WO2011016399A1 - 磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法 - Google Patents

磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法 Download PDF

Info

Publication number
WO2011016399A1
WO2011016399A1 PCT/JP2010/062928 JP2010062928W WO2011016399A1 WO 2011016399 A1 WO2011016399 A1 WO 2011016399A1 JP 2010062928 W JP2010062928 W JP 2010062928W WO 2011016399 A1 WO2011016399 A1 WO 2011016399A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetostrictive
film
magnetic field
magnetostrictive film
magnetostriction
Prior art date
Application number
PCT/JP2010/062928
Other languages
English (en)
French (fr)
Inventor
克次 本江
中島 浩二
智仁 石川
杉山 雅治
貴教 五十嵐
脇若 弘之
彰宏 牧野
井上 明久
Original Assignee
トピー工業株式会社
国立大学法人信州大学
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トピー工業株式会社, 国立大学法人信州大学, 国立大学法人東北大学 filed Critical トピー工業株式会社
Priority to JP2010537063A priority Critical patent/JP4707771B1/ja
Priority to CN201080034679.6A priority patent/CN102576800B/zh
Priority to US13/388,528 priority patent/US9506824B2/en
Priority to KR1020127003093A priority patent/KR101187138B1/ko
Priority to EP10806398.3A priority patent/EP2466662B1/en
Publication of WO2011016399A1 publication Critical patent/WO2011016399A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/003Making ferrous alloys making amorphous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C45/00Amorphous alloys
    • C22C45/02Amorphous alloys with iron as the major constituent
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/12Measuring force or stress, in general by measuring variations in the magnetic properties of materials resulting from the application of stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/102Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving magnetostrictive means
    • G01L3/103Details about the magnetic material used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
    • G01L3/101Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means
    • G01L3/105Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating involving magnetic or electromagnetic means involving inductive means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/12Measuring magnetic properties of articles or specimens of solids or fluids
    • G01R33/18Measuring magnetostrictive properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/131Amorphous metallic alloys, e.g. glassy metals containing iron or nickel
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/101Magnetostrictive devices with mechanical input and electrical output, e.g. generators, sensors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N35/00Magnetostrictive devices
    • H10N35/80Constructional details
    • H10N35/85Magnetostrictive active materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to a magnetic material using metallic glass, and more particularly to a magnetic film, a magnetostrictive element, a torque sensor, a force sensor, a pressure sensor, and a manufacturing method thereof that exhibit excellent magnetostrictive characteristics near zero magnetic field.
  • Magnetostrictive material is used as a torque sensor or the like, for example, for detecting torque on the transmission shaft of an electrically assisted bicycle.
  • the torque sensor is usually configured by adhering a thin-film magnetostrictive material to the surface of the torque transmission shaft.
  • the torque sensor detects the deformation of the transmission shaft due to the rotational torque by the change in the magnetic permeability of the magnetostrictive material that is distorted by the deformation, and measures the magnitude and direction of the torque.
  • a change in the magnetic permeability of the magnetostrictive material itself is detected by a change in the inductance of a solenoid coil arranged in a non-contact manner with respect to the magnetostrictive material.
  • This magnetostrictive material has an amorphous structure by a single roll liquid quenching method, and further has microcrystals deposited by heat treatment. This utilizes the property of an amorphous structure that is magnetically isotropic compared to the magnetic anisotropy of the crystal structure.
  • JP-A-7-118786 Japanese Patent No. 3946226 JP-A-5-149804 JP 2001-41833 A JP-A-10-176966
  • the formation of the magnetostrictive material by the liquid quenching method requires a large-scale facility, which causes a problem in terms of manufacturing cost. Furthermore, since the amorphous alloy to be formed has a thin ribbon shape, it must be attached to the surface of the subject on which the torque acts, and there is a risk of peeling from the subject. As for the magnetostriction characteristics, although a magnetostriction effect can be obtained in a magnetic field region of 50 to 100 kA / m, good magnetostriction characteristics have not been obtained in a magnetic field region of 50 kA / m or less (see FIGS. 1 and 2 of Reference 1). ).
  • the inventors have investigated magnetostrictive films and magnetostrictive elements that exhibit good magnetostriction characteristics in the vicinity of the zero magnetic field. As a result, no one showing good responsiveness in the region where the applied magnetic field is 15 kA / m or less has been found. Therefore, the inventors have obtained good magnetostriction characteristics even in a magnetic field range of -15 kA / m or more and +15 kA / m or less based on the knowledge of metal glass by thermal spray formation that has been studied for many years (see Patent Document 2). We have been working on the development of magnetostrictive films and magnetostrictive elements.
  • the present invention has been made in view of the above-described problems, and its object is to provide a magnetostrictive film, a magnetostrictive element, and a force sensor, a torque sensor, and a pressure sensor using these that can exhibit excellent magnetostrictive characteristics in the vicinity of a zero magnetic field. As well as a method of manufacturing these.
  • the magnetic film according to the present invention is formed of a metallic glass film which is formed by thermal spraying on a specimen and is heat-treated at a temperature lower than the glass transition temperature and higher than the Curie point temperature, and is ⁇ 15 kA /
  • the linear characteristic of a magnetic field and a magnetostriction is shown within at least a part of a magnetic field range of m or more and +15 kA / m or less.
  • the metallic glass contains Fe as a main component and has an Fe content of 30 to 80 atomic%.
  • the metal glass film is preferably formed by high-speed flame spraying or plasma spraying. The thickness of the metallic glass film is preferably 50 ⁇ m or more.
  • the magnetic element according to the present invention includes the magnetostrictive film, and is characterized by converting mechanical energy and magnetic energy to each other.
  • the torque sensor, force sensor, and pressure sensor according to the present invention are characterized by using the magnetostrictive film or the magnetostrictive element.
  • the method for producing a magnetic film according to the present invention is a method for producing a magnetostrictive film exhibiting linear characteristics of a magnetic field and magnetostriction within at least a part of a magnetic field range of ⁇ 15 kA / m to +15 kA / m.
  • a metal glass film is thermally sprayed on the specimen, and the thermal spray formation is performed at a temperature lower than the glass transition temperature and higher than the Curie point temperature after the thermal spray formation using a high-speed flame spraying method or a plasma spraying method. It is characterized by heat treatment.
  • the relationship between the change in the magnetic field strength and the change in the magnetostriction amount in the change curve of the magnetostriction amount with respect to the increase or decrease in the applied magnetic field is a linear function (straight line, linear)
  • the characteristic is referred to herein as the linear characteristic of the magnetostrictive film and the magnetostrictive element. It is well known that the case where there is a linear characteristic between two variables is easier to use as a sensor than the case where both have a multidimensional function relationship.
  • the magnetostrictive film and magnetostrictive element of the present invention when a magnetic field is applied from zero, good linear characteristics can be exhibited even in a magnetic field range of ⁇ 15 kA / m or more and +15 kA / m or less. That is, when a magnetic field is applied, the magnetic field-magnetostriction curve rises quickly until the linear characteristic region is reached, and good magnetostriction characteristics can be exhibited even with a magnetic field that is smaller than that of the prior art. As described above, the magnetostrictive film and the magnetostrictive element of the present invention exhibit good linear characteristics with respect to a minute magnetic field (in the range of ⁇ 15 kA / m).
  • the force sensor, torque sensor, and pressure sensor utilize the inverse magnetostrictive effect of the magnetostrictive film and the magnetostrictive element.
  • the magnetostrictive film and magnetostrictive element of the present invention rise quickly until reaching the region of linear characteristics, and exhibit linear characteristics in a region of a minute magnetic field H1 or more, for example, as curve 1 in FIG. Therefore, with respect to the inverse magnetostriction effect, it can be sufficiently expected that a linear characteristic can be obtained if the magnetostriction due to the external force is approximately ⁇ 1 or more, and a magnetostriction smaller than that of a sensor using a conventional magnetic material as shown by the curve 2 is obtained. Can be detected.
  • the temperature condition is set lower than the glass transition temperature of the metal glass and equal to or higher than the Curie point temperature.
  • Examples of the conventional thermal sprayed magnetic film contrasted with the present invention include those obtained by thermal spraying of magnetic metal particles other than metallic glass as disclosed in Patent Documents 4 and 5.
  • the magnetic materials of Patent Documents 4 and 5 are mainly composed of a Ni—Fe alloy and are called permalloy.
  • the thermal spray particles In thermal spray formation using Ni—Fe alloy particles, in order to improve the adhesion strength and denseness of the coating as much as possible, at least the thermal spray particles are melted to form the coating. Therefore, the sprayed coating contains a large amount of oxide coating, and the oxygen content in the coating has to be high. However, the presence of the oxide film for the magnetic film becomes a factor that hinders its linear characteristics. For this reason, the magnetic films of Patent Documents 4 and 5 are heat-treated at a temperature of about 950 to 1100 ° C. in a reducing atmosphere for reducing the oxide after the magnetic film is formed by thermal spraying. It is described that such heat treatment is very expensive and it is difficult to manage the heat treatment.
  • the magnetic film of the present invention is formed by thermal spraying a metallic glass in a supercooled liquid state. For this reason, when the metallic glass in the supercooled liquid state collides with the substrate surface, it is crushed thinly from the low viscosity and spreads over the substrate surface to form a good splat having a very thin thickness. Then, the splat deposition structure is cooled in a supercooled liquid state to form a dense thermal spray coating having a dense amorphous phase and no pinholes.
  • the thermal spray coating is formed without melting the metallic glass, the oxide is less likely to be included in the coating, and the oxygen content in the coating is less than that of the magnetic films of Patent Documents 4 and 5, and the oxidation No advanced heat treatment is required to reduce the product.
  • FIG. 1 It is a figure which shows the magnetostriction characteristic in the case of FeSiBPCCr (composition III) in FIG. It is a figure which shows the magnetostriction characteristic of the sample which consists of the composition I of the heat processing time of 200 degreeC, and different heat processing time (1h, 12h). It is a figure which shows the magnetostriction characteristic of the sample 14 of the composition I. It is a figure which shows the positional relationship figure of the magnetostriction type torque sensor (MTS) used for torque evaluation, and a thermal spray shaft. It is a measurement block diagram for torque evaluation. It is a graph which shows the result (an example) of the voltage output with respect to the applied twist torque.
  • MTS magnetostriction type torque sensor
  • the subject used in the present invention constitutes a transmission member such as a transmission shaft for driving force.
  • a transmission member such as a transmission shaft for driving force.
  • a metal glass sprayed coating is formed on the surface of the base material.
  • the material of the base material is not particularly limited.
  • a metal material selected from copper, aluminum, magnesium, titanium, iron, nickel, molybdenum, and an alloy containing at least one of these metals as a main component is preferable. Used for.
