CN114570934A - 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 - Google Patents
一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 Download PDFInfo
- Publication number
- CN114570934A CN114570934A CN202210188476.7A CN202210188476A CN114570934A CN 114570934 A CN114570934 A CN 114570934A CN 202210188476 A CN202210188476 A CN 202210188476A CN 114570934 A CN114570934 A CN 114570934A
- Authority
- CN
- China
- Prior art keywords
- magnetostrictive
- powder
- solution
- coating
- preparing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 60
- 239000011248 coating agent Substances 0.000 title claims abstract description 46
- 238000000576 coating method Methods 0.000 title claims abstract description 46
- 238000002360 preparation method Methods 0.000 title abstract description 17
- 238000000889 atomisation Methods 0.000 claims abstract description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 23
- 239000002184 metal Substances 0.000 claims abstract description 23
- 238000003723 Smelting Methods 0.000 claims abstract description 6
- 238000001514 detection method Methods 0.000 claims description 39
- 238000000034 method Methods 0.000 claims description 35
- 229910045601 alloy Inorganic materials 0.000 claims description 17
- 239000000956 alloy Substances 0.000 claims description 17
- 238000002844 melting Methods 0.000 claims description 15
- 230000008018 melting Effects 0.000 claims description 15
- 238000012360 testing method Methods 0.000 claims description 15
- 229910052782 aluminium Inorganic materials 0.000 claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 9
- 239000002245 particle Substances 0.000 claims description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 7
- 238000007751 thermal spraying Methods 0.000 claims description 6
- 239000000523 sample Substances 0.000 claims description 5
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 4
- 229910017052 cobalt Inorganic materials 0.000 claims description 4
- 239000010941 cobalt Substances 0.000 claims description 4
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 4
- 238000010288 cold spraying Methods 0.000 claims description 4
- 229910052733 gallium Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 229910052759 nickel Inorganic materials 0.000 claims description 4
- 238000000151 deposition Methods 0.000 claims description 3
- 230000003116 impacting effect Effects 0.000 claims description 3
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 3
- 230000005291 magnetic effect Effects 0.000 abstract description 11
- 238000005265 energy consumption Methods 0.000 abstract description 4
- 239000008204 material by function Substances 0.000 abstract description 2
