WO2011016454A1 - ディーゼル機関における排気ガス浄化装置 - Google Patents

ディーゼル機関における排気ガス浄化装置 Download PDF

Info

Publication number
WO2011016454A1
WO2011016454A1 PCT/JP2010/063109 JP2010063109W WO2011016454A1 WO 2011016454 A1 WO2011016454 A1 WO 2011016454A1 JP 2010063109 W JP2010063109 W JP 2010063109W WO 2011016454 A1 WO2011016454 A1 WO 2011016454A1
Authority
WO
WIPO (PCT)
Prior art keywords
engine
diesel engine
engine load
load
pressure
Prior art date
Application number
PCT/JP2010/063109
Other languages
English (en)
French (fr)
Inventor
義彰 関
Original Assignee
ヤンマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社 filed Critical ヤンマー株式会社
Publication of WO2011016454A1 publication Critical patent/WO2011016454A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/08Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for heavy duty applications, e.g. trucks, buses, tractors, locomotives

Definitions

  • the present invention relates to an exhaust gas purifying apparatus for purifying exhaust gas in a diesel engine mounted as a power source on a traveling vehicle such as a traveling agricultural vehicle including a tractor or a combiner or a construction machine such as a backhoe. It is about.
  • a particulate filter (hereinafter simply referred to as a filter) is used to purify the exhaust gas.
  • a filter a particulate filter
  • the flow resistance in the filter is reduced. Since the engine output is lowered due to the increase and the exhaust resistance increase, it is necessary to remove the PM accumulated on the filter and restore the PM collecting ability of the filter (regenerate the filter).
  • Patent Document 1 As a prior art, by providing an electrothermal heater in a portion upstream of the filter (diesel engine side) in the exhaust path from the diesel engine, the temperature of the exhaust gas is adjusted by this heater. It is disclosed to raise.
  • Patent Document 1 requires a dedicated heater to raise the temperature of the exhaust gas, which increases the number of parts and contributes to an increase in cost.
  • heating of the exhaust gas by the heater must be localized, and the exhaust gas cannot be heated uniformly, so that the exhaust gas cannot be purified uniformly, and the temperature of the filter with an oxidation catalyst adjacent to the heater is not good.
  • damage such as cracks will occur in the filter with an oxidation catalyst.
  • the present invention uses the fact that the temperature of the exhaust gas in a diesel engine increases in proportion to the engine load that the diesel engine is responsible for, and does not cause an operation stop or the like to the diesel engine.
  • An object of the present invention is to provide an exhaust gas purification device that solves the problem.
  • claim 1 provides: “Filter means for purifying exhaust gas disposed in the exhaust path from the diesel engine, a hydraulic load mechanism driven by the diesel engine, a state in which the operating hydraulic pressure in the hydraulic load mechanism is increased, and an increase in the operating hydraulic pressure Forcibly actuating valve means adapted to switch to a state to be released, and when the filter means is clogged, by increasing the operating oil pressure in the hydraulic load mechanism by the forcibly actuating valve means, The engine load which the diesel engine is responsible for is increased to regenerate the filter means, and the forced operation valve means is configured such that the engine load is lower than the highest engine load among the engine loads. When the engine load exceeds the upper limit engine load set to, switch to the state to cancel the increase in hydraulic pressure in the hydraulic load mechanism It is configured to dynamic. " It is characterized by that.
  • the forced operation valve means is configured to be switched after an appropriate time has elapsed.” It is characterized by that.
  • the upper limit engine load is set to a value that is close to the maximum engine load until the diesel engine is not shut down.” It is characterized by that.
  • the filter means for the exhaust gas from the diesel engine when the filter means for the exhaust gas from the diesel engine is clogged, the operating hydraulic pressure in the hydraulic load mechanism is increased by the forced operation valve means, thereby increasing the engine load that the diesel engine is responsible for. Since the temperature of the exhaust gas becomes high, the filter means can be regenerated.
  • the forced operation valve means cancels the increase of the operating hydraulic pressure in the hydraulic load mechanism. Since the increase in the engine load due to the forced operation valve means can be restricted so as not to exceed the upper limit engine load, the increase in the engine load due to the forced operation valve means Therefore, it is possible to reliably avoid the occurrence of a stop (engine stall) in the diesel engine.
  • the forced operating valve means increases the operating hydraulic pressure in the hydraulic load mechanism when the engine load exceeds an upper limit engine load set on the lower side of the engine load than the maximum engine load.
  • the temperature of the exhaust gas when the filter means is being regenerated can be brought close to the highest exhaust gas temperature at the maximum engine load in the diesel engine.
  • the regeneration in the means can be achieved in a short time.
  • the temperature of the exhaust gas can be further increased, so that the time required for regeneration can be further shortened.
  • the traveling body 2 of the tractor 1 is supported by a pair of left and right rear wheels 4 as well as a pair of left and right front wheels 3 as a traveling unit.
  • the tractor 1 is configured to travel forward and backward by driving the rear wheels 4 and the front wheels 3 with a diesel engine 5 mounted on the front portion of the traveling machine body 2.
  • the diesel engine 5 is covered with a bonnet 6, and the diesel engine 5 has an oil pan 10 for storing lubricating oil for lubricating a crankshaft (not shown) in the diesel engine 5 on the lower surface side thereof. Is provided.
  • a cabin 7 is installed on the upper surface of the traveling machine body 2. Inside the cabin 7, a steering seat 8 and a steering handle by power steering that steers and moves the steering direction of the front wheel 3 left and right. (Round handle) 9 is arranged. A fuel tank 11 that supplies fuel to the diesel engine 5 is provided below the bottom of the cabin 7.
  • the steering handle 9 in the cabin 7 is provided on a steering column 25 erected in front of the steering seat 8.
  • a throttle lever 30 for setting and maintaining the output rotational speed of the diesel engine 5 and a pair of left and right brake pedals 31 for operating the traveling machine body 2 are disposed.
  • a forward / reverse switching lever 32 for switching the traveling direction of the traveling machine body 2 between forward and reverse, and a clutch pedal 33 for operating the main clutch (not shown).
  • a parking brake lever 34 is disposed on the back side of the steering column 25 to hold the left and right brake pedal 31 in the depressed position.
  • the engine speed set by the throttle lever 30 is within a range between the minimum idle speed Ro and the maximum speed Rx as shown in FIG.
  • An accelerator pedal 35 for increasing and decreasing the speed is arranged.
  • a sub-transmission lever 40 for switching a traveling output from a mission case 17 described later between a low speed and a high speed, and a PTO transmission lever for switching a driving speed of a PTO shaft 23 described later. 36 are arranged on the left side of the control seat 8.
  • a main speed change lever 38 for speed change operation and a working part position lever 39 for manually changing and adjusting the height position of the rotary tiller 15 described later are arranged on the right side of the control seat 8.
  • a differential lock pedal 37 for executing an operation of rotating the left and right rear wheels 4 at a constant speed is disposed below the control seat 8.
  • the traveling machine body 2 includes an engine frame 14 having a front bumper 12 and a front axle case 13 and left and right machine body frames 16 that are detachably fixed to the rear portion of the engine frame 14 with bolts.
  • a transmission case 17 is mounted at the rear of the body frame 16 to transmit the rotational power from the diesel engine 5 to the front and rear four wheels 3, 3, 4, 4 by appropriately shifting the rotational power.
  • the rear wheels 4 are attached to the mission case 17 via a rear axle case 18 that is mounted so as to protrude outward from the outer surface of the mission case 17. Upper portions of the left and right rear wheels 4 are covered with a fender 19 fixed to the body frame 16.
  • a hydraulic lifting mechanism 20 for lifting and lowering the rotary tiller 15 and the like as a working unit is detachably attached to the rear upper surface of the mission case 17.
  • the rotary tiller 15 is connected to the rear part of the mission case 17 via a three-point link mechanism including a pair of left and right lower links 21 and a top link 22.
  • a PTO shaft 23 for transmitting a PTO driving force to the rotary cultivator 15 protrudes backward.
  • the hydraulic lift mechanism 20 is provided with a pair of left and right lift arms 96 that can be turned up and down by a single-acting lift control hydraulic cylinder 95 (see FIG. 4).
  • the lower link 21 and the lift arm 96 on the left side in the traveling direction are connected via a left lift rod 97.
  • the lower link 21 on the right side in the traveling direction and the lift arm 96 are connected to each other via a double-acting tilt control hydraulic cylinder 98 as a right lift rod and its piston rod 99.
  • the diesel engine 5 as a power source thereof includes a cylinder block (not shown) having a cylinder head 41 fastened on an upper surface, and an oil pan 10 for storing lubricating oil is disposed on the lower surface of the cylinder block. It is concluded.
  • An intake manifold 42 is connected to one side of the cylinder head 41, and an exhaust manifold 43 is connected to the other side.
  • a fuel injection pump 44 for feeding fuel into each combustion chamber (sub chamber) of the diesel engine 5 is provided below the intake manifold 42 on the side surface of the cylinder block.
  • an air cleaner is attached to the upstream side of the intake manifold 42 via an intake pipe 45.
  • the air once filtered by the air cleaner is introduced into each cylinder of the diesel engine 5 (inside the cylinder of the intake stroke) via the intake pipe 45 and the intake manifold 42. Then, when the compression stroke of each cylinder is completed, the fuel sucked up from the fuel tank 11 is pumped into each combustion chamber (sub chamber) by the fuel injection pump 44, so that the self-ignition combustion of the air-fuel mixture in each combustion chamber. The expansion stroke is performed.
  • a particulate filter 50 (hereinafter simply referred to as filter means), which is an example of filter means, is connected to the distal end side of the exhaust manifold 43 via an exhaust pipe 46.
  • the exhaust gas discharged from each cylinder to the exhaust manifold 43 in the exhaust stroke after the expansion stroke is discharged through the exhaust pipe 46 and the filter means 50 and then discharged to the outside.
  • the diesel engine 5 is controlled by a controller 80 mounted on the tractor 1 as described below.
  • the controller 80 includes an electronic governor 87 provided in a fuel injection pump 44 that is a fuel supply device, a rotation sensor 88 that detects an engine speed R in the diesel engine 5, and a rack position of the fuel injection pump 44.
  • a rack position sensor 89 as load detecting means for detecting the fuel injection amount and a throttle potentiometer 90 for detecting the operation position of the throttle lever 30 are connected.
  • the controller 80 controls the electromagnetic solenoid for driving the rack (not shown) based on the detection information of the throttle potentiometer 90 so that the engine speed R becomes the set speed set by the throttle lever 30.
  • the rack position of the fuel injection pump 44 is adjusted by driving.
  • the engine speed R in the diesel engine 5 is automatically controlled so as to be maintained at a value corresponding to the position of the throttle lever 30.
  • the filter means 50 is for collecting particulate matter (hereinafter referred to as PM) in the exhaust gas, and is provided in a substantially cylindrical filter case 52 in a casing 51 made of a refractory metal material.
  • an oxidation catalyst 53 such as platinum and a filter main body 54 are accommodated in series.
  • the filter main body 54 has a honeycomb structure having a large number of cells partitioned by porous (filterable) partition walls.
  • An exhaust introduction port 55 communicating with the exhaust pipe 46 is provided on the side surface of one end of the casing 51.
  • One end of the casing 51 is closed by a first bottom plate 56, and one end of the filter case 52 facing the first bottom plate 56 is closed by a second bottom plate 57.
  • the annular gap between the casing 51 and the filter case 52 and the gap between the bottom plates 56 and 57 are filled with a heat insulating material 58 such as glass wool so as to surround the oxidation catalyst 53 and the filter body 54. Yes.
  • the other side of the casing 51 is closed by two cover plates 59 and 60, and a substantially cylindrical exhaust outlet 61 passes through both the cover plates 59 and 60. Further, between the cover plates 59 and 60 is a resonance chamber 63 communicating with the filter case 52 via a plurality of communication pipes 62.
  • An exhaust gas introduction pipe 65 is inserted into the exhaust introduction port 55 formed on the side surface at one end of the casing 51.
  • the tip of the exhaust gas introduction pipe 65 projects across the casing 51 to the side surface opposite to the exhaust introduction port 55.
  • a plurality of communication holes 66 opening toward the filter case 52 are formed on the outer peripheral surface of the exhaust gas introduction pipe 65.
  • a portion of the exhaust gas introduction pipe 65 that protrudes from the side surface opposite to the exhaust introduction port 55 is closed by a lid 67 that is detachably screwed to the portion.
  • the lid 67 is provided with a pressure sensor 68 as an example of clogging detection means for detecting the clogged state of the filter main body 54.
  • the pressure sensor 68 may have a known structure using, for example, a piezoresistance effect.
  • the pressure Ps (reference pressure value) on the upstream side of the filter 50 when PM is not deposited on the filter body 54 (when the filter 50 is new) is stored in advance in the ROM 82 of the controller 80 described later.
  • the current pressure P at the same measurement location is detected by the pressure sensor 68, a pressure difference ⁇ P between the reference pressure value Ps and the detected value P of the pressure sensor 68 is obtained, and the filter body 54 of the filter body 54 is determined based on the pressure difference ⁇ P.
  • the PM deposition amount is converted (estimated).
  • pressure sensors are arranged on the upstream and downstream sides of the exhaust path of the diesel engine 5 with the filter 50 interposed therebetween, and the PM accumulation amount of the filter main body 54 is converted (estimated) from the difference between the detected values of both. Also good.
  • the exhaust gas from the diesel engine 5 enters the exhaust gas introduction pipe 65 via the exhaust introduction port 55, and is ejected into the filter case 52 from each communication hole 66 formed in the exhaust gas introduction pipe 65. Then, after being dispersed in a wide area in the filter case 52, it passes through the oxidation catalyst 53 in order from the filter body 54 and is purified. At this stage, PM in the exhaust gas is collected without passing through the porous partition walls between the cells in the filter main body 54. Thereafter, the exhaust gas that has passed through the oxidation catalyst 53 and the filter main body 54 is released from the exhaust outlet 61.
  • the oxidation catalyst 53 acts to reduce the NO in the exhaust gas (one Nitric oxide) is oxidized to unstable NO 2 (nitrogen dioxide). Then, PM accumulated in the filter main body 54 is oxidized and removed by O (oxygen) released when NO 2 returns to NO, so that the PM collecting ability of the filter main body 54 is recovered (the filter main body 54 is Will play).
  • a reproducible temperature for example, about 300 ° C.
  • the power in the diesel engine 5 is also output to the rotary cultivator 15 and the power steering mechanism as the working unit, which will be described later. Of course, it is output also to the hydraulic load mechanism to be performed and to mechanisms other than those described above.
  • a working unit hydraulic pump 101 and a pilot pump 102 that are driven by the rotational power of the output shaft 24 in the diesel engine 5 are provided.
  • the working unit hydraulic pump 101 is for supplying hydraulic oil to the lift control hydraulic cylinder 95 and the tilt control hydraulic cylinder 98 in the hydraulic lift mechanism 20.
  • the pilot pump 102 is for applying a pilot pressure to the switching electromagnetic valve 106 described later.
  • the hydraulic drive shaft 24 protruding from the diesel engine 5 passes through both the pumps 101 and 102, and both the pumps 101 and 102 are configured to be driven by the rotation of the hydraulic drive shaft 24. That is, the hydraulic drive shaft 24 that drives both the pumps 101 and 102 is a common shaft.
  • the suction side of the working unit hydraulic pump 101 is connected to a mission case 17 as a hydraulic oil tank.
  • the discharge side of the working unit hydraulic pump 101 is connected to the working unit hydraulic circuit 103 via a pressure regulating valve 104 with a back pressure mechanism 105 described later.
  • the suction side of the pilot pump 102 is connected to a mission case 17 as a hydraulic oil tank.
  • the discharge side of the pilot pump 102 is connected to the pump-side first port 106 a of the switching electromagnetic valve 106.
  • the pressure regulating valve 104 is used to keep the pressure and flow rate on the working unit hydraulic circuit 103 side constant, and to switch the pressure on the discharge side of the working unit hydraulic pump 101 in two stages. Switching between a normal state where there is no pressure increase on the working unit hydraulic pump 101 side and a high pressure state where the pressure on the working unit hydraulic pump 101 side is increased by a predetermined pressure by the elastic force of the spring 105c via the piston 105b. It is configured to operate.
  • the switching solenoid valve 106 is a three-port two-position switching type that applies pilot pressure from the pilot pump 102 to the back pressure mechanism 105 of the pressure regulating valve 104, and is based on control information from a controller 80 described later. With the excitation of 107, the back pressure mechanism 105 is configured to switch between a pilot pressure applied state to the back pressure chamber 105a and a pilot pressure discharge state from the back pressure chamber 105a.
  • the pump-side first port 106a of the switching solenoid valve 106 is connected to the discharge side of the pilot pump 102.
  • the pump-side second port 106b of the switching electromagnetic valve 106 is connected to a mission case 17 as a hydraulic oil tank.
  • the back pressure side port 106 c of the switching electromagnetic valve 106 is connected to the back pressure chamber 105 a of the back pressure mechanism 105.
  • the switching solenoid valve 106 When the switching solenoid valve 106 is driven to switch to the pilot pressure application state, the hydraulic oil from the pilot pump 102 via the switching solenoid valve 106 flows into the back pressure chamber 105a of the back pressure mechanism 105, and the spring 105c via the piston 105b. , The pressure regulating valve 104 is switched to a high pressure state in which the pressure on the working unit hydraulic pump 101 side is increased by a predetermined pressure.
  • the discharge pressure (which may be referred to as the operation amount or load) of the working unit hydraulic pump 101 increases, and accordingly, the engine load that the diesel engine 5 takes as a whole is:
  • the total of the engine load for driving driving, the engine load for driving the rotary tiller 15, and the engine load for driving the power steering is added to the discharge pressure on the working unit hydraulic pump 101 side by a predetermined pressure.
  • the discharge pressure on the working unit hydraulic pump 101 side is increased by a predetermined pressure.
  • the combination of the pressure regulating valve 104 and the switching electromagnetic valve 106 corresponds to a forced operation valve means.
  • the switching solenoid valve 106 is usually a pilot (when there is no control information from the controller 80) in order to smoothly circulate and supply hydraulic oil between the working unit hydraulic pump 101 and the working unit hydraulic circuit 103. It is in the pressure discharge state. Therefore, the pressure regulating valve 104 is normally in a normal state in which there is no pressure increase on the working unit hydraulic pump 101 side.
  • the working unit hydraulic circuit 103 includes a single-acting lift control hydraulic cylinder 95 and a double-acting tilt control hydraulic cylinder 98
  • the working unit hydraulic pump 101 includes: A diversion valve 113 is provided for an elevation hydraulic switching valve 111 for controlling supply of hydraulic oil to the elevation control hydraulic cylinder 95 and an inclination control electromagnetic valve 112 for controlling supply of hydraulic oil to the inclination control hydraulic cylinder 98. Connected through.
  • the raising / lowering hydraulic switching valve 111 is configured to be switchable by manual operation of the working unit position lever 39.
  • the tilt control solenoid valve 112 is automatically switched by driving an electromagnetic solenoid corresponding to detection information of a rolling sensor (not shown) and a working unit position sensor (not shown) arranged on the upper surface of the hydraulic lifting mechanism 20. Is configured to do.
  • the working unit hydraulic circuit 103 also includes a relief valve, a flow rate adjustment valve, a check valve, and the like (see FIG. 4).
  • the controller 80 as a control means mounted on the tractor 1 controls the diesel engine 5 as described above and, based on detection information of the pressure sensor 68 in the filter 50, the pressure regulating valve 104 in the forced operation valve means. In this pressure adjustment, by increasing the discharge pressure of the working unit hydraulic pump 101, the filter regeneration control for increasing the engine load L that the diesel engine 5 is responsible for is executed, and various arithmetic processes and controls are executed.
  • a ROM 82 for storing control programs and data
  • a RAM 83 for temporarily storing control programs and data, an input / output interface, and the like are provided.
  • the controller 80 is connected to a pressure sensor 68 as clogging detection means and an electromagnetic solenoid 107 that controls the driving of the switching electromagnetic valve 106.
  • FIG. 6 shows an engine load line LP between an arbitrary engine speed R between the minimum idle speed Ro and the maximum speed Rx and the maximum engine load Lx at the time when the diesel engine 5 is driven.
  • This engine load line LP has an upwardly convex shape as shown by a solid line, and within the range of this engine load line LP, all the driving in the tractor 1, that is, traveling drive, rotary tiller All the driving such as driving of 15, driving of the hydraulic load mechanism and driving of the power steering are borne in total.
  • the temperature of the exhaust gas inside the engine load line LP is a temperature at which the filter 50 can be regenerated. It is divided up and down at the boundary line BL in the case of (eg, about 300 ° C.)
  • the upper region across the boundary line BL is a reproducible region in which PM deposited on the filter main body 54 can be oxidized and removed (the oxidation action by the oxidation catalyst 53 works), and the lower region is obtained by oxidizing and removing PM. This is a non-renewable area that accumulates on the filter main body 54.
  • LS1 ′ is set so as to extend substantially parallel to the engine load line LP, as indicated by a dashed line.
  • the lower limit engine load line LS2 ′ is a two-dot chain line at the position of the lower limit engine load LS2 that is appropriately lower than the upper limit engine load LS1 by the load ⁇ L2 in the upper region across the boundary line BL.
  • the engine load line LP is set so as to extend substantially in parallel.
  • Each of the engine load line LP, the upper limit engine load line LS1 ′, and the lower limit engine load line LS2 ′ is set in advance by, for example, storing it as a map in the ROM 82 or the like of the controller 80. Both the engine load line LS1 'and the lower limit engine load line LS2' are used as triggers for switching operation in the forced operation valve means.
  • step S1 the reference pressure value Ps and the detected value P of the pressure sensor 68 are read, and in step S2, it is determined whether or not PM is deposited on the filter body 54, and is not deposited. Is determined (NO), the process returns as it is. However, when it is determined that PM is accumulated (YES), the process proceeds to step S3.
  • step S3 the engine load L at the predetermined engine speed R on the engine load line LP, the upper limit engine load LS1 at the predetermined engine speed R on the upper limit engine load line LS1 ′, and the lower limit engine load.
  • step S4 the routine proceeds to step S4, where the engine load L at the predetermined engine speed R is smaller than the lower limit engine load LS2. Determine whether or not.
  • step S4 when it is determined that the engine load L at the predetermined engine speed R is smaller than the lower limit engine load LS2 (YES), the process proceeds to step S5, and the pressure regulating valve in the forced operation valve means 104 is operated to switch the switching electromagnetic valve 106 to the pilot pressure application state.
  • the engine load that the diesel engine 5 is responsible for increases the amount of discharge pressure on the working unit hydraulic pump 101 side by a predetermined pressure and increases the exhaust gas temperature. 54 playback is executed.
  • step S4 when it is determined in step S4 that the engine load L at the predetermined engine speed R is larger than the lower limit engine load LS2 (NO), the process proceeds to step S6.
  • the engine load L at a predetermined engine speed R is determined to be greater than the upper limit engine load LS1.
  • step S6 when it is determined that the engine load L at the predetermined engine speed R is smaller than the upper limit engine load LS1 (NO), the regeneration of the filter main body 54 by the forced operation valve means is performed as it is. Will continue.
  • step S6 when it is determined in step S6 that the engine load L at the predetermined engine speed R is larger than the upper limit engine load LS1 (YES), the process proceeds to step S7, and the forced operation valve The operation of the pressure regulating valve 104 is stopped and the switching electromagnetic valve 106 is switched to the pilot pressure discharge state to release the increase in engine load due to the forced operating valve means.
  • step S8 the state of the switching operation described above is maintained until an appropriate predetermined time elapses, and when this predetermined time elapses, the process proceeds to step S9, where, as in step S1, After reading the reference pressure value Ps and the detection value P of the pressure sensor 68, the process proceeds to step S10, and in this step S10, it is determined whether or not PM is deposited on the filter body 54.
  • step S10 when it is determined that PM is accumulated on the filter main body 54 (YES), the process returns to before step S3 and the above is repeated.
  • step S10 when it is determined in step S10 that PM is not accumulated in the filter main body 54 (NO), the process proceeds to step S11, and the operation of the pressure regulating valve 104 in the forced operation valve means is stopped. Then, the switching electromagnetic valve 106 is driven to switch to the pilot pressure discharge state, thereby canceling the increase in the engine load due to the forced operation valve means.
  • the filter main body 54 When the filter main body 54 is clogged with respect to the exhaust gas from the diesel engine 5 by the above control, the operating hydraulic pressure in the hydraulic load mechanism is increased by the forced operating valve means, so that the engine load that the diesel engine 5 takes over is increased. And the temperature of the exhaust gas becomes high, so that the filter main body 54 can be regenerated.
  • the forced operation valve means By being configured to cancel the increase in the operating hydraulic pressure, the increase in the engine load by the forced operation valve means can be restricted so as not to exceed the upper limit engine load LS1.
  • the upper limit engine load LS1 set to the side lower than the maximum engine load Lx as appropriate by the load ⁇ L1 is made closer to the maximum engine load Lx, that is, by reducing the load ⁇ L1.
  • the temperature of the exhaust gas can be increased, but on the other hand, when the engine load is increased by the forced operation valve means, the frequency at which the operation of the diesel engine 5 is stopped (engine stall) increases. From the above, it is preferable to set the frequency at which the operation stop (engine stall) occurs in the diesel engine 5 to a value that can reliably reduce the operation frequency.
  • the filter body 54 can be reliably regenerated under a reduced state.
  • the lower limit engine load LS2 promotes regeneration of the filter main body 54 because the exhaust gas temperature can be increased as the lower limit engine load LS2 is brought closer to the upper limit engine load LS1, that is, as the load ⁇ L2 is appropriately reduced. it can.
  • step S8 during the above-described control the state of the switching operation in the forced operation valve means is maintained until an appropriate predetermined time elapses, whereby the number of switching operations in the forced operation valve means. , The durability can be improved, and hunting can be prevented to improve control stability.
  • the engine load that the diesel engine 5 is responsible for is increased or decreased by the hydraulic load mechanism in a state where the engine speed in the diesel engine 5 is kept constant or substantially constant.
  • the forced operation valve means is switched and operated while maintaining a predetermined engine speed, the traveling speed of the tractor 1 and the rotary cultivator
  • FIG. 8 shows a second example of forced operation valve means.
  • the pilot pump 102 of the first embodiment is eliminated, and the pump-side first port 106a of the switching solenoid valve 106 is connected to the discharge side of the working unit hydraulic pump 101. It is different. Other configurations are the same as those of the first embodiment.
  • the pressure regulating valve 104 can be controlled by the self-pressure of the hydraulic fluid discharged from the working unit hydraulic pump 101.
  • the discharge side of the working unit hydraulic pump 101 is branched and connected to the pump-side first port 106a of the switching solenoid valve 106, and a self-pressure is applied to the back pressure chamber 105a of the back pressure mechanism 105 by a switching command from the controller 80.
  • What is necessary is just to comprise so that it may flow in.
  • the switching operation (pressure adjustment) of the pressure adjusting valve 104 becomes possible.
  • the number of necessary pumps can be reduced as compared with the case of the first embodiment, which simplifies the configuration and contributes to a reduction in manufacturing cost.
  • FIG. 9 shows a third example of forced operation valve means.
  • This third example is different from the above-described embodiment in that the ON / OFF control type switching electromagnetic valve 106 is changed to a pilot pressure adjusting electromagnetic valve 116 capable of adjusting the hydraulic oil supply pressure to the back pressure chamber 105a. is doing.
  • the pilot pressure adjusting electromagnetic valve 116 is configured to adjust the pilot pressure applied to the back pressure chamber 105a of the back pressure mechanism 105 by excitation of the electromagnetic solenoid 117 based on control information from the controller 80. Therefore, the discharge pressure on the working part hydraulic pump 101 side in the pressure adjustment valve 104 is adjusted according to the hydraulic oil supply pressure via the pilot pressure adjustment electromagnetic valve 116.
  • the pressure on the working unit hydraulic circuit 103 side in the pressure regulating valve 104 is kept constant as in the case of the first embodiment.
  • pilot pressure adjusting electromagnetic valve 116 is normally set so that pilot pressure is not applied to the pressure adjusting valve 104 (when there is no control information from the controller 80).
  • Other configurations are the same as those of the first embodiment.
  • FIG. 10 shows a fourth example of forced operation valve means.
  • the pressure regulating valve 104 is controlled by the self-pressure of the hydraulic fluid discharged from the working unit hydraulic pump 101.
  • the discharge side of the working unit hydraulic pump 101 is branched and connected to the suction side of the pilot pressure adjusting solenoid valve 116, and the self-pressure flows into the back pressure chamber 105 a of the back pressure mechanism 105 by a switching command from the controller 80.
  • the other configurations are the same as those of the first embodiment.
  • the backhoe 141 includes a crawler type traveling device 142 having a pair of left and right traveling crawlers 143 (shown only on the left side in FIG. 11), and a swivel base 144 (airframe) provided on the traveling device 142.
  • the swivel 144 is configured to be capable of horizontal swivel over all 360 ° directions with a swivel motor (not shown).
  • An earth discharging plate 145 is attached to the front portion of the traveling device 142 so as to be rotatable up and down.
  • the cabin 144 and the diesel engine 5 as a control unit are mounted on the swivel base 144.
  • a working unit 150 having a boom 151, an arm 152, and a bucket 153 for excavation work is provided at the front of the swivel base 144.
  • a cabin 146 has a control seat 148 on which an operator is seated, a throttle lever 166 as a throttle operation means for setting and maintaining the engine rotation speed, and a lever / switch group as a working unit operation means.
  • 167 to 170 (a turning operation lever 167, an arm operation lever 168, a bucket operation switch 169, and a boom operation lever 170) are arranged.
  • the boom 151 which is a component of the working unit 150, is formed in a shape that protrudes forward at the tip side and is bent in a letter shape in side view.
  • a base end portion of the boom 151 is pivotally attached to a boom bracket 154 attached to the front portion of the swivel base 144 so as to be swingable about a horizontal boom shaft 155.
  • a one-rod double-acting boom cylinder 156 for swinging it up and down is disposed on the inner surface (front surface) side of the boom 151.
  • the cylinder side end of the boom cylinder 156 is pivotally supported by the front end of the boom bracket 154 so as to be rotatable.
  • the rod side end of the boom cylinder 156 is pivotally supported by a front bracket 157 fixed to the front surface side (dent side) of the bent portion of the boom 151.
  • a base end portion of a long-angle cylindrical arm 152 is pivotally mounted so as to be swingable about a lateral arm shaft 159.
  • a single-rod double-acting arm cylinder 160 for swinging and swinging the arm 152 is disposed on the front side of the upper surface of the boom 151.
  • the cylinder side end of the arm cylinder 160 is pivotally supported by a rear bracket 158 that is fixed to the back side (protrusion side) of the bent portion of the boom 151.
  • the rod side end portion of the arm cylinder 160 is pivotally supported by an arm bracket 161 fixed to the outer surface (front surface) of the base end side of the arm 152.
  • a bucket 153 serving as an excavation attachment is pivotally attached to the distal end portion of the arm 152 so as to be swiveled around a lateral bucket shaft 162.
  • a one-rod double-acting bucket cylinder 163 for scooping and rotating the bucket 153 is disposed on the outer surface (front surface) side of the arm 152.
  • the cylinder side end of the bucket cylinder 163 is pivotally supported by the arm bracket 161 so as to be rotatable.
  • the rod side end of the bucket cylinder 163 is pivotally supported by the bucket 153 via a connection link 164 and a relay rod 165.
  • the structure of the diesel engine 5 as a power source and its surroundings are basically the same as those shown in FIG.
  • an arm cylinder 160, a bucket cylinder 163, and the like are arranged in the working unit hydraulic circuit 103, and the working unit hydraulic pump 101 is configured to supply hydraulic oil to the arm cylinder 160 and the bucket cylinder 163.
  • the filter regeneration control shown in the first embodiment and other examples of the forced operation valve means shown in FIGS. 8 to 10 can be adopted. The same effect is obtained.
  • the present invention is not limited to the case where the present invention is applied to a diesel engine mounted on a tractor or a backhoe. Needless to say, this is also applicable.

Abstract

 ディーゼル機関5における排気ガス浄化用のフィルタ手段50において、その再生制御を、前記ディーゼル機関にエンストの発生を招来することなく確実に実行することを課題とする。本願発明は、ディーゼル機関にて駆動の油圧負荷機構101と、この油圧負荷機構の作動油圧を増加する状態と作動油圧の増加を解除する状態とに切換作動する強制作動弁手段104とを備え、前記フィルタ手段に詰まりが発生したとき、前記強制作動弁手段は、前記油圧負荷機構の作動油圧を増加して、前記ディーゼル機関におけるエンジン負荷を増大させることによってフィルタ手段の再生を実行する構成であり、更に、前記エンジン負荷が最高エンジン負荷よりも低い側に設定した上限エンジン負荷を越えたときに、前記油圧負荷機構における作動油圧の増加を解除する状態に切換作動する構成である。

Description

ディーゼル機関における排気ガス浄化装置
 本発明は、例えばトラクタやコンバインを含む走行型の農作業車両、バックホウ等の建設機械といった走行車両に、その動力源として搭載されるディーゼル機関において、その排気ガスを浄化処理するための排気ガス浄化装置に関するものである。
 一般に、走行車両に動力源として搭載される等のディーゼル機関においては、その排気ガスを浄化するために、パティキュレートフィルタ(以下、単にフィルタと称する)を用いて排気ガス中の粒子状物質(以下、単にPMと称する)等を捕集することが行われていることは周知のとおりであり、この場合、前記フィルタにて捕集されたPMが所定量を超えると、フィルタ内の流通抵抗が増大し、排気抵抗が増大することによって、エンジン出力の低下をもたらすため、フィルタに堆積したPMを除去して、フィルタのPM捕集能力を回復させる(フィルタを再生させる)ことが必要である。
 このフィルタの再生は、排気ガスの温度が高いときに行なわれる。先行技術としての特許文献1においては、ディーゼル機関からの排気経路のうち前記フィルタよりも上流側(ディーゼル機関側)の部位に電熱式のヒータを設けることにより、このヒータにて排気ガスの温度を上昇させることが開示されている。
特開2001-280121号公報
 しかし、特許文献1の構成では、排気ガスの温度を上昇することのために専用のヒータを必要とするから、部品点数が嵩み、コスト上昇の一因になるという問題があった。また、ヒータによる排気ガスの加熱が局部的とならざるを得ず、排気ガスを一様に加熱できないから、排気ガスを均一に浄化できないばかりか、ヒータに近接する酸化触媒付きフィルタの温度も不均一になって、酸化触媒付きフィルタに割れ等の損傷が発生するおそれが高いという問題もあった。
 本発明は、ディーゼル機関における排気ガスの温度は、このディーゼル機関が受け持つエンジン負荷に比例して高くなることを利用して、前記ディーゼル機関に運転停止(エンスト)等を招来することなく、前記した問題を解消した排気ガス浄化装置を提供することを技術的課題とするものである。
 この技術的課題を達成するため請求項1は、
「ディーゼル機関からの排気経路に配置された排気ガス浄化用のフィルタ手段と、前記ディーゼル機関にて駆動される油圧負荷機構と、この油圧負荷機構における作動油圧を増加する状態と作動油圧の増加を解除する状態とに切換作動するようにした強制作動弁手段とを備え、前記フィルタ手段に詰まりが発生したとき、前記強制作動弁手段にて前記油圧負荷機構における作動油圧を増加することによって、前記ディーゼル機関が受け持つエンジン負荷を増大させて、前記フィルタ手段を再生するように構成されており、更に、前記強制作動弁手段は、前記エンジン負荷が、当該エンジン負荷のうち最高エンジン負荷よりも低い側に設定した上限エンジン負荷を越えたときに、前記油圧負荷機構における作動油圧の増加を解除する状態に切換作動する構成である。」
ことを特徴としている。
 また、請求項2は、
「前記請求項1の記載において、前記強制作動弁手段は、適宜時間を経過してから切換作動する構成である。」
ことを特徴としている。
 更にまた、請求項3は、
「前記請求項1又は2の記載において、前記上限エンジン負荷は、前記ディーゼル機関に運転停止が発生しない状態にまで前記最高エンジン負荷に近づけた値に設定されている。」
ことを特徴としている。
 請求項1によると、ディーゼル機関からの排気ガスに対するフィルタ手段に詰まりが発生すると、強制作動弁手段にて前記油圧負荷機構における作動油圧が増加されることにより、前記ディーゼル機関が受け持つエンジン負荷が増大され、排気ガスの温度が高くなるから、前記フィルタ手段の再生を行なうことができる。
 この場合、前記強制作動弁手段は、前記エンジン負荷が、当該エンジン負荷のうち最高エンジン負荷よりも低い側に設定した上限エンジン負荷を越えたときに、前記油圧負荷機構における作動油圧の増加を解除するように構成されていることにより、前記強制作動弁手段によるエンジン負荷の増加を、前記上限エンジン負荷を越えることがないように規制することができるから、前記強制作動弁手段によるエンジン負荷の増加によって、ディーゼル機関に運転停止(エンスト)が発生することを確実に回避できる。
 その一方において、前記強制作動弁手段は、前記エンジン負荷が、当該エンジン負荷のうち最高エンジン負荷よりも低い側に設定した上限エンジン負荷を越えたときに、前記油圧負荷機構における作動油圧の増加を解除するように構成されていることにより、前記フィルタ手段を再生しているときにおける排気ガスの温度を、ディーゼル機関における最高エンジン負荷のときにおける最高の排気ガス温度に近づけることができるから、前記フィルタ手段における再生を、短い時間で達成できる。
 また、請求項2によると、前記強制作動弁手段における切換作動の回数を少なくできるから、前記強制作動弁手段の耐久性を向上できる利点がある。
 特に、請求項3によると、排気ガスの温度をより高くすることができるから、再生に要する時間を一層に短縮できる。
第1実施形態におけるトラクタの側面図である。 トラクタの平面図である。 エンジン及び排気ガス浄化装置の関係を示す機能ブロック図である。 トラクタの油圧負荷機構における回路図である。 電子ガバナコントローラの機能ブロック図である。 エンジンにおけるエンジン負荷とエンジン回転数との関係を示す図である。 フィルタ再生制御のフローチャートである。 強制作動弁手段の第2例を示す機能ブロック図である。 強制作動弁手段の第3例を示す機能ブロック図である。 強制作動弁手段の第4例を示す機能ブロック図である。 第2実施形態におけるバックホウの側面図である。 バックホウの平面図である。
 以下に、本発明を具体化した実施形態を、走行車両の一例としてのトラクタやバックホウに適用した場合の図面(図1~図12)に基づいて説明する。
 (1).トラクタの概要
 先ず、図1及び図2を参照しながら、第1実施形態であるトラクタ1の概要について説明する。
 前記トラクタ1の走行機体2は、走行部としての左右一対の前車輪3と同じく左右一対の後車輪4とで支持されている。このトラクタ1は、走行機体2の前部に搭載したディーゼル機関5にて後車輪4及び前車輪3を駆動することにより、前後進走行するように構成されている。
 前記ディーゼル機関5はボンネット6にて覆われており、このディーゼル機関5はその下面側に、当該ディーゼル機関5内のクランク軸(図示省略)等を潤滑する潤滑油を貯留するためのオイルパン10が設けられている。
 前記走行機体2の上面にはキャビン7が設置され、該キャビン7の内部には、操縦座席8と、かじ取りすることによって前車輪3の操向方向を左右に動かすようにしたパワーステアリングによる操縦ハンドル(丸ハンドル)9とが配置されている。キャビン7の底部より下側には、ディーゼル機関5に燃料を供給する燃料タンク11が設けられている。
 前記キャビン7内の操縦ハンドル9は、操縦座席8の前方に立設されたステアリングコラム25上に設けられている。ステアリングコラム25の右側には、前記ディーゼル機関5の出力回転数を設定保持するスロットルレバー30と、走行機体2を制動操作するための左右一対のブレーキペダル31とが配置されている。
 前記ステアリングコラム25の左側には、走行機体2の進行方向を前進と後進とに切り換え操作するための前後進切換レバー32と、メインクラッチ(図示省略)を切り作動させるためのクラッチペダル33とが配置されている。また、前記ステアリングコラム25の背面側には、左右ブレーキペダル31を踏み込み位置に保持するための駐車ブレーキレバー34が配置されている。
 前記キャビン7内の床板28のうちステアリングコラム25の右側には、スロットルレバー30にて設定されたエンジン回転数を、図6に示すように、最低のアイドル回転数Roと最高回数Rxとの範囲内で増減速させるためのアクセルペダル35が配置されている。
 前記操縦座席8の左側には、後述するミッションケース17からの走行出力を低速と高速とに切り換えるための副変速レバー40と、後述するPTO軸23の駆動速度を切り換え操作するためのPTO変速レバー36とが配置されている。また、前記操縦座席8の右側には、変速操作用の主変速レバー38と、後述するロータリ耕耘機15の高さ位置を手動で変更調節するための作業部ポジションレバー39とが配置されている。操縦座席8の下方には、左右の後車輪4を等速で回転駆動させる操作を実行するためのデフロックペダル37が配置されている。
 一方、前記走行機体2は、フロントバンパ12及び前車軸ケース13を有するエンジンフレーム14と、このエンジンフレーム14の後部にボルトにて着脱自在に固定する左右の機体フレーム16とにより構成されている。この機体フレーム16の後部には、前記ディーゼル機関5からの回転動力を適宜変速して前後四輪3、3、4、4に伝達するミッションケース17が搭載されている。この後車輪4は、ミッションケース17の外側面から外向きに突出するように装着された後車軸ケース18を介して、ミッションケース17に取り付けられている。左右の後車輪4の上方は、機体フレーム16に固定されたフェンダ19にて覆われている。
 前記ミッションケース17の後部上面には、作業部としてのロータリ耕耘機15等を昇降動させるための油圧式昇降機構20が着脱可能に取り付けられている。前記ロータリ耕耘機15は、前記ミッションケース17の後部に、一対の左右ロワーリンク21及びトップリンク22からなる3点リンク機構を介して連結されている。ミッションケース17の後側面には、ロータリ耕耘機15にPTO駆動力を伝達するためのPTO軸23が後ろ向きに突設されている。
 前記油圧式昇降機構20には、単動形の昇降制御油圧シリンダ95(図4参照)にて上下回動可能な一対の左右リフトアーム96が設置されている。進行方向に向かって左側のロワーリンク21とリフトアーム96とは、左リフトロッド97を介して連結されている。進行方向に向かって右側のロワーリンク21とリフトアーム96とは、右リフトロッドとしての複動形の傾斜制御油圧シリンダ98及びそのピストンロッド99を介して連結されている。
 (2).ディーゼル機関及びその周辺の構造
 次に、図3~図5を参照しながら、前記ディーゼル機関5及びその周辺の構造について説明する。
 前記トラクタ1において、その動力源としての前記ディーゼル機関5は、上面にシリンダヘッド41が締結されたシリンダブロック(図示省略)を備えており、シリンダブロックの下面に潤滑油貯留用のオイルパン10が締結されている。シリンダヘッド41の一側面には吸気マニホールド42が接続されており、他側面には排気マニホールド43が接続されている。
 シリンダブロックの側面のうち吸気マニホールド42の下方には、ディーゼル機関5の各燃焼室(副室)内に燃料を送り込むための燃料噴射ポンプ44(図5参照)が設けられている。詳細は図示していないが、吸気マニホールド42の上流側には吸気管45を介してエアクリーナが取り付けられている。
 この場合、エアクリーナにて一旦ろ過された空気が、吸気管45及び吸気マニホールド42を介して、ディーゼル機関5の各気筒内(吸気行程の気筒内)に導入される。そして、各気筒の圧縮行程完了時に、燃料タンク11から吸い上げられた燃料を燃料噴射ポンプ44にて各燃焼室(副室)内に圧送することにより、各燃焼室にて混合気の自己着火燃焼に伴う膨張行程が行われる。
 前記排気マニホールド43の先端側には、排気管46を介して、フィルタ手段の一例であるパティキュレートフィルタ50(以下、単にフィルタ手段と称する)が接続されている。膨張行程後の排気行程において各気筒から排気マニホールド43に排出された排気ガスは、排気管46及び前記フィルタ手段50を経由して浄化処理をされてから外部に放出される。
 前記ディーゼル機関5は、以下に述べるように、トラクタ1に搭載したコントローラ80にて制御される。
 すなわち、このコントローラ80には、燃料供給装置である燃料噴射ポンプ44に設けられた電子ガバナ87と、ディーゼル機関5におけるエンジン回転数Rを検出する回転センサ88と、燃料噴射ポンプ44のラック位置から燃料噴射量を検出する負荷検出手段としてのラック位置センサ89と、スロットルレバー30の操作位置を検出するスロットルポテンショ90とが接続されている。
 前記スロットルレバー30を手動操作すると、コントローラ80は、エンジン回転数Rがスロットルレバー30による設定回転数となるように、スロットルポテンショ90の検出情報に基づいてラック駆動用の電磁ソレノイド(図示省略)を駆動させ、燃料噴射ポンプ44のラック位置を調節する。
 このため、前記ディーゼル機関5におけるエンジン回転数Rはスロットルレバー30の位置に応じた値に保持されるように自動制御される。
 一方、前記フィルタ手段50は、排気ガス中の粒子状物質(以下、PMという)等を捕集するためのものであり、耐熱金属材料製のケーシング51内にある略筒型のフィルタケース52に、例えば白金等の酸化触媒53とフィルタ本体54とを直列に並べて収容してなるものである。
 前記フィルタ本体54は、多孔質な(ろ過可能な)隔壁にて区画された多数のセルを有するハニカム構造になっている。
 前記ケーシング51の一端部の側面には、排気管46に連通する排気導入口55が設けられている。前記ケーシング51の一端部は第1底板56にて塞がれており、フィルタケース52のうち第1底板56に臨む一端部は第2底板57にて塞がれている。ケーシング51とフィルタケース52との間の環状隙間、並びに両底板56、57間の隙間には、ガラスウールのような断熱材58が酸化触媒53及びフィルタ本体54の周囲を囲うように充填されている。
 前記ケーシング51の他側部は2枚の蓋板59、60にて塞がれていて、これら両蓋板59、60を略筒型の排気排出口61が貫通している。また、両蓋板59、60の間は、フィルタケース52内に複数の連通管62を介して連通する共鳴室63になっている。
 前記ケーシング51の一端部における側面に形成された排気導入口55には排気ガス導入管65が挿入されている。この排気ガス導入管65の先端は、ケーシング51を横断して排気導入口55と反対側の側面に突出している。排気ガス導入管65の外周面には、フィルタケース52に向けて開口する複数の連通穴66が形成されている。排気ガス導入管65のうち排気導入口55と反対側の側面に突出する部分は、これに着脱可能に螺着された蓋体67にて塞がれている。
 前記蓋体67には、フィルタ本体54の詰まり状態を検出する詰まり検出手段の一例として、圧力センサ68が設けられている。圧力センサ68は、例えばピエゾ抵抗効果を利用した周知構造のものでよい。この場合は、フィルタ本体54にPMが堆積していないとき(フィルタ50が新品のとき)におけるフィルタ50上流側の圧力Ps(基準圧力値)を、後述するコントローラ80のROM82等に予め記憶させておき、同じ測定箇所における現在の圧力Pを圧力センサ68にて検出し、基準圧力値Psと圧力センサ68の検出値Pとの圧力差ΔPを求め、当該圧力差ΔPに基づいてフィルタ本体54のPM堆積量が換算(推定)される。
 なお、ディーゼル機関5の排気経路のうちフィルタ50を挟んで上下流側に、それぞれ圧力センサを配置し、両者の検出値の差からフィルタ本体54のPM堆積量を換算(推定)するようにしてもよい。
 上記の構成において、ディーゼル機関5からの排気ガスは、排気導入口55を介して排気ガス導入管65に入って、排気ガス導入管65に形成された各連通穴66からフィルタケース52内に噴出し、フィルタケース52内の広い領域に分散したのち、酸化触媒53からフィルタ本体54の順に通過して浄化処理される。排気ガス中のPMは、この段階でフィルタ本体54における各セル間の多孔質な仕切り壁を通り抜けできずに捕集される。その後、酸化触媒53及びフィルタ本体54を通過した排気ガスが排気排出口61から放出される。
 前記排気ガスが酸化触媒53及びフィルタ本体54を通過するに際して、排気ガス温度が再生可能温度(例えば約300℃)を超えていれば、酸化触媒53の作用にて、排気ガス中のNO(一酸化窒素)が不安定なNO(二酸化窒素)に酸化する。そして、NOがNOに戻る際に放出するO(酸素)にて、フィルタ本体54に堆積したPMが酸化除去されることにより、フィルタ本体54のPM捕集能力が回復する(フィルタ本体54が再生する)ことになる。
 前記ディーゼル機関5における動力は、トラクタ1の走行することのためにミッションケース17に出力されるほか、前記作業部としてのロータリ耕耘機15及びパワーステアリング機構にも出力されることに加えて、後述する油圧負荷機構に対しても、勿論前記以外の機構に対しても出力される。
 この油圧負荷機構の一例として、ディーゼル機関5における出力軸24の回転動力にて駆動する作業部用油圧ポンプ101及びパイロットポンプ102が設けられている。
 この作業部用油圧ポンプ101は、油圧式昇降機構20内にある昇降制御油圧シリンダ95や傾斜制御油圧シリンダ98に作動油を供給するためのものである。
 一方、パイロットポンプ102は、後述する切換電磁弁106にパイロット圧を付加するためのものである。
 両ポンプ101、102にはディーゼル機関5から突出した油圧駆動軸24が貫通しており、両ポンプ101、102は油圧駆動軸24の回転にて駆動するように構成されている。すなわち、両ポンプ101、102を駆動させる油圧駆動軸24は共通する1本の軸になっている。
 前記作業部用油圧ポンプ101の吸引側は、作動油タンクとしてのミッションケース17に接続されている。この作業部用油圧ポンプ101の吐出側は、後述する背圧機構105付きの圧力調整弁104を介して作業部油圧回路103に接続されている。
 一方、前記パイロットポンプ102の吸引側は、作動油タンクとしてのミッションケース17に接続されている。パイロットポンプ102の吐出側は、切換電磁弁106のポンプ側第1ポート106aに接続されている。
 前記圧力調整弁104は、作業部油圧回路103側の圧力・流量を一定に保持し、作業部用油圧ポンプ101の吐出側の圧力を2段階に切り換えるためのものであり、背圧機構105におけるピストン105bを介してのバネ105cの弾性力にて、作業部用油圧ポンプ101側で圧力上昇のない通常状態と、作業部用油圧ポンプ101側の圧力を所定圧だけ増大させる高圧状態とに切換作動するように構成されている。
 前記切換電磁弁106は、パイロットポンプ102からのパイロット圧を圧力調整弁104の背圧機構105に付加する3ポート2位置切換形のものであり、後述するコントローラ80からの制御情報に基づく電磁ソレノイド107の励磁にて、背圧機構105の背圧室105aへのパイロット圧付加状態と、背圧室105aからのパイロット圧排出状態とに切換駆動するように構成されている。
 前述の通り、切換電磁弁106のポンプ側第1ポート106aはパイロットポンプ102の吐出側に接続されている。切換電磁弁106のポンプ側第2ポート106bは作動油タンクとしてのミッションケース17に接続されている。切換電磁弁106の背圧側ポート106cは背圧機構105の背圧室105aに接続されている。
 前記切換電磁弁106がパイロット圧付加状態に切換駆動すると、パイロットポンプ102から切換電磁弁106を経由した作動油が背圧機構105の背圧室105aに流入して、ピストン105bを介してバネ105cを圧縮することにより、圧力調整弁104が作業部用油圧ポンプ101側の圧力を所定圧だけ増大させる高圧状態に切換作動する。
 そうすると、圧力調整弁104の作用にて、作業部用油圧ポンプ101の吐出圧力(作動量又は負荷といってもよい)が増大し、これに伴い前記ディーゼル機関5が全体として受け持つエンジン負荷は、これに走行駆動のためのエンジン負荷、ロータリ耕耘機15を駆動するためのエンジン負荷、及びパワーステアリングを駆動するためのエンジン負荷の合計に、前記作業部用油圧ポンプ101側の吐出圧力を所定圧だけ増大させた分のエンジン負荷が加算されることにより、前記作業部用油圧ポンプ101側の吐出圧力を所定圧だけ増大した分だけ増加する。
 その結果、スロットルレバー30による設定回転数維持のために、前記ディーゼル機関5が受け持つエンジン負荷(燃料噴射量)が増大して、排気ガス温度が上昇することになる。
 前記切換電磁弁106がパイロット圧排出状態に切換作動すると、背圧機構105の背圧室105aから作動油が流出して、バネ105cが自身の弾性復元力にて伸長することにより、圧力調整弁104の作用にて作業部用油圧ポンプ101の吐出圧力が通常状態まで低下し、これに伴い前記ディーゼル機関5が受け持つエンジン負荷が低減することになる。
 この場合、作業部油圧回路103側へは、圧力調整弁104のない場合とほぼ同じ圧力及び流量の作動油が供給されるため、圧力調整弁104の存在に起因した作業部油圧回路103への影響は最小限に抑えられることになる。
 前記圧力調整弁104と切換電磁弁106との組合せは、強制作動弁手段に相当するものである。なお、切換電磁弁106は通常(コントローラ80からの制御情報がないとき)、作業部用油圧ポンプ101と作業部油圧回路103との間での作動油の循環供給をスムーズに行うために、パイロット圧排出状態になっている。従って、圧力調整弁104は普段、作業部用油圧ポンプ101側で圧力上昇のない通常状態になっている。
 図4に詳細に示すように、前記作業部油圧回路103は、単動形の昇降制御油圧シリンダ95と複動形の傾斜制御油圧シリンダ98とを備えており、作業部用油圧ポンプ101は、昇降制御油圧シリンダ95への作動油の供給を制御するための昇降用油圧切換弁111と、傾斜制御油圧シリンダ98に作動油を供給制御するための傾斜制御電磁弁112とに、分流弁113を介して接続されている。
 前記昇降用油圧切換弁111は、作業部ポジションレバー39の手動操作にて切換作動可能に構成されている。傾斜制御電磁弁112は、油圧式昇降機構20の上面に配置されたローリングセンサ(図示省略)及び作業部ポジションセンサ(図示省略)の検出情報に対応した電磁ソレノイドの駆動にて自動的に切換作動するように構成されている。
 前記作業部ポジションレバー39の手動操作にて昇降用油圧切換弁111が切換作動すると、昇降制御油圧シリンダ95が伸縮駆動して、左右リフトアーム96を昇降回動させる。その結果、左右ロワーリンク21を介してロータリ耕耘機15が昇降動することになる。
 また、ローリングセンサ及び作業機ポジションセンサの検出情報に基づいて傾斜制御電磁弁112が自動的に切換作動すると、傾斜制御油圧シリンダ98が伸縮駆動して、ピストンロッド99の長さが変化する。その結果、左右ロワーリンク21を介してロータリ耕耘機15が左右に傾斜することになる。なお、作業部油圧回路103には、リリーフ弁や流量調整弁、チェック弁等も備えている(図4参照)。
 (3).フィルタ再生制御を実行するための構成
 次に、図3、図5及び図6を参照しながら、フィルタ再生制御を実行するための構成について説明する。
 前記トラクタ1に搭載された制御手段としてのコントローラ80は、前記したようにディーゼル機関5を制御するほか、フィルタ50における圧力センサ68の検出情報に基づいて、前記強制作動弁手段における圧力調整弁104の圧力調整にて、作業部用油圧ポンプ101の吐出圧力を増大させることにより、ディーゼル機関5が受け持つエンジン負荷Lを増大させるフィルタ再生制御を実行するものであり、各種演算処理や制御を実行するCPU81の他、制御プログラムやデータを記憶させるためのROM82、制御プログラムやデータを一時的に記憶させるためのRAM83、及び入出力インターフェイス等を備えている。
 このコントローラ80には、詰まり検出手段としての圧力センサ68と、切換電磁弁106の駆動を制御する電磁ソレノイド107とが接続されている。
 (4).フィルタ再生制御の説明
 次に、図6及び図7を参照しながら、フィルタ再生制御の一例について説明する。
 図6は、前記ディーゼル機関5の駆動時において、その最低のアイドル回転数Roと最高回数Rxとの間における任意のエンジン回転数Rと、このときにおける最高エンジン負荷Lxとのエンジン負荷ラインLPを示しており、このエンジン負荷ラインLPは、実線で示すように、上向き凸の形状であり、このエンジン負荷ラインLPの範囲内において、前記トラクタ1における全ての駆動、つまり、走行駆動、ロータリ耕耘機15の駆動、油圧負荷機構の駆動及びパワーステアリングの駆動等の全ての駆動をトータル的に負担している。
 また、エンジン負荷ラインLPの範囲内における排気ガスの温度は、エンジン負荷に比例するから、前記エンジン負荷ラインLPの内側においては、排気ガスの温度が、前記フィルタ50を再生することが可能な温度(例えば約300℃)の場合における境界ラインBLにて上下に分断される。
 この境界ラインBLを挟んで上側の領域は、フィルタ本体54に堆積したPMを酸化除去できる(酸化触媒53による酸化作用が働く)再生可能領域であり、下側の領域は、PMが酸化除去されずにフィルタ本体54に堆積する再生不能領域である。
 更に、前記境界ラインBLを挟んで上側の再生可能領域のうち、任意のエンジン回転数Rのときにおける最高エンジン負荷Lxよりも適宜負荷ΔL1だけ低い上限エンジン負荷LS1の位置には、上限エンジン負荷ラインLS1′が、一点鎖線で示すように、前記エンジン負荷ラインLPと略平行に延びるように設定されいる。
 これに加えて、前記境界ラインBLを挟んで上側の領域のうち、前記上限エンジン負荷LS1よりも適宜負荷ΔL2だけ低い下限エンジン負荷LS2の位置には、下限エンジン負荷ラインLS2′が、二点鎖線で示すように、前記エンジン負荷ラインLPと略平行に延びるように設定されている。
 これらエンジン負荷ラインLP、上限エンジン負荷ラインLS1′及び下限エンジン負荷ラインLS2′の各々は、コントローラ80のROM82等に、例えばマップとして記憶させる等して、予め設定されているものであり、前記上限エンジン負荷ラインLS1′及び下限エンジン負荷ラインLS2′の両方を、前記強制作動弁手段における切換え作動のトリガーとしている。
 図7に示すフローチャートを用いて、フィルタ再生制御の流れを説明する。
 先ず、スタートに続くステップS1において、前記基準圧力値Psと圧力センサ68の検出値Pとを読み込み、ステップS2で、フィルタ本体54にPMが堆積しているか否かを判別し、堆積していないと判別されたとき(NO)には、そのままリターンするが、PMが堆積していると判別されたとき(YES)には、ステップS3に移行する。
 このステップS3において、前記エンジン負荷ラインLP上における所定エンジン回転数Rでのエンジン負荷L、及び前記上限エンジン負荷ラインLS1′上における所定エンジン回転数Rでの上限エンジン負荷LS1、並びに前記下限エンジン負荷ラインLS2′上における所定エンジン回転数Rでの下限エンジン負荷LS2を読み込んだのち、ステップS4に移行して、ここで、所定エンジン回転数Rにおけるエンジン負荷Lが、下限エンジン負荷LS2よりも小さいか否かを判別する。
 このステップS4において、所定のエンジン回転数Rにおけるエンジン負荷Lが、下限エンジン負荷LS2よりも小さいと判別されたとき(YES)には、ステップS5に移行し、前記強制作動弁手段における圧力調整弁104を作動させて、切換電磁弁106をパイロット圧付加状態に切換え作動する。
 これにより、前記ディーゼル機関5が受け持つエンジン負荷は、作業部用油圧ポンプ101側の吐出圧力を所定圧だけ増大させる高圧状態にする分だけ増加して、排気ガスの温度が上昇するから、フィルタ本体54の再生が実行される。
 これに対して、前記ステップS4において、所定エンジン回転数Rにおけるエンジン負荷Lが、下限エンジン負荷LS2よりも大きいと判別されたとき(NO)には、ステップS6に移行することにより、このステップS6において、所定のエンジン回転数Rにおけるエンジン負荷Lが、上限エンジン負荷LS1よりも大きいか否かを判別する。
 このステップS6において、所定のエンジン回転数Rにおけるエンジン負荷Lが、上限エンジン負荷LS1よりも小さいと判別されたとき(NO)には、そのまま、前記強制作動弁手段によるフィルタ本体54の再生実行が継続される。
 これに対し、前記ステップS6において、所定のエンジン回転数Rにおけるエンジン負荷Lが、上限エンジン負荷LS1よりも大きいと判別されたとき(YES)には、ステップS7に移行して、前記強制作動弁手段における圧力調整弁104の作動を止めて、切換電磁弁106をパイロット圧排出状態に切換え作動することにより、前記強制作動弁手段によるエンジン負荷の増加を解除する。
 次いで、ステップS8において、前記した切換え作動の状態を、適宜の所定時間を経過するまで保持し、この所定時間を経過すると、ステップS9に移行して、ここで、前記ステップS1と同様に、前記基準圧力値Psと圧力センサ68の検出値Pとを読み込んだのち、ステップS10に移行し、このステップS10において、フィルタ本体54にPMが堆積しているか否かを判別する。
 前記ステップS10において、フィルタ本体54にPMが堆積していると判別されたとき(YES)には、前記ステップS3の前に戻して、前記したことを繰り返す。
 一方、前記ステップS10において、フィルタ本体54にPMが堆積していないと判別されたとき(NO)には、ステップS11に移行して、前記強制作動弁手段における圧力調整弁104を作動を止めて、切換電磁弁106をパイロット圧排出状態に切換駆動することにより、前記強制作動弁手段によるエンジン負荷の増加を解除する。
 以上の制御により、ディーゼル機関5からの排気ガスに対するフィルタ本体54に詰まりが発生すると、強制作動弁手段にて前記油圧負荷機構における作動油圧が増加されることにより、前記ディーゼル機関5が受け持つエンジン負荷が増大され、排気ガスの温度が高くなるから、前記フィルタ本体54の再生を行なうことができる。
 この場合、前記強制作動弁手段は、前記エンジン負荷が、当該エンジン負荷のうち最高エンジン負荷Lxよりも適宜負荷ΔL1だけ低い側に設定した上限エンジン負荷LS1を越えたときに、前記油圧負荷機構における作動油圧の増加を解除するように構成されていることにより、前記強制作動弁手段によるエンジン負荷の増加を、前記上限エンジン負荷LS1を越えることがないように規制できる。
 この場合、前記エンジン負荷のうち最高エンジン負荷Lxよりも適宜負荷ΔL1だけ低い側に設定した上限エンジン負荷LS1は、これを前記最高エンジン負荷Lxに近づけること、つまり、前記負荷ΔL1を小さくすることにより、排気ガスの温度を高くすることができるが、その反面、前記強制作動弁手段にてエンジン負荷を増加したときに前記ディーゼル機関5に運転停止(エンスト)が発生する頻度が増大することになるから、前記ディーゼル機関5に運転停止(エンスト)が発生する頻度を確実に低減できる程度の値に設定することが好ましく、これにより、前記ディーゼル機関5に運転停止(エンスト)が発生する頻度を確実に低減した状態のもとで、前記フィルタ本体54の確実な再生を実行できる。
 一方、エンジン負荷Lが、前記上限エンジン負荷LS1を越えることで、油圧負荷機構による作動油圧の増加が解除されると、前記エンジン負荷Lは低下する。このエンジン負荷Lの低下が、前記下限エンジン負荷LS2を下回ると、再度、油圧負荷機構による作動油圧の増加が実行されて、エンジン負荷Lが高い状態に保たれる。
 この場合、前記下限エンジン負荷LS2は、これを前記上限エンジン負荷LS1に近づけるほど、つまり、前記適宜負荷ΔL2を小さくするほど、排気ガスの温度を高くすることができるからフィルタ本体54の再生を促進できる。
 しかし、前記負荷ΔL2を小さくするほど、前記強制作動弁手段における切換え作動が頻繁に行なわれることにより、ハンチングによる制御不安定性を招来するばかりか、前記強制作動弁手段の耐久性の低下を招来することになるから、この点を考慮して設定することが好ましい。
 また、前記した制御中のステップS8において、前記強制作動弁手段における切換え作動の状態を、適宜の所定時間を経過するまで保持するようにしていることにより、前記強制作動弁手段における切換え作動の回数を少なくできて、その耐久性を向上できるとともに、ハンチングを防止できて制御の安定性を向上できる。
 特に、前記した実施の形態においては、前記ディーゼル機関5におけるエンジン回転数を一定又は略一定に保持した状態で、前記ディーゼル機関5が受け持つエンジ負荷を前記油圧負荷機構にて増減してフィルタ本体54の再生を実行するという構成であり、換言すると、所定のエンジン回転数を維持しながら前記強制作動弁手段を切換え作動するように構成しているから、前記トラクタ1における走行速度や、ロータリ耕耘機15等による各種の作業速度が、前記フィルタ本体54の再生実行によって変動することを確実に回避できる。
 (5).強制作動弁手段の別例
 図8には、強制作動弁手段の第2例を示している。
 この第2例では、第1実施形態のパイロットポンプ102をなくして、切換電磁弁106のポンプ側第1ポート106aを作業部用油圧ポンプ101の吐出側に接続した点において、前述の実施形態と相違している。その他の構成は第1実施形態と同様である。
 更に、この第2例では、図8に示すように、圧力調整弁104を作業部用油圧ポンプ101から吐出される作動油の自己圧によって制御することも可能である。
 すなわち、作業部用油圧ポンプ101の吐出側を、切換電磁弁106のポンプ側第1ポート106aに分岐接続し、コントローラ80からの切換指令にて背圧機構105の背圧室105aに自己圧が流入するように構成すればよい。この場合、背圧室105aのピストン断面積を圧力調整弁104の調圧室断面積よりも大きく取ることによって、圧力調整弁104の切換作動(圧力調整)が可能になる。かかる構成を採用すると、第1実施形態の場合よりも必要ポンプ数が少なくて済むので、構成が簡単になり、製造コストの抑制に寄与できるのである。
 図9には、強制作動弁手段の第3例を示している。
 この第3例では、ON・OFF制御タイプの切換電磁弁106を、背圧室105aへの作動油供給圧力を調節可能なパイロット圧調整電磁弁116に変更した点において、前記した実施形態と相違している。
 パイロット圧調整電磁弁116は、コントローラ80からの制御情報に基づいた電磁ソレノイド117の励磁にて、背圧機構105の背圧室105aに付加されるパイロット圧を調節するように構成されている。このため、圧力調整弁104における作業部用油圧ポンプ101側の吐出圧力は、パイロット圧調整電磁弁116を経由した作動油供給圧力に応じて調節されることになる。圧力調整弁104における作業部油圧回路103側の圧力は、第1例の実施形態の場合と同様に一定に保持される。
 なお、パイロット圧調整電磁弁116は通常(コントローラ80からの制御情報がないとき)、圧力調整弁104にパイロット圧を付加しないように設定されている。その他の構成は第1実施形態と同様である。
 図10は、強制作動弁手段の第4例を示している。
 この第4例では、圧力調整弁104を、作業部用油圧ポンプ101から吐出される作動油の自己圧によって制御するものである。
 すなわち、作業部用油圧ポンプ101の吐出側を、パイロット圧調整電磁弁116の吸引側に分岐接続し、コントローラ80からの切換指令にて背圧機構105の背圧室105aに自己圧が流入するように構成したものであり、その他の構成は第1実施形態と同様である。
 (7).バックホウの概略構造
 図11及び図12を参照しながら、ディーゼル機関5が搭載される走行車両の第2実施形態として、バックホウ141を採用した場合に説明する。なお、図12では説明の便宜上、キャビン146の図示を省略している。
 第2実施形態であるバックホウ141は、左右一対の走行クローラ143(図11では左側のみ示す)を有するクローラ式の走行装置142と、走行装置142上に設けられた旋回台144(機体)とを備えている。旋回台144は、旋回モータ(図示省略)にて、360°の全方位にわたって水平旋回可能に構成されている。走行装置142の前部には排土板145が昇降回動可能に装着されている。
 旋回台144には、操縦部としてのキャビン146とディーゼル機関5とが搭載されている。旋回台144の前部には、掘削作業のためのブーム151、アーム152及びバケット153を有する作業部150が設けられている。図12に示すように、キャビン146の内部には、オペレータが着座する操縦座席148、エンジン回転速度を設定保持するスロットル操作手段としてのスロットルレバー166、並びに、作業部操作手段としてのレバー・スイッチ群167~170(旋回操作レバー167、アーム操作レバー168、バケット操作スイッチ169及びブーム操作レバー170)等が配置されている。
 作業部150の構成要素であるブーム151は、先端側を前向きに突き出して側面視く字状に屈曲した形状に形成されている。ブーム151の基端部は、旋回台144の前部に取り付けられたブームブラケット154に、横向きのブーム軸155を中心にして首振り回動可能に枢着されている。ブーム151の内面(前面)側には、これを上下に首振り回動させるための片ロッド複動形のブームシリンダ156が配置されている。ブームシリンダ156のシリンダ側端部は、ブームブラケット154の前端部に回動可能に枢支されている。ブームシリンダ156のロッド側端部は、ブーム151における屈曲部の前面側(凹み側)に固定された前ブラケット157に回動可能に枢支されている。
 ブーム151の先端部には、長手角筒状のアーム152の基端部が、横向きのアーム軸159を中心にして首振り回動可能に枢着されている。ブーム151の上面前部側には、アーム152を首振り回動させるための片ロッド複動形のアームシリンダ160が配置されている。アームシリンダ160のシリンダ側端部は、ブーム151における屈曲部の背面側(突出側)に固定された後ブラケット158に回動可能に枢支されている。アームシリンダ160のロッド側端部は、アーム152の基端側外面(前面)に固着されたアームブラケット161に回動可能に枢支されている。
 アーム152の先端部には、掘削用アタッチメントとしてのバケット153が、横向きのバケット軸162を中心にして掬い込み回動可能に枢着されている。アーム152の外面(前面)側には、バケット153を掬い込み回動させるための片ロッド複動形のバケットシリンダ163が配置されている。バケットシリンダ163のシリンダ側端部は、アームブラケット161に回動可能に枢支されている。バケットシリンダ163のロッド側端部は、連結リンク164及び中継ロッド165を介してバケット153に回動可能に枢支されている。
 前記バックホウ141において、その動力源としての前記ディーゼル機関5及びその周辺の構造は、図3に示すものと基本的に同じである。ただし、作業部油圧回路103中には、アームシリンダ160やバケットシリンダ163等が配置され、作業部用油圧ポンプ101は、アームシリンダ160やバケットシリンダ163に作動油を供給する構成になっている。
 第2実施形態の場合も、第1実施形態で示したフィルタ再生制御(図6及び図7)、並びに、図8~図10の強制作動弁手段の別例を採用でき、第1実施形態と同様の作用効果を奏する。
 (8).その他
 本発明は、前述のように、トラクタやバックホウに搭載したディーゼル機関に適用した場合に限らず、コンバイン又は乗用型田植機等の走行型農作業車両や、その他の走行車両に搭載したディーゼル機関に対しても適用できることはいうまでもない。
  1      トラクタ
  5      ディーゼル機関
  30     スロットルレバー
  44     燃料噴射ポンプ
  50     パティキュレートフィルタ(フィルタ手段)
  53     酸化触媒
  54     フィルタ本体
  68     圧力センサ(詰まり検出手段)
  80     制御手段としてのコントローラ
  87     電子ガバナ
  88     エンジン回転センサ
  89     ラック位置(エンジン負荷)センサ
  101    作業部用油圧ポンプ(油圧負荷機構)
  104    圧力調整弁(強制作動弁手段)
  106    切換電磁弁        

Claims (3)

  1.  ディーゼル機関からの排気経路に配置された排気ガス浄化用のフィルタ手段と、前記ディーゼル機関にて駆動される油圧負荷機構と、この油圧負荷機構における作動油圧を増加する状態と作動油圧の増加を解除する状態とに切換作動するようにした強制作動弁手段とを備え、前記フィルタ手段に詰まりが発生したとき、前記強制作動弁手段にて前記油圧負荷機構における作動油圧を増加することによって、前記ディーゼル機関が受け持つエンジン負荷を増大させて、前記フィルタ手段を再生するように構成されており、更に、前記強制作動弁手段は、前記エンジン負荷が、当該エンジン負荷のうち最高エンジン負荷よりも低い側に設定した上限エンジン負荷を越えたときに、前記油圧負荷機構における作動油圧の増加を解除する状態に切換作動する構成であることを特徴とするディーゼル機関における排気ガス浄化装置。
  2.  前記請求項1の記載において、前記強制作動弁手段は、適宜時間を経過してから切換作動する構成であることを特徴とするディーゼル機関における排気ガス浄化装置。
  3.  前記請求項1又は2の記載において、前記上限エンジン負荷は、前記ディーゼル機関に運転停止が発生しない状態にまで前記最高エンジン負荷に近づけた値に設定されていることを特徴とするディーゼル機関における排気ガス浄化装置。
PCT/JP2010/063109 2009-08-04 2010-08-03 ディーゼル機関における排気ガス浄化装置 WO2011016454A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009181804A JP2011032975A (ja) 2009-08-04 2009-08-04 ディーゼル機関における排気ガス浄化装置
JP2009-181804 2009-08-04

Publications (1)

Publication Number Publication Date
WO2011016454A1 true WO2011016454A1 (ja) 2011-02-10

Family

ID=43544349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/063109 WO2011016454A1 (ja) 2009-08-04 2010-08-03 ディーゼル機関における排気ガス浄化装置

Country Status (2)

Country Link
JP (1) JP2011032975A (ja)
WO (1) WO2011016454A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190287A (ja) * 2013-03-28 2014-10-06 Hino Motors Ltd 排気浄化装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137968A (ja) * 2002-10-17 2004-05-13 Toyota Industries Corp 産業車両用エンジンの排気浄化装置および排気浄化方法
JP2005069148A (ja) * 2003-08-26 2005-03-17 Toyota Industries Corp ディーゼルエンジン用排気ガス浄化フィルタの再生装置及びディーゼルエンジンシステム
JP2009138538A (ja) * 2007-12-04 2009-06-25 Hitachi Constr Mach Co Ltd 作業機械
JP2009264315A (ja) * 2008-04-28 2009-11-12 Yanmar Co Ltd 排気ガス浄化装置
JP2010053722A (ja) * 2008-08-26 2010-03-11 Yanmar Co Ltd ディーゼルエンジン

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4161546B2 (ja) * 2001-06-26 2008-10-08 いすゞ自動車株式会社 連続再生型ディーゼルパティキュレートフィルタ装置の再生制御方法
JP2005009381A (ja) * 2003-06-18 2005-01-13 Hitachi Constr Mach Co Ltd ハイブリッド式建設機械
JP2007040220A (ja) * 2005-08-04 2007-02-15 Mitsubishi Fuso Truck & Bus Corp 排気浄化装置
JP4816099B2 (ja) * 2006-01-23 2011-11-16 三菱自動車工業株式会社 車両の発電制御装置
JP2008088858A (ja) * 2006-09-29 2008-04-17 Iseki & Co Ltd ディーゼルエンジン
JP4100449B1 (ja) * 2007-01-26 2008-06-11 いすゞ自動車株式会社 排気ガス浄化システムの制御方法及び排気ガス浄化システム
JP2009036177A (ja) * 2007-08-03 2009-02-19 Denso Corp 内燃機関の排気浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004137968A (ja) * 2002-10-17 2004-05-13 Toyota Industries Corp 産業車両用エンジンの排気浄化装置および排気浄化方法
JP2005069148A (ja) * 2003-08-26 2005-03-17 Toyota Industries Corp ディーゼルエンジン用排気ガス浄化フィルタの再生装置及びディーゼルエンジンシステム
JP2009138538A (ja) * 2007-12-04 2009-06-25 Hitachi Constr Mach Co Ltd 作業機械
JP2009264315A (ja) * 2008-04-28 2009-11-12 Yanmar Co Ltd 排気ガス浄化装置
JP2010053722A (ja) * 2008-08-26 2010-03-11 Yanmar Co Ltd ディーゼルエンジン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014190287A (ja) * 2013-03-28 2014-10-06 Hino Motors Ltd 排気浄化装置

Also Published As

Publication number Publication date
JP2011032975A (ja) 2011-02-17

Similar Documents

Publication Publication Date Title
WO2009133635A1 (ja) 排気ガス浄化装置
JP5584882B2 (ja) 作業車両の排気ガス浄化システム
JP5548882B2 (ja) 作業車両の排気ガス浄化システム
JP5788158B2 (ja) 作業車両の駆動系制御装置
WO2012172951A1 (ja) 建設機械
JP5420513B2 (ja) 油圧作業機
JP5730679B2 (ja) エンジン装置
KR20140116399A (ko) 건설 기계
KR20130107270A (ko) 작업차량의 구동계 제어장치
JP5572826B2 (ja) 排気ガス浄化システム
JP2012246900A (ja) トラクタ
JP5976958B1 (ja) 作業車両及び作業車両の制御方法
JP5674393B2 (ja) 作業車両の駆動系制御装置
JP6479702B2 (ja) 転圧機械
JP5486426B2 (ja) 作業用車両の排ガス浄化装置
WO2011016454A1 (ja) ディーゼル機関における排気ガス浄化装置
JP5219262B2 (ja) トラクタ
JP2013224665A (ja) ディーゼル機関における排気ガス浄化装置
JP6482991B2 (ja) 作業機
JP5274168B2 (ja) 農作業用トラクタ
JP5976760B2 (ja) 作業車両
JP2010022230A (ja) 作業用車両

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10806453

Country of ref document: EP

Kind code of ref document: A1