JP4465420B2 - 磁歪超音波素子及びこれを利用した非破壊検査方法 - Google Patents
磁歪超音波素子及びこれを利用した非破壊検査方法 Download PDFInfo
- Publication number
- JP4465420B2 JP4465420B2 JP2000277401A JP2000277401A JP4465420B2 JP 4465420 B2 JP4465420 B2 JP 4465420B2 JP 2000277401 A JP2000277401 A JP 2000277401A JP 2000277401 A JP2000277401 A JP 2000277401A JP 4465420 B2 JP4465420 B2 JP 4465420B2
- Authority
- JP
- Japan
- Prior art keywords
- magnetostrictive
- ring body
- ultrasonic
- magnetic field
- magnetostrictive ring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Transducers For Ultrasonic Waves (AREA)
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
Description
【発明の属する技術分野】
本発明は、超音波受発信素子及びこれを用いた物体の非破壊検査方法に関し、更に詳細には、磁歪効果を利用して超音波を発信・受信できる新規な磁歪超音波素子並びにこれを用いて物体の内部異常を検査する非破壊検査方法に関する。
【0002】
【従来の技術】
近年、金属やコンクリート等からなる物体の内部構造の劣化を診断する非破壊検査方法の一つとして、超音波を利用した非破壊検査方法が知られている。この超音波を発信又は受信する素子として圧電式超音波センサーが一般に広く用いられている。
【0003】
しかし、従前の圧電式センサーのように分解能の比較的低い超音波センサーでは、被検査体内部の欠陥や材質劣化の位置・大きさを高精度で能率よく検出することができないという問題があった。特に、結晶粒が粗大でその分布が不均一な金属からなる非検査体では、超音波の減衰やバックグラウンドノイズとしてのエコーが生じ、SN比が大幅に低下するからである。
【0004】
このような超音波センサーに係る問題を解決する一案として、本発明者等は既に電磁超音波素子を開発し、特願平10−363453号及び特願平10−363454号としてこれを公開している。
【0005】
この電磁超音波素子の発信方式は、金属中に渦電流を発生させ、この渦電流と印加された磁場との相互作用により金属中に振動ローレンツ力を生起させ、この振動ローレンツ力により超音波を発生・伝播させるものである。また、この受信方式は、金属の超音波振動により渦電流を発生させ、この渦電流による磁束変化を高性能磁気ヘッドにより検出するものである。即ち、電磁超音波方式は、金属中の渦電流を介して超音波を発信・受信する方式であると言える。
【0006】
【発明が解決しようとする課題】
このように、電磁超音波素子は独創的な方式であり、各種の用途において実用化するための研究開発が続行されており、特に非破壊検査において有効であることが分かってきている。しかし、前述したように、電磁超音波方式は被検査体が金属に限定されており、コンクリート等のような非導電性の非検査体には適用できないという制限がある。
【0007】
一方、近年報道されているように、コンクリート片が鉄道のトンネル内において剥落する事故が多発している。この事件は、鉄道のトンネルに限った問題ではなく、コンクリート構造物全体の問題である。トンネル、ビル、ダム、高速道路などのコンクリート構造物はいずれ疲労破壊を生じる時期が必ず来る。この疲労破壊を事前に検出して事故を防止する技術開発が緊急の課題となっている。
【0008】
このように、コンクリート構造物の非破壊検査を初めとして、電磁超音波方式では検出できない非導電性物体の非破壊検査を精度良く実現できる新規技術の出現が待たれている。
従って、本発明は導電性被検査体のみならず非導電性被検査体に対しても超音波を発信・受信できる新規な超音波素子を提供することを目的とし、同時にこの超音波素子を用いた非破壊検査方法を実現することを目的とする。
【0009】
【課題を解決するための手段】
請求項1の発明は、磁歪材料を環状に形成した磁歪リング体と、この磁歪リング体の内部に直流バイアス磁場を形成するために磁歪リング体に巻回されたバイアスコイルと、前記磁歪リング体の超音波振動によりその磁歪効果を通して発生する変動磁場を検出するために磁歪リング体に巻回された信号コイルから構成され、この信号コイルによる超音波受信感度を前記直流バイアス磁場により調整し、前記磁歪リング体を被検査体の表面に接触させて、被検査体表面の超音波振動を磁歪リング体に伝達し、この磁歪リング体の内部に生起した振動歪を磁歪効果により変動磁場に変換し、この変動磁場を前記信号コイルにより検出して超音波を受信するものであって、磁歪リング体の内周部に自由回転機構を設けて、磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するように配設したことを特徴とする磁歪超音波素子である。
【0010】
請求項2の発明は、磁歪材料を環状に形成した磁歪リング体と、この磁歪リング体の内部に直流バイアス磁場を形成するために磁歪リング体に巻回されたバイアスコイルと、前記磁歪リング体に変動磁場を印加して磁歪効果により磁歪リング体を超音波振動させるために磁歪リング体に巻回された信号コイルから構成され、この信号コイルによる超音波発信感度を前記直流バイアス磁場により調整し、前記信号コイルに交流電流を流して磁歪リング体の内部に変動磁場を生起し、この変動磁場により磁歪効果を通して磁歪リング体に超音波振動を生起させ、この磁歪リング体を被検査体表面に接触させて超音波を発信させるものであって、磁歪リング体の内周部に自由回転機構を設けて、磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するように配設したことを特徴とする磁歪超音波素子である。
【0011】
請求項3の発明は、前記磁歪リング体の平均円周が受信又は発信する超音波の波長より短く設定される請求項1又は2記載の磁歪超音波素子である。
【0014】
請求項4の発明は、超音波を被検査体の内部に入射させ、被検査体の内部構造を反映して伝播する超音波を被検査体の表面で受信して被検査体の内部異常を検査する非破壊検査方法において、磁歪材料を環状に形成した磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するように配置し、この磁歪リング体にバイアスコイルを巻回して磁歪リング体の内部に直流バイアス磁場を形成し、同時に磁歪リング体に信号コイルを巻回し、この信号コイルによる超音波受信感度を前記直流バイアス磁場により調整し、伝播してきた超音波により磁歪リング体を超音波振動させ、この超音波振動により磁歪リング体の磁歪効果を通して変動磁場を生起させ、この変動磁場を前記信号コイルにより検出して超音波を受信し、この受信超音波により被検査体の内部異常を検査することを特徴とする磁歪超音波素子を用いた非破壊検査方法である。
【0015】
請求項5の発明は、超音波を被検査体の内部に入射させ、被検査体の内部構造を反映して伝播する超音波を被検査体の表面で受信して被検査体の内部異常を検査する非破壊検査方法において、磁歪材料を環状に形成した磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するように配置し、この磁歪リング体にバイアスコイルを巻回して磁歪リング体の内部に直流バイアス磁場を形成し、同時に磁歪リング体に信号コイルを巻回し、この信号コイルによる超音波発信感度を前記直流バイアス磁場により調整し、この信号コイルにより磁歪リング体の内部に超音波領域の変動磁場を生起させ、この変動磁場により磁歪リング体の磁歪効果を通して磁歪リング体を超音波振動させ、この超音波振動により被検査体の内部に超音波を伝播させて被検査体の内部異常を検査することを特徴とする磁歪超音波素子を用いた非破壊検査方法である。
【0016】
【発明の実施形態】
本発明者等は、導電性と非導電性の区別なしに、被検査体内部に超音波を発生・伝播させる方式を鋭意研究した結果、機械的に超音波振動する物体、即ち超音波振動体を被検査体に接触させ、この超音波振動の機械的伝達によって被検査体内に超音波を導入することが必要であると考えた。
【0017】
従来、この観点から開発されている超音波振動体として圧電素子がある。圧電素子は、交流電圧を印加されたとき、圧電材料が機械的に伸縮する性質を利用したものである。しかし、前述したように、圧電材料は精度上及びその他の理由から非破壊検査において種々の欠点を有していることが分かっている。
【0018】
そこで、本発明者等は他の原理に基づいて超音波振動体を構成するために鋭意研究した結果、磁歪効果を発現する材料、即ち磁歪材料が超音波振動体として好適であることを見出すに到った。
【0019】
強磁性体は内部に無数の磁区を有し、この磁区は自発磁化の方向に歪んでいることが分かっている。この強磁性体に外部磁場を加えると、外部磁場によって磁化の方向が回転し、ひずみの方向も大きさも変化する。これが磁歪効果である。即ち、磁化によって強磁性体が僅かに変形する現象が磁歪効果であり、逆に強磁性体を変形させると、その変形の程度に従って磁束が変化する可逆的な力学的磁気現象でもある。
【0020】
従って、本発明の要点は、磁歪材料で超音波素子を構成し、この超音波素子を被検査体の表面に接触させながら超音波の受発信を機械的伝達により行なう点にある。つまり、超音波を発信するには、振動磁界を印加して超音波素子を磁歪効果で振動させ、この超音波振動を被検査体に機械的に伝達させればよい。また、超音波を受信するには、被検査体の表面振動を超音波素子に機械的に伝達させ、磁歪効果により発生する振動磁界を超音波信号に変換すればよい。
【0021】
本発明に用いることができる磁歪材料としては、強磁性材料などの磁歪効果を発現する材料を云い、例えば、金属、合金、金属含有化合物などからなる。より具体的には、鉄、コバルト、ニッケル、それらの合金、アルフェロ合金、フェライト、その他の公知の磁歪材料を含む。
【0022】
以下に、本発明に係る磁歪超音波素子及びこれを利用した非破壊検査方法の実施形態を図面に従って詳細に説明する。
図1は、本発明に係る磁歪超音波素子の第1実施形態を示す正面図であり、図2は図1のA−A線断面図である。図1及び図2に示されるように、磁歪超音波素子2は、磁歪材料を環状に形成した磁歪リング体4と、この磁歪リング体4を直径方向に固定する支持杆6と、この支持杆6を安定に立設させる支持板8から構成されている。
【0023】
磁歪リング体4の頂部4aは、支持杆6の頂部6aよりも段差ΔHだけ上方に突出するように構成される。これは、磁歪リング体頂部4aを被検査体の表面に接触させたときに支持杆頂部6aがその表面に当接しないようにして、超音波の発受信感度を良好に保持するためである。
【0024】
磁歪リング体4には、点線で表示したバイアスコイル10と実線で表示した信号コイル12が巻回されている。バイアスコイル10には直流電圧を印加して直流電流を流し、磁歪リング体4に直流バイアス磁場を発生させる。この直流バイアス磁場の大きさは磁歪効果の感度を良好に設定する様に調整される。
【0025】
信号コイル12は、超音波を発信する場合には交流電流を流す印加コイル12aになり、超音波を受信する場合には交流磁場を検出する検出コイル12bになる。超音波発信では、信号コイル12(つまり印加コイル12a)に交流電流を流すと、磁歪リング体4に交流磁場が発生し、この交流磁場により磁歪リング体4が磁歪効果により超音波振動する。一般に印加時の交流電流は正弦波が用いられるが、矩形波、三角波、のこぎり波、その他の規則波でもよく、また不規則波でも構わない。
【0026】
超音波受信では、磁歪リング体4が超音波振動すると、その力学的振動が磁歪リング体4の磁歪効果により交流に変換され、この交流磁場を信号コイル12(つまり検出コイル12b)により交流電流に変換する。被検査体表面の振動には規則振動のみならず不規則振動もあり、検出される交流電流も規則電流、不規則電流を含む。
【0027】
図3は磁歪リング体4の平均円周の望ましい条件をしめす模式図である。磁歪リング体4が超音波振動すると、磁歪リング体は当然に変形する。このとき、一点鎖線で示す磁歪リング体4の平均円周Dが超音波の波長λよりも短いとき、即ちD<λであれば、磁歪リング体4の変形は局部的変形にとどまる。局部的変形であれば発生する磁束も打ち消されること無く安定に生じ、超音波の受信を確実に行なうことができる。
【0028】
図4は磁歪リング体が対称変形した場合を示す模式図である。平均円周Dが波長λより長い(D≧λ)ときには、磁歪リング体4の円周方向に定常波が形成される場合がある。詳細には、D=mλ(mは自然数)の条件が成立すると磁歪リング体4には定常波が形成され、この定常波は左右対称変形になるため、左右に発生した対称磁束が磁歪リング体4の内部で打ち消し合い、合成信号磁束がゼロになる。図4には、左側変形による左側磁束B1と右側変形による右側磁束B2が打ち消し合う状況が示されており、この場合には合成磁束がゼロになって超音波を受信できないことになる。
【0029】
前述した定常波条件は超音波を受信する場合に重要で、発信する場合には問題とはならない。印加コイル12aに交流電流を流すと、磁歪リング体4には交流磁場が発生するが、この交流磁場は全て同方向に発生するため、磁歪リング体4の内部で打ち消しあうことが無いからである。
【0030】
図5は磁歪超音波素子による超音波受信試験の概略構成図である。磁歪リング体4の頂部4aを加振板14に接触させるように磁歪超音波素子2を配置し、この加振板14を加振装置16により超音波領域の振動数で強制振動させる。バイアスコイル10には電流制御回路18から直流電流を流し、信号コイル12(つまり検出コイル12a)は信号検出回路20に接続されている。
【0031】