  • the substrate may be subjected to a surface roughening treatment by a known method such as a blast treatment.
  • the metal glass is composed of a plurality of elements, but the composition of the metal glass according to the present invention is not particularly limited, and a known one may be appropriately selected according to the intended function. For example, those containing at least any one atom of Fe, Co, and Ni as a main component in the range of 30 to 80 atomic%.
  • the crystal structure has crystal magnetic anisotropy energy that tries to direct the spin to the easy magnetic axis within one crystal, but the magnetic anisotropy energy decreases because the metallic glass is in an amorphous state.
  • it is easy to magnetize even in a small magnetic field, has a characteristic that a large magnetostriction is obtained, and excellent soft magnetism is exhibited.
  • it since it is in an amorphous state, the fact that there are almost no crystal grain boundaries, voids (voids due to lattice defects), precipitation, etc. that cause domain wall pinning is also considered to be a factor that exhibits excellent soft magnetism.
  • the glass metal which contains many substances which show ferromagnetism at normal temperature is suitable.
  • the substance exhibiting ferromagnetism at room temperature include iron, cobalt, nickel, gadolinium and the like.
  • the saturation magnetization (Js) which is a basic characteristic of a ferromagnetic material, is dramatically improved by containing a large amount of Fe as a component element of metallic glass.
  • the Fe content in the metal glass is preferably 30 to 80 atomic%. When Fe is less than 30 atomic%, sufficient magnetic properties cannot be obtained, and when it is more than 80 atomic%, it is difficult to form metallic glass.
  • Fe-based metal glass such as Fe ⁇ Si ⁇ B, Fe ⁇ P ⁇ C, or Fe ⁇ Si ⁇ P is preferable. Since the magnetic anisotropy of the Fe element is larger than that of other elements, a metallic glass containing a large amount of the Fe element generates a large amount of magnetostriction. Furthermore, magnetic anisotropy can be easily induced by applying an external magnetic field during formation.
  • the Fe / Si / B-based metallic glass preferably contains P as an element for enhancing the glass forming ability, and preferably contains C as an element for assisting in enhancing the glass forming ability.
  • a preferred composition component is shown by the following formula. Fe 100-ab (Si k B l P m C n ) a M b In the formula, 20 ⁇ a ⁇ 70 and 0 ⁇ b ⁇ 10. Further, 0.04 ⁇ k ⁇ 0.7, 0.15 ⁇ l ⁇ 1.05, 0 ⁇ m ⁇ 0.53, and 0 ⁇ n ⁇ 0.35.
  • the Si content (atomic%) has a value of k ⁇ a.
  • a composition of Fe 76 Si 5.7 B 9.5 P 5 C 3.8 is preferably used.
  • the magnetostrictive film of the present invention is composed of a thermal spray coating of metallic glass having excellent magnetostrictive properties.
  • a magnetostrictive element an element having a function of efficiently converting mechanical energy causing distortion and magnetic energy resulting from a change in magnetic permeability is referred to as a magnetostrictive element in the present invention.
  • the characteristics required when using the magnetostrictive film and the magnetostrictive element as a sensor include a large magnetomechanical coupling coefficient K and the ability to easily form induced magnetic anisotropy. If the magnetomechanical coupling coefficient K is large, the degree of magnetostriction with respect to the applied magnetic field increases, and the sensor sensitivity improves.
  • the induced magnetic anisotropy can be easily formed means that the easy axis of magnetization can be easily aligned in a desired direction. If the easy axis of magnetization is aligned, a large magnetostriction occurs even in a small magnetic field.
  • magnetic anisotropy is achieved by adding a second transition metal such as Cr, Nb, Ta, W, Ni, Co, Hf, and Mo to Fe element as the first transition metal. It becomes easy to guide.
  • the second transition metal has an effect of increasing magnetostriction and an effect of improving the magnetomechanical coupling coefficient K, and can improve the performance as a sensor.
  • the elastic modulus of the magnetostrictive film and the magnetostrictive element itself should be small. If the elastic modulus such as Young's modulus is low, the residual stress generated inside the element when the element itself is deformed is also reduced. Therefore, the followability by the deformation of the magnetostrictive element with respect to the torsional deformation of the subject such as the rotating shaft is also improved.
  • thermal spraying methods include atmospheric pressure plasma spraying, reduced pressure plasma spraying, flame spraying, high-speed flame spraying (HVOF, HVAF), arc spraying, and cold spraying, and are not particularly limited.
  • One suitable thermal spraying method includes high-speed flame spraying using metallic glass particles, and a high-quality thermal spray coating can be obtained.
  • a thermal spraying method capable of imparting a thermal spray particle velocity equal to or higher than that of high-speed flame spraying to metal glass particles is also preferably used.
  • the atmospheric plasma spraying apparatus can perform spraying at the same speed and temperature range as high-speed flame spraying.
  • the spray particle velocity according to the present invention is preferably 300 m / s or more.
  • Standard plasma spraying has a particle velocity of 150 to 300 m / s, a flame temperature in the range of 10,000 to 15,000 K, and a plasma jet (flame) of about 5,000 K even at a distance of about 40 mm from the heat source.
  • Flame spraying has a particle velocity in the range of 100 to 200 m / s and a flame temperature in the range of 2,300 to 2,900K.
  • the particle velocity of arc spraying is also 180 to 220 m / s, which is equivalent to flame spraying.
  • Cold spray accelerates particles with a gas heated to about 573 to 773 K, and collides the particles at a speed of 500 m / s or more.
  • the flame temperature is equivalent to flame spraying
  • the particle velocity is 300 m / s or more, and it can be more than twice that of standard plasma spraying. Therefore, the porosity when spraying a general spray material metal is about 12% for flame spraying, about 8% for arc spraying, and about 7% for plasma spraying, whereas it is 4% for high-speed flame spraying. It will be about.
  • a high-speed flame spraying device or an atmospheric plasma device or a cold spray device capable of spraying at the same speed and temperature range as a high-speed flame spraying, the porosity can be lowered and the thermal spraying with excellent adhesion and no problem. A membrane is obtained.
  • the amount of heat applied to the thermal spray material may be a minimum amount of heat that at least part of the metal glass powder becomes a supercooled liquid state.
  • the amount of heat consumed can be reduced as compared with the case of a normal thermal spray material.
  • the particle velocity in the thermal spraying method with a particle velocity of 300 m / s or less, which increases the porosity, it is necessary to shorten the spraying distance in order to make the thermal spray coating dense, and the base material is influenced by the thermal spray flame heat source. It is easy to receive. Therefore, a high-speed flame spraying method that can take a sufficient spraying distance and has a low porosity, or a spraying method that gives a particle velocity equal to or higher than that of the high-speed flame spraying method is preferable.
  • the shape of the metal glass particles is not particularly limited, and examples thereof include a plate shape, a chip shape, a granular shape, and a powder shape.
  • the shape is easy to feed from the raw material supply device to the spray gun, It is in the form of particles or powder that can be uniformly heated by a high-speed spraying frame.
  • a method for preparing the metallic glass particles there are an atomizing method, a chemical alloying method, a mechanical alloying method, and the like, and those prepared by the atomizing method are particularly preferable in consideration of productivity and spheroidization.
  • the particle size of the metallic glass particles is 1 to 80 ⁇ m, preferably 5 to 60 ⁇ m. If the particle size is too large, pores may increase in the sprayed coating or continuous pores may be generated. If the particle diameter is too small, the productivity tends to decrease, for example, the molten particles tend to adhere to the thermal spray barrel, or the number of thermal sprays increases to achieve a desired film thickness. Further, when the particles adhered and solidified in the barrel are peeled off and sprayed from the barrel, the uniformity of the sprayed coating is lowered.
  • the thickness of the metal glass sprayed coating can be appropriately set according to the purpose, but from the viewpoint of the denseness, adhesion and workability of the sprayed coating, it is usually 20 ⁇ m or more, typically 50 ⁇ m on the surface of the substrate to be coated. As described above, it is preferable to form 100 ⁇ m or more.
  • the upper limit is not particularly limited, but if it is too thick, economic efficiency and lightness are reduced, and therefore it is preferably 700 ⁇ m or less, more preferably 500 ⁇ m or less. For the purpose of utilizing the magnetostrictive properties of the coating, 500 ⁇ m is sufficient.
  • the thermal spray coating can be formed on a substrate having various shapes, and can also be formed by patterning by masking or the like.
  • the thermal spray coating layer contains as little crystal phase as possible and has high density and uniformity.
  • the magnetocrystalline anisotropy energy is stored and the soft magnetic properties are deteriorated.
  • the metallic glass particles in the amorphous phase are used as the thermal spraying raw material, and the metallic glass particles are not melted and at least a part thereof. It is preferable to spray the film in a supercooled liquid state.
  • the metallic glass In the supercooled liquid state, the metallic glass exhibits viscous flow and has a low viscosity. For this reason, when the metallic glass in the supercooled liquid state collides with the substrate surface, it is crushed instantly and spreads on the substrate surface, and a good splat having a very thin thickness can be formed. And, by depositing such splats, it is possible to form a dense thermal spray coating without pinholes. Moreover, since the splat is cooled in the supercooled liquid state, a crystalline phase is not generated, and only an amorphous phase is obtained.
  • the thermal spray material collides with the substrate surface in the molten state, so in the case of thermal spraying in the atmosphere, the oxide of the thermal spray material is included in the coating, which adversely affects the properties of the coating, If it is made to collide in a supercooled liquid state, even if sprayed in the atmosphere, there is almost no influence of oxidation. Therefore, if the metal glass particles in the amorphous phase are sprayed, and the metal glass spray particles are solidified and laminated on the surface of the base material in a supercooled liquid state to form a sprayed coating, it is composed of a uniform amorphous solid phase of the metal glass. This is advantageous for obtaining a sprayed coating having almost no pinholes.
  • a crystalline alloy which is a general thermal spray material several percent solidification shrinkage occurs when cooled from a melt to a solid.
  • the metallic glass when the metallic glass is cooled from the melt to the solid, it first enters a supercooled liquid state, so that its volume is continuously and in accordance with the thermal expansion coefficient of the supercooled liquid region without solidifying and shrinking due to crystallization. Shrink slightly.
  • the amount of shrinkage is further reduced as compared with the case where the metallic glass is cooled from the melt. Therefore, if thermal spraying is performed in a supercooled liquid state without melting the metal glass, the residual stress generated on the joint surface between the base material and the thermal spray coating becomes very small. It is effective in suppressing the peeling of the film, and is effective particularly in a thin substrate.
  • a metal glass sprayed coating layer having a porosity of 2% or less and no pinholes can be obtained.
  • the porosity an arbitrary cross section of the metal glass layer can be image-analyzed, and the maximum area ratio of the pores can be adopted as the porosity. Further, the absence of pinholes can be confirmed by image analysis of an arbitrary cross section of the metal glass layer. Such a method is described in JP-A-2006-214000.
  • the magnetostrictive film itself is distorted.
  • This strain induces an inverse magnetostriction effect, and the magnetic anisotropy energy increases due to stress-induced anisotropy, and a large magnetostriction may not be obtained for a small magnetic field. If this residual stress is reduced, the magnetostriction can be further increased. Therefore, in the present invention, after the metal glass is sprayed on the surface of the base material to form a coating film, the distortion of the magnetostrictive film itself is removed by performing a heat treatment.
  • the heat treatment temperature is set to a temperature at which the sprayed coating layer does not enter a supercooled liquid state.
  • the sprayed coating layer in an amorphous solid state at a temperature lower than the glass transition temperature (Tg) and above the Curie point (Tc), distortion due to residual stress is efficiently removed, and the magnetic field is reduced.
  • the strain of the magnetostrictive film when not applied can be brought close to zero.
  • the heat treatment temperature is lower than the Curie point temperature, the residual stress can be similarly removed by increasing the time, but it is not industrially efficient.
  • the heat treatment time is appropriately set depending on the size and shape of the object to be heated, but distortion removal can be processed in a shorter time when the treatment is performed at a temperature lower than the glass transition temperature and above the Curie point temperature.
  • the heat treatment temperature exceeds the glass transition temperature and the heat treatment is performed at a temperature lower than the crystallization temperature, the sprayed coating may partially crystallize and may not exhibit soft magnetic properties.
  • the heat treatment method is not particularly limited as long as it can achieve the object of the present invention, and a known method can be adopted.
  • a method of heat-treating the entire substrate including the magnetostrictive film, a method of partially heat-treating the vicinity of the joint with the magnetostrictive film, and the like can be mentioned.
  • One simple method is a batch system in which the base material is put in a heating furnace and heat-treated.
  • heating may be usually performed in the atmosphere, but may be performed in an inert gas when there is a concern about the influence of oxidation.
  • the magnetostrictive film and the magnetostrictive element of the present embodiment it is possible to reduce the manufacturing cost without requiring a large facility as in the conventional liquid quenching method. Further, since it is formed by thermal spraying, it is not necessary to attach a magnetostrictive film to the surface of the subject with an adhesive or the like as in Patent Document 3, and the adhesiveness is excellent, and there is no fear of peeling from the subject. Furthermore, the magnetostriction characteristic in the magnetic field region near the zero magnetic field is improved. Moreover, if these magnetostrictive films or magnetostrictive elements are used, a force sensor, torque sensor, or pressure sensor excellent in detection sensitivity can be provided.
  • the magnetostrictive film and the magnetostrictive element of the present invention can be applied as a force sensor, a torque sensor, and a pressure sensor that use the inverse magnetostrictive effect, but can also be applied to a magnetostrictive actuator that uses distortion caused by an applied magnetic field.
  • compositions Three types of compositions (FeSiBPC, FeSiBNb, and FeSiBPCCr) were selected from the composition of metallic glass having a number of manufacturing conditions . Thereafter, Fe 76 Si 5.7 B 9.5 P 5 C 3.8 is composition I, Fe 72 Si 9.6 B 14.4 Nb 4 is composition II, and Fe 71 Si 5.7 B 9.5 P 5. C 3.8 Cr 5 is defined as composition III.
  • the powder for thermal spraying of the metallic glass of the composition I, the composition II, and the composition III was manufactured by the following method.
  • the raw materials are Fe: electrolytic iron, Si: silicon scrap (6N), B: high carbon ferroboron, boron crystal, P: ferrophosphorus (20% P), C: activated carbon, Cr: chromium carbide, metallic chromium, Nb: Metal niobium was used.
  • the mother alloy was obtained by mixing the above raw materials at the composition ratio, melting in a high-frequency melting furnace (aluminum crucible, evacuated to 10 ⁇ 1 Pa level, Ar substitution), and cooling with a copper mold. Powderization was performed by a gas atomization method, and the obtained powder was classified by an ultrasonic vibration sieve to obtain a powder of 25 to 53 ⁇ m.
  • the sample was composed of a base material (SUS631 / 3 / 4H, SUS316, manufactured by Kaishin Kogyo Co., Ltd.) and a metal glass sprayed film laminated on the base material.
  • the base material has a rectangular thin plate shape of 3 mm ⁇ 25 mm and a thickness of 0.3 mm.
  • the spraying conditions on the substrate are as follows: plasma spraying apparatus: Triplex Pro-200 manufactured by Sulzer Metco, current: 450 A, power: 57 kW, plasma gas used: Ar, He, spraying distance: 100 mm, spray gun moving speed: 600 mm / sec there were.
  • a metallic glass sprayed film was formed on the substrate, and three types (100, 200, 300 ⁇ m) of samples having different sprayed film thicknesses were prepared. Further, the sprayed sample was heat-treated at a predetermined temperature for a predetermined time.
  • Table 1 shows the Curie point temperature Tc, the glass transition temperature Tg, and the crystallization start temperature Tx of the compositions I to III.
  • Table 2 shows the composition of the samples (1 to 20), the sprayed film thickness, the base material, and the heat treatment conditions.
  • FIG. 2 is a block diagram showing the measurement method.
  • the oscillator and power amplifier were manufactured by NF Circuit Design Block Co., Ltd.
  • the laser Doppler vibrometer, digital displacement converter, and FFT analyzer were manufactured by Ono Sokki Co., Ltd.
  • a sinusoidal wave of 1 Hz is supplied to the coil by an oscillator.
  • the magnetic field applied to the sample can be calculated from Equation (1) and Equation (2) from the coil current I and the coil specification.
  • the magnetic field H in the coil is expressed by the following equation.
  • H generated magnetic field [A / m]
  • N Number of coil turns [times]
  • I Current [A] r 1 : inner radius [m] r 2 : outer radius [m] l: Coil height [m] z: Distance from coil center [m]
  • Table 3 shows the measurement conditions.
  • FIG. 3 is a photograph showing the coils actually arranged. Since the shape of the sample was warped, the coil was tilted as shown in the figure, and the sample was arranged so as to follow the central axis of the coil. As shown in the block diagram of FIG. 2, the upper end portion of the sample displaced by the applied magnetic field H, that is, the magnetostriction amount of the thin film was measured by a laser Doppler vibrometer and a digital displacement transducer.
  • the laser Doppler vibrometer was installed obliquely in consideration of the irradiation surface to the sample.
  • the detected value of the coil current I and the change amount ⁇ X from the digital displacement converter were input to the FFT analyzer, and a magnetic field-magnetostriction (change amount) curve was created.
  • Samples 1 to 12 are measurement results at a maximum magnetic field (H m ) of 40 kA / m, and samples 13 to 20 are measurement results at H m of 80 kA / m.
  • composition I is the magnetostrictive characteristic of the sample 1-7.
  • the amount of change on the vertical axis corresponds to the amount of magnetostriction of the present invention.
  • Sample 2 showed the best characteristics among samples 1 to 7 using composition I. That is, a range in which the magnetic field and the magnetostriction amount (change amount) show a linear relationship (linear characteristics) occurs up to near the magnetic field zero, and the linear characteristic region is within a magnetic field range of ⁇ 15 kA / m. Furthermore, the amount of distortion in the linear characteristic region is the largest.
  • Characteristic diagram of composition II 5 is a magnetostrictive characteristics of the sample 8-12.
  • the range showing the linear characteristics between the magnetic field and the magnetostriction amount occurred to near the magnetic field zero, and the linear characteristic area was ⁇ 15 kA. / M in the magnetic field range.
  • FIG. 6 and FIG. 7 show the characteristics of three types of samples 13 to 15 (composition I) and samples 16 to 18 (composition III) having different film thicknesses.
  • composition I composition I
  • composition III composition III
  • the magnetostriction amount in the linear characteristic region increased in the order of thicknesses of 100 ⁇ m, 300 ⁇ m, and 200 ⁇ m, and the 200 ⁇ m thick sample showed the best magnetostriction characteristics.
  • FIG. 8 shows the characteristics of two types of samples 19 and 20 (composition I) having different heat treatment times.
  • FIG. 9 shows the magnetostriction characteristics of three samples prepared as Sample 14 of reproducible composition I (sprayed film thickness 200 ⁇ m, heat treatment condition 450 ° C. ⁇ 1 h). In the magnetic field range of -15 kA / m or more and +15 kA / m or less, the change amounts are almost overlapped, and it can be seen that the variation is small.
  • the following (1) to (3) can be said with respect to the influence of differences in composition, film thickness, and heat treatment conditions on magnetostriction characteristics.
  • a linear relationship between the magnetic field and magnetostriction is present in at least a part of the magnetic field range of ⁇ 15 kA / m to +15 kA / m ( Linear characteristics). That is, when a magnetic field is applied, the magnetic field-magnetostriction curve rises quickly until the linear characteristic region is reached, and good magnetostriction characteristics can be exhibited even with a magnetic field that is smaller than that of the prior art. Samples heat treated at temperatures above the glass transition temperature may not exhibit linearity.
  • a sample heat-treated at a temperature lower than the Curie point has deteriorated characteristics in a low magnetic field unless heat-treated for a long time. That is, it shows a broad peak near zero magnetic field and the amount of change becomes small.
  • the variation in magnetostriction characteristics was small.
  • the amount of magnetostriction at the film thickness of 200 ⁇ m was the largest.
  • FIG. 10A is a perspective view showing a shaft (material: SUS631) having a magnetostrictive film sprayed on the outer peripheral surface.
  • the magnetostrictive film is formed by thermal spraying so that the composition I has a film thickness of 200 ⁇ m.
  • the thermal sprayed shaft was heat-treated at 450 ° C.
  • FIG. 10B is a perspective view showing an excitation coil and a detection coil arranged so as to surround the magnetostrictive film.
  • One end of the shaft is fixed, and positive and negative torques are applied to the other end.
  • the torque applied to the torque application unit in the clockwise direction was defined as a positive direction
  • the torque applied in the counterclockwise direction was defined as a negative direction.
  • the excitation coil is formed on the inner peripheral surface of the ring core. By passing the shaft through the ring core, the excitation coil is disposed on the outer periphery of the magnetostrictive film. When a sinusoidal voltage is applied to the excitation coil, the shaft serves as a core to generate a magnetic field.
  • This generated magnetic field is detected by four detection coils A to D arranged inside the annular core.
  • the magnetostrictive film is distorted and the magnetic flux changes, so that the magnitude of the detected magnetic field changes. Therefore, the magnitude of the torque can be measured by detecting the change in the magnitude of the magnetic field with the detection coil.
  • FIG. 11 shows a measurement block diagram of the magnetostrictive torque sensor.
  • a sine wave from an oscillator is input to an excitation coil via an amplifier, and a magnetic field is generated in the excitation coil. The value of this excitation magnetic field was confirmed by A-channel of the FFT analyzer. And the change of the magnetic flux at the time of applying a torque to a shaft was read with the detection coil.
  • a signal from the detection coil is input to the phase detector.
  • the phase detection device synchronously detects a signal from the detection coil using a sine wave from the oscillator as a reference signal. In this way, a signal having the same phase as the reference signal was taken out as a direct current by passing the signal from the detection coil through the phase detector and measured with a multimeter. This measured value was evaluated as the output voltage of the torque sensor.
  • the phase difference between the input and output voltages was measured using B-channel of FFT analyzer.
  • FIG. 12 shows an example of torque evaluation using a magnetostrictive torque sensor. It was confirmed that the voltage output value was proportional to the applied torque. In particular, it has been found that a proportional characteristic is exhibited with respect to a low level torque of 30 N ⁇ m or less, and a very high sensor sensitivity of 3.0 to 3.5 mV / 10 N ⁇ m can be obtained.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Soft Magnetic Materials (AREA)
  • Glass Compositions (AREA)
  • Thin Magnetic Films (AREA)

Abstract

 ゼロ磁界付近で優れた磁歪特性を発揮できる磁歪膜およびその製造方法を提供する。磁歪膜は、被検体上に溶射形成され、ガラス遷移温度より低く且つ、キュリー点温度以上で熱処理されていることを特徴とした金属ガラスの膜で構成され、-15kA/m以上、+15kA/m以下の磁界範囲のうちの少なくとも一部の範囲内で、磁界と磁歪とが直線特性を示す。

Description

磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法
 本発明は金属ガラスを用いた磁性材料、特にゼロ磁界付近で優れた磁歪特性を発揮する磁性膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびこれらの製造方法に関する。
 磁歪材料は、トルクセンサなどとして利用され、例えば電動アシスト自転車の伝達軸におけるトルク検出などに利用されている。トルクセンサは、通常、薄膜状の磁歪材料をトルク伝達軸の表面に接着することにより構成される。トルクセンサは、回転トルクによる伝達軸の変形を、その変形によって歪む磁歪材料における透磁率の変化によって検出し、トルクの大きさ、方向を測定する。磁歪材料自身の透磁率の変化は、磁歪材料に対して非接触で配置されるソレノイドコイルのインダクタンスの変化によって検出されるようになっている。
 磁歪材料として、アモルファス合金を利用した研究が知られている(特許文献1参照)。この磁歪材料は、単ロール液体急冷法によるアモルファス構造を有し、さらに熱処理によって析出した微結晶を有している。結晶構造の磁気異方性に比べて磁気的に等方性となるアモルファス構造の性質を利用したものである。
特開平7-118786号公報 特許第3946226号 特開平5-149804号公報 特開2001-41833号公報 特開平10-176966号公報
 しかしながら、特許文献1に記載のように液体急冷法による磁歪材料の形成では、大がかりな設備を要するため製造コストの面での課題が生じる。さらに、形成されるアモルファス合金は薄帯状となるため、トルクが作用する被検体の表面に貼り付けなければならず、被検体からの剥離などの心配もある。
 また、磁歪特性については、50~100kA/mの磁界領域において磁歪効果が得られるものの、50kA/m以下の磁界領域では良好な磁歪特性が得られていなかった(文献1の図1、2参照)。
 発明者らは、ゼロ磁界付近で良好な磁歪特性を示す磁歪膜や磁歪素子について調査したところ、印加磁界が15kA/m以下の領域で良好な応答性を示すものは見つからなかった。そこで発明者らは、長年研究を積み重ねてきた溶射形成による金属ガラスの知見(特許文献2参照)に基づき、-15kA/m以上、+15kA/m以下の磁界範囲であっても良好な磁歪特性を示す磁歪膜や磁歪素子の開発に努めてきた。
 本発明は、前記の課題に鑑みなされたものであり、その目的は、ゼロ磁界付近で優れた磁歪特性を発揮できる磁歪膜、磁歪素子、および、これらを用いた力センサ、トルクセンサ、圧力センサ、ならびにこれらの製造方法を提供することである。
 前記目的を達成するために発明者らが鋭意検討を行った結果、金属ガラスを過冷却液体状態で被検体に積層させる溶射法を用いることによって、ゼロ磁界付近で良好な磁歪特性を示す磁歪膜が強固に形成され得ることを見出し、本発明を完成するに至った。
 すなわち、本発明にかかる磁性膜は、被検体上に溶射形成され、ガラス遷移温度より低く且つ、キュリー点温度以上で熱処理されていることを特徴とした金属ガラスの膜で構成され、-15kA/m以上、+15kA/m以下の磁界範囲のうちの少なくとも一部の範囲内で、磁界と磁歪との直線特性を示すことを特徴とする。
 また、前記金属ガラスがFeを主成分としてFe含有量が30~80原子%であることが好ましい。
 さらに、前記金属ガラスがFe・Si・B・M、又はFe・Si・B・P・C・M(M=Cr、Nb、Ta、W、Ni、Co、Hf、Mo、又はM=無し)であることが好ましい。
 また、前記金属ガラスはFe76Si5.79.53.8であることが好ましい。
 前記金属ガラスの膜は、高速フレーム溶射法、またはプラズマ溶射法で形成されていることが好ましい。また、前記金属ガラスの膜の厚さは50μm以上であることが好ましい。
 本発明にかかる磁性素子は、前記磁歪膜を有して構成され、機械的エネルギーと磁気的エネルギーとを相互に変換することを特徴とする。
 本発明にかかるトルクセンサ、力センサおよび圧力センサは、前記磁歪膜または磁歪素子を用いたことを特徴とする。
 本発明にかかる磁性膜の製造方法は、-15kA/m以上、+15kA/m以下の磁界範囲のうちの少なくとも一部の範囲内で、磁界と磁歪との直線特性を示す磁歪膜の製造方法であって、被検体上に金属ガラスの膜を溶射形成し、前記溶射形成は、高速フレーム溶射法またはプラズマ溶射法を用いて、溶射形成の後、ガラス遷移温度より低く且つ、キュリー点温度以上で熱処理することを特徴とする。
 磁歪膜および磁歪素子に磁界を印加した際、印加磁界の増減に対する磁歪量の変化曲線の中で磁界の強さの変化と磁歪量の変化の関係が一次関数(直線、リニア)である部分の特性を、ここでは、磁歪膜および磁歪素子の直線特性と呼ぶ。二つの変数の間に直線特性がある場合の方が、両者が多次元関数の関係にある場合より、センサとして利用しやすいことは公知である。
本発明の磁歪膜および磁歪素子によれば、磁界をゼロから印加した際、-15kA/m以上、+15kA/m以下の磁界範囲であっても良好な直線特性を示すことができる。つまり、磁界印加の際、直線特性の領域に達するまでの磁界-磁歪曲線の立ち上がりが早く、従来よりも微小な磁界であっても良好な磁歪特性を示すことができる。
 このように、本発明の磁歪膜および磁歪素子は、微小な磁界(±15kA/mの範囲)に対して良好な直線特性を示すので、力センサやトルクセンサなどに利用する際、特許文献3に示すような磁歪素子に初期歪みを付与するといった使用条件が不要となる。
 ここで、力センサやトルクセンサおよび圧力センサでは、磁歪膜および磁歪素子の逆磁歪効果を利用する。本発明の磁歪膜および磁歪素子は、直線特性の領域に達するまでの立ち上がりが早く、例えば図1の曲線1のように、微小な磁界H1以上の領域で直線特性を示す。従って、逆磁歪効果については、外力による磁歪が略ε1以上であれば直線特性が得られることを十分に期待でき、曲線2に示すような従来の磁性材料を用いたセンサよりも微小な磁歪を検知することができる。
 また、本発明では、被検体に磁性膜を溶射形成した後、さらに熱処理を実施することにより、残留応力を除去し、溶射形成によって生じる磁歪膜自体の僅かな歪みを除去する。そのために、温度条件を、金属ガラスのガラス遷移温度より低く、且つ、キュリー点温度以上としている。
 本発明と対比される従来の溶射形成された磁性膜としては、例えば特許文献4、5のように、金属ガラス以外の磁性体金属粒子を溶射したものが挙げられる。特許文献4、5の磁性体は、Ni-Fe合金を主成分としたもので、パーマロイと呼ばれる。Ni-Fe合金の粒子を用いた溶射形成では、被膜の密着強度や緻密性を少しでも良くするために、少なくとも溶射粒子を溶融した状態にして被膜を形成している。そのため、溶射被膜には、酸化物被膜が多く含まれ、被膜中の酸素含有量が高くならざるを得なかった。しかし、磁性膜にとって酸化物被膜の存在はその直線特性を阻害する要因となってしまう。そのため、特許文献4、5の磁性膜に対しては、磁性膜を溶射形成した後、酸化物の還元のため還元性雰囲気中で950~1100℃程度の温度で熱処理が行われている。このような熱処理は非常にコストが高くなり、熱処理管理も困難であると説明されている。
 本発明の磁性膜は、金属ガラスを過冷却液体状態にして溶射形成されたものである。このため、過冷却液体状態にある金属ガラスが基材表面に衝突すると、その粘性の低さから瞬時に薄く潰れて基材表面に広がり、厚みが非常に薄い良好なスプラットを形成する。そして、スプラットの堆積構造体が、過冷却液体状態のまま冷却されてアモルファス相の緻密でピンホールのない溶射被膜を形成する。
 従って、本発明では金属ガラスを溶融させないで溶射被膜を形成するため、酸化物が被膜中に含まれにくくなり、特許文献4、5の磁性膜と比べて被膜中の酸素含有量が少なく、酸化物を還元するための高度な熱処理を必要としない。
本発明にかかる磁歪膜の磁歪特性を説明するための図である。 実施例にかかる磁歪特性の測定方法を示すブロック図である。 磁歪特性の測定に用いた励磁コイルを示す写真である。 FeSiBPC(組成I)の磁歪特性を示す図である。 FeSiBNb(組成II)の磁歪特性を示す図である。 異なる膜厚(100、200、300μm)の組成Iからなる試料の磁歪特性を示す図である。 図6においてFeSiBPCCr(組成III)の場合の磁歪特性を示す図である。 熱処理温度200℃で異なる熱処理時間(1h、12h)の組成Iからなる試料の磁歪特性を示す図である。 組成Iの試料14の磁歪特性を示す図である。 トルク評価に用いた磁歪式トルクセンサ(MTS)と溶射シャフトの位置関係図を示す図である。 トルク評価用測定ブロック図である。 印加捻れトルクに対する電圧出力の結果(一例)を示すグラフである。
被検体
 本発明で用いる被検体は、駆動力の伝達軸といった伝達部材などを構成する。特に、外力が作用して生じる応力やトルクなどを直接検出することが求められている被検体を扱う。このような被検体を基材として、基材表面に金属ガラスの溶射被膜を形成する。基材の材質は特に制限されるものではないが、例えば、銅、アルミニウム、マグネシウム、チタン、鉄、ニッケル、モリブデン、ならびにこれら金属の少なくとも一種を主成分とする合金から選択される金属材料が好適に用いられる。基材には、金属ガラス溶射被膜の接合性を高めるために、ブラスト処理など公知の方法による基材表面の粗面化処理を施してもよい。
金属ガラス
 金属ガラスは、加熱すると結晶化前に明瞭なガラス遷移と広い過冷却液体領域を示すことが一つの大きな特徴である。ガラス遷移温度(Tg(K))と結晶化開始温度(Tx(K))との間の温度領域△Tx=Tx-Tgで示される過冷却液体温度領域では、粘性流動状態(過冷却液体状態)となって変形抵抗が著しく減少する。従って、金属ガラスは、過冷却液体状態での成膜性に優れる。本発明では、過冷却液体温度領域△Tx=Tx-Tgが30K以上である金属ガラスが好適に使用される。
 金属ガラスは、複数の元素から構成されるものであるが、本発明にかかる金属ガラスの組成としては特に制限されず、目的とする機能に応じて公知のものを適宜選択して用いればよい。例えば、主成分として少なくともFe、Co、Niのいずれかひとつの原子を30~80原子%の範囲で含有するものが挙げられる。
 結晶構造では、一つの結晶内でスピンを磁気容易軸に向けようとする結晶磁気異方性エネルギーを有するが、金属ガラスは非晶質(アモルファス)状態であるため、磁気異方性エネルギーが減少し、小さな磁場でも磁化し易くなり、大きな磁歪が得られ、優れた軟磁性を示すという特徴がある。また、非晶質状態であるため、磁壁ピンニングの原因となる結晶粒界、ボイド(格子欠陥による空孔)、析出などがほとんどないことも、優れた軟磁性を示す要因と考えられる。
 また、本発明のように金属ガラスを磁性材料として用いる場合、常温で強磁性を示す物質を多く含むガラス金属が好適である。常温で強磁性を示す物質としては鉄、コバルト、ニッケル、ガドリニウム等が挙げられる。このうち、金属ガラスの形成が容易であること、原料入手の容易性を考慮すると、その主成分として少なくともFe、Co、Niのいずれかひとつの原子を含有することが好適である。特に金属ガラスの成分元素として、Feを多く含有することで強磁性材料の基本的特性である飽和磁化(Js)は飛躍的に向上する。金属ガラス中のFe含有量としては、30~80原子%が好適である。Feが30原子%より少ない場合では磁気特性が十分に得られず、また、80原子%より多い場合では金属ガラスの形成は困難である。
 金属ガラスを磁性部材として用いる場合、Fe・Si・B系、Fe・P・C系、またはFe・Si・P系といったFe基の金属ガラスが好ましい。Fe元素の磁気異方性は他の元素に比べて大きいため、Fe元素を多く含有する金属ガラスは、大きな磁歪量を生じる。さらに、形成時に外部磁界を印加すれば容易に磁気異方性を誘導することもできる。
 Fe・Si・B系の金属ガラスには、ガラス形成能を高める元素としてPが含まれることが好適であり、また、ガラス形成能を補助的に高める元素としてCが含まれることが好ましい。従って、Fe基の金属ガラスの好ましい組成としては、例えば、Fe・Si・B・MまたはFe・Si・B・P・C・M(M=Cr、Nb、Ta、W、Ni、Co、Hf、MoまたはM=無し)が挙げられる。好ましい組成成分を下記式で示す。
   Fe100-a-b(Si 
 式中、20≦a≦70、0≦b≦10とする。また、0.04≦k≦0.7、0.15≦l≦1.05、0≦m≦0.53及び0≦n≦0.35である。例えばSi含有量(原子%)は、k×aの値となる。
 特に、Fe76Si5.79.53.8の組成が好適に用いられる。
 本発明の磁歪膜は、磁歪特性に優れた金属ガラスの溶射被膜によって構成される。特に、歪みを生じさせる機械的エネルギーと、透磁率の変化に起因する磁気的エネルギーとを効率よく変換する機能を備えた素子を、本発明では磁歪素子と呼ぶ。
 磁歪膜および磁歪素子をセンサとして利用する際に求められる特性として、磁気機械結合係数Kが大きいことと、誘導磁気異方性が容易に形成できることなどが挙げられる。磁気機械結合係数Kが大きければ、印加磁界に対する磁歪量の度合が大きくなり、センサ感度が向上する。誘導磁気異方性が容易に形成できるとは、所望の方向に磁化容易軸を容易に揃えることができることを示し、磁化容易軸が揃えば小さな磁場でも大きな磁歪が生じるようになる。誘導磁気異方性については、第1の遷移金属であるFe元素に、Cr、Nb、Ta、W、Ni、Co、Hf、Moなどの第2の遷移金属を添加することで磁気異方性を誘導し易くなる。また、第2の遷移金属は、磁歪を増加させる効果と、磁気機械結合係数Kを向上させる効果を有し、センサとしての性能を高めることができる。
 磁歪膜および磁歪素子自体の弾性率については、小さい方がよい。ヤング率などの弾性率が低ければ、素子自体が変形した際に素子内部に生じる残留応力も小さくなる。よって、回転軸などの被検体のねじり変形に対する磁歪素子の変形による追従性もよくなる。
溶射方法
 溶射方法としては、例えば、大気圧プラズマ溶射、減圧プラズマ溶射、フレーム溶射、高速フレーム溶射(HVOF、HVAF)、アーク溶射、コールドスプレーなどがあり、特に制限されるものではない。好適な溶射方法の一つとして金属ガラス粒子を用いた高速フレーム溶射が挙げられ、高品位の溶射被膜を得ることができる。また、金属ガラス粒子を高速フレーム溶射と同等あるいはそれ以上の溶射粒子速度を付与可能な溶射法も好適に用いられる。例えば、大気プラズマ溶射装置により、高速フレーム溶射と同等の速度・温度域で溶射できる。本発明にかかる溶射粒子速度としては、300m/s以上が好適である。
 標準的なプラズマ溶射は、粒子速度が150~300m/s、フレーム温度は10,000~15,000Kの範囲であり、プラズマジェット(フレーム)は熱源から40mm程度の距離でも約5,000Kである。フレーム溶射は、粒子速度が100~200m/s、フレーム温度は2,300~2,900Kの範囲である。アーク溶射の粒子速度も、180~220m/sであり、フレーム溶射と同等である。コールドスプレーは573~773K程度に加熱したガスで粒子を加速し、粒子を500m/s以上の速度で衝突させる。
 一方、高速フレーム溶射(HVOF、HVAF)は、フレーム温度はフレーム溶射と同等であり、粒子速度は300m/s以上で、標準的なプラズマ溶射の2倍以上にもできる。
 このため、一般的な溶射材料金属を溶射した場合の気孔率は、フレーム溶射で12%程度、アーク溶射で8%程度、プラズマ溶射で7%程度であるのに対し、高速フレーム溶射では4%程度となる。高速フレーム溶射装置、または、高速フレーム溶射と同等の速度・温度域で溶射可能な大気プラズマ装置やコールドスプレー装置を用いれば、気孔率を下げることができ、密着性に優れ容易に?がない溶射膜が得られる。
 溶射材料に与える熱量は、金属ガラス粉体の少なくとも一部が過冷却液体状態となる最低限の熱量であればよい。通常の溶射材料の場合に比して消費熱量が少なくできる。また、粒子速度に関しては、気孔率が高くなってしまう粒子速度300m/s以下の溶射方法では、溶射被膜を緻密にするために溶射距離を短くする必要があり、基材が溶射フレーム熱源の影響を受け易い。そのため、溶射距離を十分とることができて気孔率が低い高速フレーム溶射法、あるいは高速フレーム溶射法と同等以上の粒子速度を与える溶射法が好適である。
 金属ガラス粒子の形状は特に限定されるものではなく、板状、チップ状、粒状、粉体状などが挙げられるが、好ましくは原料供給装置から溶射ガンへの送給が容易な形状であり、高速な溶射フレームから均一に熱量を与えられる粒状あるいは粉体状である。金属ガラス粒子の調製方法としては、アトマイズ法、ケミカルアロイング法、メカニカルアロイング法などがあるが、生産性と球状化を考慮すればアトマイズ法によって調製されたものが特に好ましい。
 金属ガラス粒子の粒子径は、1~80μm、好ましくは5~60μmである。粒子径が大きすぎると、溶射被膜中に気孔が多くなったり、連続気孔を生じることがある。粒子径が小さすぎると溶射のバレル内に溶融粒子が付着しやすくなったり、所望の膜厚とするのに溶射回数が増えるなど生産性が低下する。また、バレル内に付着凝固した粒子がバレルから剥がれて溶射されると、溶射被膜の均一性が低下する。
 金属ガラス溶射被膜の厚みは目的に応じて適宜設定できるが、溶射被膜の緻密性、密着性、加工性などの点から、被覆しようとする基材表面上に通常20μm以上、典型的には50μm以上、さらには100μm以上形成することが好適である。上限は特に制限されないが、厚くなりすぎると経済性や軽量性が低下するので、700μm以下、さらには500μm以下とすることが好ましい。被膜の磁歪特性を利用する目的であれば、500μmもあれば十分である。
 溶射被膜は、様々な形状の基材上に形成することができ、また、マスキング等によりパターン化して形成することもできる。
 金属ガラス膜にセンサとして高機能性を発揮させるために、溶射被膜層が結晶相をできるだけ含まず、緻密性や均一性が高いことが好ましい。また、金属ガラス溶射被膜層に結晶相が含まれると、結晶磁気異方性エネルギーが蓄えられて、軟磁性の特性が低下してしまう。
 均一な金属ガラスのアモルファス固体相からなり、気孔がほとんどなくピンホールのない溶射被膜を形成するために、アモルファス相の金属ガラス粒子を溶射原料とし、金属ガラス粒子を溶融させず、その少なくとも一部を過冷却液体状態で溶射することが好適である。
 過冷却液体状態では、金属ガラスは粘性流動を示し、粘性が低い。このため、過冷却液体状態にある金属ガラスが基材表面に衝突すると、瞬時に薄く潰れて基材表面に広がり、厚みが非常に薄い良好なスプラットを形成することができる。そして、このようなスプラットの堆積により、緻密でピンホールのない溶射被膜を形成することができる。
 また、スプラットは過冷却液体状態のまま冷却されるので、結晶相を生成せず、アモルファス相のみが得られる。
 また、一般に溶射では溶射材料を溶融状態で基材表面に衝突させるため、大気中での溶射の場合、溶射材料の酸化物が被膜中に含まれてしまい、被膜の特性に悪影響を及ぼすが、過冷却液体状態で衝突させれば、大気中で溶射したとしても酸化の影響がほとんどない。
 従って、アモルファス相の金属ガラス粒子を溶射し、金属ガラス溶射粒子が過冷却液体状態で基材表面において凝固及び積層して溶射被膜を形成すれば、均一な金属ガラスのアモルファス固体相からなり、気孔がほとんどなくピンホールのない溶射被膜を得るのに有利である。
 また、一般的な溶射材料である結晶質合金では、溶融体から固体へ冷却された場合に、数%の凝固収縮を生じる。
 これに対して、金属ガラスが溶融体から固体へ冷却された場合、まず過冷却液体状態となるので結晶化による凝固収縮することなく、その体積は過冷却液体領域の熱膨張係数に従って連続的且つ僅かに収縮する。そして、金属ガラスが溶融することなく融点未満の過冷却液体状態から冷却された場合には、溶融体から冷却された場合に比べてさらに収縮量が少なくなる。
 よって、金属ガラスを溶融させずに過冷却液体状態で溶射すれば、基材と溶射被膜との接合面に発生する残留応力が非常に小さくなるので、基材の変形や破壊、さらには溶射被膜の剥離の抑制に効果的であり、特に、薄い基材において有効である。
 このような方法により、基材表面に非常に緻密で且つアモルファス相の金属ガラス溶射被膜層を形成することができる。例えば、気孔率が2%以下でピンホールもない金属ガラス溶射被膜層を得ることができる。気孔率については、金属ガラス層の任意の断面を画像解析し、気孔の最大面積率を気孔率として採用することができる。また、ピンホールがないことも金属ガラス層の任意の断面を画像解析することにより確認することができる。なおこのような方法は、特開2006-214000号公報に記載されている。
歪み除去のための熱処理
 過冷却液体状態からの冷却によって生じる残留応力は、僅かであっても磁歪膜自体の歪みを生じさせる。この歪みは逆磁歪効果を誘導し、応力誘起異方性により磁気異方性エネルギーが大きくなってしまい、小さい磁界に対して大きな磁歪が得られなくなることがある。この残留応力を低減させれば、磁歪をより一層大きくすることができる。そこで、本発明では、金属ガラスを基材表面に溶射して被膜を形成した後、熱処理を行うことにより、磁歪膜自体の歪みを除去する。
 熱処理温度は、溶射被膜層が過冷却液体状態にならない温度に設定する。すなわち、ガラス遷移温度(Tg)より低い温度で且つ、キュリー点以上の温度(Tc)として、溶射被膜層をアモルファス固体状態で熱処理することにより、効率的に残留応力による歪みが除去され、磁界を印加しない状態での磁歪膜の歪みをゼロに近づけることができる。一方、熱処理温度がキュリー点温度より低い温度で処理する場合は、時間を長くすることで同じ様な残留応力の歪み除去効果があるが、工業上、効率的ではない。なお、熱処理時間は、加熱対象の大きさ・形状によって適宜設定するが、ガラス遷移温度未満、且つキュリー点温度以上で処理する方が歪み除去を短時間に処理できる。
 一方、熱処理温度がガラス遷移温度を超え、結晶化温度未満で熱処理する場合、溶射被膜が一部結晶化を生じ、軟磁気特性を発現できないことがある。
 熱処理の方法としては、本発明の目的を達成し得る方法であれば特に制限されず、公知の方法を採用することができる。例えば、磁歪膜を含む基材全体を熱処理する方法、磁歪膜との接合付近を部分的に熱処理する方法などが挙げられる。簡便な方法の一つとしては、加熱炉に基材ごと入れて熱処理するバッチ方式が挙げられる。また、加熱は通常大気中で行えばよいが、酸化の影響が懸念される場合には不活性ガス中で行ってもよい。
 本実施形態の磁歪膜および磁歪素子によれば、従来の液体急冷法のような大がかりな設備を要さず、製造コストを低減することができる。また、溶射形成されるため、特許文献3のように被検体の表面に接着材などで磁歪膜を貼り付ける必要がなく、密着性に優れ、被検体からの剥離などの心配もない。さらに、ゼロ磁界付近での磁界領域における磁歪特性が改善される。
 また、これらの磁歪膜または磁歪素子を利用すれば、検出感度に優れた力センサやトルクセンサ、圧力センサを提供できる。
 本発明の磁歪膜および磁歪素子は、逆磁歪効果を利用する力センサ、トルクセンサ、圧力センサとして適用できるが、印加磁界による歪みを利用する磁歪アクチュエータなどにも適用できる。
 以下、実施例に基づき本発明をさらに説明するが、本発明はこれらに限定されるものではない。以下の試験例において、成膜条件などが異なる溶射被膜を製造し、その磁歪特性を測定し、評価した。
製造条件
 数ある金属ガラスの組成の中から、3種類の組成(FeSiBPC、FeSiBNb、FeSiBPCCr)を選択した。以降、Fe76Si5.79.53.8を組成I、Fe72Si9.614.4Nbを組成II、Fe71Si5.79.53.8Crを組成IIIとする。
 組成I、組成II、組成IIIの金属ガラスの溶射用粉末は、以下の方法で製造した。
 原料は、Fe:電解鉄、Si:シリコンスクラップ(6N)、B:高炭素フェロボロン、ボロンクリスタル、P:フェロ燐(20%P)、C:活性炭、Cr:クロムカーバイト、金属クロム、Nb:金属ニオブを使用した。母合金は、上記原料を組成比率に混ぜ合わせて、高周波溶解炉(アルミナルツボ、10-1Pa台に真空引き、Ar置換)にて溶解し、銅鋳型にて冷却して得た。粉末化はガスアトマイズ法にて行い、得られた粉末を超音波振動篩で分級して25~53μmの粉末を得た。
 試料は、基材(開進工業(株)製SUS631・3/4H、SUS316)と、基材上に積層した金属ガラス溶射膜とから構成した。基材の形状は、3mm×25mm、厚さ0.3mmの矩形薄板状である。
 基材への溶射条件は、プラズマ溶射装置:Sulzer Metco社製TriplexPro-200、電流:450A、電力:57kW、使用プラズマガス:Ar,He、溶射距離:100mm、溶射ガン移動速度:600mm/secであった。
 上記基材上に金属ガラス溶射膜を形成し、溶射膜厚の異なる3種類(100、200、300μm)の試料を準備した。また、溶射後の試料を所定温度で所定時間熱処理した。組成I~IIIのキュリー点温度Tc、ガラス遷移温度Tg、結晶化開始温度Txを表1に示す。試料(1~20)の組成、溶射膜厚、基材および熱処理条件を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
測定方法
 励磁コイルによる磁界印加時の磁歪量を測定した。
 図2は測定方法を示すブロック図である。図2に記載の通り、発振器、パワーアンプは(株)エヌエフ回路設計ブロック製を、レーザードップラー振動計、デジタル変位変換器、FFTアナライザは(株)小野測器製の各品番を使用した。
 コイルには、発振器により1Hzのsin波が供給される。試料に印加される磁界は、コイル電流Iとコイルの仕様から式(1)、式(2)により算出できる。コイル内の磁界Hは、次式で示される。
Figure JPOXMLDOC01-appb-M000003
 また、コイル中心(Z=0)の磁界Hは、次式で示される。
Figure JPOXMLDOC01-appb-M000004
 ここに、H :発生磁界  [A/m]
     N :コイル巻数 [回]
     I :電流    [A]
     r :内半径   [m]
     r :外半径   [m]
     l :コイル高さ [m]
     z :コイル中心からの距離 [m]
 表3に測定条件を示す。
Figure JPOXMLDOC01-appb-T000005
 試料の長尺方向を略垂直に立てて固定し、表3に示す多層巻の励磁コイルによって、試料に最大40kA/m若しくは、80kA/mの磁界を印加した。図3は、実際に配置したコイルを示す写真である。試料の形状が反っていたため、同図のようにコイルを傾けて、試料がコイルの中心軸に沿うように配置した。
 図2のブロック図のように、印加磁界Hによって変位する試料上端部、すなわち薄膜の磁歪量をレーザードップラー振動計およびデジタル変位変換器によって測定した。レーザードップラー振動計は試料への照射面を考慮して斜めに設置した。
 FFTアナライザにコイル電流Iの検出値と、デジタル変位変換器からの変化量ΔXとを入力し、磁界-磁歪量(変化量)カーブを作成した。
測定結果
 各試料の測定条件と最大磁歪量との関係を表4に示す。試料1~12は、最大磁界(H)40kA/mでの測定結果であり、試料13~20は、Hが80kA/mでの測定結果である。
Figure JPOXMLDOC01-appb-T000006
 以下、個々の試料における磁歪特性を図4から図9に示す。
組成Iの特性
 図4は、試料1~7の磁歪特性である。図中、縦軸の変化量とは、本発明の磁歪量に相当する。試料2は、組成Iを用いた試料1~7の中で最も良好な特性を示した。つまり磁界と磁歪量(変化量)とが直線関係(直線特性)を示す範囲が磁界ゼロ付近まで生じており、直線特性領域が±15kA/mの磁界範囲内にある。さらに、直線特性領域での歪み量が最も大きい。
 本実施例では、熱処理温度がガラス遷移温度(Tg=484℃)未満でキュリー点(410℃)以上である試料2~5に於いて、磁界ゼロ付近での直線性が良好で、歪み量が大きい。本実施例に該当しないガラス遷移温度以上で熱処理した試料1(530℃)では、±15kA/m内で、印加磁界と変化量とが直線関係になく、変化量がゼロに近い。また、本実施例に該当しないキュリー点温度未満で熱処理した試料6(390℃)、試料7(熱処理なし)では、磁界ゼロ付近でブロードなピークを示し、歪み量も小さい。
組成IIの特性
 図5は、試料8~12の磁歪特性である。本実施例のガラス遷移温度未満でキュリー点温度以上で熱処理した試料8~10に於いて、磁界と磁歪量との直線特性を示す範囲が磁界ゼロ付近まで生じており、直線特性領域が±15kA/mの磁界範囲内にある。また、本実施例に該当しないキュリー点温度未満で熱処理した試料11(300℃)、12(熱処理なし)では、磁界ゼロ付近でブロードなピークを示し、歪み量も小さい。
 組成のみが異なり、他の測定条件が同じである試料同士を比較すると、いずれの測定条件のおいても組成Iの方が組成IIよりも、直線特性領域における磁歪量が大きいことが分かった。
膜厚の違い
 膜厚の異なる3種類の試料13~15(組成I)、試料16~18(組成III)の特性を図6、図7に示す。組成I、IIIのいずれにおいても、直線特性領域における磁歪量は、100μm、300μm、200μmの厚さの順に大きくなり、厚さ200μmの試料が最もよい磁歪特性を示した。
熱処理時間の違い
 キュリー点以上でガラス遷移温度未満の熱処理温度にすることで、溶射被膜層がアモルファス固体状態で熱処理されることになり、効率的に残留応力による歪みが除去され、磁界を印加しない状態での磁歪膜の歪みをゼロに近づけることができる。一方、熱処理温度がキュリー点温度より低い温度で処理する場合は、時間を長くすることで同じ様な残留応力の歪み除去効果があるが、工業上、効率的ではない。
 熱処理時間の異なるだけの2種類の試料19,20(組成I)の特性を図8に示す。熱処理温度がキュリー点温度より低い200℃であっても、熱処理時間を12hと長くすることによって、熱処理時間1hのものよりも磁歪量が大きくなることが判る。しかし、熱処理温度が異なるのみの試料13と比較すると、キュリー点以上でガラス遷移温度未満の熱処理温度の方が短い時間で効率的に残留応力による歪みを除去できることが判る。
再現性
 組成Iの試料14(溶射膜厚200μm、熱処理条件450℃x1h)として作成した3枚の試料の磁歪特性を図9に示す。-15kA/m以上、+15kA/m以下の磁界範囲内では変化量はほぼ重なっており、ばらつきは小さいことが判る。
 組成、膜厚、熱処理条件の違いが磁歪特性に与える影響について以下の(1)~(3)のことが言える。
(1)キュリー点以上ガラス遷移温度未満で熱処理したいずれの試料においても、-15kA/m以上、+15kA/m以下の磁界範囲内の少なくとも一部範囲にて、磁界と磁歪とがリニアな関係(直線特性)を示す。つまり、磁界印加の際、直線特性の領域に達するまでの磁界-磁歪曲線の立ち上がりが早く、従来よりも微小な磁界であっても良好な磁歪特性を示すことができる。ガラス遷移温度を超える温度で熱処理した試料は、線形性を示さないことがある。キュリー点よりも低い温度で熱処理した試料は、長時間熱処理しない限り、低磁界での特性が悪化している。つまり、磁界ゼロ付近でブロードなピークを示し、変化量が小さくなってしまう。
(2)同形状の試料を3枚用意して、同じ測定条件で磁歪量を測定したところ、磁歪特性のばらつきは小さかった。
(3)膜厚条件(100μm、200μm、300μm)と磁歪量との関係については、膜厚200μmでの磁歪量が一番大きかった。
 前述の実施例では、矩形薄板状の基材に溶射形成した磁歪膜の磁歪特性を評価したが、シャフトの表面に本発明の磁歪膜を溶射形成し、励振コイルおよび検出コイルを配置することによって、シャフトに印加されるトルクを検出する磁歪式トルクセンサを構成し、そのセンサ感度を評価したものを以下に説明する。
 図10(A)は、外周面に磁歪膜が溶射形成されたシャフト(材質:SUS631)を示す斜視図である。磁歪膜は、組成Iを膜厚200μmになるように溶射形成したものである。尚、本溶射シャフトは、溶射施工後、真空炉中で450℃・1時間の熱処理をおこなったものである。図10(B)は、磁歪膜を囲むように配置された励振コイルと検出コイルを示す斜視図である。シャフトの一端は固定され、他端に正負の両方向のトルクが印加されるようになっている。トルク印加部に対して時計回り方向に掛けるトルクを正方向、反時計方向に掛けるトルクを負方向と定めた。
 励振コイルはリングコアの内周面に形成されている。このリングコアにシャフトを貫通させることにより、励振コイルが磁歪膜の外周に配置される。励振コイルに正弦波状の電圧を印加すると、シャフトがコアの役目となって磁界が発生する。この発生磁界を環状コアの内部に配置された4つの検出コイルA~Dで検知する。シャフトにトルクが印加されると、磁歪膜が歪んで磁束が変化するため、検出される磁界の大きさが変化する。従って、検出コイルで磁界の大きさの変化を検知することによって、トルクの大きさが測定できる。
 図11に上記の磁歪式トルクセンサの測定ブロック図を示す。発振器からの正弦波を増幅器を介して励振コイルに入力し、励振コイルに磁界を発生させる。この励振磁界の値はFFTアナライザのA-channelにて確認した。そして、シャフトにトルクを印加した際の磁束の変化を検出コイルにて読み取った。検出コイルからの信号は位相検波装置に入力される。位相検波装置は、発振器からの正弦波を参照信号として、検出コイルからの信号を同期検波する。このようにして検出コイルからの信号を位相検波器に通すことで参照信号と同位相の信号を直流として取り出し、マルチメータで測定した。この測定値をトルクセンサの出力電圧として評価した。同時に、入出力電圧間の位相差をFFTアナライザのB-channelを用いて測定した。
 図12に磁歪式トルクセンサを用いて、トルク評価した一例を示す。印加したトルクに対し、電圧出力値が比例関係にあることを確認した。特に、30N・m以下の低レベルのトルクに対して比例特性を示すこと、および、3.0~3.5mV/10N・mという非常に高いセンサ感度が得られることが判った。

Claims (11)

  1.  被検体上に溶射形成され、ガラス遷移温度より低く且つ、キュリー点温度以上で熱処理されていることを特徴とした金属ガラスの膜で構成され、
     -15kA/m以上、+15kA/m以下の磁界範囲のうちの少なくとも一部の範囲内で、磁界と磁歪との直線特性を示すことを特徴とする磁歪膜。
  2.  請求項1の磁歪膜において、前記金属ガラスがFeを主成分としてFe含有量が30~80原子%であることを特徴とする磁歪膜。
  3.  請求項2記載の磁歪膜において、前記金属ガラスがFe・Si・B・M、又はFe・Si・B・P・C・M(M=Cr、Nb、Ta、W、Ni、Co、Hf、Mo、又はM=無し)であることを特徴とする磁歪膜。
  4.  請求項3記載の磁歪膜において、前記金属ガラスはFe76Si5.79.53.8であることを特徴とする磁歪膜。
  5.  請求項1~4のいずれかに記載の磁歪膜において、前記金属ガラスの膜は、高速フレーム溶射法、またはプラズマ溶射法で形成されることを特徴とする磁歪膜。
  6.  請求項1~5のいずれかに記載の磁歪膜において、前記金属ガラスの膜の厚さは50μm以上であることを特徴とする磁歪膜。
  7.  請求項1~6のいずれかに記載の磁歪膜を有して構成され、機械的エネルギーと磁気的エネルギーとを変換することを特徴とする磁歪素子。
  8.  請求項1~7のいずれかに記載の磁歪膜または磁歪素子を用いたトルクセンサ。
  9.  請求項1~7のいずれかに記載の磁歪膜または磁歪素子を用いた力センサ。
  10.  請求項1~7のいずれかに記載の磁歪膜または磁歪素子を用いた圧力センサ。
  11.  -15kA/m以上、+15kA/m以下の磁界範囲のうちの少なくとも一部の範囲内で、磁界と磁歪との直線特性を示す磁歪膜の製造方法であって、
     被検体上に金属ガラスの膜を溶射形成し、
     前記溶射形成は、高速フレーム溶射法またはプラズマ溶射法を用いて、
     溶射形成の後、ガラス遷移温度より低く且つ、キュリー点温度以上で熱処理することを特徴とする磁歪膜の製造方法。
PCT/JP2010/062928 2009-08-03 2010-07-30 磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法 WO2011016399A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2010537063A JP4707771B1 (ja) 2009-08-03 2010-07-30 磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法
CN201080034679.6A CN102576800B (zh) 2009-08-03 2010-07-30 磁致伸缩膜、磁致伸缩组件、扭力传感器、力传感器、压力传感器及其制造方法
US13/388,528 US9506824B2 (en) 2009-08-03 2010-07-30 Magnetostrictive film, magnetostrictive element, torque sensor, force sensor, pressure sensor, and manufacturing method therefor
KR1020127003093A KR101187138B1 (ko) 2009-08-03 2010-07-30 자왜막, 자왜소자, 토크센서, 힘 센서, 압력 센서 및 그 제조방법
EP10806398.3A EP2466662B1 (en) 2009-08-03 2010-07-30 Magnetostrictive film, magnetostrictive element, torque sensor, force sensor, pressure sensor, and process for production of magnetostrictive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-180848 2009-08-03
JP2009180848 2009-08-03

Publications (1)

Publication Number Publication Date
WO2011016399A1 true WO2011016399A1 (ja) 2011-02-10

Family

ID=43544294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/062928 WO2011016399A1 (ja) 2009-08-03 2010-07-30 磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法

Country Status (7)

Country Link
US (1) US9506824B2 (ja)
EP (1) EP2466662B1 (ja)
JP (1) JP4707771B1 (ja)
KR (1) KR101187138B1 (ja)
CN (1) CN102576800B (ja)
TW (1) TWI501434B (ja)
WO (1) WO2011016399A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173261A1 (ja) * 2011-06-17 2012-12-20 株式会社中山製鋼所 トルクセンサおよびその製造方法
RU2695299C2 (ru) * 2015-05-21 2019-07-22 Усуй Ко., Лтд. Оборудование и способ для изготовления вала датчика крутящего момента
JP2020027677A (ja) * 2018-08-09 2020-02-20 日立金属株式会社 熱アシスト磁気記録媒体の軟磁性膜および熱アシスト磁気記録媒体の軟磁性膜形成用スパッタリングターゲット
WO2021187479A1 (ja) * 2020-03-18 2021-09-23 臼井国際産業株式会社 磁歪式トルクセンサー用シャフトおよびその製造方法
JP7462482B2 (ja) 2020-06-16 2024-04-05 臼井国際産業株式会社 トルクセンサシャフトの製造方法
JP7462481B2 (ja) 2020-06-16 2024-04-05 臼井国際産業株式会社 磁歪式トルクセンサシャフトの製造方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012219890A1 (de) * 2012-10-31 2014-04-30 Robert Bosch Gmbh Geberelement sowie Verfahren zu dessen Herstellung
WO2015028064A1 (en) * 2013-08-29 2015-03-05 Artio Sarl Method of manufacturing rotogravure cylinders
JP7149325B2 (ja) * 2017-05-05 2022-10-06 捷安特電動車(昆山)有限公司 乗物の運転パラメータの検出装置
US11131588B2 (en) * 2017-06-16 2021-09-28 Tohoku University Energy converter, vibration power generator, force sensor device, and actuator
US10871409B2 (en) 2017-12-15 2020-12-22 G.E. Avio S.r.l. SMD-coil-based torque-sensor for tangential field measurement
DE102018115008A1 (de) * 2018-06-21 2019-12-24 Trafag Ag Belastungsmessanordnung, Herstellverfahren hierfür und damit durchführbares Belastungsmessverfahren
JP2021527825A (ja) * 2018-06-21 2021-10-14 トラファグ アクツィエンゲゼルシャフトTrafag Ag 負荷測定装備、この製造方法、及びこれでもって実行可能な負荷測定方法
US11493407B2 (en) 2018-09-28 2022-11-08 Ge Avio S.R.L. Torque measurement system
DE102021200468A1 (de) * 2021-01-20 2022-07-21 Robert Bosch Gesellschaft mit beschränkter Haftung Drehmomentsensor
CN117722486B (zh) * 2024-02-07 2024-04-26 江苏凯同威工业装备科技有限公司 一种力矩传感器的扭矩传动装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149804A (ja) 1992-05-27 1993-06-15 Nissan Motor Co Ltd 磁歪式トルクセンサの製造方法
JPH07118786A (ja) 1993-08-31 1995-05-09 Isuzu Motors Ltd 鉄・テルビウム系磁歪材料及びその製造方法
JPH07297462A (ja) * 1994-04-20 1995-11-10 Mitsubishi Materials Corp 磁歪材料、これを用いた磁歪式トルクセンサ用磁歪検出体およびその製造方法
JPH0983037A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 自己バイアス型磁歪材料
JPH10176966A (ja) 1996-12-18 1998-06-30 Suzuki Motor Corp トルクセンサ用磁歪検出体
JP2001041833A (ja) 1999-08-03 2001-02-16 Shinko Electric Co Ltd トルクセンサ素子及びその製造方法
JP2002250662A (ja) * 2000-12-22 2002-09-06 Tdk Corp トルクセンサおよびその製造方法
JP2003045708A (ja) * 2001-05-23 2003-02-14 Alps Electric Co Ltd 電波吸収体及び電波吸収体の製造方法
JP2005340429A (ja) * 2004-05-26 2005-12-08 Fdk Corp 超磁歪薄膜素子及びその製造方法
JP2006214000A (ja) 2004-03-25 2006-08-17 Akihisa Inoue 金属ガラス積層体、およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826503A1 (de) * 1988-08-04 1990-02-08 Kernforschungsanlage Juelich Metallschichtsystem zur beseitigung von wasserstoff aus einem gasgemisch
US5585574A (en) * 1993-02-02 1996-12-17 Mitsubishi Materials Corporation Shaft having a magnetostrictive torque sensor and a method for making same
US5585874A (en) * 1995-01-12 1996-12-17 Bausch & Lomb Incorporated Color imaging convergence projector
US7326360B1 (en) * 2003-07-24 2008-02-05 Iowa State University Research Foundation, Inc. Cobalt ferrite based magnetostrictive materials for magnetic stress sensor and actuator applications
JP4562022B2 (ja) 2004-04-22 2010-10-13 アルプス・グリーンデバイス株式会社 非晶質軟磁性合金粉末及びそれを用いた圧粉コアと電波吸収体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05149804A (ja) 1992-05-27 1993-06-15 Nissan Motor Co Ltd 磁歪式トルクセンサの製造方法
JPH07118786A (ja) 1993-08-31 1995-05-09 Isuzu Motors Ltd 鉄・テルビウム系磁歪材料及びその製造方法
JPH07297462A (ja) * 1994-04-20 1995-11-10 Mitsubishi Materials Corp 磁歪材料、これを用いた磁歪式トルクセンサ用磁歪検出体およびその製造方法
JPH0983037A (ja) * 1995-09-13 1997-03-28 Toshiba Corp 自己バイアス型磁歪材料
JPH10176966A (ja) 1996-12-18 1998-06-30 Suzuki Motor Corp トルクセンサ用磁歪検出体
JP2001041833A (ja) 1999-08-03 2001-02-16 Shinko Electric Co Ltd トルクセンサ素子及びその製造方法
JP2002250662A (ja) * 2000-12-22 2002-09-06 Tdk Corp トルクセンサおよびその製造方法
JP2003045708A (ja) * 2001-05-23 2003-02-14 Alps Electric Co Ltd 電波吸収体及び電波吸収体の製造方法
JP2006214000A (ja) 2004-03-25 2006-08-17 Akihisa Inoue 金属ガラス積層体、およびその製造方法
JP3946226B2 (ja) 2004-03-25 2007-07-18 明久 井上 金属ガラス積層体、およびその製造方法
JP2005340429A (ja) * 2004-05-26 2005-12-08 Fdk Corp 超磁歪薄膜素子及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2466662A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012173261A1 (ja) * 2011-06-17 2012-12-20 株式会社中山製鋼所 トルクセンサおよびその製造方法
JPWO2012173261A1 (ja) * 2011-06-17 2015-02-23 株式会社中山アモルファス トルクセンサおよびその製造方法
RU2695299C2 (ru) * 2015-05-21 2019-07-22 Усуй Ко., Лтд. Оборудование и способ для изготовления вала датчика крутящего момента
JP2020027677A (ja) * 2018-08-09 2020-02-20 日立金属株式会社 熱アシスト磁気記録媒体の軟磁性膜および熱アシスト磁気記録媒体の軟磁性膜形成用スパッタリングターゲット
JP7238527B2 (ja) 2018-08-09 2023-03-14 株式会社プロテリアル 熱アシスト磁気記録媒体の軟磁性膜および熱アシスト磁気記録媒体の軟磁性膜形成用スパッタリングターゲット
WO2021187479A1 (ja) * 2020-03-18 2021-09-23 臼井国際産業株式会社 磁歪式トルクセンサー用シャフトおよびその製造方法
JP7462482B2 (ja) 2020-06-16 2024-04-05 臼井国際産業株式会社 トルクセンサシャフトの製造方法
JP7462481B2 (ja) 2020-06-16 2024-04-05 臼井国際産業株式会社 磁歪式トルクセンサシャフトの製造方法

Also Published As

Publication number Publication date
EP2466662A4 (en) 2013-05-29
TW201119107A (en) 2011-06-01
CN102576800B (zh) 2014-12-10
US20120128970A1 (en) 2012-05-24
EP2466662A1 (en) 2012-06-20
CN102576800A (zh) 2012-07-11
KR20120026136A (ko) 2012-03-16
KR101187138B1 (ko) 2012-09-28
EP2466662B1 (en) 2015-05-27
TWI501434B (zh) 2015-09-21
JPWO2011016399A1 (ja) 2013-01-10
US9506824B2 (en) 2016-11-29
JP4707771B1 (ja) 2011-06-22

Similar Documents

Publication Publication Date Title
JP4707771B1 (ja) 磁歪膜、磁歪素子、トルクセンサ、力センサ、圧力センサおよびその製造方法
JP5840361B2 (ja) オーステナイト系鉄/ニッケル/クロム/銅合金
JPH0641636B2 (ja) アモルファス被覆体の形成方法
JP4931992B2 (ja) 磁気弾性合金層を含む測定装置及び同合金層の形成方法
JP2010159491A (ja) Co−Fe系合金スパッタリングターゲット材
JP5477724B2 (ja) 軟磁性膜用Co−Fe系合金、軟磁性膜および垂直磁気記録媒体
US11927499B2 (en) Load measuring arrangement, method for producing said arrangement and load measuring method which can be carried out with said arrangement
JP5804372B2 (ja) 薄い樹脂へ金属ガラスを溶射する方法、及び金属ガラス被膜を有する複合材料
KR100311922B1 (ko) 벌크자심및적층자심
JP5631659B2 (ja) 垂直磁気記録媒体用軟磁性合金およびスパッタリングターゲット材並びに磁気記録媒体
JPS6324030A (ja) 異方性希土類磁石材料およびその製造方法
JP5170776B2 (ja) 軟磁性体
JP3532392B2 (ja) バルク磁心
JP3024817B2 (ja) 磁歪式トルクセンサ用磁歪検出体及びその製造方法
Li et al. Effect of Cr addition on glass-forming ability and corrosion properties of FeCoSiBPC bulk glassy alloys
CN107841686A (zh) 巨磁致伸缩性能的Fe‑Ga‑Al基薄带合金材料及其制作工艺和应用
CN101391299B (zh) 一种Fe-Ni软磁合金薄带的成形方法
Wang et al. Role of Si Addition on the Crystallization Behavior, Thermal Stability, and Magnetic Properties of the FeNiMoBSi Alloys
EP1270756B1 (en) Supermagnetostrictive alloy and method for preparation thereof
JPH073469A (ja) アモルファス被覆体及びその成形方法
CN115206615A (zh) 磁致伸缩复合材料及其制备方法和应用
RU2009249C1 (ru) Магнитный сплав на основе кобальта и способ производства ленты из него
Wang et al. Properties of sputter-deposited Fe-Pd thin films

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080034679.6

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010537063

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806398

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13388528

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20127003093

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010806398

Country of ref document: EP