- 230000007547 defect Effects 0.000 description 12
- 230000005284 excitation Effects 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000009689 gas atomisation Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000009692 water atomization Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 239000007822 coupling agent Substances 0.000 description 3
- 230000035945 sensitivity Effects 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 210000001787 dendrite Anatomy 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002592 echocardiography Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 1
- BGPVFRJUHWVFKM-UHFFFAOYSA-N N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] Chemical compound N1=C2C=CC=CC2=[N+]([O-])C1(CC1)CCC21N=C1C=CC=CC1=[N+]2[O-] BGPVFRJUHWVFKM-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000005426 magnetic field effect Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052755 nonmetal Inorganic materials 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/153—Amorphous metallic alloys, e.g. glassy metals
- H01F1/15341—Preparation processes therefor
- H01F1/1535—Preparation processes therefor by powder metallurgy, e.g. spark erosion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
- H01F1/14708—Fe-Ni based alloys
- H01F1/14733—Fe-Ni based alloys in the form of particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/02—Processes for applying liquids or other fluent materials performed by spraying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C24/00—Coating starting from inorganic powder
- C23C24/02—Coating starting from inorganic powder by application of pressure only
- C23C24/04—Impact or kinetic deposition of particles
- C23C24/045—Impact or kinetic deposition of particles by trembling using impacting inert media
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C4/00—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
- C23C4/12—Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
- G01N29/2412—Probes using the magnetostrictive properties of the material to be examined, e.g. electromagnetic acoustic transducers [EMAT]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/023—Solids
- G01N2291/0231—Composite or layered materials
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Electromagnetism (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pathology (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Dispersion Chemistry (AREA)
- Power Engineering (AREA)
- Acoustics & Sound (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Coating By Spraying Or Casting (AREA)
Abstract
本发明提供一种磁致伸缩粉末以及磁致伸缩涂层的制备方法,涉及磁性功能材料及其制备领域。所述磁致伸缩粉末的制备方法包括:将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。本发明实施例提供的磁致伸缩粉末的制备方法,制备得到的粉末的尺寸比较集中,粉末收得率超过90%,且超声雾化能量消耗低,比普通雾化节能约1/4。
Description
技术领域
本发明涉及磁性功能材料及其制备领域,具体涉及一种磁致伸缩粉末以及磁致伸缩涂层的制备方法。
背景技术
在钢铁、石油、化工以及交通运输等领域,金属构件如管道、板材被大量应用,长期使用会出现腐蚀、断裂和穿孔等缺陷,这些缺陷如不及时进行处理就会造成生命财产的损失。因此为了避免事故的发生,对工业设备进行定期、有效的在线监测显的尤为重要。超声导波具有检测距离长、效率高和检测全面等特点,适用于高温高压、难以接近的管道与压力容器的定期检测与在线监测。目前常用的有三种电磁超声传感器、压电超声传感器和磁致伸缩传感器:电磁超声传感器存在换能效率低、信噪比不足等问题;压电传感器探头和检测对象之间需要耦合剂,被测物表面通常需要进行一定的预处理,因此压电超声检测技术难以满足。
磁致伸缩传感器检测凭借其独特非接触、不需要耦合剂、长距离、快速检测等技术优势,检测范围大,能实现非接触,适应高温腐蚀等恶劣环境下工作,其换能效率虽然低于压电传感器,但是其高检测精度仍然能满足绝大多数的检测需求。
目前通过高压雾化(气雾化)和水雾化法制备磁致伸缩粉末、再利用热喷涂或冷喷涂技术将磁致伸缩粉末涂敷在待测试件表面,以作为磁致伸缩传感器探头进行磁致伸缩导波检测的方法,能够适应试件复杂轮廓结构架。然而,通过高压雾化(气雾化)和水雾化法制备磁致伸缩粉末,存在如下缺点:制得的粉末的粒度较为分散,利用率低,且整个制备过程的耗能较高。
发明内容
针对现有技术中的问题,本发明实施例提供一种磁致伸缩粉末以及磁致伸缩涂层的制备方法,能够至少部分地解决现有技术中存在的问题。
一方面,本发明提出一种磁致伸缩粉末的制备方法,包括:
将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
可选的,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:
将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。
可选的,所述方法还包括:
在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。
可选的,在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。
可选的,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:
采用超声雾化法,以频率为85kHz~95kHz、速度为2.2马赫~2.4马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
可选的,所述磁致伸缩粉末的粒度为15微米~22微米。
可选的,所述磁致伸缩粉末的平均粒度为20微米。
另一方面,本发明提供一种磁致伸缩涂层的制备方法,所述方法包括:
将根据上述任一实施例提供的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
可选的,所述磁致伸缩粉末通过热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
再一方面,本发明提供一种磁致伸缩导波检测装置,所述磁致伸缩导波检测装置的探头为根据上述任一实施例提供的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
本发明实施例提供的磁致伸缩粉末的制备方法,跟普通高压雾化(气雾化)和水雾化的三阶段过程相比,超声雾化金属液在一个阶段就被多个细小射流冲击剪碎成金属雾滴,所得粉末尺寸比较集中,粉末收得率超过90%,由枝晶臂间距估算冷却速度超过100℃/s。超声雾化能量消耗低,比普通雾化节能约1/4。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。在附图中:
图1是本发明一实施例提供的磁致伸缩粉末的制备方法的流程示意图。
图2是本发明一实施例提供的磁致伸缩导波检测装置的部分结构示意图。
图3是本发明一实施例中得到磁致伸缩涂层表面波的检测结果示意图。
图4是本发明一实施例中得到磁致伸缩涂层纵向导波的检测结果示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚明白,下面结合附图对本发明实施例做进一步详细说明。在此,本发明的示意性实施例及其说明用于解释本发明,但并不作为对本发明的限定。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
图1是本发明一实施例提供的磁致伸缩粉末的制备方法的流程示意图,如图1所示,本发明实施例提供的磁致伸缩粉末的制备方法,包括:
S101、将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
本步骤,所述制备磁致伸缩粉末的金属可以包括铁、镓、钴、铝、镍等,可以将上述金属的铸锭或合金铸锭放入真空熔炼炉中熔化成溶液。
S102、采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
本步骤,在雾化炉内部超声波发生器输出高频电能,使腔体底部晶体换能器发生超声波声能,然后将所述溶液缓慢倒入雾化炉,声能震动了雾化炉底部的透声膜,作用于雾化炉内的液体,破坏了金属溶液的表面张力和惯性,使金属溶液成为破碎成微细的雾滴,冷却后形成一定粒度范围的粉末。
本发明提供的磁致伸缩粉末的制备方法,跟普通高压雾化(气雾化)和水雾化的三阶段过程相比,超声雾化金属液在一个阶段就被多个细小射流冲击剪碎成金属雾滴,所得粉末尺寸比较集中,粉末收得率超过90%,由枝晶臂间距估算冷却速度超过100℃/s。超声雾化能量消耗低,比普通雾化节能约1/4。
可选的,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。本实施例,可预先根据要制备的磁致伸缩粉末中的金属成分以及各金属成分的占比,确定放入所述真空冶炼炉中的金属以及各金属的比例。
可选的,所述方法还包括:在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。例如在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。对所述合金溶液进行短时保温是为了使金属液充分混合,成分均一,不出现偏析的现象。
可选的,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:采用超声雾化法,以频率为80kHz~100kHz、速度为2马赫~2.5马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
本实施例,在上述速度和频率下制得的磁致伸缩粉末的粒度为15微米~22微米,平均粒度小于或等于20微米。粉末的粒度比较集中,均可以应用于喷涂,粉末利用率高。
另一方面,本发明提供一种磁致伸缩涂层的制备方法,所述方法包括:将根据上述任一实施例提供的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
本实施例,通过采用超声雾化法制备磁致伸缩金属粉末,然后通过表面涂覆的形式将粉末沉积在待检试件表面,涂层与待检试件之间结合强度高,在外磁场作用下磁致伸缩涂层的检测灵敏度好,相比于磁致伸缩带材导波检测克服了人为因素的影响,不需要耦合剂,并且耐高温,可以用于长期在线监检测。
可选的,所述磁致伸缩粉末可通过但不限于热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
再一方面,本发明提供一种磁致伸缩导波检测装置,所述磁致伸缩导波检测装置的探头为根据上述任一实施例提供的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
本实施例,所述磁致伸缩导波检测装置可以包括永磁体、磁致伸缩涂层、激励线圈、接收线圈以及导波仪器。所述永磁体用于提供偏置磁场,所述激励线圈用于产生激励信号,在待检测试件上激励产生超声导波信号;所述接收线圈用于接收超声导波的信号反射回波,在导波仪器的信号处理器上转换成电压信号,所述磁致伸缩涂层用于增强换能效率,使得导波回波信号加强,同时磁致伸缩涂层与待检试件之间以冶金结合为主,使超声波传递效率升高。
具体的,导波仪器的信号发生器产生激励信号,激励信号通过激励线圈、经敏感元件-磁致伸缩涂层的增强在待检试件上产生超声导波,导波信号耦合至待检测试件表面,并沿轴向传播,所述待测试件包括金属及非金属材料;导波传播过程中,遇到缺陷反射回波信号,所述回波信号通过接收线圈和信号处理器转换成电压信号,导波仪器的信号处理器对信号进行分析,获得缺陷在待检试件上的准确位置。
本发明实施例提供的磁致伸缩导波传感器,通过采用磁致伸缩涂层代替传统磁致伸缩带材,导波检测灵敏度明显提高,可以实现对非铁性材料和铁磁性材料的检测,同时,不需要粘接剂(环氧树脂胶等),适用于高低温、或者恶劣环境下缺陷的检测。
本发明提供的磁致伸缩导波检测装置的优点包括:
1、以磁致伸缩涂层为敏感元件,涂层与待检试件直接冶金结合,且结合强度好,简化了检测装置,增强了声波与待检试件之间的声传递效率,提高了导波的换能效率,进而提高了检测灵敏度。
2、无需耦合剂、适合任何复杂轮廓结构件、受外界因素影响较小,降低在线监测成本。
下面通过具体实施例对本发明提供的磁致伸缩导波检测装置的检测灵敏度进行验证。
实施例1:基于本发明提供的磁致伸缩涂层的制备方法制备附着于钢板表面的磁致伸缩涂层,并在此基础上发展磁致伸缩导波检测装置进行钢板表面导波检测。
(1)制备Fe-Ni磁致伸缩粉末,筛分出15~22μm粒度范围的粉末;对1.5m长Q345钢板表面进行喷砂处理,并人为制造两处缺陷;
(2)采用热喷涂技术将磁致伸缩粉末喷涂在Q345钢板的一端,以获得磁致伸缩涂层;
(3)如图2所示,在磁致伸缩涂层1周围缠绕激励线圈3和接收线圈2,激励线圈3产生交变的磁场,偏置磁场由圆柱形永磁体4提供。在交变磁场与偏置磁场的共同作用下,磁致伸缩涂层1产生伸缩应变,引起质点的振动,振动以波的形式传递形成超声导波,以实现钢板5表面波检测;
(4)表面波在传播过程中遇到缺陷或者端面就会反射回信号,接收线圈接收到信号,并将磁化强度的变化转换成电压信号,信号经过处理和分析,得到磁致伸缩涂层表面波的检测结果,如图3所示。由此可见,磁致伸缩导波检测装置产生的导波沿钢板传播时,在缺陷和端面处分别反射回信号,根据波速和时间确定位置,这与缺陷位置一致,表明磁致伸缩导波检测装置用于导波检测的良好效果。
实施例2:基于本发明提供的磁致伸缩涂层的制备方法制备附着于钢芯铝绞线端部的磁致伸缩涂层,并在此基础上发展磁致伸缩导波检测装置进行钢芯铝绞线纵向导波检测。
(1)制备Fe-Al磁致伸缩粉末,筛分出15~20μm粒度范围的粉末;对2m长的钢芯铝绞线进行喷砂处理,并人为制造两处缺陷;
(2)采用低压等离子热喷涂技术将磁致伸缩粉末喷涂在316L管道的一端,以获得磁致伸缩涂层;
(3)在涂层缠绕放置激励线圈和接收线圈,激励线圈产生交变的磁场,偏置磁场由两块永磁体提供。在交变磁场与偏置磁场的共同作用下,磁致伸缩涂层产生伸缩应变,引起质点的振动,振动以波的形式传递形成超声导波;
(4)纵波在钢芯铝绞线中传播遇到端面就会反射回信号,接收线圈接收到信号,并将磁化强度的变化转换成电压信号,信号经过处理和分析,得到磁致伸缩涂层纵向导波的检测结果,如图4所示。由此可见,磁致伸缩导波传感器产生的导波沿钢芯铝绞线传播时,在缺陷和端面处分别反射回信号,根据波速和时间确定位置,这与缺陷位置一致,表明涂层导波检测装置的用于导波检测的良好效果。
在本说明书的描述中,参考术语“一个实施例”、“一个具体实施例”、“一些实施例”、“例如”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种磁致伸缩粉末的制备方法,其特征在于,包括:
将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液;
采用超声雾化法,将所述溶液雾化成微细液滴,以使所述微细液滴冷却后凝固成磁致伸缩粉末。
2.根据权利要求1所述的方法,其特征在于,所述将制备磁致伸缩粉末的金属放入真空熔炼炉中熔化成溶液包括:
将铁与镓、钴、铝、镍中的一种或者多种按照预设比例放入真空冶炼炉中熔化成合金溶液。
3.根据权利要求2所述的方法,其特征在于,所述方法还包括:
在所述合金溶液的熔点以上300℃~400℃对所述合金溶液保温10分钟~30分钟。
4.根据权利要求3所述的方法,其特征在于,在所述合金溶液的熔点以上350℃对所述合金溶液保温10分钟~30分钟。
5.根据权利要求1或2所述的方法,其特征在于,所述采用超声雾化法,将所述溶液雾化成微细液滴包括:
采用超声雾化法,以频率为85kHz~95kHz、速度为2.2马赫~2.4马赫的气流冲击由所述溶液形成的液态金属流,使所述溶液雾化成微细液滴。
6.根据权利要求5所述的方法,其特征在于,所述磁致伸缩粉末的粒度为15微米~22微米。
7.根据权利要求6所述的方法,其特征在于,所述磁致伸缩粉末的平均粒度为20微米。
8.一种磁致伸缩涂层的制备方法,其特征在于,所述方法包括:
将根据上述权利要求1至7任一项所述的磁致伸缩粉末的制备方法制备的磁致伸缩粉末,通过表面涂覆的方式沉积在待测试件表面,形成附着于所述待测试件表面的磁致伸缩涂层。
9.根据权利要求8所述的方法,其特征在于,所述磁致伸缩粉末通过热喷涂技术或冷喷涂技术喷涂在所述待测试件表面。
10.一种磁致伸缩导波检测装置,其特征在于,所述磁致伸缩导波检测装置的探头为根据上述权利要求8或9所述的磁致伸缩涂层的制备方法制备的磁致伸缩涂层。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210188476.7A CN114570934A (zh) | 2022-02-28 | 2022-02-28 | 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 |
US18/097,110 US20230274866A1 (en) | 2022-02-28 | 2023-01-13 | Methods for preparing magnetostrictive powder and magnetostrictive coating |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210188476.7A CN114570934A (zh) | 2022-02-28 | 2022-02-28 | 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN114570934A true CN114570934A (zh) | 2022-06-03 |
Family
ID=81775573
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210188476.7A Pending CN114570934A (zh) | 2022-02-28 | 2022-02-28 | 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 |
Country Status (2)
Country | Link |
---|---|
US (1) | US20230274866A1 (zh) |
CN (1) | CN114570934A (zh) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007162064A (ja) * | 2005-12-13 | 2007-06-28 | Tdk Corp | 磁歪材料粉末の製造方法及び磁歪素子の製造方法 |
CN104439258A (zh) * | 2014-11-27 | 2015-03-25 | 北京科技大学 | 一种钕铁硼永磁合金粉末的制备方法 |
CN104475743A (zh) * | 2014-11-25 | 2015-04-01 | 北京康普锡威科技有限公司 | 一种微细球形钛及钛合金粉末的制备方法 |
CN105252011A (zh) * | 2015-11-05 | 2016-01-20 | 北京科技大学 | 一种利用热喷涂技术制备铁基磁致伸缩涂层的方法 |
CN111850387A (zh) * | 2020-07-08 | 2020-10-30 | 清华大学 | 用于导波检测的磁致伸缩复合材料及其制备方法和应用 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3275787A (en) * | 1963-12-30 | 1966-09-27 | Gen Electric | Process and apparatus for producing particles by electron melting and ultrasonic agitation |
US4485834A (en) * | 1981-12-04 | 1984-12-04 | Grant Nicholas J | Atomization die and method for atomizing molten material |
US6444009B1 (en) * | 2001-04-12 | 2002-09-03 | Nanotek Instruments, Inc. | Method for producing environmentally stable reactive alloy powders |
CN102576800B (zh) * | 2009-08-03 | 2014-12-10 | 东北泰克诺亚奇股份有限公司 | 磁致伸缩膜、磁致伸缩组件、扭力传感器、力传感器、压力传感器及其制造方法 |
-
2022
- 2022-02-28 CN CN202210188476.7A patent/CN114570934A/zh active Pending
-
2023
- 2023-01-13 US US18/097,110 patent/US20230274866A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007162064A (ja) * | 2005-12-13 | 2007-06-28 | Tdk Corp | 磁歪材料粉末の製造方法及び磁歪素子の製造方法 |