図6は磁歪リング体の内部に発生する磁束のタイムチャートである。直流バイアス磁場B0 はバイアスコイル10の直流電流により印加されたもので、信号磁場ΔBは磁歪リング体4が超音波振動してその磁歪効果により内部に発生した信号磁場である。振動の状況に応じて、信号磁場ΔBは規則信号の場合もあるし、不規則信号の場合もある。図6にはΔBは不規則信号として描かれている。直流バイアス磁場B0と信号磁場ΔBの合成磁場Bが磁歪リング体4の中に生じている。
【0032】
図7は信号コイルで検出される検出電流のタイムチャートである。この振動成分である信号磁場ΔBが発生すると、電磁誘導により信号コイル12に信号電流ΔIが誘起される。この信号電流ΔIは信号検出回路20により検出され、ディスプレー(図示せず)に表示される。
【0033】
図8は直流バイアス磁場B0と信号磁場ΔBとの関係図である。磁歪リング体4が超音波振動すると、磁歪効果により信号磁場ΔBが発生することは前述した通りである。この信号磁場ΔBを精度良く検出するためには、信号磁場ΔBの振幅は大きいほうが良い。つまり、信号磁場ΔBの振幅の大きさは直流バイアス磁場B0に依存し、この検出感度の関係が図8に示されている。
【0034】
この関係は磁歪材料の物性に依存し、図8はその一般的傾向を示すに過ぎない。磁歪超音波素子2の検出感度を高めるためには、直流バイアス磁場B0の大きさを調整しながら振動磁場ΔBが最大になる条件を見出すことが重要になる。
【0035】
図9は磁歪超音波素子を超音波受信子として用いた受信構成図である。被検査体24の表面には超音波発信器22と磁歪超音波素子2が所定距離Lだけ離間して配置されている。超音波発信子22は圧電式発信子又は電磁超音波発信子から構成される。圧電式発信子は被検査体24が導電体又は非導電体のいずれに対しても作用するが、電磁超音波発信子は導電体の場合にだけ作用する。前記超音波発信子22には送信装置26が接続されている。
【0036】
一方、磁歪超音波素子2にはプリアンプ28、受信装置30及び受信表示装置32が接続されている。送信装置26により超音波発信子22を超音波振動させると、被検査体24に超音波振動が矢印a方向に伝播する。この超音波振動を磁歪超音波素子2で検出し、プリアンプ28で前置増幅した後、受信装置30で受信する。この信号波形は受信表示装置32で表示される。
【0037】
図10は受信表示装置による受信超音波の波形図である。上側波形W1は離間距離LがL=40mmの場合を示し、下側波形W2はL=70mmの場合に対応している。上側波形W1の伝達時間τはτ=17(μs)であり、下側波形W2ではτ=29(μs)である。音速VをV=L?τで計算すると、W1からはV=2.4(km/s)が得られ、W2からもV=2.4(km/s)が得られる。従って、両者から同一の音速が得られたので、本発明に係る磁歪超音波素子が超音波受信子として精密測定に利用できることが明らかとなった。
【0038】
図11は磁歪超音波素子を超音波発信子として用いた発信構成図である。磁歪超音波素子2に送信装置26を接続し、磁歪超音波素子2を超音波振動させながら被検査体24の表面に接触させる。超音波は被検査体24の内部を矢印b方向に伝播し、超音波受信子23により検出される。超音波受信子23は圧電式受信子又は電磁超音波受信子により構成される。
【0039】
超音波受信子23はプリアンプ28、受信装置30及び受信表示装置32に接続される。受信表示装置32により得られた受信波形は図示しないが、図10と同様に、精度の良い信号波形が得られた。超音波の伝播速度の測定に関しても、満足のゆく結果が得られた。従って、本発明に係る磁歪超音波素子は超音波発信子としても用いることが明らかになった。
【0040】
図12は本発明に係る磁歪超音波素子の第2実施形態を示す正面図である。図1と同一部分には同一符号を打ってその説明を省略し、異なる部分を説明する。この実施形態の特徴は、磁歪リング体4の頂部4a付近に固定手段5が形成されている点である。この固定手段5は被検査体24の表面に係合し、磁歪リング体4が超音波振動しても位置ずれを起こさない。従って、超音波発信子と超音波受信子の離間距離が変化せず、超音波測定の精度を向上させることができる。
【0041】
固定手段5の具体的構造は、例えば表面に突刺する突起であったり、表面に固着する粘着物質であったり、係合用ファスナーなど公知の構造を利用できる。
【0042】
図13は本発明に係る磁歪超音波素子の第3実施形態を示す変形正面図である。図1と同一部分には同一符号を打ってその説明を省略し、異なる部分を説明する。磁歪リング体4の中心部には自由回転機構7が設けられており、被検査体24が矢印c方向に走行するときに、磁歪リング体4が被検査体24の表面に矢印d方向に転接し、この転接状態のまま超音波測定を測定するものである。自由回転機構7の具体的構造は、例えばベアリングのように公知の機構が利用できる。
【0043】
図14は磁歪超音波素子を用いた被検査体の非破壊検査方法の概略説明図である。この実施形態では、超音波の発信用と受信用に本発明に係る磁歪超音波素子を用いる。即ち、被検査体24の表面に発信用磁歪超音波素子2aを固定手段5で固定配置し、これとは別に受信用磁歪超音波素子2bを可動自在に配置する。
【0044】
被検査体24の中に異常部24aがあり、この位置を探査するために発信用磁歪超音波素子2aから超音波を被検査体24の内部に入射させる。被検査体24の材質が決まれば超音波の伝播速度は決まる。受信用磁歪超音波素子2bが受信する超音波の伝達経路は主に直達経路P1、異常部反射経路P2及び裏面反射経路P3の3経路である。
【0045】
発信用磁歪超音波素子2aと受信用磁歪超音波素子2bの離間距離並びに被検査体24の厚さは決まっているから、直達経路P1と裏面反射経路P3を通る超音波の受信時間τ1、τ3は事前に計算できる。この受信時間とは発信から受信までの超音波の経過時間である。異常部24aが存在すると異常部反射経路P2があるはずであり、この受信時間τ2はτ1<τ2<τ3の関係を満足する。
【0046】
受信用磁歪超音波素子2bの位置を移動させながら、τ1とτ3の間に位置する異常部反射超音波を探査する。もしτ1<τ2<τ3を満足するτ2が発見できれば、被検査体24の内部に異常部24aが存在することを意味する。このようにして、被検査体24の非破壊検査を行なう。
【0047】
本発明は上記実施形態に限定されるものではなく、本発明の技術的思想を逸脱しない範囲における種々の変形例や設計変更などをその技術的範囲内に包含するものである。
【0048】
【発明の効果】
請求項1の発明によれば、新規かつ独創的な受信用磁歪超音波素子を実現でき、直流バイアス磁場を調整しながら磁歪リング体を被検査体の表面に接触させるだけで、被検査体の超音波振動を磁歪リング体の振動磁場又は振動電流として高感度に検出することができる。
【0049】
請求項2の発明によれば、新規かつ独創的な発信用磁歪超音波素子を実現でき、直流バイアス磁場により発信感度を良好に調整しながら、信号コイルに交流電流を流して磁歪リング体を超音波振動させ、この磁歪リング体を被検査体に接触させるだけで超音波を発信することができる。
【0050】
請求項3の発明によれば、磁歪リング体の平均円周を超音波の波長より短く設定するだけで、磁歪リング体に定常波を形成させないようにし、磁歪リング体に局部的な振動を生起させて超音波の受信または発信を効率的に行なわせることができる磁歪超音波素子を実現できる。
【0052】
磁歪リング体の内周部に自由回転機構を設けているから、磁歪リング体を走行する被検査体の表面に転接させることができ、走行する被検査体に適用できる磁歪超音波素子を実現できる。
【0053】
請求項4の発明によれば、磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するようにさせ、直流バイアス磁場により受信感度を良好に調整して、被検査体の内部を伝播してきた超音波を受信し、受信超音波信号の伝播異常から被検査体内部の異常部を効率的に検出することができる。
【0054】
請求項5の発明によれば、磁歪リング体を走行する被検査体の表面に接触させたときに磁歪リング体が転接するようにさせ、直流バイアス磁場により発信感度を良好に調整して、被検査体の内部に超音波を発信させ、この超音波を被検査体の内部に伝播させて被検査体の内部異常を効率的に検出することができる。
【図面の簡単な説明】
【図1】本発明に係る磁歪超音波素子の第1実施形態を示す正面図である。
【図2】図1のA−A線断面図である。
【図3】磁歪リング体の平均円周の望ましい条件をしめす模式図である。
【図4】磁歪リング体が対称変形した場合を示す模式図である。
【図5】磁歪超音波素子による超音波受信試験の概略構成図である。
【図6】磁歪リング体の内部に発生する磁束のタイムチャートである。
【図7】信号コイルで検出される検出電流のタイムチャートである。
【図8】直流バイアス磁場B0と信号磁場ΔBとの関係図である。
【図9】磁歪超音波素子を超音波受信子として用いた受信構成図である。
【図10】受信表示装置による受信超音波の波形図である。
【図11】磁歪超音波素子を超音波発信子として用いた発信構成図である。
【図12】本発明に係る磁歪超音波素子の第2実施形態を示す正面図である。
【図13】本発明に係る磁歪超音波素子の第3実施形態を示す変形正面図である。
【図14】磁歪超音波素子を用いた被検査体の非破壊検査方法の概略説明図である。
【符号の説明】
2は磁歪超音波素子、2aは発信用磁歪超音波素子、2bは受信用磁歪超音波素子、4は磁歪リング体、4aは磁歪リング体頂部、5は固定手段、6は支持杆、7は自由回転機構、6aは支持杆頂部、8は支持板、10はバイアスコイル、12は信号コイル、12aは印加コイル、12bは検出コイル、14は加振板、16は加振装置、18は電流制御回路、20は信号検出回路、22は超音波発信子、23は超音波受信子、24は被検査体、24aは異常部、26は送信装置、28はプリアンプ、30は受信装置、32は受信表示装置、B1は左側磁束、B2は右側磁束、Dは平均円周、B0は直流バイアス磁場、ΔBは変動磁場、ΔIは検出電流、P1は直達経路、P2は異常部反射経路、P3は裏面反射経路、W1は上側波形、W2は下側波形。
Claims (5)
- 磁歪材料を環状に形成した磁歪リング体4と、この磁歪リング体4の内部に直流バイアス磁場B0を形成するために磁歪リング体に巻回されたバイアスコイル10と、前記磁歪リング体4の超音波振動によりその磁歪効果を通して発生する変動磁場ΔBを検出するために磁歪リング体4に巻回された信号コイル12から構成され、この信号コイル12による超音波受信感度を前記直流バイアス磁場B0により調整し、前記磁歪リング体4を被検査体24の表面に接触させて、被検査体表面の超音波振動を磁歪リング体4に伝達し、この磁歪リング体4の内部に生起した振動歪を磁歪効果により変動磁場ΔBに変換し、この変動磁場を前記信号コイル12により検出して超音波を受信するものであって、磁歪リング体4の内周部に自由回転機構7を設けて、磁歪リング体4を走行する被検査体24の表面に接触させたときに磁歪リング体4が転接するように配設したことを特徴とする磁歪超音波素子。
- 磁歪材料を環状に形成した磁歪リング体4と、この磁歪リング体4の内部に直流バイアス磁場B0を形成するために磁歪リング体4に巻回されたバイアスコイル10と、前記磁歪リング体4に変動磁場ΔBを印加して磁歪効果により磁歪リング体4を超音波振動させるために磁歪リング体4に巻回された信号コイル12から構成され、この信号コイル12による超音波発信感度を前記直流バイアス磁場B0により調整し、前記信号コイル12に交流電流を流して磁歪リング体4の内部に変動磁場ΔBを生起し、この変動磁場ΔBにより磁歪効果を通して磁歪リング体4に超音波振動を生起させ、この磁歪リング体4を被検査体表面に接触させて超音波を発信させるものであって、磁歪リング体4の内周部に自由回転機構7を設けて、磁歪リング体4を走行する被検査体24の表面に接触させたときに磁歪リング体4が転接するように配設したことを特徴とする磁歪超音波素子。
- 前記磁歪リング体4の平均円周Dが受信又は発信する超音波の波長より短く設定される請求項1又は2記載の磁歪超音波素子。
- 超音波を被検査体24の内部に入射させ、被検査体24の内部構造を反映して伝播する超音波を被検査体の表面で受信して被検査体24の内部異常を検査する非破壊検査方法において、磁歪材料を環状に形成した磁歪リング体4を走行する被検査体24の表面に接触させたときに磁歪リング体4が転接するように配置し、この磁歪リング体4にバイアスコイル10を巻回して磁歪リング体4の内部に直流バイアス磁場B 0 を形成し、同時に磁歪リング体4に信号コイル12を巻回し、この信号コイル12による超音波受信感度を前記直流バイアス磁場B 0 により調整し、伝播してきた超音波により磁歪リング体4を超音波振動させ、この超音波振動により磁歪リング体4の磁歪効果を通して変動磁場ΔBを生起させ、この変動磁場ΔBを前記信号コイル12により検出して超音波を受信し、この受信超音波により被検査体の内部異常を検査することを特徴とする磁歪超音波素子を用いた非破壊検査方法。
- 超音波を被検査体24の内部に入射させ、被検査体24の内部構造を反映して伝播する超音波を被検査体の表面で受信して被検査体24の内部異常を検査する非破壊検査方法において、磁歪材料を環状に形成した磁歪リング体4を走行する被検査体24の表面に接触させたときに磁歪リング体4が転接するように配置し、この磁歪リング体4にバイアスコイル10を巻回して磁歪リング体4の内部に直流バイアス磁場B 0 を形成し、同時に磁歪リング体4に信号コイル12を巻回し、この信号コイル12による超音波発信感度を前記直流バイアス磁場B 0 により調整し、この信号コイル12により磁歪リング体4の内部に超音波領域の変動磁場ΔBを生起させ、この変動磁場ΔBにより磁歪リング体4の磁歪効果を通して磁歪リング体4を超音波振動させ、この超音波振動により被検査体24の内部に超音波を伝播させて被検査体の内部異常を検査することを特徴とする磁歪超音波素子を用いた非破壊検査方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000277401A JP4465420B2 (ja) | 2000-09-13 | 2000-09-13 | 磁歪超音波素子及びこれを利用した非破壊検査方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000277401A JP4465420B2 (ja) | 2000-09-13 | 2000-09-13 | 磁歪超音波素子及びこれを利用した非破壊検査方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2002095088A JP2002095088A (ja) | 2002-03-29 |
JP4465420B2 true JP4465420B2 (ja) | 2010-05-19 |
Family
ID=18762737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000277401A Expired - Fee Related JP4465420B2 (ja) | 2000-09-13 | 2000-09-13 | 磁歪超音波素子及びこれを利用した非破壊検査方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4465420B2 (ja) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6815948B1 (en) * | 2003-09-30 | 2004-11-09 | The Tokyo Electric Power Company, Inc. | Method of detecting tension wire break in concrete pole |
JP4776484B2 (ja) * | 2006-09-21 | 2011-09-21 | 株式会社東芝 | 配管非破壊検査装置、配管非破壊検査方法、および発電プラント |
KR101015980B1 (ko) | 2008-11-28 | 2011-02-23 | 브이제트에이영원주식회사 | 마그네토스트릭티브 센서 및 이를 이용한 용접품질 검사장치 |
KR101483511B1 (ko) | 2008-12-23 | 2015-01-19 | 재단법인 포항산업과학연구원 | 저온분사를 이용한 초음파 인가 및 추출 장치와 방법 |
KR101523347B1 (ko) | 2014-07-02 | 2015-08-20 | 서울대학교산학협력단 | 전 방향 전단파 전자기 음향 트랜스듀서 |
JP6806329B2 (ja) * | 2016-12-01 | 2021-01-06 | 国立研究開発法人産業技術総合研究所 | 検査装置および検査方法 |
CN114345747A (zh) * | 2022-01-10 | 2022-04-15 | 海安县巨力磁材有限责任公司 | 一种用于判断磁环伤痕质量的分拣装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2541530A1 (de) * | 1975-09-18 | 1977-03-31 | Interatom | Magnetostriktiver wandler |
JP2794417B2 (ja) * | 1988-07-04 | 1998-09-03 | 東洋通信機株式会社 | 音響トランスジューサ |
JPH10253339A (ja) * | 1997-03-06 | 1998-09-25 | Mitsubishi Electric Corp | 音波利用計測方法及び計測装置 |
-
2000
- 2000-09-13 JP JP2000277401A patent/JP4465420B2/ja not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2002095088A (ja) | 2002-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA1112754A (en) | Electromagnetic transducer | |
US6920792B2 (en) | Transducer guided wave electromagnetic acoustic | |
KR101061590B1 (ko) | 자기 변형 트랜스듀서, 이를 이용한 구조 진단 장치 및 구조 진단 방법 | |
Cho et al. | Megahertz-range guided pure torsional wave transduction and experiments using a magnetostrictive transducer | |
JPS60140109A (ja) | 超音波測距装置 | |
US7215118B2 (en) | Transducer for generating and measuring torsional waves, and apparatus and method for structural diagnosis using the same | |
WO2000055617A1 (en) | Method and apparatus for long range inspection of plate-like ferromagnetic structures | |
US6924642B1 (en) | Magnetorestrictive transducer for generating and measuring elastic waves, and apparatus for structural diagnosis using the same | |
JP4465420B2 (ja) | 磁歪超音波素子及びこれを利用した非破壊検査方法 | |
US4048847A (en) | Nondestructive detection of stress | |
US5383365A (en) | Crack orientation determination and detection using horizontally polarized shear waves | |
JP3299505B2 (ja) | 磁歪効果を用いる超音波探傷方法 | |
JPH1048068A (ja) | 電磁超音波トランスデューサ | |
KR102203609B1 (ko) | 전자기음향 트랜스듀서 및 이를 포함하는 배관 검사 장치 | |
Kumar et al. | Improvement in the signal strength of magnetostrictive ultrasonic guided wave transducers for pipe inspection using a soft magnetic ribbon-based flux concentrator | |
JP5031314B2 (ja) | 電磁超音波センサ及び電磁超音波検出システム | |
WO2004106913A1 (en) | Guided wave electromagnetic acoustic transducer | |
JP4378019B2 (ja) | 超音波による金属の材質劣化検出方法 | |
Van den Berg et al. | Development of an electromagnetic acoustic transducer for inspecting the wall thickness of offshore risers from the inside | |
JP2001013118A (ja) | 電磁超音波探触子 | |
JP3058626B2 (ja) | 金属の非破壊検査方法 | |
JP4286980B2 (ja) | 電磁超音波センサー | |
JPH07286916A (ja) | 残留応力測定方法 | |
JPH01295161A (ja) | 電磁超音波計測装置 | |
JPH08193982A (ja) | Squid磁束計を用いた疲労検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070702 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090721 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090724 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090907 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20091023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20091030 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20091106 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091023 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20091228 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20091228 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130305 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140305 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |