CN114570934A - 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 - Google Patents

一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 Download PDF

Info

Publication number
CN114570934A
CN114570934A CN202210188476.7A CN202210188476A CN114570934A CN 114570934 A CN114570934 A CN 114570934A CN 202210188476 A CN202210188476 A CN 202210188476A CN 114570934 A CN114570934 A CN 114570934A
Authority
CN
China
Prior art keywords
magnetostrictive
powder
solution
coating
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210188476.7A
Other languages
English (en)
Inventor
沈功田
戚青丽
郑阳
潘晴川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Special Equipment Inspection and Research Institute
Original Assignee
China Special Equipment Inspection and Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Special Equipment Inspection and Research Institute filed Critical China Special Equipment Inspection and Research Institute
Priority to CN202210188476.7A priority Critical patent/CN114570934A/zh
Publication of CN114570934A publication Critical patent/CN114570934A/zh
Priority to US18/097,110 priority patent/US20230274866A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15341Preparation processes therefor
    • H01F1/1535Preparation processes therefor by powder metallurgy, e.g. spark erosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14708Fe-Ni based alloys
    • H01F1/14733Fe-Ni based alloys in the form of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • C23C24/045Impact or kinetic deposition of particles by trembling using impacting inert media
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2412Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • G01N2291/0231Composite or layered materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Acoustics & Sound (AREA)
  • Plasma & Fusion (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Coating By Spraying Or Casting (AREA)

Abstract

本发明提供一种磁致伸缩粉末以及磁致伸缩涂层的制备方法,涉及磁性功能材料及其制备领域。所述磁致伸缩粉末的制备方法包括:将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。本发明实施例提供的磁致伸缩粉末的制备方法,制备得到的粉末的尺寸比较集中,粉末收得率超过90%,且超声雾化能量消耗低,比普通雾化节能约1/4。

Description

一种磁致伸缩粉末以及磁致伸缩涂层的制备方法
技术领域
本发明涉及磁性功能材料及其制备领域,具体涉及一种磁致伸缩粉末以及磁致伸缩涂层的制备方法。
背景技术
在钢铁、石油、化工以及交通运输等领域,金属构件如管道、板材被大量应用,长期使用会出现腐蚀、断裂和穿孔等缺陷,这些缺陷如不及时进行处理就会造成生命财产的损失。因此为了避免事故的发生,对工业设备进行定期、有效的在线监测显的尤为重要。超声导波具有检测距离长、效率高和检测全面等特点,适用于高温高压、难以接近的管道与压力容器的定期检测与在线监测。目前常用的有三种电磁超声传感器、压电超声传感器和磁致伸缩传感器:电磁超声传感器存在换能效率低、信噪比不足等问题;压电传感器探头和检测对象之间需要耦合剂,被测物表面通常需要进行一定的预处理,因此压电超声检测技术难以满足。
磁致伸缩传感器检测凭借其独特非接触、不需要耦合剂、长距离、快速检测等技术优势,检测范围大,能实现非接触,适应高温腐蚀等恶劣环境下工作,其换能效率虽然低于压电传感器,但是其高检测精度仍然能满足绝大多数的检测需求。
目前通过高压雾化(气雾化)和水雾化法制备磁致伸缩粉末、再利用热喷涂或冷喷涂技术将磁致伸缩粉末涂敷在待测试件表面,以作为磁致伸缩传感器探头进行磁致伸缩导波检测的方法,能够适应试件复杂轮廓结构架。然而,通过高压雾化(气雾化)和水雾化法制备磁致伸缩粉末,存在如下缺点:制得的粉末的粒度较为分散,利用率低,且整个制备过程的耗能较高。
发明内容
针对现有技术中的问题,本发明实施例提供一种磁致伸缩粉末以及磁致伸缩涂层的制备方法,能够至少部分地解决现有技术中存在的问题。
一方面,本发明提出一种磁致伸缩粉末的制备方法,包括:
将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
可选的,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:
将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。
可选的,所述方法还包括:
在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。
可选的,在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。
可选的,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:
采用超声雾化法,以频率为85kHz~95kHz、速度为2.2马赫~2.4马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
可选的,所述磁致伸缩粉末的粒度为15微米~22微米。
可选的,所述磁致伸缩粉末的平均粒度为20微米。
另一方面,本发明提供一种磁致伸缩涂层的制备方法,所述方法包括:
将根据上述任一实施例提供的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
可选的,所述磁致伸缩粉末通过热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
再一方面,本发明提供一种磁致伸缩导波检测装置,所述磁致伸缩导波检测装置的探头为根据上述任一实施例提供的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
本发明实施例提供的磁致伸缩粉末的制备方法,跟普通高压雾化(气雾化)和水雾化的三阶段过程相比,超声雾化金属液在一个阶段就被多个细小射流冲击剪碎成金属雾滴,所得粉末尺寸比较集中,粉末收得率超过90%,由枝晶臂间距估算冷却速度超过100℃/s。超声雾化能量消耗低,比普通雾化节能约1/4。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明一实施例提供的磁致伸缩粉末的制备方法的流程示意图。
图2是本发明一实施例提供的磁致伸缩导波检测装置的部分结构示意图。
图3是本发明一实施例中得到磁致伸缩涂层表面波的检测结果示意图。
图4是本发明一实施例中得到磁致伸缩涂层纵向导波的检测结果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1是本发明一实施例提供的磁致伸缩粉末的制备方法的流程示意图,如图1所示,本发明实施例提供的磁致伸缩粉末的制备方法,包括:
S101、将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
本步骤,所述制备磁致伸缩粉末的金属可以包括铁、镓、钴、铝、镍等,可以将上述金属的铸锭或合金铸锭放入真空熔炼炉中熔化成溶液。
S102、采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
本步骤,在雾化炉内部超声波发生器输出高频电能,使腔体底部晶体换能器发生超声波声能,然后将所述溶液缓慢倒入雾化炉,声能震动了雾化炉底部的透声膜,作用于雾化炉内的液体,破坏了金属溶液的表面张力和惯性,使金属溶液成为破碎成微细的雾滴,冷却后形成一定粒度范围的粉末。
本发明提供的磁致伸缩粉末的制备方法,跟普通高压雾化(气雾化)和水雾化的三阶段过程相比,超声雾化金属液在一个阶段就被多个细小射流冲击剪碎成金属雾滴,所得粉末尺寸比较集中,粉末收得率超过90%,由枝晶臂间距估算冷却速度超过100℃/s。超声雾化能量消耗低,比普通雾化节能约1/4。
可选的,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。本实施例,可预先根据要制备的磁致伸缩粉末中的金属成分以及各金属成分的占比,确定放入所述真空冶炼炉中的金属以及各金属的比例。
可选的,所述方法还包括:在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。例如在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。对所述合金溶液进行短时保温是为了使金属液充分混合,成分均一,不出现偏析的现象。
可选的,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:采用超声雾化法,以频率为80kHz~100kHz、速度为2马赫~2.5马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
本实施例,在上述速度和频率下制得的磁致伸缩粉末的粒度为15微米~22微米,平均粒度小于或等于20微米。粉末的粒度比较集中,均可以应用于喷涂,粉末利用率高。
另一方面,本发明提供一种磁致伸缩涂层的制备方法,所述方法包括:将根据上述任一实施例提供的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
本实施例,通过采用超声雾化法制备磁致伸缩金属粉末,然后通过表面涂覆的形式将粉末沉积在待检试件表面,涂层与待检试件之间结合强度高,在外磁场作用下磁致伸缩涂层的检测灵敏度好,相比于磁致伸缩带材导波检测克服了人为因素的影响,不需要耦合剂,并且耐高温,可以用于长期在线监检测。
可选的,所述磁致伸缩粉末可通过但不限于热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
再一方面,本发明提供一种磁致伸缩导波检测装置,所述磁致伸缩导波检测装置的探头为根据上述任一实施例提供的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
本实施例,所述磁致伸缩导波检测装置可以包括永磁体、磁致伸缩涂层、激励线圈、接收线圈以及导波仪器。所述永磁体用于提供偏置磁场,所述激励线圈用于产生激励信号,在待检测试件上激励产生超声导波信号;所述接收线圈用于接收超声导波的信号反射回波,在导波仪器的信号处理器上转换成电压信号,所述磁致伸缩涂层用于增强换能效率,使得导波回波信号加强,同时磁致伸缩涂层与待检试件之间以冶金结合为主,使超声波传递效率升高。
具体的,导波仪器的信号发生器产生激励信号,激励信号通过激励线圈、经敏感元件-磁致伸缩涂层的增强在待检试件上产生超声导波,导波信号耦合至待检测试件表面,并沿轴向传播,所述待测试件包括金属及非金属材料;导波传播过程中,遇到缺陷反射回波信号,所述回波信号通过接收线圈和信号处理器转换成电压信号,导波仪器的信号处理器对信号进行分析,获得缺陷在待检试件上的准确位置。
本发明实施例提供的磁致伸缩导波传感器,通过采用磁致伸缩涂层代替传统磁致伸缩带材,导波检测灵敏度明显提高,可以实现对非铁性材料和铁磁性材料的检测,同时,不需要粘接剂(环氧树脂胶等),适用于高低温、或者恶劣环境下缺陷的检测。
本发明提供的磁致伸缩导波检测装置的优点包括:
1、以磁致伸缩涂层为敏感元件,涂层与待检试件直接冶金结合,且结合强度好,简化了检测装置,增强了声波与待检试件之间的声传递效率,提高了导波的换能效率,进而提高了检测灵敏度。
2、无需耦合剂、适合任何复杂轮廓结构件、受外界因素影响较小,降低在线监测成本。
下面通过具体实施例对本发明提供的磁致伸缩导波检测装置的检测灵敏度进行验证。
实施例1:基于本发明提供的磁致伸缩涂层的制备方法制备附着于钢板表面的磁致伸缩涂层,并在此基础上发展磁致伸缩导波检测装置进行钢板表面导波检测。
(1)制备Fe-Ni磁致伸缩粉末,筛分出15~22μm粒度范围的粉末;对1.5m长Q345钢板表面进行喷砂处理,并人为制造两处缺陷;
(2)采用热喷涂技术将磁致伸缩粉末喷涂在Q345钢板的一端,以获得磁致伸缩涂层;
(3)如图2所示,在磁致伸缩涂层1周围缠绕激励线圈3和接收线圈2,激励线圈3产生交变的磁场,偏置磁场由圆柱形永磁体4提供。在交变磁场与偏置磁场的共同作用下,磁致伸缩涂层1产生伸缩应变,引起质点的振动,振动以波的形式传递形成超声导波,以实现钢板5表面波检测;
(4)表面波在传播过程中遇到缺陷或者端面就会反射回信号,接收线圈接收到信号,并将磁化强度的变化转换成电压信号,信号经过处理和分析,得到磁致伸缩涂层表面波的检测结果,如图3所示。由此可见,磁致伸缩导波检测装置产生的导波沿钢板传播时,在缺陷和端面处分别反射回信号,根据波速和时间确定位置,这与缺陷位置一致,表明磁致伸缩导波检测装置用于导波检测的良好效果。
实施例2:基于本发明提供的磁致伸缩涂层的制备方法制备附着于钢芯铝绞线端部的磁致伸缩涂层,并在此基础上发展磁致伸缩导波检测装置进行钢芯铝绞线纵向导波检测。
(1)制备Fe-Al磁致伸缩粉末,筛分出15~20μm粒度范围的粉末;对2m长的钢芯铝绞线进行喷砂处理,并人为制造两处缺陷;
(2)采用低压等离子热喷涂技术将磁致伸缩粉末喷涂在316L管道的一端,以获得磁致伸缩涂层;
(3)在涂层缠绕放置激励线圈和接收线圈,激励线圈产生交变的磁场,偏置磁场由两块永磁体提供。在交变磁场与偏置磁场的共同作用下,磁致伸缩涂层产生伸缩应变,引起质点的振动,振动以波的形式传递形成超声导波;
(4)纵波在钢芯铝绞线中传播遇到端面就会反射回信号,接收线圈接收到信号,并将磁化强度的变化转换成电压信号,信号经过处理和分析,得到磁致伸缩涂层纵向导波的检测结果,如图4所示。由此可见,磁致伸缩导波传感器产生的导波沿钢芯铝绞线传播时,在缺陷和端面处分别反射回信号,根据波速和时间确定位置,这与缺陷位置一致,表明涂层导波检测装置的用于导波检测的良好效果。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种磁致伸缩粉末的制备方法,其特征在于,包括:
将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
2.根据权利要求1所述的方法,其特征在于,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:
将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:
在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。
4.根据权利要求3所述的方法,其特征在于,在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。
5.根据权利要求1或2所述的方法,其特征在于,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:
采用超声雾化法,以频率为85kHz~95kHz、速度为2.2马赫~2.4马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
6.根据权利要求5所述的方法,其特征在于,所述磁致伸缩粉末的粒度为15微米~22微米。
7.根据权利要求6所述的方法,其特征在于,所述磁致伸缩粉末的平均粒度为20微米。
8.一种磁致伸缩涂层的制备方法,其特征在于,所述方法包括:
将根据上述权利要求1至7任一项所述的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
9.根据权利要求8所述的方法,其特征在于,所述磁致伸缩粉末通过热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
10.一种磁致伸缩导波检测装置,其特征在于,所述磁致伸缩导波检测装置的探头为根据上述权利要求8或9所述的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
CN202210188476.7A 2022-02-28 2022-02-28 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 Pending CN114570934A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210188476.7A CN114570934A (zh) 2022-02-28 2022-02-28 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法
US18/097,110 US20230274866A1 (en) 2022-02-28 2023-01-13 Methods for preparing magnetostrictive powder and magnetostrictive coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210188476.7A CN114570934A (zh) 2022-02-28 2022-02-28 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法

Publications (1)

Publication Number Publication Date
CN114570934A true CN114570934A (zh) 2022-06-03

Family

ID=81775573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210188476.7A Pending CN114570934A (zh) 2022-02-28 2022-02-28 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法

Country Status (2)

Country Link
US (1) US20230274866A1 (zh)
CN (1) CN114570934A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162064A (ja) * 2005-12-13 2007-06-28 Tdk Corp 磁歪材料粉末の製造方法及び磁歪素子の製造方法
CN104439258A (zh) * 2014-11-27 2015-03-25 北京科技大学 一种钕铁硼永磁合金粉末的制备方法
CN104475743A (zh) * 2014-11-25 2015-04-01 北京康普锡威科技有限公司 一种微细球形钛及钛合金粉末的制备方法
CN105252011A (zh) * 2015-11-05 2016-01-20 北京科技大学 一种利用热喷涂技术制备铁基磁致伸缩涂层的方法
CN111850387A (zh) * 2020-07-08 2020-10-30 清华大学 用于导波检测的磁致伸缩复合材料及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3275787A (en) * 1963-12-30 1966-09-27 Gen Electric Process and apparatus for producing particles by electron melting and ultrasonic agitation
US4485834A (en) * 1981-12-04 1984-12-04 Grant Nicholas J Atomization die and method for atomizing molten material
US6444009B1 (en) * 2001-04-12 2002-09-03 Nanotek Instruments, Inc. Method for producing environmentally stable reactive alloy powders
CN102576800B (zh) * 2009-08-03 2014-12-10 东北泰克诺亚奇股份有限公司 磁致伸缩膜、磁致伸缩组件、扭力传感器、力传感器、压力传感器及其制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007162064A (ja) * 2005-12-13 2007-06-28 Tdk Corp 磁歪材料粉末の製造方法及び磁歪素子の製造方法
CN104475743A (zh) * 2014-11-25 2015-04-01 北京康普锡威科技有限公司 一种微细球形钛及钛合金粉末的制备方法
CN104439258A (zh) * 2014-11-27 2015-03-25 北京科技大学 一种钕铁硼永磁合金粉末的制备方法
CN105252011A (zh) * 2015-11-05 2016-01-20 北京科技大学 一种利用热喷涂技术制备铁基磁致伸缩涂层的方法
CN111850387A (zh) * 2020-07-08 2020-10-30 清华大学 用于导波检测的磁致伸缩复合材料及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
戚青丽等: "Fe-Ga磁致伸缩粉末制备及涂层组织及性能研究", 《功能材料》, vol. 53, no. 1, pages 01123 - 01127 *
王海军: "《热喷涂工程师指南》", 31 August 2010, 国防工业出版社, pages: 222 *

Also Published As

Publication number Publication date
US20230274866A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
Kim et al. Torsional wave experiments with a new magnetostrictive transducer configuration
US8432159B2 (en) Method and apparatus for monitoring wall thinning of a pipe using magnetostrictive transducers and variation of dispersion characteristics of broadband multimode shear horizontal (SH) waves
Liu et al. Adhesive debonding inspection with a small EMAT in resonant mode
Bond Fundamentals of ultrasonic inspection
CN102662003A (zh) 一种全向sh导波电磁超声换能器
CN106498384B (zh) 利用冷喷涂技术制备具有取向的铁基磁致伸缩涂层的方法
CN111380961A (zh) 一种超高温铸锻件检测电磁超声探头及在线快速检测方法
CN109060206A (zh) 一种铁磁性材料应力测量装置和方法
CN206177893U (zh) 一种用于棒材探伤的横波直入式电磁超声换能器
CN113155977A (zh) 用于高温金属检测的电磁超声表面波换能器及检测方法
Liu et al. Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function
JP2006189413A (ja) テールパッチを利用した磁気変形トランスデューサと、それを利用した弾性波測定装置
Shi et al. Improving laser-EMAT ultrasonic energy conversion efficiency using surface constraint mechanism
Qi et al. Magnetostriction of Fe-Ga coatings and their application in ultrasonic guided wave sensing
CN114570934A (zh) 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法
Liang et al. Enhancing the lift-off performance of EMATs by applying an Fe 3 O 4 coating to a test specimen
Updike et al. The damping performance of aluminum-based composites
Hou et al. Novel design of an effective pneumatic magnetostrictive patch transducer based on the ultrasonic guided wave for application of fast pipe health inspection
Nagy Leaky guided wave propagation along imperfectly bonded fibers in composite materials
JP4465420B2 (ja) 磁歪超音波素子及びこれを利用した非破壊検査方法
US20230251229A1 (en) Magnetostrictive guided wave sensor and method for preparing magnetostrictive coating
JP2012122751A (ja) 材料劣化診断装置
Ge et al. Development of High Temperature Rayleigh Wave Electromagnetic Acoustic Transducer with Double Coil Structure
CN215931767U (zh) 一种激光与电磁相结合的超声换能器
JP2000088815A (ja) 非導電性材料の超音波探傷方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination