WO2011016166A1 - リビングラジカル重合触媒および重合方法 - Google Patents

リビングラジカル重合触媒および重合方法 Download PDF

Info

Publication number
WO2011016166A1
WO2011016166A1 PCT/JP2010/003181 JP2010003181W WO2011016166A1 WO 2011016166 A1 WO2011016166 A1 WO 2011016166A1 JP 2010003181 W JP2010003181 W JP 2010003181W WO 2011016166 A1 WO2011016166 A1 WO 2011016166A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
catalyst
substituted
polymerization
central element
Prior art date
Application number
PCT/JP2010/003181
Other languages
English (en)
French (fr)
Inventor
後藤淳
辻井敬亘
福田猛
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2011525742A priority Critical patent/JP5610402B2/ja
Priority to US13/388,811 priority patent/US9546226B2/en
Priority to EP10806168.0A priority patent/EP2463312B1/en
Priority to CN201080045286.5A priority patent/CN102574938B/zh
Publication of WO2011016166A1 publication Critical patent/WO2011016166A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/40Redox systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F12/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
    • C08F12/02Monomers containing only one unsaturated aliphatic radical
    • C08F12/04Monomers containing only one unsaturated aliphatic radical containing one ring
    • C08F12/06Hydrocarbons
    • C08F12/08Styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/10Esters
    • C08F120/12Esters of monohydric alcohols or phenols
    • C08F120/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the present invention relates to a highly active catalyst used for living radical polymerization and a polymerization method using the catalyst. More specifically, the present invention uses an organic compound having redox ability as a catalyst for living radical polymerization.
  • the catalyst of the present invention is particularly useful for living radical polymerization without using a radical initiator.
  • a radical polymerization method has been well known as a method for obtaining a vinyl polymer by polymerizing a vinyl monomer.
  • the radical polymerization method generally has a drawback that it is difficult to control the molecular weight of the obtained vinyl polymer. It was.
  • the obtained vinyl polymer becomes a mixture of compounds having various molecular weights, and it is difficult to obtain a vinyl polymer having a narrow molecular weight distribution. Specifically, even if the reaction was controlled, the ratio (Mw / Mn) of the weight average molecular weight (Mw) to the number average molecular weight (Mn) could only be reduced to about 2 to 3. .
  • a living radical polymerization method has been developed since around 1990 as a method for solving such drawbacks. That is, according to the living radical polymerization method, it is possible to control the molecular weight and obtain a polymer having a narrow molecular weight distribution. Specifically, since it is possible to easily obtain Mw / Mn of 2 or less, it has been attracting attention as a method for producing a polymer used in the most advanced fields such as nanotechnology.
  • a transition metal complex catalyst As a catalyst currently used in the living radical polymerization method, a transition metal complex catalyst is known.
  • transition metal complex catalyst for example, a complex in which a ligand is coordinated to a compound having Cu, Ni, Re, Rh, Ru or the like as a central metal is used.
  • a complex in which a ligand is coordinated to a compound having Cu, Ni, Re, Rh, Ru or the like as a central metal is used.
  • Such catalysts are described in the following documents, for example.
  • Patent Document 1 Japanese Patent Laid-Open No. 2002-249505 discloses the use of a complex having Cu, Ru, Fe, Ni or the like as a central metal as a catalyst.
  • Patent Document 1 describes that, in claim 1, an organic halide is used as a polymerization initiator. This description does not mean that the halogenated hydrocarbon acts as a catalyst for living radical polymerization.
  • a metal complex having a transition metal as a central metal is used as a living radical polymerization catalyst.
  • an organic halide is used as a dormant species described later in the specification of the present application.
  • Patent Document 2 Japanese Patent Laid-Open No. 11-322822 discloses the use of a hydrido rhenium complex as a catalyst.
  • Patent Document 2 describes, in claim 1, “a catalyst for radical living polymerization comprising a combination of a hydridorhenium complex and a halogenated hydrocarbon”. This description does not mean that the halogenated hydrocarbon acts as a catalyst for living radical polymerization.
  • a hydrido rhenium complex is used as a living radical polymerization catalyst.
  • a halogenated hydrocarbon is used as a dormant species which will be described later in this specification.
  • the combination of the catalyst and the dormant species is described as a catalyst in Patent Document 2, and does not describe that a halogenated hydrocarbon serves as a catalyst for living radical polymerization.
  • Non-Patent Document 1 Journal of The American Chemical Society 119,674-680 (1997) discloses the use of a compound in which 4,4′-di- (5-nonyl) -2,2′-bipyridine is coordinated to copper bromide as a catalyst. .
  • Non-Patent Document 1 describes that 1-phenylethyl bromide was used in the polymerization of styrene. That is, in the invention of Patent Document 2, a copper bromide complex is used as a living radical polymerization catalyst, and 1-phenylethyl bromide is used as a dormant species described later in this specification.
  • transition metal complex catalyst when such a transition metal complex catalyst is used, a large amount of the transition metal complex catalyst is required as a use amount, and it is not easy to completely remove a large amount of the catalyst used after the reaction from the product. was there.
  • environmental problems may occur when the catalyst that is no longer needed is discarded.
  • transition metals are highly toxic, and the toxicity of the catalyst remaining in the product may be an environmental problem, making it difficult to use transition metals in food packaging materials, biological / medical materials, etc. there were. In some cases, the toxicity of the catalyst removed from the product after the reaction becomes an environmental problem.
  • the conductive transition metal remains in the polymer, the polymer is imparted with conductivity, making it difficult to use in electronic materials such as resists, organic EL, fuel cells, solar cells, and lithium ion batteries.
  • electronic materials such as resists, organic EL, fuel cells, solar cells, and lithium ion batteries.
  • it since it does not melt
  • the ligand is usually expensive or has a problem of requiring complicated synthesis.
  • high temperature for example, 110 degreeC or more
  • a living radical polymerization method that does not require the use of a catalyst is also known.
  • nitroxyl type and dithioester type methods are known.
  • these methods have the disadvantage that a special protecting group must be introduced into the polymer growth chain, and this protecting group is very expensive.
  • high temperature for example, 110 degreeC or more
  • the polymer produced tends to have undesirable performance. That is, there is a drawback that the polymer to be produced tends to be colored in a color different from the original color of the polymer, and the polymer to be produced tends to have an odor.
  • Non-Patent Document 2 Polymer Preprints 2005, 46 (2), 245-246
  • Patent Document 3 Japanese Patent Laid-Open No. 2007-92014
  • Patent Document 4 International Publication WO2008 / 139980 discloses that a compound having nitrogen or phosphorus as a central metal is used as a catalyst.
  • Non-Patent Document 1 the cost of the catalyst required for polymerizing 1 kg of the polymer was about several thousand yen.
  • the invention of Non-Patent Document 2 significantly reduces the cost of the catalyst.
  • a further low-cost catalyst has been demanded.
  • transition metals or compounds of transition metal elements are preferable as catalysts for various chemical reactions.
  • J. et al. D. LEE Inorganic Chemistry
  • Tokyo Kagaku Dojin, published on April 15, 1982, 1st edition page 311 states, "Many transition metals and their compounds have catalytic action.
  • transition metals there are various transition metals. It can take valences and create unstable intermediate compounds, and in other cases transition metals provide a good reaction surface and they act as a catalyst.
  • transition metals provide a good reaction surface and they act as a catalyst.
  • Ge, Sn, and Sb described in Non-Patent Document 2 described above are not transition metals, they are elements located in the fourth period and the fifth period of the periodic table, and have a large atomic number, It has electrons and multiple electron orbits. Therefore, in Ge, Sn, and Sb, it is presumed that these atoms have a large number of electrons and a large number of electron orbits, which are advantageous for the catalyst.
  • the typical elements located in the second and third periods of the periodic table have a small number of electrons and electron orbitals, which is disadvantageous for use in the catalyst compound.
  • a catalytic action could not be expected for a compound using these typical elements.
  • a catalytic action could not be expected for a compound centered on a carbon atom, such as an organic compound.
  • Non-Patent Document 3 discloses a catalyst using a phosphorus compound, but there is no description about using an organic compound having redox ability.
  • a radical generated from a radical initiator reacts with a monomer, and a reaction not based on the living radical polymerization mechanism is performed. As a result, a polymer having a molecular weight lower than that of a desired polymer is mixed in the product. , The molecular weight distribution becomes wide.
  • a homopolymer is mixed in the product.
  • a homopolymer is generated by the reaction of the radical initiator and monomer B, and as a result. The purity of the block copolymer is lowered.
  • a branched polymer called a star polymer or a comb polymer.
  • a radical generated from the radical initiator reacts with the monomer and a reaction that is not based on the living radical polymerization mechanism is performed, a linear polymer is mixed in the product. Resulting in.
  • Non-Patent Document 4 describes a method of using a protecting group as nitroxyl. However, when the protecting group is used as nitroxyl, the protecting group has the above-mentioned disadvantages such as being very expensive. It is difficult to use.
  • the present invention is intended to solve the above-described problems, and an object thereof is to provide a catalyst having high activity for living radical polymerization and a polymerization method using this catalyst.
  • the inventors of the present invention have completed the present invention as a result of intensive studies to solve the above problems. That is, according to the present invention, the following catalyst and polymerization method are provided, which solves the above problems.
  • a catalyst for a living radical polymerization method is an organic compound having oxidation-reduction ability, and performs a catalytic reaction of living radical polymerization by a reversible oxidation-reduction reaction between a reduction state and an oxidation state of the organic compound. catalyst.
  • the central element oxidized or reduced in the reversible redox reaction includes a substituted hydrocarbon group or an unsubstituted hydrocarbon group.
  • the substituted hydrocarbon group one or more hydrogen atoms in the hydrocarbon group are substituted with a substituent selected from a hydroxyl group, an amino group, and a cyano group, or a hydrocarbon
  • a substituent selected from a hydroxyl group, an amino group, and a cyano group, or a hydrocarbon
  • ether bonds or ester bonds are inserted in the carbon skeleton in the group,
  • each central element is linked by the substituted hydrocarbon group or the unsubstituted hydrocarbon group.
  • substituted alkylene group When a substituted alkylene group is bonded to the central element, in the substituted alkylene group, one or more hydrogen atoms in the alkylene are substituted with a substituent selected from a hydroxyl group, an amino group, and a cyano group, When a substituted alkenyl group is bonded to the central element, in the substituted alkenyl group, one or more hydrogen atoms in the alkenyl are substituted with a substituent selected from a hydroxyl group, an amino group, and a cyano group, When a substituted alkenylene group is bonded to the central element, in the substituted alkenylene group, one or more hydrogen atoms in the alkenylene are substituted with a substituent selected from a hydroxyl group, an amino group, and a cyano group.
  • organic compounds Triethylamine; Tributylamine; Tetrakisdimethylaminoethene; 1,4,8,11-tetramethyl
  • a polymerization method including a step of performing living radical polymerization, wherein the living radical polymerization step is performed in the presence of the catalyst according to any one of Items 1 to 12.
  • the organic halide having a carbon-halogen bond is a compound having the following general formula (II): CR 2 R 3 R 4 X 3 (II) Wherein R 2 and R 3 are independently halogen, hydrogen or alkyl, R 4 is halogen, hydrogen, alkyl, aryl, heteroaryl or cyano, X 3 is halogen,
  • the monomer having the radical reactive unsaturated bond is selected from: (Meth) acrylic acid ester monomer, aromatic unsaturated monomer (styrene monomer), carbonyl group-containing unsaturated monomer, (meth) acrylonitrile, (meth) acrylamide monomer, diene monomer, vinyl ester monomer, N-vinyl monomer , (Meth) acrylic acid monomers, vinyl halide monomers, and 1-olefin monomers.
  • a catalyst for living radical polymerization having high activity and a polymerization method using the same are provided.
  • This catalyst has a remarkable advantage that it is not necessary to use a radical initiator when performing living radical polymerization.
  • this catalyst has an advantage of low toxicity.
  • This catalyst has the advantage of being highly soluble in the reaction solution, and therefore it is not necessary to add a ligand to form a complex. Since this catalyst has high activity, a high temperature (for example, 110 ° C. or higher) is not required for the polymerization reaction, and the amount of the catalyst used can be reduced. Also, no expensive special protecting groups are required to protect the polymer growing chain during the reaction. Furthermore, the molded product obtained from the polymer obtained by the method of the present invention has an advantage that it is substantially free from coloring or smelling during molding.
  • the present invention has the following advantages.
  • Monomer versatility Living radical polymerization can be performed on various types of monomers.
  • the organic compound is advantageous because it is hardly affected by the functional group of the monomer.
  • it is advantageous when using a solvent having a highly reactive functional group.
  • FIG. 1a shows the result of polymerization of methyl methacrylate (MMA) containing CP-I (80 mM), TEA (120 mM or 40 mM), and I 2 (1 mM) at 80 ° C., resulting in ln ([M] 0 / [ M]) vs t (time) plot.
  • White circles indicate TEA 40 mM.
  • a black circle shows the value of TEA120mM.
  • MMA methyl methacrylate
  • CP-I 80 mM
  • TEA 120 mM or 40 mM
  • I 2 1 mM
  • a plot of n vs. conversion (polymerization rate) is shown.
  • White circles indicate TEA 40 mM.
  • a black circle shows the value of TEA120mM. Results consistent with the theoretical values listed as Theoretical line are obtained. M n was in good agreement with the theoretical value at any TEA concentration.
  • FIG. 2a shows the result of polymerization of methyl methacrylate (MMA) containing CP-I (80 mM) and TEA (40 mM or 20 mM) and I 2 (1 mM) at 90 ° C., resulting in ln ([M] 0 / [ M]) vs t (time) plot.
  • White circles indicate TEA 20 mM.
  • a black circle indicates a value of TEA 40 mM.
  • FIG. 2b shows the results of polymerization of methyl methacrylate (MMA) with CP-I (80 mM) and TEA (40 mM or 20 mM) and I 2 (1 mM) at 90 ° C., resulting in M n and M w / M
  • a plot of n vs. conversion (polymerization rate) is shown.
  • White circles indicate TEA 20 mM.
  • a black circle indicates a value of TEA 40 mM. Results consistent with the theoretical values listed as Theoretical line are obtained.
  • M n was in good agreement with the theoretical value at any TEA concentration.
  • FIG. 3a shows the result of polymerization of methyl methacrylate (MMA) containing CP-I (80 mM), TBA (10 mM or 20 mM), and I 2 (5 mM) at 90 ° C., resulting in ln ([M] 0 / [ M]) vs t (time) plot.
  • White circles indicate a value of 10 mM TBA.
  • a black circle indicates a value of 20 mM TBA.
  • 3b shows the results of polymerization of methyl methacrylate (MMA) with CP-I (80 mM) and TBA (10 mM or 20 mM) and I 2 (5 mM) at 90 ° C., resulting in M n and M w / M
  • a plot of n vs. conversion (polymerization rate) is shown.
  • White circles indicate a value of 10 mM TBA.
  • a black circle indicates a value of TEA 20 mM. Results consistent with the theoretical values listed as Theoretical line are obtained.
  • M n was in good agreement with the theoretical value at any TEA concentration. It is a schematic diagram which shows the concept of this invention, and shows the key reaction of the living radical polymerization of this invention.
  • an organic compound serving as a catalyst is indicated by A
  • a compound in which iodine is bound to the organic compound is indicated as a view in which A and a black circle are bound.
  • This catalyst is characterized by the fact that it does not require a radical initiator, and is extremely cheaper than conventional transition metal catalysts, etc., and is extremely high in activity, so it must be used in a very small amount of catalyst. Even if purification is not necessary or necessary when producing a catalyst, the purification is easy, and it is low toxicity or non-toxic, so it is highly safe for humans and the environment. It has the characteristics.
  • hydrocarbon refers to a molecule or group composed of carbon and hydrogen.
  • the chain hydrocarbon can be linear or branched.
  • the cyclic hydrocarbon may be composed of only a cyclic structure, or may be a structure in which a chain hydrocarbon is further bonded to the cyclic structure.
  • the carbon number of the hydrocarbon can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20. More preferably, it is 1-10.
  • the unsaturated bond may be a double bond or a triple bond.
  • the hydrocarbon molecule or hydrocarbon group may have only one unsaturated group or may have two or more unsaturated groups.
  • hydrocarbons include alkyl, alkenyl, alkynyl, alkoxy, aryl and the like described later.
  • alkyl refers to a monovalent group formed by losing one hydrogen atom from a linear or cyclic aliphatic hydrocarbon (alkane). In the case of a chain, it is generally represented by C k H 2k + 1 ⁇ (where k is a positive integer).
  • a chain alkyl may be a straight chain or branched chain.
  • the cyclic alkyl may be composed only of a cyclic structure, or may be a structure in which a chain alkyl is further bonded to the cyclic structure.
  • the carbon number of the alkyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • alkylene refers to a divalent group formed by losing one more hydrogen atom from alkyl.
  • lower alkyl means an alkyl group having a relatively small number of carbon atoms. Preferably a C 1 ⁇ 10 alkyl, more preferably a C 1 ⁇ 5 alkyl, more preferably C 1 ⁇ 3 alkyl. Specific examples include, for example, methyl, ethyl, propyl, isopropyl and the like.
  • lower alkylene refers to a divalent group formed by further losing one hydrogen atom from lower alkyl.
  • alkenyl refers to a monovalent group generated by losing one hydrogen atom from a chain or cyclic aliphatic hydrocarbon (alkene) having a double bond.
  • alkene alkene
  • the number of double bonds may be one or two or more. There is no particular upper limit to the number of double bonds, but it may be 10 or less, or 5 or less. A structure in which double bonds and single bonds are alternately repeated is preferable.
  • a chain alkenyl may be linear or branched.
  • the cyclic alkenyl may be composed only of a cyclic structure, or may be a structure in which a chain structure is further bonded to the cyclic structure. Further, the double bond may be present in the cyclic structure portion or may be present in the chain structure portion.
  • the carbon number of the alkenyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • alkenylene refers to a divalent group formed by losing one more hydrogen atom from alkenyl.
  • Alkenyl may have a relatively small number of carbon atoms, that is, lower alkenyl.
  • the carbon number is preferably C 2 to 10 , more preferably C 2 to 5 , and further preferably C 2 to 3 .
  • Specific examples of alkenyl include vinyl.
  • alkenyl is represented by the formula: —CR 7 ⁇ CR 8 R 9 .
  • R 7 , R 8 , R 9 may be hydrogen or an alkyl group, and other substituents (eg, alkenyl, alkylcarboxyl, haloalkyl, alkylcarbonyl, amino group, cyano group, alkoxy, aryl, heteroaryl or alkyl substitution) Aryl).
  • substituents eg, alkenyl, alkylcarboxyl, haloalkyl, alkylcarbonyl, amino group, cyano group, alkoxy, aryl, heteroaryl or alkyl substitution
  • alkynyl refers to a monovalent group generated by loss of one hydrogen atom from a chain-like or cyclic aliphatic hydrocarbon (alkyne) having a triple bond.
  • alkyne chain-like or cyclic aliphatic hydrocarbon
  • the number of triple bonds may be one or two or more. There is no particular upper limit to the number of triple bonds, but it may be 10 or less, or 5 or less. A structure in which triple bonds and single bonds are alternately repeated is preferable.
  • a chain alkynyl may be linear or branched.
  • the cyclic alkynyl may be composed only of a cyclic structure, or may be a structure in which a chain structure is further bonded to the cyclic structure.
  • the triple bond may be present in the cyclic structure portion or may be present in the chain structure portion.
  • the carbon number of alkynyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • alkynylene refers to a divalent group formed by losing one more hydrogen atom from alkynyl.
  • Alkynyl may have a relatively low carbon number, that is, lower alkynyl.
  • the carbon number is preferably C 2 to 10 , more preferably C 2 to 5 , and further preferably C 2 to 3 .
  • alkynyl is represented by the formula: —C ⁇ CR 10 .
  • R 10 may be hydrogen or an alkyl group, and other substituents (eg, alkenyl, alkylcarboxyl, haloalkyl, alkylcarbonyl, amino group, cyano group, alkoxy, aryl, heteroaryl, alkyl-substituted aryl or alkoxy-substituted heteroaryl) ).
  • alkoxy refers to a group in which an oxygen atom is bonded to the alkyl group. That is, when the alkyl group is represented as R-, it refers to a group represented by RO-.
  • a chain alkoxy can be straight or branched.
  • the cyclic alkoxy may be composed of only a cyclic structure, or may be a structure in which a chain alkyl is further bonded to the cyclic structure.
  • the number of carbon atoms of alkoxy can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • lower alkoxy means an alkoxy group having a relatively small number of carbon atoms. Preferably, it is C 1-10 alkoxy, more preferably C 1-5 alkoxy, and still more preferably C 1-3 alkoxy. Specific examples include, for example, methoxy, ethoxy, putoxy, isopropoxy and the like.
  • alkylcarboxyl refers to a group in which a carboxyl group is bonded to the above alkyl group. That is, when the alkyl group is represented by R—, it represents a group represented by RCOO—.
  • the chain alkyl carboxyl may be linear or branched.
  • the cyclic alkyl carboxyl may be composed only of a cyclic structure, or may be a structure in which chain alkyl is further bonded to the cyclic structure.
  • the carbon number of the alkyl carboxyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • lower alkyl carboxyl means an alkyl carboxyl group having a relatively small number of carbon atoms. Preferably, it is C 1-10 , more preferably C 1-5 , and still more preferably C 1-3 .
  • alkylcarbonyl refers to a group in which a carbonyl group is bonded to the above alkyl group. That is, when the alkyl group is represented by R—, it represents a group represented by RCO—.
  • a chain alkylcarbonyl may be linear or branched.
  • the cyclic alkylcarbonyl may be composed only of a cyclic structure, or may be a structure in which a chain alkyl is further bonded to the cyclic structure.
  • the carbon number of the alkylcarbonyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20.
  • lower alkylcarbonyl means an alkylcarbonyl group having a relatively small number of carbon atoms. Preferably, it is C 1-10 , more preferably C 1-5 , and still more preferably C 1-3 .
  • haloalkyl refers to a group in which the hydrogen of the above alkyl group is substituted with a halogen.
  • a chain haloalkyl can be linear or branched.
  • the cyclic haloalkyl may be composed only of a cyclic structure, or may be a structure in which a chain alkyl is further bonded to the cyclic structure.
  • the carbon number of the haloalkyl can be any natural number. The number is preferably 1 to 30, and more preferably 1 to 20. In haloalkyl, all the hydrogens thereof may be substituted with halogens, or only some of the hydrogens may be substituted.
  • lower haloalkyl means a haloalkyl group having a relatively small number of carbon atoms. Preferably, it is C 1-10 , more preferably C 1-5 , and still more preferably C 1-3 . Specific examples of preferable lower haloalkyl groups include a trifluoromethyl group.
  • substituted alkyl means a group in which hydrogen of an alkyl group is substituted with a substituent.
  • substituents include aryl, heteroaryl, and cyano.
  • halogenated substituted alkyl means a group in which a hydrogen of an alkyl group is substituted with a halogen and another hydrogen of the alkyl group is substituted with another substituent.
  • another substituent include aryl, heteroaryl, and cyano.
  • aryl refers to a group formed by leaving one hydrogen atom bonded to an aromatic hydrocarbon ring.
  • the number of aromatic hydrocarbon rings constituting the aryl may be one, or two or more. Preferably, it is 1 to 3.
  • the plurality of rings may or may not be condensed. Specifically, for example, phenyl, naphthyl, anthracenyl, biphenyl and the like.
  • heteroaryl refers to a group containing a hetero element other than carbon as an element constituting the ring skeleton of an aromatic ring of aryl.
  • Specific examples of heteroatoms include oxygen, nitrogen, sulfur and the like.
  • the number of heteroatoms in the aromatic ring is not particularly limited. For example, it may include only one heteroatom, and may include two, three, or four or more heteroatoms.
  • substituted aryl refers to a group formed by bonding a substituent to aryl.
  • substituted heteroaryl refers to a group formed by bonding a substituent to heteroaryl.
  • halogen refers to a monovalent group of elements such as fluorine (F), chlorine (Cl), bromine (Br), iodine (I) belonging to Group 7B of the periodic table. Preferred is bromine or iodine, and more preferred is iodine.
  • living radical polymerization means a polymerization reaction in which chain transfer reaction and termination reaction do not substantially occur in radical polymerization reaction, and the chain growth terminal retains activity even after the monomer has reacted. Say. In this polymerization reaction, the polymerization activity is maintained at the end of the produced polymer even after the completion of the polymerization reaction, and when the monomer is added, the polymerization reaction can be started again.
  • Living radical polymerization is characterized by the ability to synthesize polymers having an arbitrary average molecular weight by adjusting the concentration ratio of monomer and polymerization initiator, and the molecular weight distribution of the resulting polymer is extremely narrow. It can be applied to polymers.
  • the living radical polymerization may be abbreviated as “LRP”.
  • the “central element” means an atom that mainly participates in the oxidation-reduction reaction and is mainly responsible for the catalysis among the atoms constituting the catalyst compound.
  • an organic compound having redox ability is used as a catalyst for the living radical polymerization method.
  • the catalyst compound when the catalyst compound is referred to as an “organic compound”, it means that the central element acting as a catalyst in the compound is not a metal element.
  • the organic compound used as the catalyst is preferably a compound centered on a carbon atom, and more preferably a compound in which a plurality of carbon atoms form the skeleton of the compound.
  • the organic compound used as a catalyst has a central element selected from nitrogen, carbon, phosphorus, sulfur, or oxygen.
  • a central element in an organic compound used as a catalyst, a central element is bonded to a skeleton composed of a plurality of carbon atoms.
  • An organic compound having redox ability can be in two states, a reduced state and an oxidized state.
  • the reduced organic compound can be oxidized to become an organic compound in the oxidized state.
  • the organic compound in the oxidized state can be converted to the organic compound in the reduced state by being reduced.
  • Living radical polymerization is catalyzed by a reversible redox reaction between the reduced state and the oxidized state of the organic compound.
  • the central element that is oxidized when oxidized from the reduced state to the oxidized state and reduced when reduced from the oxidized state to the reduced state can be any element, but preferably Is selected from nitrogen, phosphorus, sulfur or oxygen. More preferably, it is nitrogen.
  • Specific examples of the compound include trialkylamine.
  • a compound using phosphorus as a central element can be preferably used for polymerization of acrylate and styrene.
  • the catalyst of the present invention preferably has no halogen atom bonded to the central element that is oxidized or reduced in the reversible oxidation-reduction reaction.
  • bromine or iodine is not bound to the central element that is oxidized or reduced in the reversible redox reaction.
  • iodine is not bound to the central element that is oxidized or reduced in the reversible redox reaction.
  • the catalyst of the present invention preferably has no hydrogen atom bonded to the central element that is oxidized or reduced in the reversible redox reaction.
  • a saturated aliphatic, unsaturated aliphatic or aromatic hydrocarbon group is bonded to a central element which is oxidized or reduced in the reversible redox reaction.
  • the organic compound of the catalyst may have only one central element or may have two or more central elements. Preferably, it has 1 to 10 central elements. More preferably, it has 1 to 6 central elements. Particularly preferably, it has 1 to 4 central elements.
  • the preferred catalyst compound is a compound in which hydrocarbons are bonded to that one central element.
  • Specific examples of the preferred compounds for example, a compound represented by the general formula AR n, where, A is a central element, nitrogen or phosphorus in the preferred embodiment.
  • R is a hydrocarbon substituent, and in preferred embodiments is alkyl, aryl, and the like. When R is lower alkyl, it is generally preferable because the compound is inexpensive.
  • n is a number determined so that the valences of A and R are balanced as a whole molecule.
  • each central element is preferably connected by a hydrocarbon group.
  • a structure in which the two central elements sandwich a halogen atom is preferable.
  • a structure in which two atoms of the central element are coordinated to halogen is preferable.
  • the two nitrogen atoms or two phosphorus atoms sandwich a halogen.