CN104475743A (zh) * | 2014-11-25 | 2015-04-01 | 北京康普锡威科技有限公司 | 一种微细球形钛及钛合金粉末的制备方法 |
CN104439258A (zh) * | 2014-11-27 | 2015-03-25 | 北京科技大学 | 一种钕铁硼永磁合金粉末的制备方法 |
CN105252011A (zh) * | 2015-11-05 | 2016-01-20 | 北京科技大学 | 一种利用热喷涂技术制备铁基磁致伸缩涂层的方法 |
CN111850387A (zh) * | 2020-07-08 | 2020-10-30 | 清华大学 | 用于导波检测的磁致伸缩复合材料及其制备方法和应用 |
Non-Patent Citations (2)
Title |
---|
戚青丽等: "Fe-Ga磁致伸缩粉末制备及涂层组织及性能研究", 《功能材料》, vol. 53, no. 1, pages 01123 - 01127 * |
王海军: "《热喷涂工程师指南》", 31 August 2010, 国防工业出版社, pages: 222 * |
Also Published As
Publication number | Publication date |
---|---|
US20230274866A1 (en) | 2023-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kim et al. | Torsional wave experiments with a new magnetostrictive transducer configuration | |
US8432159B2 (en) | Method and apparatus for monitoring wall thinning of a pipe using magnetostrictive transducers and variation of dispersion characteristics of broadband multimode shear horizontal (SH) waves | |
Liu et al. | Adhesive debonding inspection with a small EMAT in resonant mode | |
Bond | Fundamentals of ultrasonic inspection | |
CN102662003A (zh) | 一种全向sh导波电磁超声换能器 | |
CN106498384B (zh) | 利用冷喷涂技术制备具有取向的铁基磁致伸缩涂层的方法 | |
CN111380961A (zh) | 一种超高温铸锻件检测电磁超声探头及在线快速检测方法 | |
CN109060206A (zh) | 一种铁磁性材料应力测量装置和方法 | |
CN206177893U (zh) | 一种用于棒材探伤的横波直入式电磁超声换能器 | |
CN113155977A (zh) | 用于高温金属检测的电磁超声表面波换能器及检测方法 | |
Liu et al. | Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function | |
JP2006189413A (ja) | テールパッチを利用した磁気変形トランスデューサと、それを利用した弾性波測定装置 | |
Shi et al. | Improving laser-EMAT ultrasonic energy conversion efficiency using surface constraint mechanism | |
Qi et al. | Magnetostriction of Fe-Ga coatings and their application in ultrasonic guided wave sensing | |
CN114570934A (zh) | 一种磁致伸缩粉末以及磁致伸缩涂层的制备方法 | |
Liang et al. | Enhancing the lift-off performance of EMATs by applying an Fe 3 O 4 coating to a test specimen | |
Updike et al. | The damping performance of aluminum-based composites | |
Hou et al. | Novel design of an effective pneumatic magnetostrictive patch transducer based on the ultrasonic guided wave for application of fast pipe health inspection | |
Nagy | Leaky guided wave propagation along imperfectly bonded fibers in composite materials | |
JP4465420B2 (ja) | 磁歪超音波素子及びこれを利用した非破壊検査方法 | |
US20230251229A1 (en) | Magnetostrictive guided wave sensor and method for preparing magnetostrictive coating | |
JP2012122751A (ja) | 材料劣化診断装置 | |
Ge et al. | Development of High Temperature Rayleigh Wave Electromagnetic Acoustic Transducer with Double Coil Structure | |
CN215931767U (zh) | 一种激光与电磁相结合的超声换能器 | |
JP2000088815A (ja) | 非導電性材料の超音波探傷方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |