中, 然后加入 6. 4ml司 班 80 , 混合均勾后以 200转 /分恒速搅拌, 将上述丝素 -半乳糖基化壳聚糖- 壳聚糖混合溶液緩慢滴加到不断搅拌的油相中, 在室温下继续维持原转速搅 拌 30分钟, 得到白色乳液, 向上述乳液中緩慢加入 4ml 2. 5%戊二醛溶液, 继 续搅拌 3小时, 使水相交联固化;
5 )取 100ml的异丙醇溶液, 往其中加入相同体积的蒸馏水, 再滴加 NaOH 稀溶液, 调节 PH至 9-10;
6 )将 5 ) 中稀释过的异丙醇溶液以 300转 /分搅拌, 将 4 ) 中的白色乳液 緩慢加入其中, 继续搅拌 45分钟。 然后过滤, 得到互不粘连的微球, 将微球 置于 4 °C冰箱中 6小时, 使敖球充分固化;
7 )将微球用上述稀释过的异丙醇溶液、 石油醚、 去离子水洗涤, 去除表 面的油相; 然后筛分出 200-400μηι的^!球;
8 )将筛分后的微球, 用 5g/L的甘氨酸溶液浸泡 2小时, 除去未反应的 戊二醛; 再用大量蒸馏水洗涤; 将洗涤干净后的微球用 40%蔗糖溶液浸泡 3-5 分钟, 然后倒去多余的蔗糖溶液; 将上述浸泡过蔗糖溶液的^球置于 -2 (TC冰 箱中, 冷冻 48小时, 然后冷冻干燥 48小时, 即得到大孔微载体; 将大孔微 载体分装后, 钴 60- γ射线辐照消毒, 备用。
实施例 3:
1 )丝素蛋白的制备:将 75g生蚕丝在 2L的 5g/L的碳酸钠溶液中煮沸 0. 5 小时, 重复 2次, 然后用大量蒸馏水清洗以去除丝胶蛋白, 60-70 °C下烘干, 获丝素蛋白。 将适量丝素蛋白在 80 ± 2 °C下溶解在氯化钙 /水 /乙醇(摩尔比 1 : 8: 2)三元溶液中, 在室温条件下蒸馏水透析 3天, 去除溶液中的盐和乙醇, 过滤去除不溶的杂质, 制备出丝素蛋白的水溶液。 将丝素蛋白水溶液在 50士 2 °C、 50-60转 /分搅拌浓缩, 获得浓度约 7-1 Ow/Vy。的丝素蛋白溶液;
2 )半乳糖基化壳聚糖 ( GC )的制备:称取 2. 2g壳聚糖,溶于 30-40ml 2. 0 % 的醋酸水溶液中, 再加适量 TEMED/ HC1的緩沖溶液(pH4. 7)将壳聚糖溶液稀 释至 4 w/v % , 再分别加入 0. 14g NHS , 0. 6 g EDC 和 2. 2 g 乳糖酸(LA ), 在室温下搅拌反应 72 h后, 蒸馏水透析 4天, 即得到半乳糖基化壳聚糖 (GC) 溶液, 蒸发部分水分浓缩至 4 w/v%0
3 ) 配制 30ml 丝素 -半乳糖基化壳聚糖 -壳聚糖混合溶液, 丝素蛋白、 半 乳糖基化壳聚糖、 壳聚糖质量比为 5: 3: 2 , 混合溶液终浓度为 5 w/v%, 搅 拌均匀;
4 )取一定量 150ml的液体石蜡加入至 500ml烧杯中, 然后加入 6ml司班 80, 混合均勾后以 250转 /分恒速搅拌, 将上述丝素 -半乳糖基化壳聚糖 -壳聚 糖混合溶液緩慢滴加到不断搅拌的油相中, 在室温下继续维持原转速搅拌 30 分钟, 得到白色乳液, 向上述乳液中緩慢加入 3ml 2. 5%戊二醛溶液, 继续搅 拌 3小时, 使水相交联固化;
5 )取 100ml的异丙醇溶液, 往其中加入相同体积的蒸馏水, 再滴加 NaOH 稀溶液, 调节 PH至 9-10;
6 )将 5 ) 中稀释过的异丙醇溶液以 300转 /分搅拌, 将 4 ) 中的白色乳液 緩慢加入其中, 继续搅拌 45分钟。 然后过滤, 得到互不粘连的微球, 将微球 置于 4 °C冰箱中 6小时, 使敖球充分固化;
7 )将微球用上述稀释过的异丙醇溶液、 石油醚、 去离子水洗涤, 去除表 面的油相; 然后筛分出 200-400μηι的^!球;
8 )将筛分后的微球, 用 5g/L的甘氨酸溶液浸泡 4小时, 除去未反应的 戊二醛; 再用大量蒸馏水洗涤; 将洗涤干净后的微球用 40%蔗糖溶液浸泡 3-5 分钟, 然后倒去多余的蔗糖溶液; 将上述浸泡过蔗糖溶液的^球置于 -2 (TC冰 箱中, 冷冻 48小时, 然后冷冻干燥 48小时, 即得到大孔微载体; 将大孔微 载体分装后, 钴 60- γ射线辐照消毒, 备用。
实施例 4 :
将上述实施例所得大孔微载体进行丽 R分析和红外分析,分别得到如图 1 和图 2所示的 丽 R谱图和 FI TR谱图。 将上述大孔微载体在倒置显微镜和扫 描电镜下观察, 得到如图 3-5的图像。 其中, 图 1半乳糖基化壳聚糖(GC ) 的 丽1 谱分析, 箭头所示为半乳糖基的特征峰, GC 的 丽1 归属如 下:1 IWMR (300MHz , D20/F3CC00H) δ : 1. 952 (— C0CH3 中的 H) , 4. 755 (HI) , 4. 1 31 , 4. 415 (ΗΙ ' , He) , 3. 3—4. 0 (Η3, Η4, Η5, Η6, Η2' , Η3' , Η4' , Η5' , Η6' , Ha, Hb, Hd, He) , 3. 066 (H2) , 证实半乳糖基已经通过化学交联, 共 价结合到壳聚糖( CS ) 的分子链上; 图 2为 SF/CS (蓝色)与 SF/GC (红色) 大孔微载体材料的 FITR谱图, 由于乳糖酸的羧酸基团和壳聚糖的氨基反应形 成酰胺键, (右边箭头所示)从而酰胺键的吸收峰 I 和 I I 发生了化学位移, 且峰值增宽, 1070. 7cm-1为半乳糖糖基的 C一 0伸展骨架振动的吸收峰。 另夕卜, 由于壳聚糖接枝半乳糖基后,使 0H的数目大大增加, 所以 0H峰变宽变强(左 边箭头所示) 。 图 3为倒置显微镜下观察 SF/GC大孔微载体: 该大孔微载体 为白色或淡黄色, 呈半透明的球形; 其内部疏松多孔, 孔结构分布均匀; 轻 轻晃动时能清楚地观察到其三维立体结构。 该大孔微载体内部疏松多孔的结 构扩大了比表面积, 并提供了较大的空体积, 能将细胞固定在孔内生长,且便 于观察, 适合用于肝细胞高密度培养; 图 4a、 4b为扫描电镜结果, 可见微载 体表面呈多孔结构, 开口向外, 呈喇叭状, 孔结构分布较均匀。 相比于市售 的大孔微载体, 该微载体孔径更大, 且开口向外; 利于细胞黏附生长, 并有 足够大的孔隙使细胞能够长入微载体内部; 图 5为较大的 SF/GC大孔微载体 的剖面图, 可见其内部亦为疏松多孔结构, 且孔与孔之间相互连通, 细胞能 够在其内部迁移生长, 有利于内部的物质交换。 将本发明的大孔微载体灭菌后, 以 PBS洗涤 3次, 然后使用基础培养基 浸泡过夜, 充分溶胀; 随后, 将大孔微载体加入 48孔培养板中, 然后滴加肝 细胞 CL-1 悬液, 将 CL-1细胞与上述大孔微载体材料共培养, 隔日换液, 换 液时观察肝细胞在材料上的黏附、 增殖及肝细胞形态变化等生长情况。 图 6 显示 CL-1细胞与 SF/GC大孔微载体在多孔培养板中共培养第 6天时在倒置显 微镜下观察到的图像, 可见细胞能够长入大孔微载体内部, 呈多细胞聚集的 团块,细胞呈球形体生长且很好地贴附在载体上;图 7显示 CL-1细胞与 SF/GC 大孔微载体共培养第 8天时在扫描电镜(SEM )下观察到的图像, 可见细胞呈 球形, 细胞能够黏附在大孔微载体上生长, 呈多细胞聚集的团块, 由于肝细 胞表面 ASGPR和支架上半乳糖基之间的分子识别功能, 细胞附着牢固。 且随 着培养时间的延长微载体之间开始发生团聚, 细胞密度高, 分泌较多的细胞 外基质; 图 8显示 CL-1细胞与 SF/GC大孔微载体共培养第 8天时在扫描电镜 ( SEM )下观察到的图像的进一步放大图, 可见细胞呈球形, 表面可见大量微 绒毛结构, 细胞可进入微载体内部, 聚集生长。
二、 大孔微载体的应用
微重力旋转培养下丝素 I半乳糖基化壳聚糖大孔微载体规模化肝细胞培 养方法, 具体步驟如下:
1 )丝素 /半乳糖基化壳聚糖大孔微载体预处理: 将所需数量的丝素 /半乳 糖基化壳聚糖大孔微载体置于 50ml 塑料离心管中, 用 0. lmo l /L、 pH为 7. 0 无钙镁磚酸镁緩沖液( PBS )浸泡过夜后, 吸去 PBS , 再用 PBS洗涤 3次, 经 121 °C高压灭菌 30分钟后, 吸出 PBS , 用培养基洗涤 2次, 最后用含血清培养 基浸泡 10小时以上, 备用;
2 )浓缩静止接种法接种细胞: 消化收集平板培养的肝细胞悬液, 按所需 接种密度将细胞悬液放入上述微载体中, 轻轻混匀, 在无菌条件下取出无菌 高横截面微重力旋转培养瓶, 打开瓶盖和两个孔阀门, 用注射器将含丝素 /半 乳糖基化壳聚糖大孔微载体的肝细胞悬液经注射空緩緩注入微重力旋转培养 瓶中, 继续添加含血清培养基至 60%体积, 取出两个注射器, 盖上瓶盖并将其 稍稍扭松, 静止横放于二氧化碳孵箱中, 培养条件为温度: 37 °C , 二氧化碳 浓度: 5%。 每 8小时取出轻轻摇晃 1分钟。 24小时后取出微重力旋转培养瓶 置于紫外消毒后的超净台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将 两支无菌 10 ml 注射器(其中一支装有含血清的培养液, 另一支不装培养液) 分别连接在两个取样孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注入 容器内, 容器内气泡从另一支空的注射器中排出(培养过程中始终保持容器内 无气泡, 以避免形成涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶壁 3次, 最后将其移入二氧化碳培养箱中, 安装在培养装置上, 并根据所接种微 载体和细胞的量调整容器的转速, 以微载体在旋转过程中不贴附在容器的内 外壁上为宜。 本试险中设定旋转初速度为 7. 6 ~ 9rpm,
实施例 5、 静止 /微重力旋转培养下丝素 /半乳糖基化壳聚糖培养人肝细 胞株 CL-1细胞;
( 1 )、 完全培养基的配置: 每 100ml DMEN (高糖型)培养基添加 15ml 胎牛血清、 3. 5mmo lHEPES、 青霉素 1 GG00U、 链霉素 1 G000U
( 2 )、 丝素 /半乳糖基化壳聚糖大孔微载体预处理: 将 G. lg丝素 /半乳糖 基化壳聚糖大孔微载体置于 50ml塑料离心管中, 用 0. lmo l/L、 PH为 7. 0无 钙镁磚酸镁緩沖液( PBS )浸泡过夜后,吸去 PBS ,再用 PBS洗涤 3次,经 121 °C 高压灭菌 30分钟后, 吸出 PBS , 用培养基洗涤 2次, 最后用 1 ) 配置的完全 培养基浸泡 10小时以上, 备用;
( 3 )、 细胞培养
1 )、 微重力旋转培养组(浓缩静止接种法接种细胞): 消化收集平板培养 的人肝细胞株 ( CL-1 ) 悬液, 总量为 2 x 107的 CL-1 细胞悬液放入上述微载 体中, 轻轻混匀, 在无菌条件下取出 50ml无菌高横截面微重力旋转培养瓶, 打开瓶盖和两个孔阀门, 用注射器将含丝素 /半乳糖基化壳聚糖大孔微载体的 肝细胞悬液经注射空緩緩注入微重力旋转培养瓶中, 继续添加含 1 )配置的完 全培养基至 30ml , 取出两个注射器, 盖上瓶盖并将其稍稍扭松, 静止横放于 二氧化碳孵箱中, 培养条件为温度: 37 °C , 二氧化碳浓度: 5%。 每 8 小时取 出轻轻摇晃 1分钟。 24小时后取出微重力旋转培养瓶置于紫外消毒后的超净 台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将两支无菌 10 ml注射器 (其中一支装有 1 )配置的完全培养基, 另一支不装培养基)分别连接在两个取 样孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注入容器内, 容器内气 泡从另一支空的注射器中排出(培养过程中始终保持容器内无气泡, 以避免 形成涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶壁 3次, 最后将其 移入二氧化碳培养箱中, 安装在培养装置上, 并根据所接种微载体和细胞的 量调整容器的转速, 以微载体在旋转过程中不贴附在容器的内外壁上为宜。 本试验中设定旋转初速度为 7. 6rpm。 每天换液量 30ml,并调整转速 1次。
2 )、 静止培养组(浓缩静止接种法接种细胞): 消化收集平板培养的人肝 细胞株 ( CL-1 )悬液, 总量为 2 X 107的 CL-1细胞悬液放入上述微载体中, 轻 轻混匀, 在无菌条件下取出 50ml无菌高横截面微重力旋转培养瓶, 打开瓶盖 和两个孔阀门, 用注射器将含丝素 /半乳糖基化壳聚糖大孔微载体的肝细胞悬 液经注射空緩緩注入微重力旋转培养瓶中, 继续添加含 1 )配置的完全培养基 至 30ml , 取出两个注射器, 盖上瓶盖并将其稍稍扭松, 静止横放于二氧化碳 孵箱中, 培养条件为温度: 37 °C , 二氧化碳浓度: 5%。 每 8 小时取出轻轻摇 晃 1分钟。 24小时后取出微重力旋转培养瓶置于紫外消毒后的超净台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将两支无菌 10 ml注射器(其中一 支装有 1 )配置的完全培养基, 另一支不装培养基)分别连接在两个取样孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注入容器内, 容器内气泡从另一 支空的注射器中排出(培养过程中始终保持容器内无气泡, 以避免形成涡 流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶壁 3次, 最后将其移入二 氧化碳培养箱中, 每天换液量 30ml。
( 4 )、 生物功能检测: 于每天换液时留取上清作样品, 2 000 r/min 离 心 10 min, 在 Beckman全自动生化系统检测上清尿素含量;
( 5 )、 扫描电镜: 留取样品, PBS清洗三次, 加 2%戊二醛固定 0. 5小时, 1%锇酸固定 0. 5小时, 接着用酒精梯度脱水, 再用乙酸异戊脂置换 4小时以 上, 临界干燥器干燥后真空喷溅铂金离子, 日本 S450扫描电子显微镜观察细 胞生长情况并摄影。
实验结果:本发明选用微重力丝素 /半乳糖苷化壳聚糖大孔微载体为体外 肝细胞规模化培养模式, 较常规的静止三维培养更有利于肝细胞增殖分化及 细胞-细胞间接触, 形成致密三维结构样组织, 实现体外肝细胞大规模高密度 培养; 可进一步增强肝细胞的功能(见图 9a、 图 9b和图 10 )。
实施例 6、 微重力旋转培养下微载体培养人肝细胞株 CL-1 细胞(丝素 / 半乳糖基化壳聚糖大孔微载体 SF/GC、 实心微载体: cytodex 3 );
( 1 )、 完全培养基的配置: 每 100ml DMEN (高糖型)培养基添加 15ml 胎牛血清、 3. 5mmo lHEPES、 青霉素 1 GG00U、 链霉素 1 G000U
( 2 )、 微载体预处理:
1 ), 丝素 /半乳糖基化壳聚糖大孔微载体预处理: 将 Q. 2g丝素 /半乳糖基 化壳聚糖大孔微载体置于 50ml塑料离心管中, 用 0. lmol/L、 PH为 7. 0无钙 镁磚酸镁緩沖液( PBS )浸泡过夜后, 吸去 PBS , 再用 PBS洗涤 3次, 经 1 °C 高压灭菌 30分钟后, 吸出 PBS , 用培养基洗涤 2次, 最后用 1 ) 配置的完全 培养基浸泡 10小时以上, 备用;
2 )、 实心^载体 ( cytodex 3 )预处理: 将 0. 25g实心^载体 ( cytodex 3 ) 置于 50ml塑料离心管中, 用 0. lmol/L, PH为 7. 0无钙镁磚酸镁緩沖液( PBS ) 浸泡过夜后, 吸去 PBS , 再用 PBS洗涤 3次, 经 121 °C高压灭菌 30分钟后, 吸出 PBS , 用培养基洗涤 2次, 最后用 1 ) 配置的完全培养基浸泡 10小时以 上, 备用;
( 3 )、 微重力旋转培养下微载体培养人肝细胞株 CL-1细胞
1 ), 微重力丝素 /半乳糖基化壳聚糖大孔微载体培养人肝细胞( CL-1 ): 消化收集平板培养的人肝细胞株 ( CL-1 ) 悬液, 总量为 2 X 107的 CL-1细胞 悬:^文入上述微载体中, 轻轻混匀, 在无菌条件下取出 50ml无菌高横截面微 重力旋转培养瓶, 打开瓶盖和两个孔阀门, 用注射器将含丝素 /半乳糖基化壳 聚糖大孔微载体的肝细胞悬液经注射空緩緩注入微重力旋转培养瓶中, 继续 添加含 1 ) 配置的完全培养基至 30ml , 取出两个注射器, 盖上瓶盖并将其稍 稍扭松, 静止横放于二氧化碳孵箱中, 培养条件为温度: 37 °C , 二氧化碳浓 度: 5%。 每 8小时取出轻轻摇晃 1分钟。 24小时后取出微重力旋转培养瓶置 于紫外消毒后的超净台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将两 支无菌 10 ml注射器(其中一支装有 1 ) 配置的完全培养基, 另一支不装培养 基)分别连接在两个取样孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注 入容器内, 容器内气泡从另一支空的注射器中排出(培养过程中始终保持容器 内无气泡, 以避免形成涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶 壁 3 次, 最后将其移入二氧化碳培养箱中, 安装在培养装置上, 并根据所接 种微载体和细胞的量调整容器的转速, 以微载体在旋转过程中不贴附在容器 的内外壁上为宜。 本试验中设定旋转初速度为 7. 6rpm。 每天换液量 30ml,并 调整转速 1次。
2 )、 微重力实心微载体(cytodex 3 )培养人肝细胞( CL-1 ): 消化收集 平板培养的人肝细胞株 ( CL-1 ) 悬液, 总量为 2 x 107的 CL-1 细胞悬液放入 上述微载体中, 轻轻混匀, 在无菌条件下取出 50ml无菌高横截面微重力旋转 培养瓶, 打开瓶盖和两个孔阀门, 用注射器将含 cytodex 3微载体的肝细胞 悬液经注射空緩緩注入微重力旋转培养瓶中, 继续添加含 1 )配置的完全培养 基至 30ml , 取出两个注射器, 盖上瓶盖并将其稍稍扭松, 静止横放于二氧化 碳孵箱中, 培养条件为温度: 37 °C , 二氧化碳浓度: 5%。 每 8 小时取出轻轻 摇晃 1分钟。 24小时后取出微重力旋转培养瓶置于紫外消毒后的超净台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将两支无菌 10 ml注射器(其中 一支装有 1 ) 配置的完全培养基, 另一支不装培养基)分别连接在两个取样孔 上, 打开取样孔阀门, 将注射器中的培养液緩慢注入容器内, 容器内气泡从 另一支空的注射器中排出(培养过程中始终保持容器内无气泡, 以避免形成 涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶壁 3次, 最后将其移入 二氧化碳培养箱中, 安装在培养装置上, 并根据所接种微载体和细胞的量调 整容器的转速, 以微载体在旋转过程中不贴附在容器的内外壁上为宜。 本试 验中设定旋转初速度为 7. 6rpm。 每天换液量 30ml,并调整转速 1次。
( 4 )、 生物功能检测: 于每天换液时留取上清作样品, 2 000 r/min 离 心 10 min, 在 Beckman全自动生化系统检测上清尿素含量;
( 5 )、 扫描电镜: 留取样品, PBS清洗三次, 加 2%戊二醛固定 0. 5小时, 1%锇酸固定 0. 5小时, 接着用酒精梯度脱水, 再用乙酸异戊脂置换 4小时以 上, 临界干燥器干燥后真空喷溅铂金离子, 日本 S450扫描电子显微镜观察细 胞生长情况并摄影。
实验结果:本发明以丝素 /半乳糖苷化壳聚糖大孔微载体为体外肝细胞规 模化培养支架材料, 较常规的实心支架材料(cytodex 3 )具有更大的表面积 /体积, 高度的窦隙结构与体内肝窦结构相似, 更有利于细胞间的相互接触及 氧气、 营养成分的传送和代谢产物的排出, 从而进一步提高体外肝细胞培养 密度及其功能(见图 l la、 图 l ib和图 12 )。
实施例 7、 微重力旋转培养下微载体培养人肝细胞株 CL-1 细胞(丝素 / 半乳糖基化壳聚糖大孔微载体 SF/GC、 多孔微载体: cytopore);
( 1 )、 完全培养基的配置: 每 100ml DMEN (高糖型)培养基添加 15ml 胎牛血清、 3.5mmolHEPES、 青霉素 1GG00U、 链霉素 1G000U
(2)、 微载体预处理:
1 ), 丝素 /半乳糖基化壳聚糖大孔微载体预处理: 将 Q.2g丝素 /半乳糖基 化壳聚糖大孔微载体置于 50ml塑料离心管中, 用 0. lmol/L、 PH为 7.0无钙 镁磚酸镁緩沖液( PBS )浸泡过夜后, 吸去 PBS, 再用 PBS洗涤 3次, 经 1 °C 高压灭菌 30分钟后, 吸出 PBS, 用培养基洗涤 2次, 最后用 1 ) 配置的完全 培养基浸泡 10小时以上, 备用;
2 )、 多孔微载体 ( cytopore )预处理: 将 0.2g多孔微载体 ( cytopore ) 置于 50ml塑料离心管中, 用 0. lmol/L, PH为 7.0无钙镁磚酸镁緩沖液( PBS ) 浸泡过夜后, 吸去 PBS, 再用 PBS洗涤 3次, 经 121°C高压灭菌 30分钟后, 吸出 PBS, 用培养基洗涤 2次, 最后用 1 ) 配置的完全培养基浸泡 10小时以 上, 备用;
( 3 ), 微重力旋转培养下微载体培养人肝细胞株 CL-1细胞
1)、 微重力丝素 /半乳糖基化壳聚糖大孔微载体培养人肝细胞(CL-1 ): 消化收集平板培养的人肝细胞株 ( CL-1 ) 悬液, 总量为 2x 107的 CL-1细胞 悬液放入上述微载体中, 轻轻混匀, 在无菌条件下取出 50ml无菌高横截面微 重力旋转培养瓶, 打开瓶盖和两个孔阀门, 用注射器将含丝素 /半乳糖基化壳 聚糖大孔微载体的肝细胞悬液经注射空緩緩注入微重力旋转培养瓶中, 继续 添加含 1 ) 配置的完全培养基至 30ml, 取出两个注射器, 盖上瓶盖并将其稍 稍扭松, 静止横放于二氧化碳孵箱中, 培养条件为温度: 37°C, 二氧化碳浓 度: 5%。 每 8小时取出轻轻摇晃 1分钟。 24小时后取出微重力旋转培养瓶置 于紫外消毒后的超净台中, 用 75%酒精擦拭瓶盖和瓶壁 3次, 打开瓶盖, 将两 支无菌 10 ml注射器(其中一支装有 1 ) 配置的完全培养基, 另一支不装培养 基)分别连接在两个取样孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注 入容器内, 容器内气泡从另一支空的注射器中排出(培养过程中始终保持容器 内无气泡, 以避免形成涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶 壁 3 次, 最后将其移入二氧化碳培养箱中, 安装在培养装置上, 并根据所接 种微载体和细胞的量调整容器的转速, 以微载体在旋转过程中不贴附在容器 的内外壁上为宜。 本试验中设定旋转初速度为 7. 6rpm。 每天换液量 30ml,并 调整转速 1次。
2 )、 微重力多孔微载体( cytopore )培养人肝细胞( CL-1 ): 消化收集平 板培养的人肝细胞株 ( CL-1 ) 悬液, 总量为 2 x 107的 CL-1细胞悬液放入上 述微载体中, 轻轻混匀, 在无菌条件下取出 50ml无菌高横截面微重力旋转培 养瓶, 打开瓶盖和两个孔阀门, 用注射器将含多孔微载体(cytopore ) 的肝 细胞悬液经注射空緩緩注入微重力旋转培养瓶中, 继续添加含 1 )配置的完全 培养基至 30ml , 取出两个注射器, 盖上瓶盖并将其稍稍扭松, 静止横放于二 氧化碳孵箱中, 培养条件为温度: 37 °C , 二氧化碳浓度: 5%。 每 8 小时取出 轻轻摇晃 1分钟。 24小时后取出微重力旋转培养瓶置于紫外消毒后的超净台 中, 用 75%酒精擦拭瓶盖和瓶壁 3次,打开瓶盖,将两支无菌 10 ml注射器(其 中一支装有 1 ) 配置的完全培养基, 另一支不装培养基)分别连接在两个取样 孔上, 打开取样孔阀门, 将注射器中的培养液緩慢注入容器内, 容器内气泡 从另一支空的注射器中排出(培养过程中始终保持容器内无气泡, 以避免形 成涡流), 将整个容器充满后再用 75%酒精擦拭瓶口和瓶壁 3次, 最后将其移 入二氧化碳培养箱中, 安装在培养装置上, 并根据所接种微载体和细胞的量 调整容器的转速, 以微载体在旋转过程中不贴附在容器的内外壁上为宜。 本 试验中设定旋转初速度为 7. 6rpm。 每天换液量 30ml ,并调整转速 1次。
( 4 )、 生物功能检测: 于每天换液时留取上清作样品, 2 000 r/min 离 心 10 min, 在 Beckman全自动生化系统检测上清尿素含量; ( 5 )、 扫描电镜: 留取样品, PBS清洗三次, 加 2%戊二醛固定 0. 5小时, 1%锇酸固定 0. 5小时, 接着用酒精梯度脱水, 再用乙酸异戊脂置换 4小时以 上, 临界干燥器干燥后真空喷溅铂金离子, 日本 S450扫描电子显微镜观察细 胞生长情况并摄影。
实验结果: 半乳糖基是肝细胞表面去唾液酸糖蛋白受体的特异性配体, 本发明所使用丝素 /半乳糖苷化壳聚糖大孔微载体在 EDC 和丽 S 的活化作用 下进行半乳糖基化改性, 较常规的多孔微载体(cytopore ) 更有利于肝细胞 在支架材料上的黏附, 可进一步促进体外肝细胞的培养密度及其肝细胞功能 (见图 1 3a、 图 1 3b和图 14 )。
虽然本发明已经参考具体的实施方式进行描述, 但是本领域技术人员通 过阅读上述描述后, 将可以对本发明做出显而易见的修改和修饰, 而不违背 本发明的意图和本质。 本发明有意将这些修改和修饰包括在权利要求的范围 内。

Claims

权利要求书
1. 一种大孔微载体,其是由丝素蛋白和半乳糖基化壳聚糖在交联剂的作 用下制得的球体, 其中丝素蛋白的含量以重量百分数计占球体的 50%-80% , 半 乳糖基化壳聚糖的含量以重量百分数计占球体的 15%-40% ,所述载体的直径为 200-500 μηι, 孔径为 40-80 μηι。
2. 一种制备权利要求 1所述的大孔微载体的方法, 其包括:
( a )将丝素蛋白溶液与半乳糖基化壳聚糖溶液按比例混合,使得产生终 浓度为 4-7 w/v»/。的丝素-半乳糖基化壳聚糖混合溶液;
( b )将上述丝素-半乳糖基化壳聚糖混合溶液滴入正在搅拌中的含乳化 剂的油相中, 得到白色乳液; 并向该白色乳液中緩慢加入交联剂, 充分搅拌 使水相交联固化;
( c )将步驟( b ) 中的白色乳液加入搅拌状态的 pH为 9-1 0的极性溶剂 中, 并继续搅拌 40-60分钟, 过滤得到互不粘连的微球;
( d ) 以适当稀释的异丙醇或 /和石油醚等有机溶剂除去所述微球表面的 油相, 筛滤得到 200-500μηι的微球;
( e ) 除去微球中的残留的交联剂, 并冷冻干燥, 得到所述大孔微载体。
3. 如权利要求 2所述的方法, 其特征在于, 所述乳化剂为石蜡和油包水 乳化剂如司班 80等。
4. 如权利要求 2所述的方法, 其特征在于, 所述交联剂为戊二醛。
5. 如权利要求 2所述的方法, 其特征在于, 所述极性溶剂为异丙醇、 乙 醇和 /或丙酮。
6. 如权利要求 2所述的方法, 其特征在于, 在所述步驟(e ) 中的冷冻 干燥之前还包括用高浓度蔗糖溶液浸泡所述微球的步驟。
7. 如权利要求 2 所述的方法, 其特征在于, 在所述步驟(e )之后还包 括消毒步驟。
8. 如权利要求 7所述的方法, 其特征在于, 所述消毒步驟为以钴 60-γ 射线辐照或浸泡在蒸馏水、 PBS溶液中高压蒸汽灭菌。
9. 一种体外大规模培养肝细胞的方法, 该方法包括:
( a ) 提供权利要求 1所述的大孔微载体;
(b) 将所述大孔微载体用于微重力旋转培养系统中。
10. 如权利要求 9所述的方法, 其特征在于, 在步驟(b)之前还包括用 0. lmol/L、 pH为 7.0的无钙镁磚 S史镁緩沖液( PBS )浸泡大孔微载体过夜并用 含血清培养基浸泡至少 10个小时的步驟。
11. 如权利要求 9所述的方法, 其特征在于, 所述微重力旋转培养系统 使用浓缩静止接种法接种细胞, 所述浓缩静止接种法中的细胞接种量为 2 χ lOVml ~ 1 X 106/ml。
12. 如权利要求 11所述的方法, 其特征在于, 所述浓缩静止接种法中起 始培养基量为培养瓶容积的 40% ~ 90%。
13. 如权利要求 11所述的方法, 其特征在于, 所述浓缩静止接种法中使 用的静止时间为 12h~24h。
14. 如权利要求 11所述的方法, 其特征在于, 所述浓缩静止接种法使用 的初始旋转速度为 7.6 ~ 9 rpm0
15. 如权利要求 11所述的方法, 其特征在于, 所述浓缩静止接种法中使 用的培养基中含 10% ~ 15%的血清。
16. 如权利要求 15所述的方法,其特征在于,所述培养基为 DMEN或 PRMI
1640。
17. 如权利要求 15 所述的方法, 其特征在于, 所述培养基含有浓度为 20 mmol/L~50 mmol/L的 HEPES。
PCT/CN2010/071860 2009-08-11 2010-04-17 一种肝细胞特异性大孔微载体及其制备方法和用途 WO2011017930A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/389,595 US20120190113A1 (en) 2009-08-11 2010-04-17 Macroporous Microcarrier Specific to Liver Cell, Preparation Method and Use Thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN200910041770.X 2009-08-11
CN200910041770A CN101624473B (zh) 2009-08-11 2009-08-11 一种规模化培养肝细胞的方法
CN2009100417678A CN102010601B (zh) 2009-08-11 2009-08-11 一种肝细胞特异性大孔微载体及其制备方法和用途
CN200910041767.8 2009-08-11

Publications (1)

Publication Number Publication Date
WO2011017930A1 true WO2011017930A1 (zh) 2011-02-17

Family

ID=43585903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071860 WO2011017930A1 (zh) 2009-08-11 2010-04-17 一种肝细胞特异性大孔微载体及其制备方法和用途

Country Status (2)

Country Link
US (1) US20120190113A1 (zh)
WO (1) WO2011017930A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103418029A (zh) * 2013-08-29 2013-12-04 中国人民解放军军事医学科学院卫生装备研究所 一种丝素/壳聚糖复合多孔支架的制备方法
WO2016183231A1 (en) 2015-05-12 2016-11-17 Baker Group, LLP Method and system for a bioartificial organ
CN105797216B (zh) * 2016-04-19 2019-09-10 西南大学 一种用家蚕丝素蛋白与羧甲基壳聚糖制备多孔材料的方法
CN114836370B (zh) * 2022-05-23 2024-05-10 厦门大学 一种用于细胞三维培养的壳聚糖微球压片

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293952A (zh) * 1999-11-02 2001-05-09 武汉大学 壳聚糖与丝心蛋白共混微球及其用途和制备方法
KR20020000227A (ko) * 2000-06-20 2002-01-05 김범철 간세포 특이적인 담체 및 이의 dna와의 복합체
CN1467248A (zh) * 2002-06-19 2004-01-14 独立行政法人农业生物资源研究所 生物降解性生物体高分子材料,其制造方法,与该高分子材料构成的功能性材料
RU2270209C1 (ru) * 2004-11-25 2006-02-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" (СПГУТД) Способ получения пористого материала из смеси фиброина и хитозана
WO2007136227A1 (en) * 2006-05-23 2007-11-29 Hyunjin Yang Non-spherical three-dimensional micro-scaffold for cell culture and delivery prepared using rapid prototyping system
WO2009037462A1 (en) * 2007-09-19 2009-03-26 The University Of Bath Bioreactors for tissue engineering
CN101624472A (zh) * 2009-08-11 2010-01-13 南方医科大学珠江医院 一种细胞培养用大孔微载体及其制备方法和用途
CN101624473A (zh) * 2009-08-11 2010-01-13 南方医科大学珠江医院 一种规模化培养肝细胞的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1293952A (zh) * 1999-11-02 2001-05-09 武汉大学 壳聚糖与丝心蛋白共混微球及其用途和制备方法
KR20020000227A (ko) * 2000-06-20 2002-01-05 김범철 간세포 특이적인 담체 및 이의 dna와의 복합체
CN1467248A (zh) * 2002-06-19 2004-01-14 独立行政法人农业生物资源研究所 生物降解性生物体高分子材料,其制造方法,与该高分子材料构成的功能性材料
RU2270209C1 (ru) * 2004-11-25 2006-02-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный университет технологии и дизайна" (СПГУТД) Способ получения пористого материала из смеси фиброина и хитозана
WO2007136227A1 (en) * 2006-05-23 2007-11-29 Hyunjin Yang Non-spherical three-dimensional micro-scaffold for cell culture and delivery prepared using rapid prototyping system
WO2009037462A1 (en) * 2007-09-19 2009-03-26 The University Of Bath Bioreactors for tissue engineering
CN101624472A (zh) * 2009-08-11 2010-01-13 南方医科大学珠江医院 一种细胞培养用大孔微载体及其制备方法和用途
CN101624473A (zh) * 2009-08-11 2010-01-13 南方医科大学珠江医院 一种规模化培养肝细胞的方法

Also Published As

Publication number Publication date
US20120190113A1 (en) 2012-07-26

Similar Documents

Publication Publication Date Title
CN102172498B (zh) 一种三维多孔壳聚糖/明胶微球及其制备方法和在肝细胞培养中的应用
CN109593704B (zh) 一种三维微载体细胞吸附培养的方法
CN113846050B (zh) 一种组织类器官的制备方法
CN101624473B (zh) 一种规模化培养肝细胞的方法
CN101423820A (zh) 基于骨髓间充质干细胞的骨组织分阶段灌流培养方法
CN111330082B (zh) 构建含皮肤附属器的生物3d打印皮肤微单元模型的制备方法
CN102304476B (zh) 三维细胞动态培养反应器
WO2005014774A1 (ja) 動物細胞の培養担体と、該培養担体を用いた動物細胞の培養方法および移植方法
CN103230623A (zh) 一种体外构建组织工程化神经的方法
WO2011051983A1 (en) In vitro bioengineered animal tissue fiber and its use in the textile industry
WO2011017930A1 (zh) 一种肝细胞特异性大孔微载体及其制备方法和用途
Ye et al. Studies on the use of hollow fibre membrane bioreactors for tissue generation by using rat bone marrow fibroblastic cells and a composite scaffold
Park et al. Morphology of spheroidal hepatocytes within injectable, biodegradable, and thermosensitive poly (organophosphazene) hydrogel as cell delivery vehicle
CN101701208B (zh) 一种组织工程化肺脏组织及其构建方法
Wong Alginates in tissue engineering
Yang et al. Engineered liver tissue in vitro to mimic liver functions and its biomedical applications
US20070086986A1 (en) Preparation of three-dimensional mammalian ovarian follicular cell and ovarin follicle culture systems in a biocompatible matrix
CN102329728B (zh) 一种壳聚糖/rgd三维多孔微载体及其制备方法和应用
Chen et al. Preparation of porous GelMA microcarriers by microfluidic technology for Stem-Cell culture
CN103215217B (zh) 一种动物细胞培养用胶原蛋白覆层微载体及其制备方法
CN101791432B (zh) 一种半乳糖化壳聚糖/聚酯类聚合物复合支架的制备方法
CN114686421B (zh) 一种肺组织脱细胞外基质微载体的制备方法及其应用
CN112424333A (zh) 用于在生物反应器中进行细胞培养的系统
CN102228719B (zh) 一种组织工程化淋巴结模型及其构建方法
CN102010601B (zh) 一种肝细胞特异性大孔微载体及其制备方法和用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10807875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13389595

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10807875

Country of ref document: EP

Kind code of ref document: A1