  • Such a structure can be adopted, and high catalytic activity can be achieved.
  • preferred compounds include, for example, compounds having a structure represented by the general formula A 1 R 1 A 2 as a basic skeleton, wherein A 1 and A 2 are central elements, and in a preferred embodiment, nitrogen. Or phosphorus.
  • R is a hydrocarbon substituent, and in preferred embodiments are alkylene, alkenylene, arylene, and the like. When R is lower alkylene, it is generally preferable because the compound is inexpensive.
  • the compound having such a basic skeleton are compounds having a structure represented by the general formula (R 2 ) n A 1 R 1 A 2 (R 3 ) m , where R 2 and R 3 is a group that does not affect the redox ability of the basic skeletal structure, and is a hydrocarbon in a preferred embodiment, and more preferably alkyl, alkenyl, aryl, and the like.
  • n and m are numbers determined so that the valences of A 1 , R 1 , A 2 , R 2 , and R 3 are balanced as a whole molecule.
  • the total number of carbon atoms of the organic compound of the catalyst is preferably 3 or more, more preferably 6 or more. Moreover, Preferably it is 100 or less, More preferably, it is 20 or less.
  • the molecular weight of the organic compound of the catalyst is preferably 30 or more, more preferably 50 or more. Moreover, it is preferably 500 or less, more preferably 300 or less, still more preferably 200 or less, still more preferably 150 or less, and particularly preferably 100 or less.
  • the catalyst can be used in combination with an organic halide having a carbon-halogen bond used as a dormant species.
  • the catalyst pulls out halogen from the organic halide during living radical polymerization to generate radicals. Therefore, in this invention, a catalyst removes the group which has suppressed the growth reaction of the compound used as a dormant seed
  • the dormant species is not limited to organic halides.
  • Patent Document 2 describes in claim 1 that the combination of a hydrido rhenium complex and a halogenated hydrocarbon is a radical living polymerization catalyst, but the halogenated hydrocarbon described in Patent Document 2 is Since it is not a living radical polymerization catalyst but a dormant species, the halogenated hydrocarbon described in Patent Document 2 is distinguished from a catalyst.
  • the catalyst compound has at least one central element. In one preferred embodiment, it has one central element, but may have more than one central element.
  • organic compounds are not conductive. Therefore, for example, in the case of a polymer used for an application in which it is not desirable that a conductive substance remains in the polymer (for example, an electronic material such as a resist, an organic EL, or a battery), it is preferable to use an organic compound as a catalyst. .
  • the catalyst of the present invention has a feature that it can perform a catalytic action with a small amount of use, as described above, a material that has little toxicity to the human body and less influence on the environment should be used in a small amount. Which is very advantageous compared to conventional catalysts.
  • the catalyst compound may have various groups as necessary. For example, an arbitrary organic group or inorganic group can be bonded to the central element.
  • Such a group may be an organic group or an inorganic group.
  • the organic group include aryl, heteroaryl, substituted aryl, substituted heteroaryl, alkyl group, alkenyl group (for example, vinyl group), alkynyl group, alkoxy group (methoxy group, ethoxy group, propoxy group, butoxy group, etc.), substitution Examples include amino groups (such as dimethylamino group, diethylamino group, and diphenylamino group), ester groups (such as aliphatic carboxylic acid ester), alkylcarbonyl groups (such as methylcarbonyl group), and haloalkyl groups (such as trifluoromethyl group).
  • it is an aryl, heteroaryl, substituted aryl, substituted heteroaryl, alkenyl group (eg, vinyl group), or alkynyl group.
  • examples of the inorganic group include a hydroxyl group, an amino group, and a cyano group.
  • the amino group may be optionally substituted.
  • an amino group is an inorganic group, when the amino group is substituted with an organic group, in the present specification, such a substituted amino group is classified as an organic group for convenience.
  • an organic compound having a conjugated organic group such as aryl, heteroaryl, substituted aryl, or substituted heteroaryl
  • a catalyst compound having a conjugated system can be formed using a combination of organic groups having an unsaturated bond such as an alkenyl group or an alkynyl group.
  • a catalyst compound having a non-conjugated organic group tends to have higher radical activity and is more preferable.
  • Examples of the substituent bonded to aryl or heteroaryl in substituted aryl or substituted heteroaryl include alkyl or alkyloxy, cyano group, amino group and the like.
  • the alkyl is preferably lower alkyl, more preferably C 1 -C 5 alkyl, still more preferably C 1 -C 3 alkyl, and particularly preferably methyl.
  • the alkyl in the alkyloxy is preferably lower alkyl, more preferably C 1 -C 5 alkyl, still more preferably C 1 -C 3 alkyl, and particularly preferably methyl. That is, in one embodiment, the organic group bonded to the central element is phenyl, lower alkylphenyl or lower alkyloxyphenyl.
  • the number of the organic group and inorganic group is not particularly limited, but is preferably 3 or less, more preferably 1.
  • the number of the substituent in the substituted aryl or substituted heteroaryl is not particularly limited, but is preferably 1 to 3, more preferably 1 to 2, and still more preferably 1.
  • the position of the substituent in the substituted aryl or substituted heteroaryl is arbitrarily selected.
  • aryl is phenyl (that is, when substituted aryl is substituted phenyl)
  • the position of the substituent may be any of ortho, meta, and para with respect to the central element. Preferably, the position is para.
  • catalyst compounds include, for example, trialkylamine (for example, triethylamine, tributylamine), tetrakisdimethylaminoethene (TDAE), 1,4,8,11-tetramethyl having nitrogen as a central element. -1,4,8,11-tetraazacyclotetradecane tributylphosphine (TDME).
  • trialkylamine for example, triethylamine, tributylamine
  • TDAE tetrakisdimethylaminoethene
  • TDME 1,4,8,11-tetraazacyclotetradecane tributylphosphine
  • organic compounds having a hole transport ability have been actively studied, but such organic compounds can be used.
  • phthalimides pyridines, bipyridines, N, N, N ′, N “, N” -pentamethyldiethylenetriamine (PMDETA), ethylenediamine, dimethylethylenediamine, tetramethylethylenediamine, tetramethyldiaminomethane, tris (2 -Aminoethyl) amine, tris (2- (methylamino) ethyl) amine, hematoporphyrin, and derivatives thereof can be used.
  • Those having phosphorus as a central element include trialkylphosphine (such as triethylphosphine (Et 3 P)), triarylphosphine (such as triphenylphosphine (Ph 3 P)), phosphonic acid ((OH) 3 P), 1, Examples thereof include 2-bis (diphenylphosphino) methane and derivatives thereof.
  • thiophene As the element having sulfur as a central element, thiophene, oligothiophene, polythiophene, tetrathiofulvalene (TTF), bis (ethylenedithio) tetrathiafulvalene (BTTF), 3,4 ethylenedioxythiophene (EDOT), poly (3 1,4 ethylenedioxythiophene (PEDOT), and derivatives thereof.
  • TTF tetrathiofulvalene
  • BTTF bis (ethylenedithio) tetrathiafulvalene
  • EDOT 3,4 ethylenedioxythiophene
  • PEDOT poly (3 1,4 ethylenedioxythiophene
  • Examples of those having oxygen as a central element include furan, oligofuran, polyfuran, and derivatives thereof.
  • Examples of those having carbon as a central element include ethylene, acetylene, oligoacetylene, polyacetylene, fullerene, carbon nanotube, and derivatives thereof.
  • Such an organic compound that can act as a catalyst can be easily confirmed by conducting a radical reaction experiment. Specifically, a living radical polymerization reaction was conducted without using a radical initiator by combining an organic compound and a representative dormant species (for example, CP-I, PE-I), and a narrow molecular weight distribution was observed. If obtained, it is confirmed that the organic compound acted as a catalyst.
  • a radical initiator for example, CP-I, PE-I
  • the catalyst compound does not have a radical reactive double bond.
  • Catalyst production method Most of the compounds used as the catalyst of the present invention are known compounds, and those commercially available from reagent sales companies can be used as they are, or can be synthesized by known methods. is there. Moreover, the compound which exists in a natural product can also be obtained by methods, such as extracting from the natural product.
  • a catalyst in which a hydrocarbon group for example, alkyl, alkoxy, aryl, heteroaryl, substituted aryl, or substituted heteroaryl
  • a commercially available compound is used as such a compound. be able to.
  • such a compound can be synthesized by a known method.
  • a catalyst in which a hydrocarbon group for example, alkyl, alkoxy, aryl, heteroaryl, substituted aryl, or substituted heteroaryl
  • a commercially available compound is used as such a compound. be able to.
  • such a compound can be synthesized by a known method.
  • an organic compound having sulfur that undergoes a redox reaction at the sulfur atom when using as a catalyst an organic compound having sulfur that undergoes a redox reaction at the sulfur atom, a commercially available compound can be used. Alternatively, such a compound can be synthesized by a known method.
  • the catalyst of the present invention has very high activity and can catalyze living radical polymerization with a small amount.
  • the compound used as a catalyst may be a liquid compound that can theoretically be used as a solvent.
  • the amount of the catalyst used can be smaller than the so-called “solvent amount” (that is, the amount necessary to achieve the effect as a solvent).
  • the catalyst may be used in an amount sufficient to catalyze the living radical polymerization, and it is not necessary to add any more.
  • the amount of catalyst used can be 10 mmol (mM) or less per liter of reaction solution. In a more preferred embodiment, the amount of catalyst used can be 5 mmol or less per 1 liter of reaction solution, or 2 mmol or less. Furthermore, it can be 1 mmol or less, and can also be 0.5 mmol or less. On a weight basis, the amount of catalyst used can be 1% by weight or less of the reaction solution. In a preferred embodiment, it can be 0.75 wt% or less, and can be 0.70 wt% or less, and in a more preferred embodiment, 0.5 wt% or less.
  • it is possible to make it 0.2% by weight or less, further 0.1% by weight or less, and 0.05% by weight or less.
  • it can be 0.75% by weight or less, can be 0.70% by weight or less, and in a more preferred embodiment, is 0.5% by weight or less. It is possible to make it 0.2% by weight or less, further 0.1% by weight or less, and 0.05% by weight or less. That is, the amount can be “significantly” smaller than that effective as a solvent.
  • the amount of the catalyst used is preferably 0.02 mmol or more, more preferably 0.1 mmol or more, and further preferably 0.5 mmol or more with respect to 1 liter of the reaction solution. .
  • the amount of catalyst used is preferably 0.001% by weight or more of the reaction solution, more preferably 0.005% by weight or more, and still more preferably 0.02% by weight or more. . If the amount of catalyst used is too small, the molecular weight distribution tends to be wide.
  • a living radical polymerization catalyst or catalyst precursor compound other than a catalyst composed of an organic compound having redox ability hereinafter referred to as “other type catalyst or other type catalyst precursor”. Even if the compound “) is not used in combination, it is possible to perform living radical polymerization sufficiently. However, if necessary, other types of catalysts or other types of catalyst precursor compounds can be used in combination. In that case, in order to take advantage of the catalyst or catalyst precursor compound having a carbon atom as a central element as much as possible, the amount of the catalyst or catalyst precursor compound having a carbon atom as a central element is increased, and other types of catalysts or It is preferable to reduce the amount of the other-type catalyst precursor compound used.
  • the amount of the other-type catalyst or the other-type catalyst precursor compound can be 100 parts by weight or less with respect to 100 parts by weight of the catalyst or catalyst precursor compound having a carbon atom as a central element. 50 parts by weight or less, 20 parts by weight or less, 10 parts by weight or less, 5 parts by weight or less, 2 parts by weight or less, 1 part by weight or less, 0.5 parts by weight or less, 0.2 parts by weight Part or less or 0.1 part by weight or less is also possible. That is, it is possible to perform a living radical reaction in a reaction solution that does not substantially contain a catalyst other than a catalyst having a carbon atom as a central element.
  • a protecting group for protecting the growing chain during the living radical polymerization reaction is used.
  • various known protecting groups can be used as protecting groups conventionally used in living radical polymerization.
  • a special protecting group when used, there are disadvantages such as the fact that the protecting group is very expensive.
  • organic halides (low molecular dormant species)
  • an organic halide having a carbon-halogen bond is preferably added to the reaction material, and a halogen imparted from the organic halide to the growing chain is used as a protective group.
  • Such organic halides are relatively inexpensive and are advantageous over other known compounds used for protecting groups used in living radical polymerization.
  • the organic halide used as the dormant species is not particularly limited as long as it has at least one carbon-halogen bond in the molecule and acts as the dormant species. In general, however, those in which one or two halogen atoms are contained in one molecule of the organic halide are preferred.
  • the organic halide used as the dormant species preferably has an unstable carbon radical when a halogen is eliminated and a carbon radical is generated. Therefore, as an organic halide used as a dormant species, when a halogen is eliminated and a carbon radical is generated, two or more substituents that stabilize the carbon radical are bonded to the carbon atom that becomes the carbon radical. What is there is not suitable. However, those in which one substituent that stabilizes the carbon radical is bonded to the carbon atom that becomes the carbon radical often show appropriate radical stability and can be used as a dormant species.
  • a catalyst compound in which the carbon radical is stable and a dormant species in which the carbon radical is not so stable but has an appropriate stability A living radical polymerization reaction can be performed with high efficiency.
  • a catalyst in which two or more substituents that stabilize a carbon radical are bonded to the carbon atom that becomes the carbon radical is used as a catalyst, and one carbon atom that becomes the carbon radical becomes one substituent that stabilizes the carbon radical.
  • the combination of the catalyst and the dormant shows a high reaction activity in the living radical polymerization.
  • the number of hydrogen atoms of the organic halide used as the dormant species to which the halogen is bonded is preferably 2 or less. More preferably, it is more preferable not to have hydrogen. Further, the number of halogens bonded to the 1-position carbon of the organic halide is preferably 3 or less, more preferably 2 or less, and even more preferably 1. In particular, when the halogen bonded to the 1st carbon of the organic halide is chlorine, the number of chlorine is very preferably 3 or less, and even more preferably 2 or less, One is particularly preferred.
  • one or more carbon atoms are bonded to the 1-position carbon of the organic halide used as the dormant species, and it is particularly preferable that two or three carbon atoms are bonded.
  • the halogen atom of the organic halide used as the dormant species is preferably chlorine, bromine or iodine. More preferred is bromine or iodine. From the viewpoint of reducing the molecular weight distribution, iodine is most preferable. In one embodiment, bromine can also be preferably used. Since bromine compounds are generally more stable than iodine compounds, there are advantages such as easy storage of low-molecular dormant species and a relatively low need for removing terminal halogens from the resulting polymer.
  • halogen atom of the organic halide used as the dormant species may be the same as or different from the halogen atom in the catalyst. This is because even when the halogen atoms are different, the halogen atoms can be exchanged with each other between the organic halide and the catalyst compound.
  • the organic halide used as the dormant species has the following general formula (II):
  • R 2 is halogen, hydrogen or alkyl. Preferably, it is hydrogen or lower alkyl. More preferably, it is hydrogen or methyl.
  • R 3 may be the same as or different from R 2 and is halogen, hydrogen or alkyl. Preferably, it is hydrogen or lower alkyl. More preferably, it is hydrogen or methyl.
  • R 4 is halogen, hydrogen, alkyl, aryl, heteroaryl or cyano. Preferably, it is aryl, heteroaryl or cyano. When R 4 is halogen, hydrogen or alkyl, R 4 may be the same as or different from R 2 or R 3 .
  • X 3 is halogen. Preferably, it is chlorine, bromine or iodine. More preferred is bromine or iodine, and most preferred is iodine.
  • X 3 may be the same as or different from the halogen of R 2 to R 4 .
  • the halogen of X 3 may be the same halogen contained in the catalyst compound. However, it may be a halogen different from the halogen contained in the catalyst compound.
  • R 2 to R 4 and X 3 are each selected independently from each other, but 0 or 1 halogen atom is present in R 2 to R 4 (that is, as an organic halide, In which 1 or 2 halogen atoms are present.
  • the organic halide used as the dormant species is an alkyl halide or a halogenated substituted alkyl. More preferably, it is a halogenated substituted alkyl.
  • the alkyl is preferably a secondary alkyl, and more preferably a tertiary alkyl.
  • the alkyl preferably has 2 or 3 carbon atoms. Therefore, the organic halide used as the dormant species is more preferably halogenated substituted ethyl or halogenated substituted isopropyl. Examples of the substituent in the halogenated substituted alkyl used as the dormant species include phenyl and cyano.
  • organic halide used as the dormant species include, for example, CH (CH 3 ) (Ph) I and C (CH 3 ) 2 (CN) I described below.
  • organic halides used as dormant species include, for example, methyl chloride, methylene chloride, chloroform, chloroethane, dichloroethane, trichloroethane, bromomethyl, dibromomethane, bromoform, bromoethane, dibromoethane, tribromoethane, tetra Bromoethane, bromotrichloromethane, dichlorodibromomethane, chlorotribromomethane, iodotrichloromethane, dichlorodiiodomethane, iodotribromomethane, dibromodiiodomethane, bromotriiodomethane, iodoform, diiodomethane, methyl iodide, isopropyl chloride , T-butyl chloride, isopropyl bromide, t-butyl bromide, triiod
  • the organic halide used as the dormant species is not used as a solvent, and therefore it is not necessary to use it in such a large amount as to exhibit the effect as a solvent. Therefore, the amount of the organic halide used as the dormant species can be less than the so-called “solvent amount” (that is, the amount necessary to achieve the effect as a solvent).
  • the organic halide used as the dormant species is used to provide halogen as a protective group to the growing chain as described above, so that a sufficient amount of halogen for the growing chain in the reaction system is used. Is sufficient.
  • the amount of the organic halide used as the dormant species in the method of the present invention is preferably 0.05 mol or more per mol of the organic compound as a catalyst in the polymerization reaction system, More preferably, it is 0.5 mol or more, More preferably, it is 1 mol or more. Moreover, it is preferable that it is 100 mol or less per 1 mol of organic compounds as a catalyst in a polymerization system, More preferably, it is 30 mol or less, More preferably, it is 5 mol or less. Further, it is preferably 0.001 mol or more, more preferably 0.005 mol or more per mol of the vinyl monomer (monomer).
  • the amount may be 0.07 mol or less, 0.05 mol or less, 0.03 mol or less, 0.02 mol or less, or 0.01 mol or less per mol of the vinyl monomer. It is.
  • the organic halide used as the dormant species can be charged with its raw materials, and the organic halide can be produced in situ during the polymerization, that is, in the reaction solution, and used as the organic halide in this polymerization method.
  • an azo radical initiator for example, azobis (isobutyronitrile)
  • a halogen single molecule for example, iodine (I 2 )
  • an organic halide for example, iodide
  • the alkyl CP-I (chemical formula as described above) can be generated in situ during the polymerization and used as the dormant species for this polymerization process.
  • organic halide used as the dormant species those immobilized on a surface such as an inorganic or organic solid surface or an inorganic or organic molecular surface can also be used.
  • a surface such as an inorganic or organic solid surface or an inorganic or organic molecular surface
  • an organic halide immobilized on the surface of a silicon substrate, the surface of a polymer film, the surface of inorganic or organic fine particles, the surface of a pigment, or the like can be used.
  • immobilization for example, chemical bonds or physical bonds can be used.
  • an inorganic material capable of providing a halogen it is preferable to use an inorganic material capable of providing a halogen. That is, when a halogen is provided to an organic compound having redox capability, the organic compound reduces the halogen and the organic compound is oxidized. The organic compound in the oxidized state thus obtained is considered to catalyze the reaction of bonding halogen to the end of the growing chain of the polymer. Therefore, the activity of the catalyst is significantly improved by providing halogen from the inorganic material to the catalyst.
  • the inorganic material that provides halogen is referred to as “halogen-providing inorganic substance”.
  • halogen-providing inorganic substance for example, a halogen molecule, a halogenated inorganic compound, or the like can be used.
  • halogen molecules bromine molecules (Br 2 ) or iodine molecules (I 2 ) are preferably used, and iodine molecules (I 2 ) are particularly preferably used.
  • halogenated inorganic compound NH 4 I, HI and the like can be used.
  • the amount of the halogen-providing inorganic substance used is preferably 0.001 mol or more, more preferably 0.003 mol or more, and 0.01 mol or more with respect to 1 mol of the organic compound of the catalyst. Is more preferably 0.02 mol or more, and particularly preferably 0.03 mol or more. Moreover, it is also possible to set it as 0.05 mol or more as needed. Further, the amount of the halogen-providing inorganic substance is preferably 0.5 mol or less, more preferably 0.3 mol or less, and more preferably 0.2 mol or less with respect to 1 mol of the organic compound of the catalyst. More preferably, it is more preferably 0.15 mol or less, and if necessary, it can also be 0.1 mol or less.
  • the amount of the halogen-providing inorganic substance used is preferably 0.01 mmol or more, more preferably 0.05 mmol or more, and further preferably 0.1 mmol or more with respect to 1 mol of the monomer. More preferably, it is 0.2 mmol or more, and particularly preferably 0.3 mmol or more. Moreover, it is also possible to set it as 0.5 mmol or more as needed. Further, the amount of the halogen-providing inorganic substance is preferably 100 mmol or less, more preferably 30 mmol or less, further preferably 10 mmol or less, with respect to 1 mol of the monomer, and 5 mmol or less. More preferably, it is particularly preferably 3 mmol or less. It is also possible to make it 2 mmol or less.
  • the amount of the halogen-providing inorganic substance used is preferably 0.001 mol or more, more preferably 0.003 mol or more, with respect to 1 mol of the organic halide used as the dormant species, It is more preferably at least mol, more preferably at least 0.02 mol, particularly preferably at least 0.03 mol. Moreover, it is also possible to set it as 0.05 mol or more as needed.
  • the amount of the halogen-providing inorganic substance used is preferably 0.5 mol or less, more preferably 0.3 mol or less, based on 1 mol of the organic halide used as the dormant species, More preferably, it is 2 mol or less, still more preferably 0.15 mol or less, and if necessary, it can also be 0.1 mol or less.
  • halogen-providing inorganic substance may be generated in situ during polymerization and used.
  • a radical polymerizable monomer is used as a monomer.
  • the radical polymerizable monomer refers to a monomer having an unsaturated bond capable of performing radical polymerization in the presence of an organic radical. Such an unsaturated bond may be a double bond or a triple bond. That is, in the polymerization method of the present invention, any monomer conventionally known to perform living radical polymerization can be used.
  • the vinyl monomer is a general term for monomers represented by the general formula “CH 2 ⁇ CR 5 R 6 ”.
  • a monomer in which R 5 is methyl and R 6 is carboxylate in this general formula is referred to as a methacrylate monomer and can be suitably used in the present invention.
  • methacrylate monomers include methyl methacrylate, ethyl methacrylate, propyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, benzyl methacrylate, glycidyl methacrylate, cyclohexyl methacrylate, lauryl methacrylate.
  • N-octyl methacrylate 2-methoxyethyl methacrylate, butoxyethyl methacrylate, methoxytetraethylene glycol methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 3-chloro-2-hydroxypropyl methacrylate, tetrahydrofurfuryl methacrylate, 2- Hydroxy 3-fu Roh propyl methacrylate, diethylene glycol methacrylate, polyethylene glycol methacrylate, 2- (dimethylamino) ethyl methacrylate. Methacrylic acid can also be used.
  • An ionic liquid methacrylate such as a generation ((FH) n F ⁇ ) salt can be used.
  • a monomer in which R 5 is hydrogen and R 6 is carboxylate in the general formula of the vinyl monomer is generally referred to as an acrylic monomer and can be suitably used in the present invention.
  • acrylate monomers include methyl acrylate, ethyl acrylate, propyl acrylate, n-butyl acrylate, t-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, benzyl acrylate, glycidyl acrylate, cyclohexyl acrylate, and lauryl acrylate.
  • N-octyl acrylate 2-methoxyethyl acrylate, butoxyethyl acrylate, methoxytetraethylene glycol acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 3-chloro 2-hydroxypropyl acrylate, tetrahydrofurfuryl acrylate, 2- Hydroxy 3-phenoxypropyl acrylate, diethylene glycol Call acrylate, polyethylene glycol acrylate, 2- (dimethylamino) ethyl acrylate. Acrylic acid can also be used.
  • control of living radical polymerization of acrylates is generally difficult, it can be controlled according to the present invention. In particular, if a phosphorus catalyst is used, the polymerization of
  • the monomer in which R 5 is hydrogen and R 6 is phenyl in the general formula of the vinyl monomer is styrene, and can be suitably used in the present invention.
  • a monomer in which R 6 is phenyl or a phenyl derivative is referred to as a styrene derivative and can be suitably used in the present invention.
  • examples thereof include styrene, o-, m-, p-hydroxystyrene, o-, m-, p-styrene sulfonic acid and the like.
  • vinyl naphthalene etc. whose R ⁇ 6 > is aromatic are mentioned.
  • the monomer in which R 5 is hydrogen and R 6 is alkyl is alkylene and can be suitably used in the present invention.
  • a monomer having two or more vinyl groups can also be used.
  • a diene compound eg, butadiene, isoprene, etc.
  • a compound having two allyl groups eg, diallyl phthalate
  • dimethacrylate eg, ethylene glycol dimethacrylate having two methacryls
  • acrylic ethylene glycol diacrylate.
  • vinyl monomers other than those described above can also be used.
  • vinyl esters eg, vinyl acetate, vinyl propionate, vinyl benzoate, vinyl acetate
  • styrene derivatives other than the above eg, ⁇ -methylstyrene
  • vinyl ketones eg, vinyl methyl ketone
  • Vinyl hexyl ketone methyl isopropenyl ketone
  • N-vinyl compounds eg, N-vinyl pyrrolidone, N-vinyl pyrrole, N-vinyl carbazole, N-vinyl indole
  • (meth) acrylamide and derivatives thereof eg, N -Isopropylacrylamide, N-isopropylmethacrylamide, N, N-dimethylacrylamide, N, N-dimethylmethacrylamide, N-methylolacrylamide, N-methylolmethacrylamide
  • acrylonitrile methacrylonitrile
  • the combination of the type of monomer and the type of the catalyst of the present invention is not particularly limited, and the catalyst of the present invention arbitrarily selected with respect to the arbitrarily selected monomer can be used.
  • radical reaction initiator In the living radical polymerization method of the present invention, a small amount of radical reaction initiator may be used as necessary.
  • a known initiator can be used as an initiator used for the radical reaction.
  • an azo radical initiator or a peroxide radical initiator can be used.
  • Specific examples of the azo-based radical reaction initiator include azobis (isobutyronitrile).
  • peroxide-based radical initiator examples include, for example, benzoyl peroxide, dicumyl peroxide, t-butyl peroxybenzoate (BPB), di (4-tert-butylcyclohexyl) peroxydicarbonate (PERKADOX16), and peroxydisulfuric acid. Potassium.
  • the polymerization reaction can be carried out without using such a radical reaction initiator.
  • the radical initiator In order to maximize the effect of avoiding the adverse effects due to the radical initiator, it is preferable not to use the radical initiator substantially, and it is most preferable that the amount used is zero.
  • substantially not use means that the amount of the radical initiator is so small that the radical initiator does not substantially affect the polymerization reaction.
  • the amount of the radical initiator is preferably 10 mmol or less, preferably 1 mmol or less, and more preferably 0.1 mmol or less with respect to 1 mol of the catalyst of the present invention. preferable.
  • the amount used is not particularly limited.
  • it is 1 mmol or more, more preferably 5 mmol or more, and further preferably 10 mmol or more with respect to 1 liter of the reaction solution.
  • it is preferably 500 mmol or less, more preferably 100 mmol or less, and further preferably 50 mmol or less with respect to 1 liter of the reaction solution.
  • solvent If the reaction mixture such as monomer is liquid at the reaction temperature, it is not always necessary to use a solvent.
  • a solvent may be used as necessary.
  • the solvent it is possible to use a solvent that has been conventionally used for living radical polymerization as it is.
  • the amount used is not particularly limited as long as the polymerization reaction is appropriately performed, but it is preferably used in an amount of 1 part by weight or more, more preferably 10 parts by weight or more, based on 100 parts by weight of the monomer. It is more preferable to use 50 parts by weight or more. If the amount of solvent used is too small, the viscosity of the reaction solution may become too high.
  • Emulsion polymerization, dispersion polymerization, and suspension polymerization can also be performed by using a solvent that does not mix with the monomer.
  • a solvent that does not mix with the monomer.
  • emulsion polymerization, dispersion polymerization, or suspension polymerization can be performed by using water as a solvent.
  • additives The various materials for the living radical polymerization described above may be added with necessary amounts of known additives as required. Examples of such additives include polymerization inhibitors.
  • a raw material composition suitable as a material for living radical polymerization By mixing the various raw materials described above, a raw material composition suitable as a material for living radical polymerization can be obtained.
  • the obtained composition can be used for a conventionally known living radical polymerization method.
  • the raw material composition does not include raw materials other than the various raw materials described above.
  • the raw material composition preferably does not substantially contain a raw material containing a transition metal.
  • the raw material composition comprises a catalyst, a monomer having a radical-reactive unsaturated bond, a solvent, and an organic halide having a carbon-halogen bond and a halogen molecule or inorganic halogen compound used as a dormant species. Contains virtually no ingredients.
  • a raw material composition does not contain material (for example, episulfide compound etc.) unrelated to living radical polymerization substantially.
  • the raw material composition is substantially free of a living radical polymerization catalyst or catalyst precursor other than a catalyst comprising an organic compound having redox ability. It is possible to make it a composition not contained in.
  • the raw material composition includes a catalyst, a monomer having a radical reactive unsaturated bond, an organic halide having a carbon-halogen bond used as a dormant species, and a halogen molecule or an inorganic halide. Further, a solvent may be included.
  • the raw material composition preferably includes a catalyst, a monomer having a radical-reactive unsaturated bond, and an organic halide having a carbon-halogen bond used as a dormant species. More preferably, it further includes a halogen molecule or a halogenated inorganic compound capable of providing a halogen. In addition to these, the raw material composition may further contain a solvent.
  • the raw material composition consists essentially of a catalyst, a monomer having a radical reactive unsaturated bond, an organic halide having a carbon-halogen bond used as a dormant species, a halogen molecule or halogenated.
  • a composition comprising an inorganic compound and a solvent.
  • the solvent may not be included.
  • the raw material composition includes, for example, a catalyst, a monomer having a radical reactive unsaturated bond, an organic halide having a carbon-halogen bond used as a dormant species, a halogen molecule or a halogenated inorganic compound, and a solvent. Is a composition substantially free of components involved in the radical polymerization reaction.
  • the composition may be composed only of a catalyst, a monomer having a radical reactive unsaturated bond, an organic halide having a carbon-halogen bond used as a dormant species, a halogen molecule or a halogenated inorganic compound, and a solvent. Good. Again, if unnecessary, the solvent may not be included.
  • reaction temperature The reaction temperature in the method of the present invention is not particularly limited.
  • the temperature is preferably 10 ° C or higher, more preferably 20 ° C or higher, still more preferably 30 ° C or higher, still more preferably 40 ° C or higher, and particularly preferably 50 ° C or higher. Further, it is preferably 130 ° C. or lower, more preferably 120 ° C. or lower, still more preferably 110 ° C. or lower, still more preferably 105 ° C. or lower, and particularly preferably 100 ° C. or lower. .
  • the temperature is too high, there is a drawback that the heating equipment is costly.
  • the temperature is lower than room temperature, there is a disadvantage that costs are required for equipment for cooling.
  • the above-described temperature range slightly higher than room temperature and not excessively high is very suitable in a practical sense.
  • reaction time The reaction time in the method of the present invention is not particularly limited. Preferably, it is 15 minutes or more, More preferably, it is 30 minutes or more, More preferably, it is 1 hour or more. Moreover, Preferably it is 3 days or less, More preferably, it is 2 days or less, More preferably, it is 1 day or less.
  • reaction time is too short, it is difficult to obtain a sufficient molecular weight (or polymerization rate (monomer conversion rate)). If the reaction time is too long, the overall efficiency of the process is poor. By setting an appropriate reaction time, excellent performance (moderate polymerization rate and reduction of side reactions) can be achieved.
  • the polymerization reaction in the method of the present invention may be performed under conditions where air is present in the reaction vessel. Moreover, you may substitute air with inert gas, such as nitrogen and argon, as needed.
  • inert gas such as nitrogen and argon
  • an organic compound having redox ability can take both an oxidized state and a reduced state.
  • the catalyst compound in the oxidation state and the catalyst compound in the reduction state may be separately prepared and mixed.
  • a method may be used in which a part of the catalyst compound in the reduced state is oxidized to an oxidized state.
  • a method in which a part of the catalyst compound in the oxidized state is reduced to a reduced state may be used.
  • halogen-providing inorganic substance is mixed in the reaction mixture, an appropriate mixture can be easily obtained.
  • a method of adding iodine (I 2 ) to the reaction mixture is preferable.
  • the living radical polymerization method of the present invention can be applied to homopolymerization, that is, production of a homopolymer, but it is also possible to produce a copolymer using the method of the present invention for copolymerization.
  • the copolymerization may be random copolymerization or block copolymerization.
  • the block copolymer may be a copolymer in which two or more types of blocks are bonded, or may be a copolymer in which three or more types of blocks are bonded.
  • a block copolymer can be obtained by a method including a step of polymerizing the first block and a step of polymerizing the second block.
  • the method of the present invention may be used for the step of polymerizing the first block
  • the method of the present invention may be used for the step of polymerizing the second block. It is preferable to use the method of the present invention for both the step of polymerizing the first block and the step of polymerizing the second block.
  • a block copolymer can be obtained by polymerizing the first block and then polymerizing the second block in the presence of the obtained first polymer.
  • the first polymer can be subjected to polymerization of the second block after being isolated and purified, or the first polymer is not isolated and purified, and the first polymer can be subjected to the first polymerization during or after the polymerization of the first polymer.
  • the block can be polymerized by adding a second monomer to the polymerization.
  • a step of polymerizing each block is performed to obtain a desired copolymer weight. Coalescence can be obtained. And it is preferable to use the method of this invention in superposition
  • the basic concept of the living radical polymerization method is a reversible activation reaction of a dormant species (polymer-X) to a growth radical (polymer.), Using a halogen as a protecting group X and a transition metal complex as an activation catalyst.
  • the system is one of the useful living radical polymerization methods. According to the present invention, a halogen of an organic halide can be extracted with high reactivity using an organic compound, and a radical can be generated reversibly (Scheme 1).
  • transition metals are excellent in the action of catalyzing various chemical reactions because their electrons can be in various transition states. For this reason, it has been considered that transition metals are excellent as a catalyst for living radical polymerization. Conversely, typical elements were thought to be disadvantageous for such catalysts. That is, organic compounds were considered disadvantageous as a catalyst.
  • the polymerization reaction proceeds very efficiently by using a catalyst comprising an organic compound having redox ability.
  • a catalyst comprising an organic compound having redox ability.
  • This is considered to be due to the fact that the redox reaction of the central element is appropriate for exchanging halogen between the catalyst and the reaction intermediate. Therefore, basically, it is considered that an organic compound having such a redox ability can satisfactorily catalyze living radical polymerization.
  • Scheme 1 shows the reaction formula when the catalyst of the present invention is used.
  • A is an organic compound having redox ability
  • X is a halogen atom.
  • A is in a reduced state on the left side of the reaction equation, and is in an oxidized state on the right side.
  • the living radical polymerization is controlled by performing a reversible redox reaction between the reduced state and the oxidized state.
  • reaction formula when TDAE is used as a catalyst, the reaction formula is understood as follows. On the right side, a salt state in which one electron is transferred between TDAE and halogen, or a complex state in which a partial charge is transferred between TDAE and halogen can be taken.
  • redox is used as a concept that generally describes the movement of electrons (charges). Also in this specification, the term redox is used as a broad concept that generally describes the movement of electrons (charges).
  • redox is sometimes used as a concept to describe the movement of one electron (charge), that is, in a narrow sense.
  • complex formation is often used as a concept to explain partial charge transfer. Therefore, in the chemical field in general, redox in a narrow sense and complex formation may be used in different meanings.
  • the above-described redox that is, movement of electrons (charges) is generally used as the mechanism of the present invention. Therefore, in the present specification, the term “redox” is used in a meaning including the concept of “complex formation” which is partial charge transfer.
  • the resulting polymer obtained by the method of the present invention has a halogen (for example, iodine) at the terminal.
  • a halogen for example, iodine
  • the terminal halogen can be removed and used.
  • the reactivity of the terminal halogen is generally high and can be removed or converted by a wide variety of reactions.
  • the following scheme shows an example of a method for treating a polymer terminal when the halogen is iodine.
  • the polymer terminal can be utilized by the reactions shown in these schemes.
  • the halogen is other than iodine, the polymer terminal can be similarly converted to a functional group.
  • a polymer having a narrow molecular weight distribution can be obtained.
  • a polymer having a ratio Mw / Mn of a polymerization average molecular weight Mw to a number average molecular weight Mn of 1.5 or less by appropriately selecting the composition of reaction materials and reaction conditions.
  • Mw / Mn of 1.4 or less, 1.3 or less, 1.2 or less, or even 1.1 or less.
  • the living radical polymerization method of the present invention even when the halogen atom of the organic halide used as the dormant species is bromine, it is possible to obtain a polymer having Mw / Mn of less than 2.0. Compared with this radical polymerization method, a polymer having a narrow molecular weight distribution can be obtained. As described above, since the bromine compound is more stable than the iodine compound, the necessity for removing the terminal halogen from the produced polymer is relatively low, and the usefulness of the resulting polymer is extremely high.
  • the polymer obtained by the living radical polymerization method of the present invention can be used for various applications.
  • resists, adhesives, lubricants, paints, inks, dispersants, packaging materials, drugs, personal care products (hairdressing products, cosmetics, etc.), elastomers (automobile materials, industrial products, sports equipment, wire clothing materials, building materials) Etc.) and coating (powder coating etc.) can be used for production. It can also be used to create new electronics, optics, mechanics, crystals, separation, lubrication, and medical materials.
  • the polymer obtained by the living radical polymerization method of the present invention can also be advantageously used in various applications in that the amount of catalyst remaining in the polymer is small. That is, since the amount of the catalyst can be reduced as compared with a conventional transition metal catalyst or the like, the purity of the obtained resin is high, and it can be suitably used for applications requiring a high-purity resin. Depending on the application, the catalyst residue may or may not be removed from the produced polymer. Depending on these various uses, the polymer may be molded or dissolved or dispersed in a solvent or dispersion medium. However, the polymer after molding, or the polymer after dissolution or dispersion, etc. It retains the advantages of the invention and still falls within the scope of the polymers obtained with the polymerization process of the present invention.
  • the polymer synthesized using the polymerization method of the present invention can be used for various applications by taking advantage of the narrow molecular weight distribution, the small amount of residual catalyst in the polymer, and the low cost.
  • a homopolymer having a narrow molecular weight distribution, a random copolymer, and a block copolymer made of benzyl methacrylate can be used as a high-performance resist.
  • polymers such as methacrylate (for example, dimethylamino methacrylate, 2-hydroxyethyl methacrylate), methacrylic acid, acrylate, and acrylic acid can be used for applications such as adhesives, paints, inks, and pigment dispersants. .
  • a multi-branched polymer is synthesized by the method of the present invention, it is useful as a lubricant.
  • the polymer obtained by the method of the present invention (for example, hydroxyethyl methacrylate, polyethylene glycol methacrylate, etc.) is also useful as a drug release material / medical material.
  • the polymers obtained by the method of the present invention are also useful for personal care products (for example, hairdressing products and cosmetics). is there.
  • the polymer obtained by the method of the present invention (for example, (acrylate, methacrylate, styrene, diene, etc.) is also useful for applications such as elastomers and coatings.
  • the polymer obtained by the method of the present invention is also useful for the creation and production of new electronic materials, optical materials, mechanical materials, crystal materials, separation materials, lubricating materials, medical materials, etc., which have not been conventionally used.
  • the method of the present invention can be applied to, for example, surface graft polymerization, and a high-density polymer brush can be produced and used for various applications.
  • the polymer when a non-conductive compound is used as a catalyst, the polymer can be suitably used in applications (for example, resists and organic EL) that require no conductive impurities to remain in the polymer. Is obtained.
  • the catalyst of the present invention is characterized in that the organic compound has an ability to perform a redox reaction.
  • an organic compound having redox ability can catalyze reversible activation of the growth terminal of the radical polymerization reaction by its redox reaction. Therefore, an organic compound having such a redox ability can be a powerful catalyst.
  • Example 1 and Comparative Example 1 [Polymerization of methyl methacrylate (MMA) using TDAE as a catalyst]
  • Entry 1-1 As an alkyl halide to be a dormant species, 80 mM 2-iodo-2-cyanopropyl (CP-I; the chemical structural formula is as described above) was used.
  • CP-I 2-iodo-2-cyanopropyl
  • TDAE tetrakisdimethylaminoamine
  • No radical initiators such as organic oxides or diazo compounds were used.
  • These materials were dissolved in 3 g of methyl methacrylate (MMA) to obtain a reaction solution having the above concentration. The monomer concentration was about 8M. The solubility of these materials was good and a uniform solution was formed. Residual oxygen was replaced with argon, and the reaction solution was heated to 80 ° C. to carry out a polymerization reaction.
  • the experimental results are shown in entry 1-1 of Table 1.
  • the concentration “mM” indicates the number of millimoles based on 1 liter of monomer. For example, 80 mM means that 1 milliliter of monomer contains 80 mmol.
  • the concentration “M” indicates the number of moles based on 1 liter of monomer. For example, 8M means that 8 mol is contained in 1 liter of monomer. In the case of MMA, 1 liter of monomer (bulk) is 8 mol at room temperature.
  • PDI indicates the ratio of Mw / Mn .
  • M n is the number average molecular weight of the obtained polymer.
  • [M] 0 and [RI] 0 represent the initial concentrations (charge concentrations) of the monomer and the alkyl iodide serving as the dormant species, respectively. Further, conv is a monomer conversion rate (polymerization rate).
  • the amount 40 mM used in the experiments of entries 1-1 to 1-3 in Table 1 corresponds to about 0.9% by weight in the MMA monomer solution considering the molecular weight of TDAE (about 200). This amount is about one-tenth of the amount (8.9% by weight) of the catalyst used in the experimental example described in Non-Patent Document 1 described later. Since the living radical polymerization reaction can be carried out in such a small amount, it was confirmed that the activity of the catalyst is extremely high.
  • Example 2 [Polymerization of methyl methacrylate (MMA) using TDME] (Entries 2-1 to 2-2) Instead of TDAE, 40 mM 1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane (TDME; the chemical structural formula is as described above) was used. As shown in entry 4-5) in Table 1, methyl methacrylate (MMA) was polymerized in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed. The results are shown in Table 1.
  • TDME unlike TDAE, did not have a conjugated bond, but it was confirmed that it acts as a catalyst for living radical polymerization.
  • Monomer Methyl methacrylate (MMA) Monomer concentration: 8M (bulk) Alkyl halide to be dormant species (RI): 2-iodo-2-cyanopropyl (CP-I) Catalyst: TDAE (tetrakisdimethylaminoamine), TDME (1,4,8,11-tetramethyl-1,4,8,11-tetraazacyclotetradecane), I 2 Radical initiator (In): Not used.
  • Mn and PDI Polystyrene (PSt) equivalent molecular weight and molecular weight distribution index obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • Example 3 [Polymerization of methyl methacrylate (MMA) using TEA] (Entry 3-1) Instead of TDAE, 120 mM triethylamine (TEA; chemical structure is as described above) was used. As shown in entry 3-1 of Table 2, methyl methacrylate (MMA) was polymerized in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed. The results are shown in Table 2.
  • Monomer Methyl methacrylate (MMA) Monomer concentration: 8M (bulk), 4M (50% toluene solution) Alkyl halide to be dormant species (RI): 2-iodo-2-cyanopropyl (CP-I) Radical initiator (In): Not used.
  • Catalyst Triethylamine (TEA) Mn and PDI: Polystyrene (PSt) equivalent molecular weight and molecular weight distribution index obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • the amount 5 mM used in the experiment of entry 3-5 in Table 2 corresponds to about 0.06% by weight in the MMA monomer solution in consideration of the molecular weight of TEA (about 100). This amount is about 150 times smaller than the amount of catalyst (8.9% by weight) used in the experimental example described in Non-Patent Document 1 described later. Since the living radical polymerization reaction can be carried out in such a small amount, it was confirmed that the activity of the catalyst is extremely high.
  • Example 4 Polymerization of methyl methacrylate (MMA) using TBA] (Entry 4-1) Instead of TDAE, 20 mM tributylamine (TBA; chemical structural formula is as described above) was used. As shown in entry 4-1 of Table 3, methyl methacrylate (MMA) was polymerized in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed. The results are shown in Table 3.
  • Monomer Methyl methacrylate (MMA) Monomer concentration: 8M (bulk), 4M (50% toluene solution) Alkyl halide to be dormant species (RI): 2-iodo-2-cyanopropyl (CP-I) Radical initiator (In): Not used.
  • Catalyst Tributylamine (TBA) Mn and PDI: Polystyrene (PSt) equivalent molecular weight and molecular weight distribution index obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • Example 5 [Polymerization of benzyl methacrylate (BzMA) using TEA] (Entry 5-1) Instead of TDAE, 40 mM triethylamine (TEA; chemical structure is as described above) was used. Further, benzyl methacrylate (BzMA) was used as a monomer. Then, as shown in entry 5-1 of Table 4, benzyl methacrylate (BzMA) was polymerized in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed. The results are shown in Table 4.
  • Monomer benzyl methacrylate (BzMA) Monomer concentration: 8M (bulk) Alkyl halide to be dormant species (RI): 2-iodo-2-cyanopropyl (CP-I) Radical initiator (In): Not used.
  • Catalyst Triethylamine (TEA) Mn and PDI: Polystyrene (PSt) equivalent molecular weight and molecular weight distribution index obtained by gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • Example 6 Polymerization of styrene (St)] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in Tables 6A and 6B.
  • the monomer concentration is 8M (bulk polymerization).
  • Mn and PDI Polystyrene (PSt) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Example 8 [Polymerization of n-butyl acrylate (BA)] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in the table below.
  • the monomer concentration is 8M for bulk polymerization and 4M for 50% solvent.
  • Mn and PDI Molecular weight and molecular weight distribution index determined by a multi-angle light scattering (MALLS) detector using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • MALLS multi-angle light scattering
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Example 9 [Polymerization of methyl methacrylate (MMA) using TDAE or DEME as catalyst] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in the table below. The monomer concentration is 8M for bulk polymerization, 6M for 25% solvent, and 4M for 50% solvent.
  • Dipropylene glycol monomethyl ether (MFDG) Mn and PDI Polymethylmethacrylate (PMMA) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • PMMA Polymethylmethacrylate
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Mn and PDI Molecular weight and molecular weight distribution index determined by a multi-angle light scattering (MALLS) detector using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • MALLS multi-angle light scattering
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • the molecular weight of the monomer is 475 Mn and PDI: molecular weight and molecular weight distribution index determined by a multi-angle light scattering (MALLS) detector using gel permeation chromatography (GPC) using dimethylformamide (DMF) as an eluent.
  • MALLS multi-angle light scattering
  • GPC gel permeation chromatography
  • DMF dimethylformamide
  • Example 12 [Polymerization of 2-ethylhexyl methacrylate (EHMA)] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in the table below.
  • the monomer concentration is 8M (bulk polymerization).
  • Mn and PDI Polymethylmethacrylate (PMMA) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Example 13 [Random copolymerization of 2-hydroxyethyl methacrylate (HEMA) and methyl methacrylate (MMA)] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in the table below. The random copolymer monomer concentration of MMA and HEMA is 8M (bulk polymerization).
  • Mn and PDI Polymethylmethacrylate (PMMA) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using dimethylformamide (DMF) as an eluent.
  • PMMA Polymethylmethacrylate
  • GPC gel permeation chromatography
  • DMF dimethylformamide
  • Example 14 [Polymerization of 2-hydroxyethyl methacrylate (HEMA)] Polymerization was carried out in the same manner as in Example 1 except that the reaction materials and reaction conditions were changed as shown in the following table. The results are shown in the table below. The monomer concentration is 4M (solution polymerization).
  • MFDG Dipropylene glycol monomethyl ether
  • PDI molecular weight and molecular weight distribution index determined by a multi-angle light scattering (MALLS) detector using gel permeation chromatography (GPC) using dimethylformamide (DMF) as an eluent.
  • MALLS multi-angle light scattering
  • GPC gel permeation chromatography
  • DMF dimethylformamide
  • Mn and PDI Molecular weight and molecular weight distribution index determined by a multi-angle light scattering (MALLS) detector using gel permeation chromatography (GPC) with tetrahydrofuran (THF) as an eluent.
  • MALLS multi-angle light scattering
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Mn and PDI Polymethylmethacrylate (PMMA) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • GPC gel permeation chromatography
  • THF tetrahydrofuran
  • Example 17 [Sequentially added block copolymer of methyl methacrylate (MMA) and benzyl methacrylate (BzMA)] As the first block, solution polymerization of MMA (4M) (toluene 50 vol%) was performed at 90 ° C.
  • PBzMA represents polybenzyl methacrylate.
  • the monomer concentration is 4M (solution polymerization) (first block).
  • the molar ratio of MMA, CP-I, TDME, and iodine (I 2 ) was 4000: 40: 20: 10.
  • the same amount of BzMA as the initial amount of MMA was added.
  • Mn and PDI Polymethylmethacrylate (PMMA) equivalent molecular weight and molecular weight distribution index using gel permeation chromatography (GPC) using tetrahydrofuran (THF) as an eluent.
  • Example 2 A polymerization experiment was conducted in the same manner as in Example 1 except that the following formulation was used.
  • Monomer Styrene, 8.0M (1g) Alkyl halide as dormant species: 1-phenylethyl bromide, 80 mM (0.016 g) (abbreviated as “PEB” in the table below)
  • Catalyst CuBr 5 mM (0.00071 g)
  • Ligand 4,4′-di- (5-nonyl) -2,2′-bipyridine 10 mM (0.0035 g) (Abbreviated as “dHbipy” in the following table)
  • the ligand is indispensable for dissolving CuBr (catalyst) in the monomer, and in the case of dHbipy, 2 equivalents are required for CuBr.
  • the catalyst concentration (CuBr complex concentration) in this experiment is 5 mM.
  • peroxide was not used. This is because, in the case of a copper complex catalyst, it was a technical common knowledge of those skilled in the art that no peroxide is used. The reason for this is that (1) in the case of a copper complex catalyst, a radical reaction is initiated without using a peroxide, and (2) when a peroxide is added to the copper complex catalyst, The deactivation reaction occurs and the molecular weight distribution becomes wider.
  • the non-patent document 1 also describes that a reaction raw material not containing a peroxide is used.
  • PEB 1-phenylethyl bromide dHbipy: A ligand for dissolving CuBr in a monomer (styrene).
  • the polymerization rate was considerably lower than that of MMA in Example 1.
  • Mn after the reaction was 1200 to 1400, which was extremely low, and high molecular weight polystyrene could not be obtained.
  • the value of Mw / Mn (PDI) is considerably larger than the value of the catalyst of the present invention in Example 1. Therefore, it is understood that the activity of the transition metal catalyst is significantly inferior to that of the catalyst of the present invention.
  • the catalyst of the present invention is significantly more active than the transition metal complex catalyst in the prior art.
  • the amount of catalyst used can be remarkably reduced, the reaction temperature can be lowered by 10 to 40 ° C., and it is not necessary to use a ligand.
  • the present inventors have invented a new type of living radical polymerization method (precise control radical polymerization) using an organic compound having redox ability as a catalyst. Its features include low catalyst toxicity, low usage, high solubility (no ligand required), mild reaction conditions, no coloration and no odor (no treatment after polymerization reaction), and conventional living radicals. Compared to polymerization, it is much more environmentally friendly and economical.
  • living radical polymerization can be applied to the production of various high-value-added materials.
  • thermoplastic elastomers autonomous materials, industrial products, medical materials, footwear, sports equipment, toys, electric wire covering materials, construction / civil engineering materials, resin modification, etc.
  • resists organic EL
  • adhesives polymers
  • alloys various filler additives, lubricants, surfactants, paints, inks, packaging materials, drugs (for example, pharmaceutical release materials), personal care products (cosmetics, hairdressing products, etc.), and market scale Is extremely large.
  • the living radical polymerization of the present invention can be widely used as an excellent process for producing new electronic materials, optical materials, separation materials, or biomaterials.
  • the present inventors discovered that an organic compound having an inexpensive redox ability acts as an excellent catalyst for living radical polymerization, and realized living radical polymerization at a much lower cost than the conventional technique.
  • the cost of the catalyst required to synthesize 1 kg of polymer is calculated based on the price described in the Aldrich catalog.
  • the cost of the catalyst is about several thousand yen.
  • a germanium catalyst is used, it costs about 1,000 yen.
  • it for example, in the case of a trialkylamine catalyst, it costs only several tens to several yen. That is, according to the present invention, the cost can be reduced by orders of magnitude as compared with the conventional catalyst.
  • the prices of various general-purpose monomers are generally about 100 to several hundred yen per kg
  • the conventional technology required a catalyst cost about 10 times the cost of the monomer
  • the catalyst cost is required only about one-tenth or one-hundredth of the cost of the monomer, and the cost reduction effect is dramatic.
  • germanium catalysts such as low toxicity (or non-toxicity), high solubility (no need for ligands), mild reaction conditions, no coloration and no odor (no need for treatment after polymerization reaction), All organic compounds used as catalysts of the invention are also retained.
  • the polymerization can be controlled with a catalyst amount that is further lower (for example, 1/3) than the small catalyst amount achieved in the germanium catalyst.
  • the germanium catalyst (iodide) is slightly susceptible to moisture and light, but the organic compound used as the catalyst of the present invention is extremely resistant to moisture and light, further facilitating the polymerization operation.
  • the present invention has both high environmental safety not found in the conventional method, excellent economic efficiency far exceeding that of the conventional method, and high simplicity, and is extremely practical.
  • the organic compound used as the catalyst of the present invention is expected to be applied to various functional monomers having a functional group that are particularly excellent in functional group resistance and have many practical uses.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerization Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyethers (AREA)

Abstract

 安価で、活性が高く、環境に優しく、かつ、ラジカル開始剤を必要としないリビングラジカル重合触媒を提供する。 酸化還元能力を有する有機化合物がリビングラジカル重合方法のための触媒として使用される。この触媒を用いれば、有機化酸化物やジアゾ化合物などのラジカル開始剤を使用しなくても、ラジカル反応性不飽和結合を有するモノマーをラジカル重合反応させて、分子量分布の狭いポリマーを得ることができ、リビングラジカル重合のコストを劇的に低減することができ、かつ、ラジカル開始剤の使用による悪影響(収率の低下など)を防ぐことが可能となる。本発明は、触媒の低毒性、低使用量、高溶解性、温和な反応条件、無着色・無臭(成形品の後処理が不要)などの利点を有し、従来のリビングラジカル重合方法に比べて格段に環境に優しく経済性に優れる。

Description

リビングラジカル重合触媒および重合方法
 本発明は、リビングラジカル重合に用いられる高活性触媒およびそれを用いた重合方法に関する。より具体的には、本発明は、酸化還元能力を有する有機化合物をリビングラジカル重合の触媒として用いる。本発明の触媒は、特に、ラジカル開始剤を用いないリビングラジカル重合に有用である。
 従来から、ビニルモノマーを重合してビニルポリマーを得る方法として、ラジカル重合法が周知であったが、ラジカル重合法は一般に、得られるビニルポリマーの分子量を制御することが困難であるという欠点があった。また、得られるビニルポリマーが、様々な分子量を有する化合物の混合物になってしまい、分子量分布の狭いビニルポリマーを得ることが困難であるという欠点があった。具体的には、反応を制御しても、重量分子平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)として、2~3程度にまでしか減少させることができなかった。
 このような欠点を解消する方法として、1990年頃から、リビングラジカル重合法が開発されている。すなわち、リビングラジカル重合法によれば、分子量を制御することが可能であり、かつ分子量分布の狭いポリマーを得ることが可能である。具体的には、Mw/Mnが2以下のものを容易に得ることが可能であることから、ナノテクノロジーなどの最先端分野に用いられるポリマーを製造する方法として脚光を浴びている。
 リビングラジカル重合法に現在用いられる触媒としては、遷移金属錯体系触媒が知られている。
 遷移金属錯体系触媒としては、例えば、Cu、Ni、Re、Rh、Ruなどを中心金属とする化合物に配位子を配位させた錯体が使用されている。このような触媒は、例えば、以下の文献に記載されている。
 特許文献1(特開2002-249505号公報)は、Cu、Ru、Fe、Niなどを中心金属とする錯体を触媒として使用することを開示する。
 なお、特許文献1は、その請求項1において、重合開始剤として、有機ハロゲン化物を用いると記載している。この記載は、ハロゲン化炭化水素がリビングラジカル重合の触媒として作用することを意味するものではない。特許文献1の発明においては、遷移金属を中心金属とする金属錯体が、リビングラジカル重合触媒として使用されている。特許文献1の発明においては、有機ハロゲン化物が、本願明細書中で後述するドーマント種として使用されている。
 特許文献2(特開平11-322822号公報)は、ヒドリドレニウム錯体を触媒として使用することを開示する。
 なお、特許文献2は、その請求項1において、「ヒドリドレニウム錯体およびハロゲン化炭化水素の組み合わせからなるラジカルリビング重合用触媒」と記載している。この記載は、ハロゲン化炭化水素がリビングラジカル重合の触媒として作用することを意味するものではない。特許文献2の発明においては、ヒドリドレニウム錯体が、リビングラジカル重合触媒として使用されている。特許文献2の発明においては、ハロゲン化炭化水素が、本願明細書中で後述するドーマント種として使用されている。その触媒とドーマント種との組み合わせを特許文献2では触媒と記載しているものであって、ハロゲン化炭化水素がリビングラジカル重合の触媒となることを記載しているのではない。
 非特許文献1(Journal of The American Chemical
 Society 119,674-680(1997))は、4,4’-ジ-(5-ノニル)-2,2’-ビピリジンを臭化銅に配位させた化合物を触媒として使用することを開示する。
 なお、非特許文献1は、スチレンの重合の際に1-フェニルエチルブロミドを用いたことを記載している。すなわち、特許文献2の発明においては、臭化銅錯体が、リビングラジカル重合触媒として使用され、1-フェニルエチルブロミドが、本願明細書中で後述するドーマント種として使用されている。
 しかしながら、このような遷移金属錯体触媒を用いる場合には、使用量として多量の遷移金属錯体触媒が必要であり、反応後に使用された大量の触媒を製品から完全に除去することが容易でないという欠点があった。また不要となった触媒を廃棄する際に環境上の問題が発生し得るという欠点があった。さらに、遷移金属には毒性の高いものが多く、製品中に残存する触媒の毒性が環境上問題となる場合があり、遷移金属を食品包装材、生体・医療材料などに使用することは困難であった。また、反応後に製品から除去された触媒の毒性が環境上問題となる場合もあった。さらに、導電性の遷移金属がポリマーに残存するとそのポリマーに導電性が付与されてしまって、レジストや有機EL、燃料電池、太陽電池、リチウムイオン電池などの電子材料に使用することが困難であるという問題もあった。また、錯体を形成させないと反応液に溶解しないため、配位子となる化合物を用いなければならず、このために、コストが高くなり、かつ、使用される触媒の総重量がさらに多くなってしまうという問題もあった。さらに、配位子は、通常、高価であり、あるいは煩雑な合成を要するという問題もあった。また、重合反応に高温(例えば、110℃以上)が必要であるという欠点があった(例えば、上記非特許文献1では、110℃において重合を行っている)。
 なお、触媒を用いる必要がないリビングラジカル重合方法も公知である。例えば、ニトロキシル系、およびジチオエステル系の方法が知られている。しかし、これらの方法においては、特殊な保護基をポリマー成長鎖に導入する必要があり、この保護基が非常に高価であるという欠点がある。また、重合反応に高温(例えば、110℃以上)が必要であるという欠点がある。さらに、生成するポリマーが好ましくない性能を有しやすいという欠点がある。すなわち、生成するポリマーがその高分子本来の色と異なる色に着色されたものになりやすく、また、生成するポリマーが臭気を有するものになりやすいという欠点がある。
 他方、非特許文献2(Polymer Preprints 2005, 46(2), 245-246)および特許文献3(特開2007-92014号公報)は、Ge、Snなどを中心金属とする化合物を触媒として使用することを開示する。特許文献4(国際公開WO2008/139980号公報)は、窒素またはリンを中心金属とする化合物を触媒として使用することを開示する。
 非特許文献1に記載されていた銅錯体触媒では、ポリマー1kgを重合する際に必要とされる触媒の費用がおよそ数千円になっていた。これに対して、ゲルマニウム触媒においては、約千円程度にまで費用が低減されるので、非特許文献2の発明は、触媒の費用を顕著に低減させるものであった。しかしながら、リビングラジカル重合を汎用樹脂製品等に応用するためには、さらなる低コストの触媒が求められていた。
 一般に、遷移金属、あるいは遷移金属元素の化合物が、各種化学反応の触媒として好ましいことが知られている。例えば、J.D.LEE 「無機化学」(東京化学同人、1982年4月15日第1版発行)311頁は、「多くの遷移金属とその化合物は触媒作用をもつ。…ある場合には、遷移金属はいろいろな原子価をとり、不安定な中間体化合物をつくることがあり、また他の場合には、遷移金属は良好な反応面を提供しこれらが触媒作用として働くのである」と記載している。すなわち、不安定な様々な中間体化合物を形成できるなどの遷移金属に特有の性質が、触媒の機能には欠かせないことが当業者に広く理解されていたのである。
 そして上述した非特許文献2に記載されたGe、Sn、Sbは遷移金属ではないが、周期表の第4周期および第5周期に位置する元素であって、大きい原子番号を有し、多数の電子および多数の電子軌道を有する。従って、Ge、Sn、Sbにおいては、これらの原子が多数の電子および多数の電子軌道を有することが、触媒として有利に作用していることが推測される。
 このような従来技術の各種触媒に関する技術常識によれば、周期表の第2周期および第3周期に位置する典型元素は少数の電子および電子軌道しか有さず、触媒化合物に用いることは不利であり、これらの典型元素を用いた化合物に触媒作用は期待できないと考えられていた。特に、有機化合物のように、炭素原子を中心とする化合物に触媒作用は期待できないと考えられていた。
 また、非特許文献3にはリン化合物を用いた触媒が開示されているが、酸化還元能力を有する有機化合物を用いることについての記載はない。
 また、従来のリビングラジカル重合においては、遷移金属錯体を触媒として用いる場合、およびニトロキシルを保護基として用いる場合を除いて、過酸化物やジアゾ化合物などのラジカル開始剤が使用されていたために、例えば、以下の欠点があった。
 (1)ラジカル開始剤から生成するラジカルがモノマーと反応して、リビングラジカル重合のメカニズムに基づかない反応が行われ、その結果として、所望のポリマーよりも分子量の低いポリマーが生成物中に混入し、分子量分布が広くなってしまう。
 (2)ブロック共重合を行う場合に、生成物中に単独重合体が混入してしまう。例えば、モノマーAを重合したセグメントにモノマーBを重合したセグメントを連結した構造のブロック共重合体を合成する際に、ラジカル開始剤とモノマーBとの反応によるホモポリマーが生成してしまい、結果としてブロック共重合体の純度が低下してしまう。
 (3)リビングラジカル重合においては、例えば、星形ポリマー、くし形ポリマーと呼ばれる分岐ポリマーを合成することが可能である。このような分岐ポリマーの重合を行う場合に、ラジカル開始剤から生成するラジカルがモノマーと反応して、リビングラジカル重合のメカニズムに基づかない反応が行われると、生成物中に直鎖重合体が混入してしまう。
 (4)表面重合を行う場合に、表面に結合していない重合体が生成してしまう。リビングラジカル重合においては、固体の表面を開始点として重合を行って固体表面にポリマーが結合した生成物を得ることが可能である。このような場合に、ラジカル開始剤から生成するラジカルがモノマーと反応して、リビングラジカル重合のメカニズムに基づかない反応が行われると、表面に結合していない重合体が生成してしまい、収率が低下する。
 従って、ラジカル開始剤を使用せずにリビングラジカル重合を行う方法が望まれている。ここで、上述した遷移金属を中心元素とする触媒を用いる場合には、ラジカル開始剤を使用せずにリビングラジカル重合を行うことが可能であるが、遷移金属を中心元素とする触媒については、上述した欠点があるので、産業的に利用するのは困難であった。非特許文献4は、保護基をニトロキシルとして用いる方法を記載するが、保護基をニトロキシルとして用いた場合も、保護基が非常に高価であるなどの上述した欠点があるので、やはり、産業的に利用するのは困難である。
特開2002-249505号公報 特開平11-322822号公報 特開2007-92014号公報 国際公開WO2008/139980号公報
Journal of The American Chemical Society 119,674-680(1997) Polymer Preprints 2005, 46(2), 245-246, 「Germanium- and Tin-Catalyzed Living Radical Polymerizations of Styrene」、American Chemical Society, Division of Polymer Chemistry Polymer Preprints 2007, 56(2), 2452「ゲルマニウムおよびリン化合物を用いた新しいリビングラジカル重合」高分子学会、第56回高分子討論会 Macromolecules 26,2987-2988(1993)
 本発明は、上記問題点の解決を意図するものであり、リビングラジカル重合のための高い活性を有する触媒およびこの触媒を用いた重合法を提供することを目的とする。
 本発明者らは、上記課題を解決するために鋭意研究を重ねた結果として、本発明を完成させた。すなわち、本発明によれば、以下の触媒および重合方法が提供され、そのことにより上記課題が解決される。
 (1) リビングラジカル重合法のための触媒であって、
該触媒は、酸化還元能力を有する有機化合物であって、該有機化合物の還元状態と酸化状態との間の可逆的酸化還元反応により、リビングラジカル重合の触媒反応を行う、
触媒。
 (2) 上記項1に記載の触媒であって、前記可逆的酸化還元反応の際に酸化または還元される中心元素が、窒素、炭素、リン、硫黄、または酸素から選択され、前記酸化状態において該中心元素が正の電荷を有する、
触媒。
 (3) 上記項2に記載の触媒であって、前記中心元素が窒素である、触媒。
 (4) 上記項3に記載の触媒であって、前記窒素に3つの置換基が結合している、触媒。
 (5) 上記項1~4のいずれか1項に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素にハロゲン原子または水素原子のいずれも結合していない、触媒。
 (6) 上記項5に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素には、置換炭化水素基または非置換炭化水素基が結合しており、ここで、該置換炭化水素基においては、炭化水素基中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されているか、または炭化水素基中の炭素骨格中に1つ以上のエーテル結合またはエステル結合が挿入されており、
 ここで、該有機化合物中に2つ以上の中心元素が存在する場合には、それぞれの中心元素が、該置換炭化水素基または非置換炭化水素基によって連結されている、
触媒。
 (7) 上記項6に記載の触媒であって、前記置換炭化水素基の炭素数が1~10であり、非置換炭化水素基の炭素数が1~10である、触媒。
 (8) 上記項6または7に記載の触媒であって、前記中心元素に置換もしくは非置換のアルキル基、置換もしくは非置換のアルキレン基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアルケニレン基、置換もしくは非置換のアリール基、または置換もしくは非置換のアリーレン基が結合しており、
 ここで、該中心元素に置換アルキル基が結合している場合、該置換アルキル基においては、アルキル中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
 該中心元素に置換アルキレン基が結合している場合、該置換アルキレン基においては、アルキレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
 該中心元素に置換アルケニル基が結合している場合、該置換アルケニル基においては、アルケニル中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
 該中心元素に置換アルケニレン基が結合している場合、該置換アルケニレン基においては、アルケニレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
 該中心元素に置換アリール基が結合している場合、該置換アリール基においては、アリール中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
 該中心元素に置換アリーレン基が結合している場合、該置換アリーレン基においては、アリーレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されている、
触媒。
 (9) 上記項6または7に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素には、非置換炭化水素基が結合しており、
 ここで、該有機化合物中に2つ以上の中心元素が存在する場合には、それぞれの中心元素が、該非置換炭化水素基によって連結されている、
触媒。
 (10) 上記項9に記載の触媒であって、前記還元状態の有機化合物中の中心元素には、前記非置換炭化水素基のみが結合している、触媒。
 (11) 上記項6に記載の触媒であって、ここで、前記有機化合物が1つまたは2つ以上の中心元素を有し、該中心元素が窒素であり、該中心元素である窒素原子に、アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基、またはアルキニレン基から選択される3つの置換基が結合しており、
 ただし、該有機化合物が1つの中心元素を有する場合、該中心元素である窒素原子に、アルキル基、アルケニル基、またはアルキニル基から選択される3つの置換基が結合しており、
 そして、該有機化合物が2つ以上の中心元素を有する場合、該2つ以上の中心元素のそれぞれは、アルキレン基、アルケニレン基、またはアルキニレン基により連結されており、
 ここで、該アルキル基およびアルキレン基の炭素数は1~10であり、該アルケニル基、アルケニレン基、アルキニル基およびアルキニレン基の炭素数は2~10である、
触媒。
 (12) 以下の群の有機化合物から選択される、上記項1~10のいずれか1項に記載の触媒:
 トリエチルアミン;
 トリブチルアミン;
 テトラキスジメチルアミノエテン;
 1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン
 トリブチルホスフィン;
 トリフェニルホスフィン;
 ビス(エチレンジチオ)テトラチアフルバレン(BTTF)
 エチレンジアミン;
 ジメチルエチレンジアミン;
 テトラメチルエチレンジアミン;
 テトラメチルジアミノメタン;
 トリス(2-アミノエチル)アミン;
 トリス(2-(メチルアミノ)エチル)アミン;
 1,2-ビス(ジフェニルホスフィノ)メタン;および
 ヘマトポルフィリン。
 (13) リビングラジカル重合を行う工程を包含する重合方法であって、該リビングラジカル重合工程が、上記項1~12のいずれか1項に記載の触媒の存在下で行われる、方法。
 (14) 上記項13に記載の方法であって、前記リビングラジカル重合を行う際の反応混合物にラジカル開始剤が添加されない、方法。
 (15) 上記項13または14に記載の方法であって、前記重合を開始する際に、前記触媒として、前記還元状態の有機化合物と、該有機化合物にハロゲンを提供できるハロゲン分子またはハロゲン化無機化合物との混合物が使用される、方法。
 (16) 上記項13または14に記載の方法であって、前記重合を開始する際に、前記触媒として、前記還元状態の有機化合物と、ハロゲン分子との混合物が使用される、方法。
 (17) 上記項13または14に記載の方法であって、前記重合を開始する際に、前記触媒として、前記還元状態の有機化合物と前記酸化状態の有機化合物との混合物が使用される、方法。
 (18) 上記項13~17のいずれか1項に記載の方法であって、前記リビングラジカル重合反応において炭素-ハロゲン結合を有する有機ハロゲン化物が使用され、該有機ハロゲン化物から与えられるハロゲンが成長鎖の保護基として使用される、方法。
 (19) 上記項18に記載の方法であって、前記有機ハロゲン化物中のハロゲンが結合している中心元素の炭素原子に、2つのメチル基が結合しているか、または1つのメチル基および1つの水素が結合している、方法。
 (20) 上記項18または19に記載の方法であって、前記有機ハロゲン化物中のハロゲンがヨウ素または臭素である、方法。
 (21) 上記項18または19に記載の方法であって、前記有機ハロゲン化物中のハロゲンがヨウ素である、方法。
 (22)
 ポリマーの製造方法であって、上記項1~10のいずれかに記載の触媒の存在下にラジカル重合性モノマーを重合させる工程を包含する、製造方法。
 なお、好ましい実施形態においては、前記炭素-ハロゲン結合を有する有機ハロゲン化物が、以下の一般式(II)を有する化合物であり:
 CR   (II)
 ここで、RおよびRは、独立して、ハロゲン、水素またはアルキルであり、Rはハロゲン、水素、アルキル、アリール、ヘテロアリールまたはシアノであり、Xはハロゲンであり、
そして前記ラジカル反応性不飽和結合を有するモノマーが以下から選択される、方法:
(メタ)アクリル酸エステルモノマー、芳香族不飽和モノマー(スチレン系モノマー)、カルボニル基含有不飽和モノマー、(メタ)アクリロニトリル、(メタ)アクリルアミド系モノマー、ジエン系モノマー、ビニルエステルモノマー、N-ビニルモノマー、(メタ)アクリル酸モノマー、ハロゲン化ビニルモノマー、および1-オレフィンモノマー。
 本発明によれば、高い活性を有するリビングラジカル重合のための触媒およびそれを用いた重合方法が提供される。
 この触媒は、リビングラジカル重合を行う際に、ラジカル開始剤を使用する必要がないという顕著な利点を有する。
 また、この触媒は、低毒性であるという利点を有する。この触媒は、反応液に高溶解性であるという利点を有し、そのため、配位子を添加して錯体とする必要もない。この触媒は、高い活性を有するため、重合反応に高温(例えば、110℃以上)を必要とすることもなく、そして触媒の使用量を低減することができる。また、ポリマー成長鎖を反応中に保護するために高価な特殊な保護基を必要とすることもない。さらに、本発明の方法により得られたポリマーから得られる成形品は、成形時に着色したり臭いがついたりすることが実質的にないという利点を有する。
 さらに、本発明は、下記の長所を有する。
 (1)経済性
 安価な触媒が提供される。
 (2)人体および環境への安全性
 多くの有機化合物は無毒であり、人体に摂取されても害がない。従って、安全性の観点に基づいて生成ポリマーから除去する必要性がない。何らかの理由により、除去する場合であっても、水への溶解性が高いなどの特長により、除去作業が極めて容易である。
 (3)リサイクル性
 有機化合物を担持したビーズは各種市販されている。これらを触媒として用いることも可能である。これらのビーズは回収可能であり、さらに、何度も再使用することができる。
 (4)天然物の有効利用
 多様な天然の有機化合物を触媒として利用することができる。
 (5)モノマー汎用性
 様々な種類のモノマーにおいてリビングラジカル重合を行うことが可能となる。特に、反応性の高い官能基を有するモノマーの重合の際に、有機化合物は、そのモノマーの官能基の影響を受け難いので有利である。同様に、反応性の高い官能基を有する溶媒を用いる際にも有利である。
 このように、本発明によれば、従来法に比べて格段に環境に優しく経済性に優れるリビングラジカル重合法が実現された。
図1aは、CP-I(80mM)とTEA(120mMまたは40mM)、およびI(1mM)を含むメタクリル酸メチル(MMA)の重合を80℃で行った結果のln([M]/[M])対t(時間)のプロットを示す。白丸は、TEA40mMの値を示す。黒丸は、TEA120mMの値を示す。 図1bは、CP-I(80mM)とTEA(120mMまたは40mM)、およびI(1mM)を含むメタクリル酸メチル(MMA)の重合を80℃で行った結果の、MおよびM/M対Conversion(重合率)のプロットを示す。白丸は、TEA40mMの値を示す。黒丸は、TEA120mMの値を示す。Theoretical lineと記載された理論値と整合する結果が得られている。MはいずれのTEA濃度においても、理論値とよく一致した。 図2aは、CP-I(80mM)とTEA(40mMまたは20mM)、およびI(1mM)を含むメタクリル酸メチル(MMA)の重合を90℃で行った結果のln([M]/[M])対t(時間)のプロットを示す。白丸は、TEA20mMの値を示す。黒丸は、TEA40mMの値を示す。 図2bは、CP-I(80mM)とTEA(40mMまたは20mM)、およびI(1mM)を含むメタクリル酸メチル(MMA)の重合を90℃で行った結果の、MおよびM/M対Conversion(重合率)のプロットを示す。白丸は、TEA20mMの値を示す。黒丸は、TEA40mMの値を示す。Theoretical lineと記載された理論値と整合する結果が得られている。MはいずれのTEA濃度においても、理論値とよく一致した。 図3aは、CP-I(80mM)とTBA(10mMまたは20mM)、およびI(5mM)を含むメタクリル酸メチル(MMA)の重合を90℃で行った結果のln([M]/[M])対t(時間)のプロットを示す。白丸は、TBA10mMの値を示す。黒丸は、TBA20mMの値を示す。 図3bは、CP-I(80mM)とTBA(10mMまたは20mM)、およびI(5mM)を含むメタクリル酸メチル(MMA)の重合を90℃で行った結果の、MおよびM/M対Conversion(重合率)のプロットを示す。白丸は、TBA10mMの値を示す。黒丸は、TEA20mMの値を示す。Theoretical lineと記載された理論値と整合する結果が得られている。MはいずれのTEA濃度においても、理論値とよく一致した。 本発明の概念を示す模式図であり、本発明のリビングラジカル重合の鍵となる反応を示す。この図においては、触媒となる有機化合物がAで示され、その有機化合物にヨウ素が結合した化合物がAと黒丸との結合した図として示されている。この触媒は、ラジカル開始剤を必要としないという特徴を有し、また、従来技術の遷移金属触媒等に比べて桁違いに安価であり、超高活性であるため極めて少ない触媒量で使用することが可能であり、触媒を製造する際に精製が不要であるかあるいは精製が必要な場合であってもその精製は容易であり、低毒性あるいは無毒であるために人体および環境に対する安全性が高いという特徴を有する。
 以下、本発明を詳細に説明する。
 (一般的用語)
 以下に本明細書において特に使用される用語を説明する。
 本明細書において「炭化水素」とは、炭素と水素により構成される分子または基をいう。鎖状の炭化水素は、直鎖または分枝鎖であり得る。環状の炭化水素は、環状構造のみから構成されてもよく、環状構造にさらに鎖状炭化水素が結合した構造であってもよい。炭化水素の炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。さらに好ましくは、1~10である。
 炭化水素分子または炭化水素基が不飽和である場合、不飽和結合は、二重結合であってもよく、三重結合であってもよい。当該炭化水素分子または炭化水素基は、1つのみの不飽和基を有していてもよく、2つ以上の不飽和基を有していてもよい。
 炭化水素の具体例としては、後述するアルキル、アルケニル、アルキニル、アルコキシ、アリールなどを含む。
 本明細書において「アルキル」とは、鎖状または環状の脂肪族炭化水素(アルカン)から水素原子が一つ失われて生ずる1価の基をいう。鎖状の場合は、一般にC2k+1-で表される(ここで、kは正の整数である)。鎖状のアルキルは、直鎖または分枝鎖であり得る。環状のアルキルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状アルキルが結合した構造であってもよい。アルキルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。本明細書において「アルキレン」とは、アルキルから水素原子がさらに一つ失われて生ずる2価の基をいう。
 本明細書において「低級アルキル」とは、炭素数の比較的少ないアルキル基を意味する。好ましくは、C1~10アルキルであり、より好ましくは、C1~5アルキルであり、さらに好ましくは、C1~3アルキルである。具体例としては、例えば、メチル、エチル、プロピル、イソプロピルなどである。本明細書において「低級アルキレン」とは、低級アルキルから水素原子がさらに一つ失われて生ずる2価の基をいう。
 本明細書において「アルケニル」とは、二重結合を有する鎖状または環状の脂肪族炭化水素(アルケン)から水素原子が一つ失われて生ずる1価の基をいう。二重結合を1つ有する鎖状アルケンの場合は、一般にC2k-1-で表される(ここで、kは正の整数である)。二重結合の数は1つであってもよく、2つ以上であってもよい。二重結合の数に上限は特にないが、10以下であってもよく、あるいは5以下であってもよい。二重結合と単結合とが交互に繰り返される構造が好ましい。鎖状のアルケニルは、直鎖または分枝鎖であり得る。環状のアルケニルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状構造が結合した構造であってもよい。また、二重結合は、環状構造部分に存在してもよく、鎖状構造部分に存在してもよい。アルケニルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。本明細書において「アルケニレン」とは、アルケニルから水素原子がさらに一つ失われて生ずる2価の基をいう。
 アルケニルは、比較的炭素数の少ないもの、すなわち低級アルケニルであってもよい。
この場合、炭素数は、好ましくは、C2~10であり、より好ましくは、C2~5であり、さらに好ましくは、C2~3である。アルケニルの具体例としては、例えば、ビニルなどがある。
 好ましい実施形態において、アルケニルは式:-CR=CRで示される。R、R、Rは水素でもよく、アルキル基でもよく、その他の置換基(例えば、アルケニル、アルキルカルボキシル、ハロアルキル、アルキルカルボニル、アミノ基、シアノ基、アルコキシ、アリール、ヘテロアリールまたはアルキル置換アリール)であっても良い。R、R、Rがすべて水素の場合、この基はビニル基である。
 本明細書において「アルキニル」とは、三重結合を有する鎖状または環状の脂肪族炭化水素(アルキン)から水素原子が一つ失われて生ずる1価の基をいう。三重結合を1つ有する鎖状アルキンの場合は、一般にC2k-3-で表される(ここで、kは正の整数
である)。三重結合の数は1つであってもよく、2つ以上であってもよい。三重結合の数に上限は特にないが、10以下であってもよく、あるいは5以下であってもよい。三重結合と単結合とが交互に繰り返される構造が好ましい。鎖状のアルキニルは、直鎖または分枝鎖であり得る。環状のアルキニルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状構造が結合した構造であってもよい。また、三重結合は、環状構造部分に存在してもよく、鎖状構造部分に存在してもよい。アルキニルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。本明細書において「アルキニレン」とは、アルキニルから水素原子がさらに一つ失われて生ずる2価の基をいう。
 アルキニルは、比較的炭素数の少ないもの、すなわち低級アルキニルであってもよい。この場合、炭素数は、好ましくは、C2~10であり、より好ましくは、C2~5であり、さらに好ましくは、C2~3である。
 好ましい実施形態において、アルキニルは式:-C≡CR10で示される。R10は水素でもよく、アルキル基でもよく、その他の置換基(例えば、アルケニル、アルキルカルボキシル、ハロアルキル、アルキルカルボニル、アミノ基、シアノ基、アルコキシ、アリール、ヘテロアリール、アルキル置換アリールまたはアルコキシ置換ヘテロアリール)であっても良い。
 本明細書において「アルコキシ」とは、上記アルキル基に酸素原子が結合した基をいう。すなわち、上記アルキル基をR-と表した場合にRO-で表される基をいう。鎖状のアルコキシは、直鎖または分枝鎖であり得る。環状のアルコキシは、環状構造のみから構成されてもよく、環状構造にさらに鎖状アルキルが結合した構造であってもよい。アルコキシの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。
 本明細書において「低級アルコキシ」とは、炭素数の比較的少ないアルコキシ基を意味する。好ましくは、C1~10アルコキシであり、より好ましくは、C1~5アルコキシであり、さらに好ましくは、C1~3アルコキシである。具体例としては、例えば、メトキシ、エトキシ、プトキシ、イソプロポキシなどである。
 本明細書において「アルキルカルボキシル」とは、上記アルキル基にカルボキシル基が結合した基をいう。すなわち、上記アルキル基をR-と表した場合にRCOO-で表される基をいう。鎖状のアルキルカルボキシルは、直鎖または分枝鎖であり得る。環状のアルキルカルボキシルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状アルキルが結合した構造であってもよい。アルキルカルボキシルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。
 本明細書において「低級アルキルカルボキシル」とは、炭素数の比較的少ないアルキルカルボキシル基を意味する。好ましくは、C1~10であり、より好ましくは、C1~5であり、さらに好ましくは、C1~3である。
 本明細書において「アルキルカルボニル」とは、上記アルキル基にカルボニル基が結合した基をいう。すなわち、上記アルキル基をR-と表した場合にRCO-で表される基をいう。鎖状のアルキルカルボニルは、直鎖または分枝鎖であり得る。環状のアルキルカルボニルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状アルキルが結合した構造であってもよい。アルキルカルボニルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。
 本明細書において「低級アルキルカルボニル」とは、炭素数の比較的少ないアルキルカルボニル基を意味する。好ましくは、C1~10であり、より好ましくは、C1~5であり、さらに好ましくは、C1~3である。
 本明細書において「ハロアルキル」とは、上記アルキル基の水素がハロゲンで置換された基をいう。鎖状のハロアルキルは、直鎖または分枝鎖であり得る。環状のハロアルキルは、環状構造のみから構成されてもよく、環状構造にさらに鎖状アルキルが結合した構造であってもよい。ハロアルキルの炭素数は、任意の自然数であり得る。好ましくは1~30であり、より好ましくは1~20である。ハロアルキルにおいては、そのすべての水素がハロゲンに置換されていてもよく、一部の水素のみが置換されていてもよい。
 本明細書において「低級ハロアルキル」とは、炭素数の比較的少ないハロアルキル基を意味する。好ましくは、C1~10であり、より好ましくは、C1~5であり、さらに好ましくは、C1~3である。好ましい低級ハロアルキル基の具体例としては、トリフルオロメチル基などが挙げられる。
 本明細書において「置換アルキル」とは、アルキル基の水素が置換基に置換された基を意味する。このような置換基としては、例えば、アリール、ヘテロアリールまたはシアノなどが挙げられる。
 本明細書において「ハロゲン化置換アルキル」とは、アルキル基の水素がハロゲンに置換され、かつアルキル基の別の水素が別の置換基に置換された基を意味する。当該別の置換基としては、例えば、アリール、ヘテロアリールまたはシアノなどが挙げられる。
 本明細書において「アリール」とは、芳香族炭化水素の環に結合する水素原子が1個離脱して生ずる基をいう。アリールを構成する芳香族炭化水素の環の数は、1つであってもよく、2つ以上であっても良い。好ましくは、1~3である。分子内芳香族炭化水素の環が複数存在する場合、それらの複数の環は縮合していてもよく、縮合していなくてもよい。具体的には、例えば、フェニル、ナフチル、アントラセニル、ビフェニルなどである。
 本明細書において「ヘテロアリール」とは、アリールの芳香環の環骨格を構成する元素に、炭素以外のヘテロ元素を含む基をいう。ヘテロ原子の例としては、具体的には、酸素、窒素、イオウなど挙げられる。芳香環中のヘテロ原子の数は特に限定されず、例えば、1つのみのヘテロ原子を含んでもよく、2つまたは3つあるいは4つ以上のヘテロ原子が含まれてもよい。
 本明細書において「置換アリール」とは、アリールに置換基が結合して生ずる基をいう。本明細書において「置換ヘテロアリール」とは、ヘテロアリールに置換基が結合して生ずる基をいう。
 本明細書において「ハロゲン」とは、周期表7B族に属するフッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)などの元素の1価の基をいう。好ましくは、臭素またはヨウ素であり、より好ましくはヨウ素である。
 本明細書において「リビングラジカル重合」とは、ラジカル重合反応において連鎖移動反応および停止反応が実質的に起こらず、単量体が反応しつくした後も連鎖成長末端が活性を保持する重合反応をいう。この重合反応では、重合反応終了後でも生成重合体の末端に重合活性を保持しており、モノマーを加えると再び重合反応を開始させることができる。
 リビングラジカル重合の特徴としては、モノマーと重合開始剤の濃度比を調節することにより任意の平均分子量をもつ重合体の合成ができること、また、生成する重合体の分子量分布が極めて狭いこと、ブロック共重合体へ応用できること、などが挙げられる。なお、リビングラジカル重合は「LRP」と略される場合もある。
 本明細書において「中心元素」とは、触媒となる化合物を構成する原子のうち、酸化還元反応に関与して主に触媒作用を担う原子を意味する。
 以下、本発明について詳細に説明する。
 (触媒)
 本発明においては、リビングラジカル重合法のための触媒として、酸化還元能力を有する有機化合物を用いる。
 本明細書において触媒化合物について「有機化合物」という場合には、その化合物中の触媒として作用する中心元素が金属元素ではないものをいう。触媒として使用される有機化合物は、好ましくは、炭素原子を中心とする化合物であり、より好ましくは、複数の炭素原子が化合物の骨格を形成しているものをいう。1つの好ましい実施形態においては、触媒として使用される有機化合物は、窒素、炭素、リン、硫黄、または酸素から選択される中心元素を有する。より好ましい実施形態においては、触媒として使用される有機化合物においては、複数の炭素原子から構成される骨格に中心元素が結合している。
 酸化還元能力を有する有機化合物は、還元状態および酸化状態の2つの状態となることが可能である。該還元状態の有機化合物は、酸化されることにより該酸化状態の有機化合物となることが可能である。該酸化状態の有機化合物は、還元されることにより該還元状態の有機化合物となることが可能である。該有機化合物の該還元状態と該酸化状態との間の可逆的酸化還元反応により、リビングラジカル重合が触媒される。
 ここで、この有機化合物中において還元状態から酸化状態へ酸化される際に酸化され、かつ酸化状態から還元状態へ還元される際に還元される中心元素は、任意の元素であり得るが、好ましくは、窒素、リン、硫黄、または酸素から選択される。より好ましくは、窒素である。具体的な化合物としては、例えば、トリアルキルアミンなどが挙げられる。
 例えば、中心元素としてリンを用いた化合物は、特にアクリレートおよびスチレンなどの重合に好ましく使用可能である。
 本発明の触媒は、好ましくは、可逆的酸化還元反応において酸化または還元される中心元素にハロゲン原子が結合していない。本発明の触媒は、より好ましくは、可逆的酸化還元反応において酸化または還元される中心元素に臭素またはヨウ素が結合していない。さらに好ましくは、本発明の触媒は、可逆的酸化還元反応において酸化または還元される中心元素にヨウ素が結合していない。
 さらに、本発明の触媒は、好ましくは、可逆的酸化還元反応において酸化または還元される中心元素に水素原子が結合していない。
 好ましい実施態様では、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素に飽和脂肪族、不飽和脂肪族もしくは芳香族の炭化水素基が結合している。
 触媒の有機化合物は、1つのみの中心元素を有してもよく、2つ以上の中心元素を有していてもよい。好ましくは、1~10個の中心元素を有する。より好ましくは、1~6個の中心元素を有する。特に好ましくは、1~4個の中心元素を有する。
 1つのみの中心元素が存在する場合、好ましい触媒化合物は、その1つの中心元素に炭化水素が結合している化合物である。好ましい化合物の具体例としては、例えば、一般式ARで示される化合物であり、ここで、Aは中心元素であり、好ましい実施形態では窒素またはリンである。Rは炭化水素置換基であり、好ましい実施形態では、アルキル、アリールなどである。Rが低級アルキルの場合、一般的に化合物が安価であるので好ましい。nは、AおよびRの原子価が分子全体として釣り合うように決められる数である。
 2つ以上の中心元素が存在する場合、それぞれの中心元素は、炭化水素基により連結されることが好ましい。
 また、2つ以上の中心元素が存在する場合、2つの中心元素がハロゲン原子を挟み込むような構造となるものが好ましい。例えば、中心元素の2つの原子がハロゲンに配位結合するような構造が好ましい。具体的には、2つの窒素原子が炭化水素に結合している化合物または2つのリン原子が炭化水素に結合している化合物を用いれば、その2つの窒素原子または2つのリン原子がハロゲンを挟むような構造をとることが可能であり、高い触媒活性が達成可能である。
 好ましい化合物の具体例としては、例えば、基本骨格として一般式Aで示される構造を有する化合物であり、ここで、AおよびAは中心元素であり、好ましい実施形態では窒素またはリンである。Rは炭化水素置換基であり、好ましい実施形態では、アルキレン、アルケニレン、アリーレンなどである。Rが低級アルキレンの場合、一般的に化合物が安価であるので好ましい。このような基本骨格を有する化合物の具体例としては、例えば、一般式(R(Rで示される構造を有する化合物であり、ここで、RおよびRは、基本骨格構造の酸化還元能力に影響を与えない基であり、好ましい実施形態では炭化水素であり、より好ましくは、アルキル、アルケニル、アリールなどである。nおよびmは、A、R、A、R、Rの原子価が分子全体として釣り合うように決められる数である。
 触媒の有機化合物の化合物全体としての炭素数は、好ましくは3以上であり、より好ましくは6以上である。また、好ましくは100以下であり、より好ましくは20以下である。
 触媒の有機化合物の分子量は、好ましくは30以上であり、より好ましくは50以上である。また、好ましくは500以下であり、より好ましくは300以下であり、さらに好ましくは200以下であり、いっそう好ましくは150以下であり、特に好ましくは100以下である。
 本発明において、触媒は、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物と組み合わせて使用することができる。触媒は、リビングラジカル重合の際に、この有機ハロゲン化物からハロゲンを引き抜いて、ラジカルを生成させる。従って、本発明において、触媒は、ドーマント種として使用される化合物の、生長反応を抑制している基をはずして活性種に変換し生長反応をコントロールする。なお、ドーマント種は有機ハロゲン化物に限定されない。
 なお、特許文献2は、その請求項1において、ヒドリドレニウム錯体およびハロゲン化炭化水素の組み合わせがラジカルリビング重合用触媒であると記載しているが、特許文献2に記載されたハロゲン化炭化水素はリビングラジカル重合の触媒ではなく、ドーマント種に該当するものであるから、特許文献2に記載されたハロゲン化炭化水素は触媒とは区別される。
 触媒化合物は、少なくとも1つの中心元素を有する。1つの好ましい実施形態では、1つの中心元素を有するが、2つ以上の中心元素を有しても良い。
 有機化合物の多くは導電性を有さない。そのため、例えば、ポリマー中に導電性物質が残存することが望ましくない用途(例えば、レジストや有機EL、電池などの電子材料)に用いられるポリマーの場合には、有機化合物を触媒として用いることが好ましい。
 また、多くの有機化合物は、一般に、人体への毒性および環境への影響においても有利である。このため、導電性物質の残存が許容される用途であっても、有機化合物からなる触媒を用いることは、従来技術における遷移金属錯体触媒などに比べて著しく有利である。
 さらに、本発明の触媒は、少ない使用量で触媒作用を行うことができるという特徴があるから、上述したように、人体への毒性および環境への影響が少ない材料を、少ない量で使用することが可能になり、従来の触媒に比べて、非常に有利である。
 (触媒中の基)
 触媒化合物は、必要に応じて、様々な基を有していてもよい。例えば、中心元素に、任意の有機基または無機基を結合させることが可能である。
 このような基は、有機基であってもよく、無機基であってもよい。有機基としては、アリール、ヘテロアリール、置換アリール、置換ヘテロアリール、アルキル基、アルケニル基(例えば、ビニル基)、アルキニル基、アルコキシ基(メトキシ基、エトキシ基、プロポキシ基、ブトキシ基など)、置換アミノ基(ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基など)、エステル基(脂肪族カルボン酸エステルなど)、アルキルカルボニル基(メチルカルボニル基など)、ハロアルキル基(トリフルオロメチル基など)などが挙げられる。1つの好ましい実施形態では、アリール、ヘテロアリール、置換アリール、置換ヘテロアリール、アルケニル基(例えば、ビニル基)、またはアルキニル基である。
 また、無機基としては、水酸基、アミノ基、シアノ基などが挙げられる。アミノ基は、必要に応じて置換されていてもよい。なお、アミノ基は無機基であるが、アミノ基が有機基によって置換されている場合には、本明細書中においてそのような置換アミノ基は便宜上、有機基に分類する。
 有機基として、アリール、ヘテロアリール、置換アリール、または置換ヘテロアリールのような共役系の有機基を有する有機化合物を使用することも可能である。あるいは、アルケニル基またはアルキニル基などのように不飽和結合を有する有機基を組み合わせて使用して共役系を有する触媒化合物を形成することも可能である。しかし、非共役系の有機基(例えば、アルキル基)を有する触媒化合物はラジカルの活性がより高くなる傾向にあり、より好ましい。
 置換アリールまたは置換ヘテロアリールにおいてアリールまたはヘテロアリールに結合する置換基としては、例えば、アルキルまたはアルキルオキシ、シアノ基、アミノ基等が挙げられる。アルキルとしては、低級アルキルが好ましく、より好ましくは、C~Cアルキルであり、さらに好ましくは、C~Cアルキルであり、特に好ましくは、メチルである。アルキルオキシにおけるアルキルとしては、低級アルキルが好ましく、より好ましくは、C~Cアルキルであり、さらに好ましくは、C~Cアルキルであり、特に好ましくは、メチルである。すなわち、1つの実施形態において、中心元素に結合する有機基は、フェニル、低級アルキルフェニルまたは低級アルキルオキシフェニルである。
 上記有機基および無機基の数は特に限定されないが、好ましくは、3以下であり、より好ましくは、1である。
 なお、置換アリールまたは置換ヘテロアリールにおける当該置換基の数は、特に限定されないが、好ましくは1~3であり、より好ましくは1~2であり、さらに好ましくは、1である。
 置換アリールまたは置換ヘテロアリールにおける当該置換基の位置は、任意に選択される。アリールがフェニルである場合(すなわち、置換アリールが置換フェニルである場合)、置換基の位置は中心元素に対してオルト、メタ、パラのいずれの位置であってもよい。好ましくは、パラの位置である。
 (触媒化合物の具体例)
 触媒化合物の好ましい具体例としては、例えば、中心元素として窒素を有するものとして、トリアルキルアミン(例えば、トリエチルアミン、トリブチルアミン)、テトラキスジメチルアミノエテン(TDAE)、1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカントリブチルホスフィン(TDME)などが挙げられる。近年、ホール輸送能を有する有機化合物が盛んに研究されているが、そのような有機化合物が使用可能である。また、フタル酸イミド類、ピリジン類、ビピリジン類、N,N,N‘,N“,N”-ペンタメチルジエチレントリアミン(PMDETA)、エチレンジアミン、ジメチルエチレンジアミン、テトラメチルエチレンジアミン、テトラメチルジアミノメタン、トリス(2-アミノエチル)アミン、トリス(2-(メチルアミノ)エチル)アミン、ヘマトポルフィリン、およびこれらの誘導体が使用可能である。
 中心元素としてリンを有するものとして、トリアルキルホスフィン(トリエチルホスフィン(EtP)など)、トリアリールホスフィン(トリフェニルホスフィン(PhP)など)、ホスホン酸((OH)P)、1,2-ビス(ジフェニルホスフィノ)メタン、およびこれらの誘導体などが挙げられる。
 中心元素として硫黄を有するものとして、チオフェン、オリゴチオフェン、ポリチオフェン、テトラチオフルバレン(TTF)、ビス(エチレンジチオ)テトラチアフルバレン(BTTF)、3,4エチレンジオキシチオフェン(EDOT)、ポリ(3,4エチレンジオキシチオフェン(PEDOT)、およびこれらの誘導体などが挙げられる。
 中心元素として酸素を有するものとして、フラン、オリゴフラン、ポリフラン、およびその誘導体などが挙げられる。
 中心元素として炭素を有するものとして、エチレン、アセチレン、オリゴアセチレン、ポリアセチレン、フラーレン、カーボンナノチューブ、およびその誘導体などが挙げられる。
 このような、触媒として作用できる有機化合物は、ラジカル反応の実験を行うことにより、容易に確認することができる。具体的には、有機化合物と、代表的なドーマント種(例えば、CP-I、PE-I)とを組み合わせて、ラジカル開始剤を用いずにリビングラジカル重合反応の実験を行い、狭い分子量分布が得られれば、その有機化合物が触媒として作用したことが確認される。
 触媒化合物は、1つの実施態様においては、ラジカル反応性二重結合を有さないものである。
 (触媒の製造方法)
 本発明の触媒として使用される化合物は、その多くは公知化合物であり、試薬販売会社などから市販されているものをそのまま用いることが可能であり、あるいは、公知の方法により合成することが可能である。また、天然物中に存在する化合物は、その天然物から抽出するなどの方法により入手することもできる。
 例えば、触媒として、窒素に炭化水素基(例えば、アルキル、アルコキシ、アリール、ヘテロアリール、置換アリールまたは置換ヘテロアリール)が結合したものを用いる場合、このような化合物としては市販されているものを用いることができる。またはこのような化合物は公知の方法により合成することができる。
 例えば、触媒として、リンに炭化水素基(例えば、アルキル、アルコキシ、アリール、ヘテロアリール、置換アリールまたは置換ヘテロアリール)が結合したものを用いる場合、このような化合物としては市販されているものを用いることができる。またはこのような化合物は公知の方法により合成することができる。
 例えば、触媒として、酸素を有する有機化合物であって、その酸素原子において酸化還元反応が行われる化合物を用いる場合、このような化合物としては市販されているものを用いることができる。またはこのような化合物は公知の方法により合成することができる。
 例えば、触媒として、硫黄を有する有機化合物であって、その硫黄原子において酸化還元反応が行われる化合物を用いる場合、このような化合物としては市販されているものを用いることができる。またはこのような化合物は公知の方法により合成することができる。
 (触媒の使用量)
 本発明の触媒は、極めて活性が高く、少量でリビングラジカル重合を触媒することが可能である。
 本発明の方法において、触媒として使用される化合物は、理論上溶媒として使用され得る液体の化合物である場合もある。しかし、触媒として使用するにあたっては、溶媒としての効果を奏するほど大量に用いる必要はない。したがって、触媒の使用量は、いわゆる「溶媒量」(すなわち溶媒としての効果を達成するのに必要な量)よりも少ない量とすることができる。本発明の方法において、触媒は、上述した通り、リビングラジカル重合を触媒するのに充分な量で使用されればよく、それ以上に添加する必要はない。
 具体的には、例えば、好ましい実施形態では、反応溶液1リットルに対して、触媒使用量を10ミリモル(mM)以下とすることが可能である。さらに好ましい実施形態では、反応溶液1リットルに対して、触媒使用量を5ミリモル以下とすることが可能であり、2ミリモル以下とすることも可能である。さらには、1ミリモル以下とすることも可能であり、0.5ミリモル以下とすることも可能である。重量基準では、触媒使用量を反応溶液のうちの1重量%以下とすることが可能である。好ましい実施形態では、0.75重量%以下とすることが可能であり、また0.70重量%以下とすることも可能であり、さらに好ましい実施形態では、0.5重量%以下とすることが可能であり、0.2重量%以下とすることも可能であり、さらには0.1重量%以下とすることも可能であり、0.05重量%以下とすることも可能である。例えば、リン触媒の場合、0.75重量%以下とすることが可能であり、また0.70重量%以下とすることも可能であり、さらに好ましい実施形態では、0.5重量%以下とすることが可能であり、0.2重量%以下とすることも可能であり、さらには0.1重量%以下とすることも可能であり、0.05重量%以下とすることも可能である。すなわち、溶媒として効果を奏するよりも「格段に」少ない量とすることが可能である。
 また、触媒の使用量は、好ましくは、反応溶液1リットルに対して、0.02ミリモル以上であり、より好ましくは、0.1ミリモル以上であり、さらに好ましくは、0.5ミリモル以上である。重量基準では、触媒使用量を反応溶液のうちの0.001重量%以上とすることが好ましく、より好ましくは、0.005重量%以上であり、さらに好ましくは、0.02重量%以上である。触媒の使用量が少なすぎる場合には、分子量分布は広くなり易い。
 1つの実施形態において、本発明のリビングラジカル重合方法においては、酸化還元能力を有する有機化合物からなる触媒以外のリビングラジカル重合触媒または触媒前駆体化合物(以下、「他種触媒または他種触媒前駆体化合物」)を併用しなくても、充分にリビングラジカル重合を行うことが可能である。しかし、必要に応じて、他種触媒または他種触媒前駆体化合物を併用することも可能である。その場合、炭素原子を中心元素とする触媒または触媒前駆体化合物の利点をできるだけ生かすためには、炭素原子を中心元素とする触媒または触媒前駆体化合物の使用量を多く、かつ、他種触媒または他種触媒前駆体化合物の使用量を少なくすることが好ましい。そのような場合、他種触媒または他種触媒前駆体化合物の使用量は、炭素原子を中心元素とする触媒または触媒前駆体化合物100重量部に対して、100重量部以下とすることが可能であり、50重量部以下とすることも可能であり、20重量部以下、10重量部以下、5重量部以下、2重量部以下、1重量部以下、0.5重量部以下、0.2重量部以下または0.1重量部以下とすることも可能である。すなわち、炭素原子を中心元素とする触媒以外の触媒を実質的に含まない反応溶液においてリビングラジカル反応を行うことが可能である。
 (保護基)
 本発明の方法には、リビングラジカル重合の反応途中の成長鎖を保護する保護基を用いる。このような保護基としては、従来からリビングラジカル重合に用いる保護基として公知の各種保護基を用いることが可能である。ここで、保護基としてハロゲンを用いることが好ましい。従来技術に関して上述したとおり、特殊な保護基を用いる場合には、その保護基が非常に高価であることなどの欠点がある。
 (有機ハロゲン化物(低分子ドーマント種))
 本発明の方法においては、好ましくは、炭素-ハロゲン結合を有する有機ハロゲン化物を反応材料に添加し、この有機ハロゲン化物から成長鎖に与えられるハロゲンを保護基として用いる。このような有機ハロゲン化物は比較的安価であるので、リビングラジカル重合に用いられる保護基のために用いられる公知の他の化合物に比べて有利である。また、必要に応じて、炭素以外の元素にハロゲンが結合した低分子ドーマント種を用いることも可能である。
 ドーマント種として使用される有機ハロゲン化物は、分子中に少なくとも1個の炭素-ハロゲン結合を有してドーマント種として作用するものであればよく特に限定されるものではない。しかし、一般的には有機ハロゲン化物の1分子中にハロゲン原子が1個または2個含まれているものが好ましい。
 ここで、ドーマント種として使用される有機ハロゲン化物は、ハロゲンが脱離して炭素ラジカルが生成した際に、炭素ラジカルが不安定であることが好ましい。従って、ドーマント種として使用される有機ハロゲン化物としては、ハロゲンが脱離して炭素ラジカルが生成した際に、炭素ラジカルを安定化させる置換基が2つ以上当該炭素ラジカルとなる炭素原子に結合しているものは適さない。ただし、炭素ラジカルを安定化させる置換基が1つ当該炭素ラジカルとなる炭素原子に結合しているものは、適度なラジカル安定性を示すことが多く、ドーマント種として使用可能である。
 すなわち、本発明のリビングラジカル重合法においては、炭素ラジカルが安定となる触媒化合物と、炭素ラジカルがあまり安定にはならないが適度な安定性となるドーマント種とを組み合わせることが好ましく、その組み合わせにより、高い効率で、リビングラジカル重合反応を行うことができる。例えば、炭素ラジカルを安定化させる置換基が2つ以上当該炭素ラジカルとなる炭素原子に結合しているものを触媒として用い、炭素ラジカルを安定化させる置換基が1つ当該炭素ラジカルとなる炭素原子に結合しているものをドーマントして用いることによって、その触媒とドーマントとの組み合わせにより、リビングラジカル重合において高い反応活性が示される。
 ドーマント種として使用される有機ハロゲン化物のハロゲンが結合した炭素(以下、便宜上、「有機ハロゲン化物の1位炭素」という)が有する水素は、2つ以下であることが好ましく、1つ以下であることがより好ましく、水素を有さないことがさらに好ましい。また、有機ハロゲン化物の1位炭素に結合しているハロゲンの数は、3つ以下であることが好ましく、2つ以下であることがより好ましく、1つであることがさらに好ましい。特に、有機ハロゲン化物の1位炭素に結合しているハロゲンが塩素である場合には、その塩素の数は、3つ以下であることが非常に好ましく、2つ以下であることがいっそう好ましく、1つであることがとりわけ好ましい。
 ドーマント種として使用される有機ハロゲン化物の1位炭素には、炭素が1つ以上結合していることが好ましく、炭素が2つまたは3つ結合していることが特に好ましい。
 ドーマント種として使用される有機ハロゲン化物のハロゲン原子は、好ましくは、塩素、臭素またはヨウ素である。より好ましくは臭素またはヨウ素である。分子量分布を小さくするという観点から、最も好ましくはヨウ素である。1つの実施形態では臭素も好ましく使用可能である。臭素化合物は、一般に、ヨウ素化合物に比べて安定なため、低分子ドーマント種の保存が容易である点、および生成ポリマーから末端ハロゲンを除去する必要性が比較的低い点が利点として挙げられる。さらに、臭素を複数持った化合物は、多くが市販または容易に合成でき、星型、くし型、表面グラフト化型などの多様な分岐高分子を容易に合成できる。また、臭素を末端に持った化合物からブロック共重合体が容易に合成できるという利点もある。
 また、ハロゲン原子を有する触媒化合物を使用する場合には、ドーマント種として使用される有機ハロゲン化物のハロゲン原子は、触媒中のハロゲン原子と同一であってもよく、異なってもよい。異種のハロゲン原子であっても、有機ハロゲン化物と触媒の化合物との間で、互いにハロゲン原子を交換することが可能であるからである。ただし、ドーマント種として使用される有機ハロゲン化物のハロゲン原子と、触媒中のハロゲン原子とが同一であれば、ドーマント種として使用される有機ハロゲン化物と触媒の化合物との間でのハロゲン原子の交換がより容易であるので、好ましい。
 1つの実施形態において、ドーマント種として使用される有機ハロゲン化物は、以下の一般式(II)を有する。
 CR   (II)
 ここで、Rは、ハロゲン、水素またはアルキルである。好ましくは、水素または低級アルキルである。より好ましくは、水素またはメチルである。
 Rは、Rと同一であってもよく、または異なってもよく、ハロゲン、水素またはアルキルである。好ましくは、水素または低級アルキルである。より好ましくは、水素またはメチルである。
 Rは、ハロゲン、水素、アルキル、アリール、ヘテロアリールまたはシアノである。好ましくは、アリール、ヘテロアリールまたはシアノである。Rが、ハロゲン、水素またはアルキルである場合、RはRまたはRと同一であってもよく、または異なってもよい。
 Xは、ハロゲンである。好ましくは、塩素、臭素またはヨウ素である。より好ましくは臭素またはヨウ素であり、最も好ましくはヨウ素である。R~Rにハロゲンが存在する場合、Xは、そのR~Rのハロゲンと同一であってもよく、異なっていてもよい。1つの実施形態では、Xのハロゲンは、触媒化合物に含まれるハロゲンと同じハロゲンとすることができる。しかし、触媒化合物に含まれるハロゲンと異なるハロゲンであってもよい。
 上記R~RおよびXは、それぞれ、互いに独立して選択されるが、R~Rのうちにハロゲン原子が0または1つ存在すること(すなわち、有機ハロゲン化物として、化合物中に1または2つのハロゲン原子が存在すること)が好ましい。
 1つの好ましい実施形態では、ドーマント種として使用される有機ハロゲン化物は、ハロゲン化アルキルまたはハロゲン化置換アルキルである。より好ましくは、ハロゲン化置換アルキルである。ここで、アルキルは2級アルキルであることが好ましく、より好ましくは3級アルキルである。
 ドーマント種として使用されるハロゲン化アルキルまたはハロゲン化置換アルキルにおいてアルキルの炭素数は2または3であることが好ましい。従って、ドーマント種として使用される有機ハロゲン化物は、さらに好ましくは、ハロゲン化置換エチルまたはハロゲン化置換イソプロピルである。ドーマント種として使用されるハロゲン化置換アルキルにおける置換基としては、例えば、フェニルまたはシアノなどが挙げられる。
 ドーマント種として使用される有機ハロゲン化物の好ましい具体例としては、例えば、以下の、CH(CH)(Ph)I、およびC(CH(CN)Iなどである。
Figure JPOXMLDOC01-appb-C000001
 ドーマント種として使用される有機ハロゲン化物の別の具体例としては、例えば、塩化メチル、塩化メチレン、クロロホルム、クロロエタン、ジクロロエタン、トリクロロエタン、ブロモメチル、ジブロモメタン、ブロモホルム、ブロモエタン、ジブロモエタン、トリブロモエタン、テトラブロモエタン、ブロモトリクロロメタン、ジクロロジブロモメタン、クロロトリブロモメタン、ヨードトリクロロメタン、ジクロロジヨードメタン、ヨードトリブロモメタン、ジブロモジヨードメタン、ブロモトリヨードメタン、ヨードホルム、ジヨードメタン、ヨウ化メチル、塩化イソプロピル、塩化t-ブチル、臭化イソプロピル、臭化t-ブチル、トリヨードエタン、ヨウ化エチル、ジヨードプロパン、ヨウ化イソプロピル、ヨウ化t-ブチル、ブロモジクロロエタン、クロロジブロモエタン、ブロモクロロエタン、ヨードジクロロエタン、クロロジヨードエタン、ジヨードプロパン、クロロヨードプロパン、ヨードジブロモエタン、ブロモヨードプロパン、2-ヨード-2-ポリエチレングリコシルプロパン、2-ヨード-2-アミジノプロパン、2-ヨード-2-シアノブタン、2-ヨード-2-シアノ-4-メチルペンタン、2-ヨード-2-シアノ4-メチル-4-メトキシペンタン、4-ヨード-4-シアノ-ペンタン酸、メチル-2-ヨードイソブチレート、2-ヨード-2-メチルプロパンアミド、2-ヨード-2,4-ジ
メチルペンタン、2-ヨード-2-シアノブタノール、4-メチルペンタン、シアノ-4-メチルペンタン、2-ヨード-2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド4-メチルペンタン、2-ヨード-2-メチル-N-(1,1-ビス(ヒドロキシメチル)-2-ヒドロキシエチル)プロピオンアミド4-メチルペンタン、2-ヨード-2-(2-イミダソリン-2-イル)プロパン、2-ヨード-2-(2-(5-メチル-2-イミダソリン-2-イル)プロパン等が挙げられる。これらのハロゲン化物は単独で用いてもよく、または組合せて用いてもよい。
 本発明の方法において、ドーマント種として使用される有機ハロゲン化物は、溶媒として使用されるものではないので、溶媒としての効果を奏するほど大量に用いる必要はない。したがって、ドーマント種として使用される有機ハロゲン化物の使用量は、いわゆる「溶媒量」(すなわち溶媒としての効果を達成するのに必要な量)よりも少ない量とすることができる。本発明の方法において、ドーマント種として使用される有機ハロゲン化物は、上述した通り、成長鎖にハロゲンを保護基として提供するために使用されるので、反応系中の成長鎖に充分な量のハロゲンを提供できれば充分である。具体的には、例えば、本発明の方法においてドーマント種として使用される有機ハロゲン化物の使用量は、重合反応系中における触媒としての有機化合物1モル当たり0.05モル以上であることが好ましく、より好ましくは0.5モル以上であり、さらに好ましくは1モル以上である。また、重合系中における触媒としての有機化合物1モル当たり100モル以下であることが好ましく、より好ましくは30モル以下であり、さらに好ましくは5モル以下である。さらに、ビニル系単量体(モノマー)の1モル当たり0.001モル以上であることが好ましく、より好ましくは0.005モル以上である。また、ビニル系単量体の1モル当たり0.5モル以下であることが好ましく、より好ましくは0.4モル以下であり、さらに好ましくは0.3モル以下であり、特に好ましくは0.2モル以下であり、最も好ましくは0.1モル以下である。さらに、必要に応じて、ビニル系単量体の1モル当たり0.07モル以下、0.05モル以下、0.03モル以下、0.02モル以下もしくは0.01モル以下とすることも可能である。
 上記ドーマント種として使用される有機ハロゲン化物は、その多くの化合物が公知化合物であり、試薬販売会社などから市販されている試薬などをそのまま用いることが可能である。あるいは、従来公知の合成方法を用いて合成してもよい。
 ドーマント種として使用される有機ハロゲン化物は、その原料を仕込み、有機ハロゲン化物を重合中にin situすなわち反応溶液中で生成させ、それをこの重合法の有機ハロゲン化物として使用することもできる。例えば、アゾ系ラジカル開始剤(例えば、アゾビス(イソブチロニトリル))とハロゲン単体の分子(例えば、ヨウ素(I))を原料として仕込み、その両者の反応により有機ハロゲン化物(例えば、ヨウ化アルキルであるCP-I(化学式は上記のとおり))を重合中にin situで生成させ、それをこの重合法のドーマント種として使用することができる。
 ドーマント種として使用される有機ハロゲン化物としては、無機または有機固体表面や、無機または有機分子表面などの表面に固定化したものを使用することもできる。例えば、シリコン基板表面、高分子膜表面、無機または有機微粒子表面、顔料表面などに固定化した有機ハロゲン化物を使用することができる。固定化には、例えば、化学結合や物理結合などが利用できる。
 本発明の重合方法においては、ハロゲンを提供できる無機材料を用いることが好ましい。すなわち、酸化還元能力を有する有機化合物にハロゲンが提供されると、有機化合物はハロゲンを還元し、そして有機化合物は酸化される。このようにして得られた酸化状態の有機化合物は、ポリマーの成長鎖末端にハロゲンを結合させる反応を触媒すると考えられる。そのため、無機材料からハロゲンが触媒に提供されることにより、触媒の活性が顕著に向上する。このようにハロゲンを提供する無機材料を、本願明細書中、便宜上、「ハロゲン提供無機物質」という。ハロゲン提供無機物質としては、例えば、ハロゲン分子、ハロゲン化無機化合物などが使用可能である。ハロゲン分子の中でも、臭素分子(Br)またはヨウ素分子(I)を用いることが好ましく、ヨウ素分子(I)を用いることが特に好ましい。ハロゲン化無機化合物としては、NHI、HIなどが使用できる。
 ハロゲン提供無機物質の使用量は、触媒の有機化合物1モルに対して、0.001モル以上であることが好ましく、0.003モル以上であることがより好ましく、0.01モル以上であることがさらに好ましく、0.02モル以上であることがいっそう好ましく、0.03モル以上であることが特に好ましい。また、必要に応じて0.05モル以上とすることも可能である。また、ハロゲン提供無機物質の使用量は、触媒の有機化合物1モルに対して、0.5モル以下であることが好ましく、0.3モル以下であることがより好ましく、0.2モル以下であることがさらに好ましく、0.15モル以下であることがいっそう好ましく、また、必要に応じて0.1モル以下とすることも可能である。
 ハロゲン提供無機物質の使用量は、モノマー1モルに対して、0.01ミリモル以上であることが好ましく、0.05ミリモル以上であることがより好ましく、0.1ミリモル以上であることがさらに好ましく、0.2ミリモル以上であることがいっそう好ましく、0.3ミリモル以上であることが特に好ましい。また、必要に応じて0.5ミリモル以上とすることも可能である。また、ハロゲン提供無機物質の使用量は、モノマー1モルに対して、100ミリモル以下であることが好ましく、30ミリモル以下であることがより好ましく、10ミリモル以下であることがさらに好ましく、5ミリモル以下であることがいっそう好ましく、3ミリモル以下とすることが特に好ましい。2ミリモル以下とすることも可能である。
 ハロゲン提供無機物質の使用量は、ドーマント種として使用される有機ハロゲン化物1モルに対して、0.001モル以上であることが好ましく、0.003モル以上であることがより好ましく、0.01モル以上であることがさらに好ましく、0.02モル以上であることがいっそう好ましく、0.03モル以上であることが特に好ましい。また、必要に応じて0.05モル以上とすることも可能である。また、ハロゲン提供無機物質の使用量は、ドーマント種として使用される有機ハロゲン化物1モルに対して、0.5モル以下であることが好ましく、0.3モル以下であることがより好ましく、0.2モル以下であることがさらに好ましく、0.15モル以下であることがいっそう好ましく、また、必要に応じて0.1モル以下とすることも可能である。
 なお、ハロゲン提供無機物質を重合中、in situで生成させ、それを使用してもよい。
 (モノマー)
 本発明の重合方法には、モノマーとして、ラジカル重合性モノマーを用いる。ラジカル重合性モノマーとは、有機ラジカルの存在下にラジカル重合を行い得る不飽和結合を有するモノマーをいう。このような不飽和結合は二重結合であってもよく、三重結合であってもよい。すなわち、本発明の重合方法には、従来から、リビングラジカル重合を行うことが公知の任意のモノマーを用いることができる。
 より具体的には、いわゆるビニルモノマーと呼ばれるモノマーを用いることができる。ビニルモノマーとは、一般式「CH=CR」で示されるモノマーの総称である。
 この一般式においてRがメチルであり、Rがカルボシキシレートであるモノマーをメタクリレート系モノマーといい、本発明に好適に用いることができる。
 メタクリレート系モノマーの具体例としては、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ベンジルメタクリレート、グリシジルメタクリレート、シクロヘキシルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレート、2-メトキシエチルメタクリレート、ブトキシエチルメタクリレート、メトキシテトラエチレングリコールメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、3-クロロ2-ヒドロキシプロピルメタクリレート、テトラヒドロフルフリルメタクリレート、2-ヒドロキシ3-フェノキシプロピルメタクリレート、ジエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、2-(ジメチルアミノ)エチルメタクリレート等が挙げられる。また、メタクリル酸も用いることができる。また、2-(N,N-ジエチル-N-メチルアミノ)エチルメタクリレート/トリフルオロスル
ホニルイミニウム(N(CFSO )塩、2-(N-エチル-N-メチル-N-水素化アミノ)エチルメタクリレート/トリフルオロスルホニルイミニウム(N(CF
SO )塩、1-エチル-3-メチルイミダゾリウムメタクリレート/フルオ
ロハイドロジェネーション((FH))塩、N-エチル-N-メチルピロリジニウムメタクリレート/フルオロハイドロジェネーション((FH))塩などのイオ
ン液体性のメタクリレートを用いることができる。
 上記ビニルモノマーの一般式においてRが水素であり、Rがカルボキシレートで示されるモノマーは、一般にアクリル系モノマーと言い、本発明に好適に使用可能である。
 アクリレート系モノマーの具体例としては、メチルアクリレート、エチルアクリレート、プロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ベンジルアクリレート、グリシジルアクリレート、シクロヘキシルアクリレート、ラウリルアクリレート、n-オクチルアクリレート、2-メトキシエチルアクリレート、ブトキシエチルアクリレート、メトキシテトラエチレングリコールアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、3-クロロ2-ヒドロキシプロピルアクリレート、テトラヒドロフルフリルアクリレート、2-ヒドロキシ3-フェノキシプロピルアクリレート、ジエチレングリコールアクリレート、ポリエチレングリコールアクリレート、2-(ジメチルアミノ)エチルアクリレートなどが挙げられる。また、アクリル酸も使用可能である。また、2-(N,N-ジエチル-N-メチルアミノ)エチルアクリレート/トリフルオロスルホニルイミニウム(N(CFSO )塩、2-(N-エチル-N-メチル-N-水素化アミノ)エチルアクリレート/トリフルオロスルホニルイミニウム(N(CFSO )塩、1-エチル-3-メチルイミダゾリウムアクリレート/フルオロハイドロジェネーション((FH))塩、N-エチル-N-メチルピロリジニウムアクリレート/フルオロハイドロジェネーション((FH))塩などのイオン液体性のアクリレートを用いることができる。
 アクリレートのリビングラジカル重合の制御は一般に困難であるが、本願発明によれば、制御することが可能である。特に、リン系の触媒を使用すれば、アクリレートの重合を好適に制御できる。
 上記ビニルモノマーの一般式においてRが水素であり、Rがフェニルで示されるモノマーはスチレンであり、本発明に好適に使用可能である。Rがフェニルまたはフェニル誘導体で示されるモノマーは、スチレン誘導体といい、本発明に好適に使用可能である。具体的には、o-、m-、p-メトキシスチレン、o-、m-、p-t-ブトキシスチレン、o-、m-、p-クロロメチルスチレン、o-、m-、p-クロロスチレン、o-、m-、p-ヒドロキシスチレン、o-、m-、p-スチレンスルホン酸等が挙げられる。また、Rが芳香族である、ビニルナフタレン等が挙げられる。
 上記ビニルモノマーの一般式においてRが水素であり、Rがアルキルであるモノマーはアルキレンであり、本発明に好適に使用可能である。
 本発明には、2つ以上のビニル基を有するモノマーも使用可能である。具体的には、例えば、ジエン系化合物(例えば、ブタジエン、イソプレンなど)、アリル基を2つ有する化合物(例えば、ジアリルフタレートなど)、メタクリルを2つ有するジメタクリレート(たとえばエチレングリコールジメタクリレート)、アクリルを2つ有するジアクリレート(たとえばエチレングリコールジアクリレート)などである。
 本発明には、上述した以外のビニルモノマーも使用可能である。具体的には、例えば、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニル、酢酸ビニル)、上記以外のスチレン誘導体(例えば、α-メチルスチレン)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトン)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドール)、(メタ)アクリルアミドおよびその誘導体(例えば、N-イソプロピルアクリルアミド、N-イソプロピルメタクリルアミド、N,N-ジメチルアクリルアミド、N,N-ジメチルメタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド)、アクリロニトリル、メタアクリロニトリル、マレイン酸およびその誘導体(例えば、無水マレイン酸)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプロピレン、フッ化ビニル)、オレフィン類(例えば、エチレン、プロピレン、1-ヘキセン、シクロヘキセン)などである。
 これらは単独で使用してもよいし、また2種類以上併用してもよい。
 上述したモノマーの種類と、本発明の触媒の種類との組み合わせは特に限定されず、任意に選択されたモノマーに対して任意に選択された本発明の触媒を用いることが可能である。
 (ラジカル反応開始剤)
 本発明のリビングラジカル重合方法においては、必要に応じて、少量のラジカル反応開始剤を用いてもよい。このようなラジカル反応開始剤としては、ラジカル反応に使用する開始剤として公知の開始剤が使用可能である。例えば、アゾ系のラジカル反応開始剤および過酸化物系のラジカル開始剤などが使用可能である。アゾ系のラジカル反応開始剤の具体例としては、例えば、アゾビス(イソブチロニトリル)が挙げられる。過酸化物系のラジカル開始剤の具体例としては、例えば、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-butyl peroxybenzoate(BPB)、di(4-tert-butylcyclohexyl) peroxydicarbonate(PERKADOX16)、過酸化二硫酸カリウムが挙げられる。
 しかしながら、本発明の触媒を用いれば、このようなラジカル反応開始剤を用いなくても重合反応を行うことができる。
 ラジカル開始剤による悪影響を回避する効果を最大にするためには、ラジカル開始剤は実質的に用いないことが好ましく、その使用量をゼロとすることが最も好ましい。ここで、「実質的に用いない」とは、ラジカル開始剤による重合反応への影響が実質的に生じないほどに、ラジカル開始剤の量が少ないことを意味する。具体的には、例えば、本発明の触媒1モルに対してラジカル開始剤の量が10ミリモル以下であることが好ましく、1ミリモル以下であることが好ましく、0.1ミリモル以下であることがさらに好ましい。
 ただし、何らかの理由によりラジカル開始剤を積極的に用いる必要がある場合には、その使用量は特に限定されない。好ましくは、反応液1リットルに対して、1ミリモル以上であり、より好ましくは、5ミリモル以上であり、さらに好ましくは、10ミリモル以上である。また、好ましくは、反応液1リットルに対して、500ミリモル以下であり、より好ましくは、100ミリモル以下であり、さらに好ましくは、50ミリモル以下である。
 (溶媒)
 モノマーなどの反応混合物が反応温度において液体であれば、必ずしも溶媒を用いる必要はない。必要に応じて、溶媒を用いてもよい。溶媒としては、従来、リビングラジカル重合に用いられていた溶媒をそのまま使用することが可能である。溶媒を用いる場合には、その使用量は重合反応が適切に行われる限り特に限定されないが、モノマー100重量部に対して1重量部以上用いることが好ましく、10重量部以上用いることがより好ましく、50重量部以上用いることがさらに好ましい。溶媒の使用量が少なすぎる場合には、反応溶液の粘度が高くなりすぎる場合がある。また、モノマー100重量部に対して2000重量部以下とすることが好ましく、1000重量部以下とすることがより好ましく、500重量部以下とすることがさらに好ましい。溶媒の使用量が多すぎる場合には、反応溶液のモノマー濃度が薄くなりすぎる場合がある。
 モノマーと混ざり合わない溶媒を用いることにより、乳化重合や、分散重合、懸濁重合を行うこともできる。例えば、スチレンやメタクリレートをモノマーとした場合、水を溶媒とすることで、乳化重合や、分散重合、懸濁重合を行うことができる。
 (その他の添加剤等)
 上述したリビングラジカル重合のための各種材料には、必要に応じて、公知の添加剤等を必要量添加してもよい。そのような添加剤としては、例えば、重合抑制剤などが挙げられる。
 (原料組成物)
 上述した各種原料を混合することにより、リビングラジカル重合の材料として適切な原料組成物が得られる。得られた組成物は、従来公知のリビングラジカル重合方法に用いることができる。
 1つの実施形態では、原料組成物は、上述した各種原料以外の原料を含まない。例えば、環境問題などの観点から、原料組成物は、遷移金属を含む原料を実質的に含まないことが好ましい。1つの好ましい実施形態では、原料組成物は、触媒、ラジカル反応性不飽和結合を有するモノマー、溶媒、ならびにドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物およびハロゲン分子または無機ハロゲン化合物以外の原料を実質的に含まない。また、原料組成物は、リビングラジカル重合に無関係な材料(例えば、エピスルフィド化合物など)を実質的に含まないことが好ましい。さらに、酸化還元能力を有する有機化合物からなる触媒の利点をできるだけ生かしたい場合には、原料組成物は、酸化還元能力を有する有機化合物からなる触媒以外のリビングラジカル重合触媒または触媒前駆体を実質的に含まない組成物とすることが可能である。
 1つの実施形態では、原料組成物は、触媒と、ラジカル反応性不飽和結合を有するモノマーと、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物と、ハロゲン分子または無機ハロゲン化物を含み、さらに溶媒を含んでもよい。
 (触媒を含む原料組成物)
 原料組成物は、好ましくは、触媒と、ラジカル反応性不飽和結合を有するモノマーと、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物を含む。より好ましくは、ハロゲン分子またはハロゲンを提供できるハロゲン化無機化合物をさらに含む。原料組成物は、これらに加えてさらに溶媒を含んでもよい。
 1つの実施形態では、原料組成物は実質的に、触媒と、ラジカル反応性不飽和結合を有するモノマーと、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物と、ハロゲン分子またはハロゲン化無機化合物と、溶媒とからなる組成物である。ここで、不要な場合には、溶媒は含まれなくてもよい。原料組成物は、例えば、触媒と、ラジカル反応性不飽和結合を有するモノマーと、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物と、ハロゲン分子またはハロゲン化無機化合物と、溶媒以外にはラジカル重合反応に関与する成分を実質的に含まない組成物である。触媒と、ラジカル反応性不飽和結合を有するモノマーと、ドーマント種として使用される炭素-ハロゲン結合を有する有機ハロゲン化物と、ハロゲン分子またはハロゲン化無機化合物と、溶媒のみから組成物が構成されてもよい。なお、ここでも、不要な場合には、溶媒は含まれなくてもよい。
 (反応温度)
 本発明の方法における反応温度は特に限定されない。好ましくは、10℃以上であり、より好ましくは、20℃以上であり、さらに好ましくは、30℃以上であり、いっそう好ましくは、40℃以上であり、特に好ましくは、50℃以上である。また、好ましくは、130℃以下であり、より好ましくは、120℃以下であり、さらに好ましくは、110℃以下であり、いっそう好ましくは、105℃以下であり、特に好ましくは、100℃以下である。
 温度が高すぎる場合には、加熱のための設備等にコストがかかるという欠点がある。温度が室温以下の場合には、冷却のための設備等にコストがかかるという欠点がある。また、室温以下で重合するように反応混合物を調製すると、その反応混合物が室温では不安定で反応してしまうために、反応混合物の保管が困難になるという欠点がある。したがって、上記の、室温より少し高く、かつ過度に高すぎない温度範囲(例えば、50℃から100℃)は、実用的な意味において非常に好適である。
 (反応時間)
 本発明の方法における反応時間は特に限定されない。好ましくは、15分間以上であり、より好ましくは、30分間以上であり、さらに好ましくは、1時間以上である。また、好ましくは、3日以下であり、より好ましくは、2日以下であり、さらに好ましくは、1日以下である。
 反応時間が短すぎる場合には、充分な分子量(あるいは重合率(モノマー転化率))を得ることが難しい。反応時間が長すぎる場合には、プロセス全体としての効率が悪い。適切な反応時間とすることにより、優れた性能(適度な重合速度と副反応の軽減)が達成され得る。
 (雰囲気)
 本発明の方法における重合反応は、反応容器中に空気が存在する条件下で行ってもよい。また、必要に応じて窒素やアルゴンなどの不活性ガスで空気を置換しても良い。
 (重合開始)
 本発明において、酸化還元能力を有する有機化合物は、酸化状態と、還元状態との両方の状態をとり得る。重合を開始する際には、触媒化合物がすべて一方の状態にあることは好ましくなく、酸化状態の触媒化合物と、還元状態の触媒化合物との両方が存在することが好ましい。酸化状態の触媒化合物と、還元状態の触媒化合物との両方が存在することによって、ドーマント種(polymer-X)の成長ラジカル(polymer・)への可逆的活性化反応が効率良く進むと考えられる。
 酸化状態の触媒化合物と、還元状態の触媒化合物との両方を存在させる方法としては、例えば、酸化状態の触媒化合物と、還元状態の触媒化合物とを別々に調製して混合しても良い。また、還元状態の触媒化合物の一部を酸化して酸化状態とする方法を用いても良い。逆に、酸化状態の触媒化合物の一部を還元して還元状態とする方法を用いても良い。
 上述したハロゲン提供無機物質を反応混合物中に混合すれば、容易に適切な混合物が得られる。例えば、ヨウ素(I)を反応混合物中に添加する方法が好ましい。
 本発明のリビングラジカル重合方法は、単独重合、すなわち、ホモポリマーの製造に応用することが可能であるが、共重合に本発明の方法を用いてコポリマーを製造することも可能である。共重合としては、ランダム共重合であってもよく、ブロック共重合であってもよい。
 ブロック共重合体は、2種類以上のブロックが結合した共重合体であってもよく、3種類以上のブロックが結合した共重合体であってもよい。
 2種類のブロックからなるブロック共重合の場合、例えば、第1のブロックを重合する工程と、第2のブロックを重合する工程とを包含する方法によりブロック共重合体を得ることができる。この場合、第1のブロックを重合する工程に本発明の方法を用いてもよく、第2のブロックを重合する工程に本発明の方法を用いてもよい。第1のブロックを重合する工程と、第2のブロックを重合する工程の両方に本発明の方法を用いることが好ましい。
 より具体的には例えば、第1のブロックを重合した後、得られた第1のポリマーの存在下に、第2のブロックの重合を行うことにより、ブロック共重合体を得ることができる。第1のポリマーは、単離精製した後に、第2のブロックの重合に供することもできるし、第1ポリマーを単離精製せず、第1のポリマーの重合の途中または完結時に、第1の重合に第2のモノマーを添加することにより、ブロックの重合を行うこともできる。
 3種類のブロックを有するブロック共重合体を製造する場合も、2種類以上のブロックが結合した共重合体を製造する場合と同様に、それぞれのブロックを重合する工程を行って、所望の共重合体を得ることができる。そして、すべてのブロックの重合において本発明の方法を用いることが好ましい。
 (反応メカニズム)
 本発明は特に理論に束縛されないが、その推定されるメカニズムを説明する。
 リビングラジカル重合法の基本概念はドーマント種(polymer-X)の成長ラジカル(polymer・)への可逆的活性化反応にあり、保護基Xにハロゲンを、活性化の触媒として遷移金属錯体を用いた系は、有用なリビングラジカル重合法の一つである。本発明によれば、有機化合物を用いて、高い反応性で、有機ハロゲン化物のハロゲンを引き抜くことが可能であり、ラジカルを可逆的に生成させることができる(スキーム1)。
 従来から、一般に、遷移金属はその電子が様々な遷移状態にあり得るため、各種化学反応を触媒する作用に優れることが知られている。このため、リビングラジカル重合の触媒としても、遷移金属が優れていると考えられていた。逆に、典型元素はこのような触媒には不利であると考えられていた。すなわち、有機化合物は触媒として不利であると考えられていた。
 しかしながら、予期せぬことに、本発明によれば、酸化還元能力を有する有機化合物からなる触媒を用いることにより、極めて効率よく重合反応が進行する。これは、中心元素の酸化還元反応が、触媒と反応中間体との間のハロゲンの交換を行う上で適切であることによると考えられる。従って、基本的には、このような酸化還元能力を有する有機化合物であれば、良好にリビングラジカル重合を触媒できると考えられる。
 以下のスキーム1に、本発明の触媒を用いた場合の反応式を示す。
(スキーム1)
Figure JPOXMLDOC01-appb-C000002
 ここで、Aは酸化還元能力を有する有機化合物であり、Xはハロゲン原子である。Aは反応式の左辺において還元状態であり、右辺において酸化状態である。そして、その還元状態と酸化状態との間の可逆的な酸化還元反応を行うことにより、リビングラジカル重合が制御される。
 例えば、TDAEを触媒として用いる場合、その反応式は、以下のとおり
であると理解される。右辺においてはTDAEとハロゲンの間で一電子が移動した塩の状態、あるいはTDAEとハロゲンの間で部分電荷が移動した錯体の状態を取りうる。
Figure JPOXMLDOC01-appb-C000003
 ここで、本発明のメカニズムに関して、「酸化還元」と「錯体形成」は実質的にほぼ同じ技術的意味を有する。
 一般的には、酸化還元との用語は、電子(電荷)の移動を全般的に説明する概念として使用される。本明細書中においても、酸化還元との用語は、電子(電荷)の移動を全般的に説明する広義の概念として使用される。
 しかしながら、時折、酸化還元との用語は、一つの電子(電荷)の移動を説明するための概念として、すなわち狭義の概念で使用される場合がある。他方、錯体形成は、部分電荷の移動を説明する概念として使用されることが多い。そのため、化学分野一般においては、狭義の酸化還元と錯体形成が異なる意味で使用される場合もある。しかし、本発明においては、上述した広義の酸化還元、すなわち、電子(電荷)の移動が全般的に本発明のメカニズムとして利用される。そのため、本明細書中では、「酸化還元」との用語を、部分電荷の移動である「錯体形成」との概念を包含する意味で使用する。
 かりに、酸化還元を狭義で使用したとしても、狭義の酸化還元も錯体形成も電荷の移動を説明する概念である点で共通する。そして、本発明においては、狭義の酸化還元と錯体形成の両者に共通する電荷の移動という現象が触媒作用に利用されるので、狭義の酸化還元のメカニズムに基づく本発明の考察と、錯体形成のメカニズムに基づく本発明の考察との間に実質的に相違はない。
 (生成ポリマーの末端に結合するハロゲンの除去)
 本発明の方法で得られる生成ポリマーは、末端にハロゲン(例えば、ヨウ素)を有する。このポリマーを製品に使用する際には、必要があれば、末端のハロゲンを除去して、使用することもできる。また、末端のハロゲンを積極的に利用し、これを別の官能基に変換して、新たな機能を引き出すこともできる。末端のハロゲンの反応性は、一般に高く、非常に様々な反応により、その除去や変換ができる。例えば、ハロゲンがヨウ素である場合のポリマー末端の処理方法の例を以下のスキームに示す。これらのスキームに示す反応などにより、ポリマー末端を利用することができる。また、ハロゲンがヨウ素以外である場合についても、同様にポリマー末端を官能基に変換することができる。
(スキーム3)
Figure JPOXMLDOC01-appb-C000004
 (ポリマーの用途)
 上述した本発明のリビングラジカル重合方法によれば、分子量分布の狭いポリマーが得られる。例えば、反応材料の配合や反応条件を適切に選択することにより、重合平均分子量Mwと数平均分子量Mnとの比Mw/Mnが1.5以下のポリマーを得ることが可能であり、さらに反応材料配合および反応条件を適切に選択することにより、Mw/Mnが1.4以下、1.3以下、1.2以下、さらには1.1以下のポリマーを得ることが可能となる。なお、本発明のリビングラジカル重合方法において、ドーマント種として使用される有機ハロゲン化物のハロゲン原子が臭素である場合にも、Mw/Mnが2.0を下回るポリマーを得ることが可能であり、従来のラジカル重合法に比して、分子量分布の狭いポリマーが得られる。前記の通り、臭素化合物は、ヨウ素化合物に比べて安定なため、生成ポリマーから末端ハロゲンを除去する必要性が比較的低くく、得られるポリマーの有用性が極めて高い。さらに、臭素を複数持った化合物は、多くが市販または容易に合成できるため、星型、くし型、表面グラフト化型の多様なトポロジー(分岐)ポリマーも容易に得られる。よって、前記有機ハロゲン化物のハロゲン原子が臭素である場合にも、得られるポリマーは下記の用途に好適に使用できる。
 本発明のリビングラジカル重合方法により得られるポリマーは、各種用途に使用可能である。例えば、レジスト、接着剤、潤滑剤、塗料、インク、分散剤、包装材、薬剤、パーソナルケア製品(整髪料・化粧品など)、エラストマー(自動車材料、工業用品、スポーツ用品、電線被服材、建築資材など)、コーティング(粉体塗装など)などの生産に使用可能である。また、新しい電子・光学・力学・結晶・分離・潤滑・医療材料の創成に利用しうる。
 本発明のリビングラジカル重合方法により得られるポリマーは、また、ポリマー中に残存する触媒量が少ないという点においても各種用途に有利に使用可能である。すなわち、従来の遷移金属系の触媒などに比べて触媒量を減らせるため、得られる樹脂の純度が高いものになり、高純度の樹脂が必要とされる用途にも好適に使用できる。触媒残渣は、用途に応じて、生成したポリマーから除去してもよいし、除去しなくともよい。このような各種用途に応じて、ポリマーは成形されたり、溶媒または分散媒に溶解または分散させたりすることがあるが、成形された後のポリマー、あるいは溶解または分散等された後のポリマーも本発明の利点を維持しているものであり、依然として本発明の重合方法で得られたポリマーの範囲に入るものである。
 本発明の重合法を用いて合成したポリマーは分子量分布が狭く、ポリマー中の残存触媒量が少なく、かつコストが安いという利点を生かして、様々な用途に利用可能である。
 例えば、ベンジルメタクリレートからなる分子量分布の狭い単独重合体、ランダム共重合体、ブロック共重合体は、高性能のレジストとして使用可能である。
 また例えば、メタクリレート(例えば、ジメチルアミノメタクリレートや、2-ヒドロキシエチルメタクリレート)、メタクリル酸、アクリレート、アクリル酸などの重合体は、接着剤、塗料、インク、顔料分散剤などの用途に使用可能である。
 また、本発明の方法で多分岐ポリマーを合成すれば、潤滑剤として有用である。
 また、本発明の方法で得られたポリマー(例えば、ヒドロキシエチルメタクリレート、ポリエチレングリコールメタクリレートなど)は、薬剤除放材・医療材料にも有用である。
 また、本発明の方法で得られたポリマー(例えば、ジメチルアミノメタクリレートや、メタクリル酸、2-ヒドロキシエチルメタクリレート、ポリエチレングリコールメタクリレートなど)は、パーソナルケア製品(例えば、整髪料や化粧品)にも有用である。
 また、本発明の方法で得られたポリマー(例えば、(アクリレート、メタクリレート、スチレン、ジエンなど)は、エラストマーや、コーティングなどの用途にも有用である。
 また、本発明の方法で得られるポリマーは、従来にない新しい電子材料・光学材料・力学材料・結晶材料・分離材料・潤滑材料・医療材料などの創製と製造にも有用である。
 さらに本発明の方法は、例えば、表面グラフト重合に応用することも可能であり、高密度のポリマーブラシを製造して各種用途に用いることもできる。
 また、触媒として、導電性を有さない化合物を用いた場合、導電性不純物がポリマー中に残存しないことが必要とされる用途(例えばレジストや有機EL等)においても、好適に使用可能なポリマーが得られる。
 本発明の触媒は、その有機化合物が酸化還元反応を行う能力を有するという特徴を有する。本発明らの研究の結果、酸化還元能力を有する有機化合物は、その酸化還元反応により、ラジカル重合反応の成長末端の可逆的活性化を触媒できることがわかった。従って、このような酸化還元能力を有する有機化合物は、強力な触媒となることができる。
 以下に、本発明の実施例を説明するが、本発明は、これらの実施例により限定されるものではない。
 以下に、後述する各実施例で使用したモノマー、ドーマント種となるハロゲン化アルキル、および触媒を示す。
 (用いた化合物)
 まず、実施例で用いた主な化合物の構造を以下に記載する。
 (モノマー)
 実施例で用いられたモノマーの構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000005
 (触媒およびドーマント種となる有機ハロゲン化化合物)
 実施例で用いられた触媒化合物およびドーマント種となる有機ハロゲン化化合物(CPI)の構造式を以下に示す。
Figure JPOXMLDOC01-appb-C000006

Figure JPOXMLDOC01-appb-C000007

 
 (実施例1および比較例1)
[TDAEを触媒として用いたメチルメタクリレート(MMA)の重合]
 (entry 1-1)
 ドーマント種となるハロゲン化アルキルとして、80mMの2-ヨード-2-シアノプロピル(CP-I;化学構造式は上述のとおり)を用いた。触媒として40mMのテトラキスジメチルアミノアミン(TDAE;化学構造式は上述のとおり)を用いた。有機化酸化物またはジアゾ化合物などのラジカル開始剤は用いなかった。これらの材料を3gのメチルメタクリレート(MMA)に溶解して上記濃度の反応溶液とした。モノマー濃度は約8Mであった。これらの材料の溶解性は良好であり、均一な溶液が形成された。アルゴンにて残存酸素を置換し、この反応溶液を80℃に加熱することにより重合反応を行った。実験結果を表1のentry 1-1に示す。
 なお、濃度の「mM」は、モノマー1リットルを基準とするミリモル数を示す。例えば、80mMは、モノマー1リットルに80ミリモルが含まれていることを意味する。濃度の「M」は、モノマー1リットルを基準とするモル数を示す。例えば、8Mは、モノマー1リットルに8モルが含まれていることを意味する。なお、MMAの場合、モノマー1リットルが(バルクが)、室温で8モルである。
 (entry 1-2)
 2mMのヨウ素(I)を用いた以外は、上記entry 1の実験と同様に実験を行った。実験結果を表1のentry 2に示す。PDIは1.18であり、分子量分布が非常に狭いポリマーが得られた。この重合反応において、ヨウ素は、TDAEと反応してTDAEに正の電荷を与え、触媒作用を促進したと考えられる。
 (entry 1-3)
 CP-Iを用いなかった以外は、上記entry 1の実験と同様に実験を行った。実験結果を表1のentry 3に示す。
 以下の表において、PDIはM/Mの比を示す。また、Mは、得られたポリマー
の数平均分子量である。
 Mn,theoは、
Figure JPOXMLDOC01-appb-M000001
で算出される理論値である。なお、[M]および[R-I]はそれぞれ、モノマーとドーマント種となるヨウ化アルキルの初期濃度(仕込み濃度)を表す。また、convは、モノマーの転化率(重合率)である。
 この重合では、TDAEと、その酸化状態(TDAEが正の電荷を有する状態)との間
の酸化還元反応により、ポリマーの成長末端のラジカル(polymer・)とヨウ素との間の反応が触媒されてリビングラジカル重合が進行したと考えられる。
 表1のentry 1-1~1-3の実験で使用した量40mMは、TDAEの分子量(約200)を考慮すると、MMAモノマー溶液中の約0.9重量%に相当する。この量は、後述する非特許文献1に記載された実験例において使用された触媒の量(8.9重量%)に比べて、およそ10分の1である。このように極めて少量でリビングラジカル重合反応を行えることから、触媒の活性が極めて高いことが確認された。
 生成したポリマーのタクティシティから本重合がラジカル重合であることを確認した。
 (実施例2)
[TDMEを用いたメチルメタクリレート(MMA)の重合]
 (entry 2-1~2-2)
 TDAEの代わりに、40mMの1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン(TDME;化学構造式は上述のとおり)を用いた。表1のentry 4-5)に示すように、反応材料および反応条件を変更した以外は、実施例1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表1に示す。
 TDMEはTDAEと異なり、共役結合を有さないが、リビングラジカル重合の触媒として作用することが確認された。
 (比較例1)
[触媒を用いないメチルメタクリレート(MMA)の重合]
 TDAE、CP-Iおよびヨウ素(I)を用いなかった以外は、実施例1のentry 1-2と同様に実験を行った。結果を表1のentry C-1に示す。分子量分布の狭いポリマーは得られなかった。
Figure JPOXMLDOC01-appb-T000001
モノマー:メチルメタクリレート(MMA)
モノマー濃度:8M(バルク)
ドーマント種となるハロゲン化アルキル(R-I): 2-ヨード-2-シアノプロピル(CP-I)
触媒:TDAE(テトラキスジメチルアミノアミン)、TDME(1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン)、I
ラジカル開始剤(In):使用せず。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィ(GPC)を用いて得たポリスチレン(PSt)換算分子量と分子量分布指数。
 (実施例3)
[TEAを用いたメチルメタクリレート(MMA)の重合]
 (entry 3-1)
 TDAEの代わりに、120mMのトリエチルアミン(TEA;化学構造式は上述のとおり)を用いた。表2のentry 3-1に示すように、反応材料および反応条件を変更した以外は、実施例1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表2に示す。
 (entry 3-2~3-5)
 表3のentry 3-2~3-5に示すように、反応材料および反応条件を変更した以外は、entry 3-1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表2に示す。
 entry 3-1および3-2の重合結果を図1に示す。Mは重合率にほぼ比例し、PDIは重合初期から小さく、重合はよく制御された。
 entry 3-3および3-4の重合結果を図2に示す。Mは重合率にほぼ比例し、PDIは重合初期から小さく、重合はよく制御された。
 (entry 3-6)
 MMAモノマーに溶媒としてトルエンを添加して50重量%のモノマー溶液として重合反応を行った。表3のentry 3-6に示すように、反応材料および反応条件を変更した以外は、entry 3-1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表2に示す。
 TEAを用いて生成したPMMAの立体規則性を13C-NMRを使って調べた。その結果、フリーラジカル重合で生成したPMMAと、四連子の立体規則性がほぼ一致した。このことからTEAを触媒として用いた重合は、フリーラジカル機構で進行していることがわかった。
Figure JPOXMLDOC01-appb-T000002
モノマー:メチルメタクリレート(MMA)
モノマー濃度:8M(バルク)、4M(50%トルエン溶液)
ドーマント種となるハロゲン化アルキル(R-I): 2-ヨード-2-シアノプロピル(CP-I)
ラジカル開始剤(In):使用せず。
触媒:トリエチルアミン(TEA)
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィ(GPC)を用いて得たポリスチレン(PSt)換算分子量と分子量分布指数。
 表2のentry 3-5の実験で使用した量5mMは、TEAの分子量(約100)を考慮すると、MMAモノマー溶液中の約0.06重量%に相当する。この量は、後述する非特許文献1に記載された実験例において使用された触媒の量(8.9重量%)に比べて、およそ150分の1である。このように極めて少量でリビングラジカル重合反応を行えることから、触媒の活性が極めて高いことが確認された。
 (実施例4)
[TBAを用いたメチルメタクリレート(MMA)の重合]
 (entry 4-1)
 TDAEの代わりに、20mMのトリブチルアミン(TBA;化学構造式は上述のとおり)を用いた。表3のentry 4-1に示すように、反応材料および反応条件を変更した以外は、実施例1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表3に示す。
 (entry 4-2~4-3)
 表3のentry 4-2~4-3に示すように、反応材料および反応条件を変更した以外は、entry 4-1と同様に、メチルメタクリレート(MMA)の重合を行った。結果を表2に示す。
 entry 4-2および4-3の重合結果を図3に示す。Mは重合率にほぼ比例し、PDIは重合初期から小さく、重合はよく制御された。
Figure JPOXMLDOC01-appb-T000003
モノマー:メチルメタクリレート(MMA)
モノマー濃度:8M(バルク)、4M(50%トルエン溶液)
ドーマント種となるハロゲン化アルキル(R-I): 2-ヨード-2-シアノプロピル(CP-I)
ラジカル開始剤(In):使用せず。
触媒:トリブチルアミン(TBA)
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィ(GPC)を用いて得たポリスチレン(PSt)換算分子量と分子量分布指数。
 (実施例5)
[TEAを用いたベンジルメタクリレート(BzMA)の重合]
 (entry 5-1)
 TDAEの代わりに、40mMのトリエチルアミン(TEA;化学構造式は上述のとおり)を用いた。また、モノマーとしてベンジルメタクリレート(BzMA)を用いた。そして表4のentry 5-1に示すように、反応材料および反応条件を変更した以外は、実施例1と同様に、ベンジルメタクリレート(BzMA)の重合を行った。結果を表4に示す。
 (entry 5-2~5-4)
 表4および表5のentry 5-2~5-4に示すように、反応材料および反応条件を変更した以外は、entry 5-1と同様に、ベンジルメタクリレート(BzMA)の重合を行った。結果を表4および表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
モノマー:ベンジルメタクリレート(BzMA)
モノマー濃度:8M(バルク)
ドーマント種となるハロゲン化アルキル(R-I): 2-ヨード-2-シアノプロピル(CP-I)
ラジカル開始剤(In):使用せず。
触媒:トリエチルアミン(TEA)
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィ(GPC)を用いて得たポリスチレン(PSt)換算分子量と分子量分布指数。
 
(実施例6)
[スチレン(St)の重合]
 
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を表6Aおよび6Bに示す。
Figure JPOXMLDOC01-appb-T000006

モノマー濃度は8M(バルク重合)。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリスチレン(PSt)換算分子量と分子量分布指数。
VR110=2,2’-アゾビス(2,4,4-トリメチルペンタン)
 
Figure JPOXMLDOC01-appb-T000007

(実施例7)
[アクリロニトリル(AN)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000008

Figure JPOXMLDOC01-appb-T000009

すべて溶液重合(溶媒(エチレンカーボネート)を50%含む)(モノマー濃度は溶媒が50%あるため4M)
およびPDI:ジメチルホルムアミド(DMF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
(実施例8)
[n-ブチルアクリレート(BA)の重合]
以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000010

モノマー濃度は、バルク重合の場合は8M、溶媒が50%の場合は4M。
およびPDI:テトラヒドロフラン(THF)を溶出液として用いたゲル浸透クロマトグラフィー(GPC)を用いて、多角光散乱(MALLS)検出器により決定した分子量と分子量分布指数。
BPB = t-ブチルパーベンゾエート
TBP = triブチルホスフィン(Bu3P)
DAP = ジアミルパーオキサイド
VR110 = 2,2’-アゾビス(2,4,4-トリメチルペンタン)
Figure JPOXMLDOC01-appb-T000011

(実施例9)
[TDAEまたはDEMEを触媒として用いたメチルメタクリレート(MMA)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000012

Figure JPOXMLDOC01-appb-T000013

Figure JPOXMLDOC01-appb-T000014

Figure JPOXMLDOC01-appb-T000015

Figure JPOXMLDOC01-appb-T000016

Figure JPOXMLDOC01-appb-T000017

モノマー濃度は、バルク重合の場合は8M、溶媒が25%の場合は6M,溶媒が50%の場合は4M。
ジプロピレングリコールモノメチルエーテル(MFDG)
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
(実施例10)
[ベンジルメタクリレート(BzMA)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例5と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000018

Figure JPOXMLDOC01-appb-T000019

モノマー濃度は、バルク重合の場合は8M、溶媒が50%の場合は4M。
およびPDI:テトラヒドロフラン(THF)を溶出液として用いたゲル浸透クロマトグラフィー(GPC)を用いて、多角光散乱(MALLS)検出器により決定した分子量と分子量分布指数。
 
(実施例11)
[ポリエチレングリコールメタクリレート(PEGMA)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000020

Figure JPOXMLDOC01-appb-T000021

モノマー濃度は8M(バルク重合)。
モノマーの分子量は475
およびPDI:ジメチルホルムアミド(DMF)を溶出液として用いたゲル浸透クロマトグラフィー(GPC)を用いて、多角光散乱(MALLS)検出器により決定した分子量と分子量分布指数。
 
(実施例12)
[2-エチルヘキシルメタクリレート(EHMA)の重合]
 
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000022

Figure JPOXMLDOC01-appb-T000023

モノマー濃度は8M(バルク重合)。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
(実施例13)
[2-ヒドロキシエチルメタクリレート(HEMA)とメチルメタクリレート(MMA)のランダム共重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000024

Figure JPOXMLDOC01-appb-T000025

MMAとHEMAのランダム共重合
モノマー濃度は8M(バルク重合)。
およびPDI:ジメチルホルムアミド(DMF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
(実施例14)
[2-ヒドロキシエチルメタクリレート(HEMA)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000026

Figure JPOXMLDOC01-appb-T000027

モノマー濃度は4M(溶液重合)。
ジプロピレングリコールモノメチルエーテル(MFDG)
およびPDI:ジメチルホルムアミド(DMF)を溶出液として用いたゲル浸透クロマトグラフィー(GPC)を用いて、多角光散乱(MALLS)検出器により決定した分子量と分子量分布指数。
(実施例15)
[グリシジルメタクリレート(GMA)の重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000028

 
Figure JPOXMLDOC01-appb-T000029

 
モノマー濃度は8M(バルク重合)。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いて、多角光散乱(MALLS)検出器により決定した分子量と分子量分布指数。
 
(実施例16)
[メチルメタクリレート(MMA)(第一ブロック)とベンジルメタクリレート(BzMA)(第二ブロック)のブロック共重合]
 以下の表に示すとおり反応材料および反応条件を変更した以外は、実施例1と同様に、重合を行った。結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000030

 

 
モノマー濃度は4M(溶液重合)。
ポリメタクリル酸メチル-ヨウ素付加体(PMMA-I)は、Mn=3600、PDI=1.20である。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
(実施例17)
[メチルメタクリレート(MMA)とベンジルメタクリレート(BzMA)の逐次添加ブロック共重合]
第一ブロックとして、MMA(4M)の溶液重合(トルエン50vol%)を、CP-I(40mM)、TDME(20mM)、ヨウ素I(10mM)の存在下で、90℃で3.5時間行ったところ、重合率は62%となり、M=6200、PDI=1.28のポリメタクリル酸メチル-ヨウ素付加体(PMMA-I)が生成した。この溶液に(PMMA-Iを単離精製することなく)、BzMA(初期MMA添加量と同当量)とTDME(BzMAの0.0025当量)、ヨウ素I(BzMAの0.00125当量)を添加し、90℃で重合を行った。これにより、第二ブロックとして、MMA(第一ブロック時の未重合モノマー)とBzMAのランダム共重合が生じ、分子量分布の狭いPMMA-ブロック-(PMMA-ランダム-PBzMA)が生成した。結果を以下の表に示す。なお、PBzMAはポリメタクリル酸ベンジルを表す。
Figure JPOXMLDOC01-appb-T000032

 
Figure JPOXMLDOC01-appb-T000033

 
モノマー濃度は4M(溶液重合)(第一ブロック)。
第一ブロックでは、MMA、CP-I、TDME、ヨウ素(I)のモル比は、4000:40:20:10であった。第一ブロックの反応後、初期MMA量と同モルのBzMAを添加した。この際に添加したBzMA、TDME、ヨウ素(I)のモル比は、4000:10:5であった。
およびPDI:テトラヒドロフラン(THF)を溶出液とするゲル浸透クロマトグラフィー(GPC)を用いたポリメチルメタクリレート(PMMA)換算分子量と分子量分布指数。
 
 (比較例2)
 以下の配合を用いた以外は、実施例1と同様に、重合実験を行った。
モノマー:スチレン、8.0M(1g)
ドーマント種となるハロゲン化アルキル:1-フェニルエチルブロミド、80mM(0.016g)(以下の表中では「PEB」と略す)
触媒:CuBr 5mM(0.00071g)
配位子:4,4’-ジ-(5-ノニル)-2,2’-ビピリジン 10mM(0.0035g)
    (以下の表中では「dHbipy」と略す)
 配位子はCuBr(触媒)をモノマーに溶かすために必ず必要であり、dHbipyの場合、CuBrに対して2当量必要である。この実験の触媒濃度(CuBr錯体濃度)は5mMである。なお、この実験においては、過酸化物を用いなかった。銅錯体触媒の場合には過酸化物を用いないことが当業者の技術常識であったからである。その理由は、(1)銅錯体触媒の場合には、過酸化物を用いなくてもラジカル反応が開始されること、および、(2)銅錯体触媒に過酸化物を加えると、成長種の失活反応が起こってしまって却って分子量分布が広くなってしまうことである。具体的には、例えば、上記非特許文献1においても、過酸化物を含まない反応原料が用いられることが記載されている。
 これらの原料をモノマーに溶解して反応溶液とした。この反応溶液を、80℃に加熱した。結果は以下のとおりであった。
Figure JPOXMLDOC01-appb-T000034
 PEB:1-フェニルエチルブロミド
 dHbipy:CuBrをモノマー(スチレン)に溶かすための配位子。
 この結果、実施例1におけるMMAの重合率と比較して、重合率がかなり低かった。
また、反応後のMnは1200~1400であって著しく低く、高分子量のポリスチレンが得られなかった。またMw/Mnの値(PDI)も、実施例1における本発明の触媒における値よりもかなり大きくなっている。従って、遷移金属触媒の活性が、本発明の触媒の活性に比べて著しく劣ることが理解される。
 この比較例2の結果と、実施例1の結果との対比からも理解されるとおり、本発明の触媒は、先行技術における遷移金属錯体触媒に比べて、著しく活性が高い。
 上記の実施例は、先行技術に開示された先行技術の触媒の性能と比べても本発明が優れることを示している。
 例えば、上述した非特許文献1に記載された実験例では、以下の反応溶液を反応させる:
スチレン 8.7 M (1 g)
1-フェニルエチルブロミド 87 mM (0.016 g)
CuBr 87 mM (0.013 g)
4,4’-ジ-(5-ノニル)-2,2’-ビピリジン 174 mM (0.076 g)
この反応溶液を110℃で7時間加熱して、ポリマーを得ている。モノマー1gに対して、錯体化合物を0.089g、すなわち、モノマーに対して8.9重量%という多量の触媒を用いている。
 本発明においては、この例と比較して、触媒使用量を格段に減らすことができ、反応温度を10~40℃下げることができ、かつ、配位子を用いる必要もない。
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、当業者の技術常識に基づいて特許請求の範囲と等価な範囲を理解することができる。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 上述したとおり、本発明者らは、酸化還元能力を有する有機化合物を触媒として利用した新しいタイプのリビングラジカル重合方法(精密制御ラジカル重合)を発明した。その特徴は、触媒の低毒性、低使用量、高溶解性(配位子が不要)、温和な反応条件、無着色・無臭(重合反応後の処理が不要)などにあり、従来のリビングラジカル重合に比べて格段に環境に優しく経済性に優れる。
 世界の高分子化合物生産量の半分以上はラジカル重合によるが、リビングラジカル重合は、各種高付加価値材料の生産に応用できる。具体的には、例えば、熱可塑性エラストマー(自動車材料、工業用品、医療材料、履物、スポーツ用品、玩具、電線被覆材、建設・土木資材、樹脂改質など)レジスト、有機EL、接着剤、ポリマーアロイ、各種フィラー添加剤、潤滑剤、界面活性剤、塗料、インク、包装材、薬剤(例えば、医薬除放材)、パーソナルケア製品(化粧品、整髪料など)などの生産に応用でき、市場規模は極めて大きい。本発明のリビングラジカル重合は、新しい電子材料、光学材料、分離材料、または生体材料を生産する優れたプロセスとして幅広く利用され得る。
 リビングラジカル重合の実用化にあたり、従来技術の大きな問題点は、その高い触媒のコストであった。すなわち、リビングラジカル重合を行った場合、触媒は得られるポリマー中に取り込まれた状態になってしまうため、その触媒をポリマーから回収することは非常に手間がかかり、結果としてプロセスの費用を莫大なものにしてしまい、現実的ではない。このため、現実的には、触媒を回収して再利用することは困難であり、実質的に触媒を使い捨てにすることが実情である。
 本発明者らは、安価な酸化還元能力を有する有機化合物がリビングラジカル重合の優れた触媒として作用することを発見し、従来技術に比べて、はるかに低コストのリビングラジカル重合を実現した。具体的には、1kgのポリマーを合成するのに必要な触媒の費用をアルドリッチ社のカタログに記載された価格に基づいて計算すると、例えば、従来型触媒で最もよく利用されている銅錯体触媒では、触媒の費用がおよそ数千円になる。また、ゲルマニウム触媒を用いても約千円程度の費用がかかるのに対し、本発明では、例えば、トリアルキルアミンの触媒の場合、数十円から数円の費用しかかからない。すなわち、本発明によれば、従来の触媒に比べて桁違いに費用を低減させることが可能なのである。
 汎用的な様々なモノマーの価格が一般に1kgあたり100円~数百円程度であることを考慮すると、従来技術においてはモノマーの費用の10倍程度の触媒費用が必要であったのに対して、本発明では、モノマーの費用の10分の1あるいは100分の1程度しか触媒費用を必要としないのであって、その費用削減効果は劇的である。
 さらに、触媒の低毒性(あるいは無毒性)、高溶解性(配位子が不要)、温和な反応条件、無着色・無臭(重合反応後の処理が不要)といったゲルマニウム触媒がもつ利点を、本発明の触媒として使用される有機化合物もすべて保持している。そして、ゲルマニウム触媒において達成されている少触媒量をさらに下回る(例えば1/3の)触媒量で重合の制御が可能である。ゲルマニウム触媒(ヨウ化物)はやや水分と光に弱いが、本発明の触媒として使用される有機化合物は水分と光に極めて強く、重合操作をさらに容易にする。このように、本発明は、従来法にはない高い環境安全性と、従来法をはるかに凌ぐ優れた経済性と高い簡便性を併せもち、実用性に極めて富む。
 さらに、本発明の触媒として使用される有機化合物は、官能基耐性に特に優れ、実用用途の多い、官能基をもつ各種の機能性モノマーへの適用が期待される。

Claims (15)

  1.  リビングラジカル重合法のための触媒であって、
    該触媒は、酸化還元能力を有する有機化合物であって、該有機化合物の還元状態と酸化状態との間の可逆的酸化還元反応により、リビングラジカル重合の触媒反応を行う、
    触媒。
  2.  請求項1に記載の触媒であって、前記可逆的酸化還元反応の際に酸化または還元される中心元素が、窒素、炭素、リン、硫黄、または酸素から選択され、前記酸化状態において該中心元素が正の電荷を有する、
    触媒。
  3.  請求項1または2のいずれか1項に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素にハロゲン原子または水素原子のいずれも結合していない、触媒。
  4.  請求項3に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素には、置換炭化水素基または非置換炭化水素基が結合しており、ここで、該置換炭化水素基においては、炭化水素基中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されているか、または炭化水素基中の炭素骨格中に1つ以上のエーテル結合またはエステル結合が挿入されており、
     ここで、該有機化合物中に2つ以上の中心元素が存在する場合には、それぞれの中心元素が、該置換炭化水素基または非置換炭化水素基によって連結されている、
    触媒。
  5.  請求項4に記載の触媒であって、前記置換炭化水素基の炭素数が1~10であり、非置換炭化水素基の炭素数が1~10である、触媒。
  6.  請求項4または5に記載の触媒であって、前記中心元素に置換もしくは非置換のアルキル基、置換もしくは非置換のアルキレン基、置換もしくは非置換のアルケニル基、置換もしくは非置換のアルケニレン基、置換もしくは非置換のアリール基、または置換もしくは非置換のアリーレン基が結合しており、
     ここで、該中心元素に置換アルキル基が結合している場合、該置換アルキル基においては、アルキル中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
     該中心元素に置換アルキレン基が結合している場合、該置換アルキレン基においては、アルキレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
     該中心元素に置換アルケニル基が結合している場合、該置換アルケニル基においては、アルケニル中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
     該中心元素に置換アルケニレン基が結合している場合、該置換アルケニレン基においては、アルケニレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
     該中心元素に置換アリール基が結合している場合、該置換アリール基においては、アリール中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されており、
     該中心元素に置換アリーレン基が結合している場合、該置換アリーレン基においては、アリーレン中の1つ以上の水素原子が水酸基、アミノ基、シアノ基から選択される置換基により置換されている、
    触媒。
  7.  請求項4または5に記載の触媒であって、前記還元状態の有機化合物において、前記可逆的酸化還元反応において酸化または還元される中心元素には、非置換炭化水素基が結合しており、
     ここで、該有機化合物中に2つ以上の中心元素が存在する場合には、それぞれの中心元素が、該非置換炭化水素基によって連結されている、
    触媒。
  8.  請求項7に記載の触媒であって、前記還元状態の有機化合物中の中心元素には、前記非置換炭化水素基のみが結合している、触媒。
  9.  請求項4に記載の触媒であって、ここで、前記有機化合物が1つまたは2つ以上の中心元素を有し、該中心元素が窒素であり、該中心元素である窒素原子に、アルキル基、アルキレン基、アルケニル基、アルケニレン基、アルキニル基、またはアルキニレン基から選択される3つの置換基が結合しており、
     ただし、該有機化合物が1つの中心元素を有する場合、該中心元素である窒素原子に、アルキル基、アルケニル基、またはアルキニル基から選択される3つの置換基が結合しており、
     そして、該有機化合物が2つ以上の中心元素を有する場合、該2つ以上の中心元素のそれぞれは、アルキレン基、アルケニレン基、またはアルキニレン基により連結されており、
     ここで、該アルキル基およびアルキレン基の炭素数は1~10であり、該アルケニル基、アルケニレン基、アルキニル基およびアルキニレン基の炭素数は2~10である、
    触媒。
  10.  以下の群の有機化合物から選択される、請求項1~8のいずれか1項に記載の触媒:
     トリエチルアミン;
     トリブチルアミン;
     テトラキスジメチルアミノアミン;
     1,4,8,11-テトラメチル-1,4,8,11-テトラアザシクロテトラデカン
     トリブチルホスフィン;
     トリフェニルホスフィン;
     ビス(エチレンジチオ)テトラチアフルバレン(BTTF)
     エチレンジアミン;
     ジメチルエチレンジアミン;
     テトラメチルエチレンジアミン;
     テトラメチルジアミノメタン;
     トリス(2-アミノエチル)アミン;
     トリス(2-(メチルアミノ)エチル)アミン;
     1,2-ビス(ジフェニルホスフィノ)メタン;および
     ヘマトポルフィリン。
  11.  リビングラジカル重合を行う工程を包含する重合方法であって、該リビングラジカル重合工程が、請求項1~10のいずれか1項に記載の触媒の存在下で行われる、方法。
  12.  請求項11に記載の方法であって、前記リビングラジカル重合を行う際の反応混合物にラジカル開始剤が添加されない、方法。
  13.  請求項11または12に記載の方法であって、前記重合を開始する際に、前記触媒として、前記還元状態の有機化合物と、該有機化合物にハロゲンを提供できるハロゲン分子またはハロゲン化無機化合物との混合物が使用される、方法。
  14.  請求項11または12に記載の方法であって、前記重合を開始する際に、前記触媒として、前記還元状態の有機化合物と、ハロゲン分子との混合物が使用される、方法。
  15.  ポリマーの製造方法であって、請求項1~10のいずれかに記載の触媒の存在下にラジカル重合性モノマーを重合させる工程を包含する、製造方法。
PCT/JP2010/003181 2009-08-06 2010-05-10 リビングラジカル重合触媒および重合方法 WO2011016166A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011525742A JP5610402B2 (ja) 2009-08-06 2010-05-10 リビングラジカル重合触媒および重合方法
US13/388,811 US9546226B2 (en) 2009-08-06 2010-05-10 Catalyst for living radical polymerization and polymerization method
EP10806168.0A EP2463312B1 (en) 2009-08-06 2010-05-10 Use of a catalyst for living radical polymerization and polymerization method
CN201080045286.5A CN102574938B (zh) 2009-08-06 2010-05-10 用于活性自由基聚合的催化剂及聚合方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-183915 2009-08-06
JP2009183915 2009-08-06

Publications (1)

Publication Number Publication Date
WO2011016166A1 true WO2011016166A1 (ja) 2011-02-10

Family

ID=43544080

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003181 WO2011016166A1 (ja) 2009-08-06 2010-05-10 リビングラジカル重合触媒および重合方法

Country Status (5)

Country Link
US (1) US9546226B2 (ja)
EP (1) EP2463312B1 (ja)
JP (1) JP5610402B2 (ja)
CN (1) CN102574938B (ja)
WO (1) WO2011016166A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027419A1 (ja) 2011-08-25 2013-02-28 国立大学法人京都大学 リビングラジカル重合触媒および重合方法
US20150203639A1 (en) * 2012-04-18 2015-07-23 (Korea Institute Of Science And Technology) Polythiophene star copolymer capable of being self-doped by external stimulus, a method for producing the same, a conductive thin film using the same, and a method for producing the conductive thin film
JP2018090710A (ja) * 2016-12-05 2018-06-14 大日精化工業株式会社 星形ポリマーの製造方法、星形ポリマー、及びフィラー分散体
WO2019088300A1 (ja) * 2017-11-06 2019-05-09 国立大学法人京都大学 セルロース分散用ブロック共重合体の製造方法、樹脂組成物の製造方法及び成形体の製造方法
WO2021049627A1 (ja) * 2019-09-13 2021-03-18 三菱ケミカル株式会社 重合体の製造方法および重合触媒
US11084889B2 (en) 2015-10-02 2021-08-10 Sdp Global Co., Ltd. Water-absorbent resin particles and method for producing same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2880124B1 (en) 2012-08-06 2019-01-16 Lumileds Holding B.V. Highly stable qds-composites for solid state lighting and the method of making them through initiator-free polymerization
CN106046221B (zh) * 2016-05-23 2018-06-26 北京化工大学 一类可逆-休眠自由基聚合的催化剂及聚合方法
CN106674394B (zh) * 2016-12-30 2018-12-25 北京化工大学 甲基丙烯酸酯类单体活性自由基光聚合的引发体系
TWI800575B (zh) 2017-12-20 2023-05-01 美商盧伯利索先進材料有限公司 苯乙烯馬來醯胺嵌段共聚物顏料分散劑及其形成方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490209A (en) * 1987-10-01 1989-04-06 Kyowa Gas Chem Ind Co Ltd Preparation of steroregular methacrylate block copolymer
JPH04198303A (ja) * 1990-11-27 1992-07-17 Sanyo Chem Ind Ltd 重合開始剤および重合方法
JPH11322822A (ja) 1998-05-08 1999-11-26 Hitachi Chem Co Ltd ラジカルリビング重合用触媒及びこれを用いたメタクリル酸エステル重合体又は共重合体の製造方法
JP2002080523A (ja) * 2000-09-05 2002-03-19 Kuraray Co Ltd リビングラジカル重合開始剤系及びそれを用いる重合体の製造方法
JP2002212247A (ja) * 2001-01-24 2002-07-31 Mitsubishi Chemicals Corp ブロック共重合体の製造方法
JP2002249505A (ja) 2000-12-22 2002-09-06 Mitsubishi Chemicals Corp メタクリレート系重合体の製造方法
JP2007092014A (ja) 2005-09-01 2007-04-12 Kyoto Univ 新規リビングラジカル重合法
WO2008139980A1 (ja) 2007-05-09 2008-11-20 Kyoto University リン化合物または窒素化合物を触媒として用いた新規リビングラジカル重合法
WO2009136510A1 (ja) * 2008-05-09 2009-11-12 国立大学法人京都大学 アルコールを触媒として用いた新規リビングラジカル重合法
WO2010027093A1 (ja) * 2008-09-08 2010-03-11 国立大学法人京都大学 リビングラジカル重合法のための触媒

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157033B2 (ja) * 1992-03-10 2001-04-16 日本エラストマー株式会社 末端変性共役ジエン系重合体の製造方法
US6716918B2 (en) 2000-12-22 2004-04-06 Mitsubishi Chemical Corporation Methacrylate-based polymer and process for producing the same
CN102459356B (zh) * 2009-06-03 2013-06-12 国立大学法人京都大学 活性自由基聚合的聚合引发剂

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6490209A (en) * 1987-10-01 1989-04-06 Kyowa Gas Chem Ind Co Ltd Preparation of steroregular methacrylate block copolymer
JPH04198303A (ja) * 1990-11-27 1992-07-17 Sanyo Chem Ind Ltd 重合開始剤および重合方法
JPH11322822A (ja) 1998-05-08 1999-11-26 Hitachi Chem Co Ltd ラジカルリビング重合用触媒及びこれを用いたメタクリル酸エステル重合体又は共重合体の製造方法
JP2002080523A (ja) * 2000-09-05 2002-03-19 Kuraray Co Ltd リビングラジカル重合開始剤系及びそれを用いる重合体の製造方法
JP2002249505A (ja) 2000-12-22 2002-09-06 Mitsubishi Chemicals Corp メタクリレート系重合体の製造方法
JP2002212247A (ja) * 2001-01-24 2002-07-31 Mitsubishi Chemicals Corp ブロック共重合体の製造方法
JP2007092014A (ja) 2005-09-01 2007-04-12 Kyoto Univ 新規リビングラジカル重合法
WO2008139980A1 (ja) 2007-05-09 2008-11-20 Kyoto University リン化合物または窒素化合物を触媒として用いた新規リビングラジカル重合法
WO2009136510A1 (ja) * 2008-05-09 2009-11-12 国立大学法人京都大学 アルコールを触媒として用いた新規リビングラジカル重合法
WO2010027093A1 (ja) * 2008-09-08 2010-03-11 国立大学法人京都大学 リビングラジカル重合法のための触媒

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"A Novel Living Radical Polymerization using Germanium and Phosphorus Compound", THE SOCIETY OF POLYMER SCIENCE, JAPAN, article "A Novel Living Radical Polymerization using German ium and Phosphorus Compound"
"Germanium- and Tin-Catalyzed Living Radical Polymerizations of Styrene", AMERICAN CHEMICAL SOCIETY, DIVISION OF POLYMER CHEMISTRY
J.D. LEE: "Inorganic Chemistry", 15 April 1982, TOKYO KAGAKU DOJIN, pages: 311
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 119, 1997, pages 674 - 680
MACROMOLECULES, vol. 26, 1993, pages 2987 - 2988
POLYMER PREPRINTS, vol. 46, no. 2, 2005, pages 245 - 246
POLYMER PREPRINTS, vol. 56, no. 2, 2007, pages 2452
See also references of EP2463312A4 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013027419A1 (ja) 2011-08-25 2013-02-28 国立大学法人京都大学 リビングラジカル重合触媒および重合方法
US20150203639A1 (en) * 2012-04-18 2015-07-23 (Korea Institute Of Science And Technology) Polythiophene star copolymer capable of being self-doped by external stimulus, a method for producing the same, a conductive thin film using the same, and a method for producing the conductive thin film
US9908979B2 (en) * 2012-04-18 2018-03-06 Korea Institute Of Science And Technology Polythiophene star copolymer capable of being self-doped by external stimulus, a method for producing the same, a conductive thin film using the same, and a method for producing the conductive thin film
US11084889B2 (en) 2015-10-02 2021-08-10 Sdp Global Co., Ltd. Water-absorbent resin particles and method for producing same
JP2018090710A (ja) * 2016-12-05 2018-06-14 大日精化工業株式会社 星形ポリマーの製造方法、星形ポリマー、及びフィラー分散体
WO2019088300A1 (ja) * 2017-11-06 2019-05-09 国立大学法人京都大学 セルロース分散用ブロック共重合体の製造方法、樹脂組成物の製造方法及び成形体の製造方法
JP2019085569A (ja) * 2017-11-06 2019-06-06 Dic株式会社 セルロース分散用ブロック共重合体の製造方法、樹脂組成物の製造方法及び成形体の製造方法
JP7359375B2 (ja) 2017-11-06 2023-10-11 Dic株式会社 セルロース分散用ブロック共重合体の製造方法、樹脂組成物の製造方法及び成形体の製造方法
WO2021049627A1 (ja) * 2019-09-13 2021-03-18 三菱ケミカル株式会社 重合体の製造方法および重合触媒
JP7523768B2 (ja) 2019-09-13 2024-07-29 三菱ケミカル株式会社 重合体の製造方法および重合触媒

Also Published As

Publication number Publication date
EP2463312A1 (en) 2012-06-13
CN102574938B (zh) 2015-03-11
EP2463312B1 (en) 2016-06-29
US20120190795A1 (en) 2012-07-26
JP5610402B2 (ja) 2014-10-22
CN102574938A (zh) 2012-07-11
JPWO2011016166A1 (ja) 2013-01-10
US9546226B2 (en) 2017-01-17
EP2463312A4 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
JP5610402B2 (ja) リビングラジカル重合触媒および重合方法
JP5995848B2 (ja) リビングラジカル重合触媒および重合方法
JP5812306B2 (ja) リビングラジカル重合法のための触媒
JP5850599B2 (ja) リン化合物または窒素化合物を触媒として用いた新規リビングラジカル重合法
JP5697026B2 (ja) アルコールを触媒として用いた新規リビングラジカル重合法
JP5605945B2 (ja) リビングラジカル重合法
JP4543178B2 (ja) 新規リビングラジカル重合法
JP5645165B2 (ja) リビングラジカル重合の重合開始剤

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080045286.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10806168

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011525742

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010806168

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13388811

Country of ref document: US